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Abstract

Data are often accommodated on centralized stor-
age servers. This is the case, for instance, in remote
sensing and astronomy, where projects produce several
petabytes of data every year. While machine learning
models are often trained on relatively small subsets of
the data, the inference phase typically requires trans-
ferring significant amounts of data between the servers
and the clients. In many cases, the bandwidth avail-
able per user is limited, which then renders the data
transfer to be one of the major bottlenecks. In this
work, we propose a framework that automatically se-
lects the relevant parts of the input data for a given
neural network. The model as well as the associated
selection masks are trained simultaneously such that a
good model performance is achieved while only a min-
imal amount of data is selected. During the inference
phase, only those parts of the data have to be trans-
ferred between the server and the client. We propose
both instance-independent and instance-dependent se-
lection masks. The former ones are the same for all
instances to be transferred, whereas the latter ones al-
low for variable transfer sizes per instance. Our exper-
iments show that it is often possible to significantly re-
duce the amount of data needed to be transferred with-
out affecting the model quality much.

1 Introduction.

The data volumes have increased dramatically
in various domains. Often, centralized storage
servers/clusters are used to accommodate the col-
lected data, which are then accessed by many
users. This is the case in remote sensing, where
current projects produce petabytes of satellite
data every year [19,31]. The application of a ma-
chine learning model in this field to, e.g., moni-
tor changes on a global scale or to search for ob-
jects, often requires “scanning” all the data and,
thus, induces the transfer of large amounts of data
between the server and the client that executes
the model [29]. Similar data-intensive scenarios
can be found in other disciplines as well. For
instance, astronomers also resort to centralized
storage servers such as the ones for the Sloan
Digital Sky Survey [1]. The data transfer be-
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Figure 1: End-to-end training of input selection
masks and a task model to achieve both, a min-
imal amount of data selected by the masks as
well as a good model performance. During the
inference phase, only the selected parts have to
be transferred.

tween such servers and (thousands of) clients is
already restricted today (e.g., via a limited band-
width per user) and will become a serious bot-
tleneck for projects such as the Large Synoptic
Sky Survey [13] or the Square Kilometre Array [9],
which will be fully operational within the next few
years and which will yield petabytes of data every
month.

While the reduction of the training and infer-
ence runtimes have received considerable atten-
tion [5, 8, 11, 16, 25, 34], comparatively little work
has been done regarding the transfer of data in-
duced by such server/client based scenarios. In
this work, we propose a framework that allows
to automatically select those parts of the input
data that are relevant for a given task and an
associated model. In particular, we aim at sce-
narios, in which large amounts of data reside on
a public storage server and where it is, in gen-
eral, not possible for the user to execute code on
the server side. Our framework allows to learn
masks that are adapted to the specific transfer ca-
pabilities offered by the server (e.g., if the server
permits to select only certain channels or parts
of the images), which can then be used to signif-
icantly reduce the amount of data needed to be
transferred.1 The masks as well as the model are

1For instance, the Planet API allows to select input
channels or to “clip” data before transmission.
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optimized simultaneously in an end-to-end way
to achieve both a minimal amount of data being
selected by the masks and a good model perfor-
mance, see Figure 1. During the inference phase,
only the selected parts have to be transferred.
In addition to such “static” masks, we also con-
sider scenarios where reduced versions of the data
(e.g., thumbnails) are available on the server side
that serve as basis for a dynamic selection of rel-
evant input data for a given instance. Our ex-
periments show that both the static and dynamic
selection masks can be used to significantly reduce
the amount of data that must be transferred dur-
ing the inference phase without sacrificing much
of the model performance.

2 Background.

The transfer of data during the inference phase
is an active field of research [3, 18, 23, 25, 30, 33].
Two different lines of approaches exist: (a) fea-
ture extraction, where the original features get
modified, and (b) feature selection, where a sub-
set of the original features is chosen. In this work,
we consider feature selection scenarios, where the
user can select and slice the data, but is not
able to perform any computations on the server
side, which excludes the use of feature extraction
schemes. For example, a neural network cannot
be applied on the server. Recently, unsupervised
approaches based on autoencoders have been pro-
posed that aim at selecting a pre-defined number
of relevant input pixels. However, these methods
loose the spatial information present in the data
during the selection process [3, 10]. LassoNet [18]
has been proposed as a supervised and unsuper-
vised feature selection scheme. It is, however, only
applicable to fully-connected networks and not to
the more prominent convolutional networks.

We conduct a gradient-driven search to find
suitable weight assignments for the selection
masks (defined below). As detailed below, an ex-
haustive search for finding an optimal feature se-
lection is computationally intractable. An alter-
native to our approach are greedy schemes that,
e.g., incrementally select input channels or pixels
(i. e., similar to forward/backward feature selec-
tion methods). However, these approaches also
quickly become computationally infeasible in case
many features (e.g., pixels or channels) are given.
Another approach is based on iteratively select-
ing features according to a pre-calculated ranking,
for instance based on the feature importance val-
ues induced by random forests [4, 7] or based on
a principal feature analysis [22]. However, these
methods neglect the feature structure, in partic-
ular spatial correlations, which is vital for many
tasks. In addition, they usually yield sub-optimal

input masks output

(a) block
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(b) channel

input masks output

(c) pixel

Figure 2: Proposed masks to select data. While
the final masks are discrete, differentiable surro-
gates are used during the training process.

results since they are not trained simultaneously
with the task model in an end-to-end fashion.

Our framework is different from these works
in the sense that we conduct supervised search
with a more general and flexible class of selec-
tion schemes (e.g., channel-, block-, or pixel-wise
selection, see below). Furthermore, instead of fix-
ing the number of selected features beforehand,
our approach iteratively reduces the number of
features through gradient information updates,
which provide more choices for the trade-off be-
tween accuracy and transfer cost. There is also no
restriction to specific network architectures (e.g.,
fully-connected networks), meaning any architec-
ture can be used after the selection. In addition to
static scenarios, our approach allows dynamic se-
lection of required input data per instance, which
is a novel approach.

3 Automatic Input Selection.

The goal of our framework is to reduce the
amount of data that needs to be transferred in
order to apply a given neural network model for a
specific task. For the sake of simplicity, we focus
on image data and classification in this work. Our
approach can, however, also be applied to other
types of data such as video, time series, or un-
structured data as well as other types of tasks,
such as regression or segmentation.

3.1 Input Selection Masks.

Let mD be a selection mask that allows to
choose certain parts of an image x ∈ Rw×h×k with
width w, height h, and number of channels k,
such as specific input channels or individual pix-
els, see Figure 2. The generic selection scheme
presented here is block selection, where the in-
put data are divided into “blocks”. A partition in
bw × bh blocks is achieved via a mask of the form
mD ∈ {0, 1}bw×bh×k. As an example, a mask
mD with mD

[2,1,3] = 1 would correspond to se-
lecting the second block in the first row of the
third channel, whereas mD

[2,2,1] = 0 would corre-
spond to deselecting the second block in the sec-
ond row of the first channel. The case bw = w
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and bh = h yields pixel selection masks of the
form mD ∈ {0, 1}w×h×k, which allow to select
individual pixels per channel. Furthermore, the
case bw = 1 and hh = 1 yields channel selection
masks, where a mask mD ∈ {0, 1}1×1×k allows to
select specific channels of the image x.

3.2 Learning Static Masks.

Training such a discrete mask that is well-
suited for a given network and all the instances
available for a specific task can be challenging. In
case a single mask is applied for all instances, we
call the mask static (since it remains the same
regardless of the particular input image). Let
T = {(x1, y1), . . . , (xn, yn)} ⊂ X × Y be a train-
ing set consisting of images xi ∈ X = Rw×h×k

with associated class labels yi ∈ Y = {1, . . . , C},
where C is the number of classes. Masking is im-
plemented by element-wise multiplication mD�x
of the mask mD with a given input image x,
which sets deselected blocks to zero. In order
to apply this step, we need to ensure that if the
input image x and the corresponding mask mD

have different shapes (i. e., bw 6= w or bh 6= h),
the first two axes are broadcasted (via nearest
neighbor interpolation), so it always yields a mask
mD ∈ {0, 1}w×h×k with the same shape as the in-
put.

The goal of the training process is to find suit-
able weight assignments for both, the selection
mask mD and the neural network f : X → Y that
is being considered for the task at hand. Simul-
taneous training of mask and network is achieved
by minimizing the loss function

Lf,mD (ŷ, y) = Lf (ŷ, y) + λ · Q
(
mD

)
, (1)

where ŷ = f(mD � x) is the prediction for a
given image x with associated class label y, Lf a
user-defined task/model loss function (e.g., cross-
entropy), and Q a mask loss that penalizes selec-
tions made by the mask mD. For the mask loss,
various choices are possible. In this work, we con-
sider the standardized L1-loss:

Q
(
mD

)
=

∑bw
i=1

∑bh
j=1

∑k
l=1 m

D
[i,j,l]

bwbhk
(2)

It’s constant gradient helps to gradually deacti-
vate mask entries. The parameter λ ∈ R+ in-
creases the weight of Q, which we adapt heuristi-
cally to overcome stagnation (see Section 3.2.3).
This mask loss is a direct representation of how
much data is selected and needs to be transferred
(e.g., 0.25 is 25% of the data).

3.2.1 Optimizing Discrete Masks.

Naturally, search schemes that aim at finding op-
timal discrete weight assignments for the mask

w.r.t. Lf,mD by testing all possible assignments
are computationally infeasible. Simple greedy ap-
proaches such as forward/backward selection of
channels become computationally very demand-
ing and are, thus, generally ill-suited (especially
for pixel- or block-wise selection). While adapting
the selection mask mD directly via gradient de-
scent is, in general, possible, doing so yields impre-
cise gradient information due to its binary value
space.

We therefore introduce a mask model m : X →
X with a trainable weight matrix m ∈ Rbw×bh×k

that outputs the selected input x̂. In the static
case considered so far, the associated weights of
the model m are independent of the particu-
lar (image) instance; for the dynamic case, the
weights will depend on the particular instances,
see Section 3.3. In both cases, the model output
is given by

m(x) = mD � x = bσ (m)e � x (3)

during the forward pass of the training process,
where the rounding operator b·e discretizes the
weights (e.g., b0.2e = 0 and b0.8e = 1) and
where σ : R → R is the sigmoid function with
σ(z) = 1

1+e−z that is applied in an element-wise
fashion to the weight vector m. For the backward
pass, a real-valued surrogate is used to obtain a
continuous local gradient for the model m (that
depends on the trainable weight vector m). This
surrogate ignores the rounding operator (since it is
not differentiable) and only resorts to the deriva-
tive of the sigmoid function, i.e.,

d m

d mj
=

e−mj

(1 + e−mj )2
xj , (4)

for the individual weights mj of the weight vector
m. This enables effective backpropagation since
the sigmoid function is a differentiable function
that can be used as surrogate for the rounding
operator.2

3.2.2 Training.

Our training procedure for learning a suitable
mask and network model is given by LearnMasks
in Algorithm 1: The weights associated with

2More precisely, one can consider σ̄(z) = σ( z
τ

), which
approximates the rounding operator b·e for τ → 0. This
approximation of the non-differentiable function is similar
to the one used in [24]; no random noise has to be added
in this case though. There are also parallels to straight
through estimators used in model pruning and compres-
sion [6, 12, 35], but instead of using an identity function
and clipping the gradient to be between 0 and 1, we utilize
Equation 4. For all experiments reported in this work, we
used τ = 1, i.e., a normal sigmoid function was used as
approximation.
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Algorithm 1: LearnMasks(f,m, T )
Input: neural network f , mask model m,

and training set T
1 m← InitAllMasks()
2 λ← InitLambda()
3 for i← 1 to nepoch do
4 for j ← 1 to nbatch do
5 x, y ← GetBatch(T )
6 x̂← m(x)
7 ŷ ← f (x̂)

8 Lf,mD ← Lf (ŷ, y) + λQ
(
mD

)
9 f,m← Optimize

(
f,m,Lf,mD

)
10 λ← AdaptLambda

(
λ,Q

(
mD

))
11 ModelCheckpoint

(
f,m,Q

(
mD

))

the mask model as well as the trade-off param-
eter λ are initialized in Line 1 and 2, respec-
tively. Both the mask model m and the net-
work f are trained simultaneously by iterating
over a pre-defined number nepoch of epochs, each
being split into nbatch mini-batches (for the sake
of clarity, we consider a batch size of 1). For
each batch, a discrete mask mD is computed
and element-wisely multiplied (�) with the in-
put x via the mask model m to return the masked
image x̂, see again Equation (3). The induced
prediction ŷ is then used to compute the task
loss Lf (ŷ, y). Both, the task loss Lf (ŷ, y) and
the mask loss Q(mD) are optimized simultane-
ously via the procedure Optimize in Line 9 us-
ing standard optimizers such as stochastic gradi-
ent descent or Adam [14]. The influence of the
mask loss is gradually increased by adapting λ
after each epoch via the procedure AdaptLambda
(see Section 3.2.3). Throughout the overall pro-
cess, the procedure ModelCheckpoint assesses the
mask losses of the intermediate models and stores
them according to user-defined criteria.

3.2.3 Initialization, Parameters, and
Post-Training.

We initialize the weight matrix m of the mask
model m via the InitAllMasks procedure. Note
that the decision boundary for the discrete mask
is 0.5 due to the rounding operation applied in
Equation (3) for discretization. Therefore, we ini-
tialize the weight matrix m with values larger
than 0 since σ(0) = 0.5. This ensures that the
mask model m initially retains all blocks, thereby
allowing the prediction model to operate on the
complete data at the beginning. This, in turn,
ensures that the prediction model provides use-
ful gradient information about the less important
parts of the input. If parts of the input are re-
moved too fast, the prediction model may degrade

too quickly. Thus, we initialize the entries of the
weight matrix m with random values drawn from
a normal distribution N (µ, σ), where µ is a con-
stant larger than 1 and σ a small positive value
(µ = 2 and σ = 0.01 in all our experiments).

The procedure InitLambda initializes λ, which
determines the trade-off between the task loss Lf

and the mask loss Q. Initially, λ is set to a small
value (e.g., λ = 0.1) to ensure that the input
data is not directly removed at the beginning of
the training process. The influence of λ is then
gradually increased until nepoch epochs have been
processed. Since the range of possible values for
the model loss Lf is generally unknown a priori,
we resort to a scheduler that increases λ through
AdaptLambda in Line 8 of Algorithm 1 in case the
overall error Lf,mD = Lf + λQ has not decreased
for a specific amount p of epochs. Thus, the λ-
scheduler behaves similarly to standard learning
schedulers. However, instead of decreasing the
learning rate, the value for λ is increased by a
user-defined factor λfac (e.g., λfac = 1.1).

During training, the intermediate models
and masks are stored via the procedure
ModelCheckpoint and the best-performing com-
bination can be selected in the end. It is also pos-
sible to store the best-performing models for each
interval of a user-defined partition of the amount
of data to be removed (e.g., (5%, 10%, ..., 100%))
to account for varying bandwidth availability. In
general, the performance of the models can also
be slightly improved by continuing training the
weights of the model f for several epochs without
changing the mask weights anymore (post train-
ing).

3.3 Learning Dynamic Masks.

The approach outlined above is used to obtain
task-specific input selection masks that are the
same for all instances. In addition to such “static”
masks, we introduce scenarios in which one addi-
tionally has access to a thumbnail/reduced version
x̄ for each input image x (see Section 4). As de-
scribed next, we use these reduced versions to ob-
tain instance-based selection masks with a small
constant overhead. Compared to the static masks,
these dynamic masks yield further reductions in
data transfer.

Figure 3 outlines the dynamic mask approach:
The basic idea is to decide which parts of a
given instance x need to be transferred based
on the thumbnail x̄. To that end, the instance-
based masks are generated via a separate thumb-
nail model g : X → Rbw×bh×k that receives
a thumbnail x̄ and outputs instance-dependent
mask weights (e.g., g could be a small convolu-
tional neural network). Effectively, we replace the
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client
server

Figure 3: The thumbnail model g (left blue rect-
angle) identifies the relevant parts of input data
based on a thumbnail x̄. Only those parts of the
image x have to be transferred and are processed
by the task model f (right blue rectangle).

weight matrix m of the mask modelm by the out-
put of the thumbnail model g in (3) and (4), i. e.:

m = g(x̄) + c (5)

Here, c is a positive constant (e.g., c = 1). Fur-
ther, the weights of the thumbnail model g are
initialized in such a way that g(x̄) ≈ 0 at the be-
ginning. This ensures that the masks select all
data initially. These instance-based masks have
the same size as the thumbnails and are, hence,
expanded (e.g., via nearest neighbors interpola-
tion) to the dimensions of the original input x.

As for the static case, both the original model f
and the thumbnail model g are trained simultane-
ously (on the client). The discretization approach
also remains the same. Note that the thumbnail
model g has to conduct a conceptually simpler
task than the task model f : It only has to iden-
tify those parts of the input data x that are po-
tentially relevant for f ; it does not have to address
the final learning task.

During the inference phase, the thumbnail, the
instance-dependent mask, and the selected data
must be transferred, which creates a small con-
stant overhead for each instance. However, de-
pending on the complexity of the instance, a dy-
namically selected input image may require signif-
icantly fewer selections than a static mask, which
must be well suited for all possible input images.
This higher reduction can often outweigh the price
for the small constant overhead. In addition, each
input image is selected by masks whose block size
is smaller than the original input, which allows ef-
ficient block-wise encoding of the data to be trans-
mitted. As shown in Section 4.2, such dynamic
selections significantly reduce data transfer costs
compared to a static selection.

4 Experiments.

We considered several classification datasets
and network architectures, see Table 1. In addi-
tion to the well-known cifar10, mnist, fashion-

Table 1: Datasets and Models

Dataset #train #hold-out #class w h c model lr

remote 24694 24694 12 35 35 36 AllConvNet 1e−3
galaxy10 19606 2179 10 69 69 3 ResNet20 1e−4
cifar10 50000 10000 10 32 32 3 ResNet20 1e−5
mnist 60000 10000 10 28 28 1 LeNet5 1e−3
f-mnist 60000 10000 10 28 28 1 LeNet5 1e−3
svhn 73257 26032 10 32 32 3 ResNet20 1e−5
ship 175548 17008 2 768 768 3 Squeezenet 1e−5

mnist (f-mnist), and svhn datasets [15,17,26,32],
we resorted to three more datasets from remote
sensing and astronomy, respectively: For each in-
stance of remote, one is given an image with
36 channels originating from six multi-spectral
satellite image bands available for six different
dates [27]. The learning goal of remote is to
predict the type of change occurring in the cen-
tral pixel of each image. The dataset galaxy10
is dedicated to detecting different types of galax-
ies based on RGB images from the Sloan Digital
Sky Survey [2] with labels from Galaxy Zoo [21].
Both remote and galaxy10 are typical datasets
for their respective domain, with the target ob-
jects being located in the centers of the images.
Finally, we considered the ship dataset of the Air-
bus Ship Detection Challenge. We simplified the
task from segmentation to classification (i. e., the
task was to detect if a ship is visible in the image
or not), halved the sizes of the original images (to
obtain images of size 384 × 384), and used un-
dersampling to balance the classes. In contrast
to the other datasets, the relevant information is
not necessarily in the middle of an image, which
renders static selection approaches less useful.

For all experiments, we considered a fixed
amount of epochs and monitored the classifica-
tion accuracy and mask loss Q on the hold-out
set, see Table 1. The mask loss is a direct measure
of how much raw information needs to be trans-
ferred. Depending on the application, further re-
ductions might be achieved by using compression
algorithms after the input selection. Each exper-
iment was conducted nruns = 10 times. We used
pre-trained networks and optimizer parameters.

Our implementation is in PyTorch (version
1.5). Except for the trade-off parameter λ and
the learning rate for the mask model m, all pa-
rameters were fixed (e.g. batch size of 128). The
Adam [14] optimizer with AMSGrad [28] and spe-
cific learning rates per model and dataset were
employed, see Table 1. More implementation de-
tails are available in the appendix.

4.1 Static Selection Masks.

We start by demonstrating the basic function-
ality of the different types of selection masks, an
evaluation of the parameter λ, and a comparison
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Figure 4: The black line is the average value of the runs and the individual runs are displayed in different
colors. Note that the fluctuations are induced by the training process during which the input data are
partially ignored. Performance at nepoch = 0 represents performance of the pre-trained network.

(a) Channel selection on remote

(b) (12× 12)-block selection on svhn

(c) pixel selection on galaxy10

Figure 5: In Figure (a), the selection process is
sketched, whereby each row represents a different
epoch (from top to bottom: example instance, 0,
50, 100, 150, 200) and each column represents a
channel. For Figure (b), the example image is
provided (left) along with the mask development
during the training process. Figure (c) shows the
progression of the image instance (i.e. the selected
pixels of the image; at the end, central pixels from
the green channel are selected).

with other static selection approaches.

4.1.1 Selection Schemes.

We first evaluated the behaviour of the channel
selection scheme (bw = 1 and bh = 1) on remote
to select the most relevant of the 36 input chan-
nels. Figure 4a shows the outcome of the iterative
selection process induced by Algorithm 1. Only if
less than 25% of the channels were selected, the
accuracy started to drop. The evolution of this
mask selection can be seen in Figure 5a.

The block selection experiment was conducted
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Figure 6: Influence of λ

on svhn. The considered mask selected 12 × 12
blocks (bw = 12 and bh = 12) from each im-
age per channel, see again Figure 2. Figure 5b
shows an instance and the progress w.r.t. nepoch
for the RGB channels (purple: red and blue; yel-
low: green and red; white: all selected). Fig-
ure 4b shows the outcome of the iterative selec-
tion: Smooth optimization and a noticeable loss
in accuracy around Q = 25%. To investigate the
behaviour of pixel-wise selection, we considered
the galaxy10 dataset. The mask loss Q here
reflects the summation over the selected pixels,
where each pixel had a weight of 1

w×h×k . The
results of the iterative selection are provided in
Figure 4c, whereas Figure 5c shows an instance
and the development of the masks w.r.t. nepoch.

4.1.2 Influence of λ.

The initial assignment λinit for λ as well as the
factor λfac generally have a significant impact on
the outcome. Figure 6 shows the influence of four
different configurations given the svhn dataset. A
large λinit (red and green line) led to the mask
loss Q quickly decreasing, but it also caused a
lower accuracy compared to the smaller λinit val-
ues. A smaller initial value for λ generally led to
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Figure 7: The top row shows the behaviour w.r.t. the mask loss Q. The bottom row shows instances
for different Q: mnist (left) ∼ 2.42%, f-mnist (middle) ∼ 6%, and cifar10 (right) ∼ 66%. Dark
yellow color filling corresponds to removed pixels for mnist and f-mnist. For cifar10 grey indicates
completely removed pixel while tints indicate that channels for a pixel are disabled (e.g., green tinted
pixel indicates missing red and blue).

the selection process taking less input data away
at the beginning. Accordingly, a large λfac led to
a faster decrease w.r.t. Q.

4.1.3 Comparison with Baselines.

We compared our static selection approach with
two direct competitors: random (backward) se-
lection and the selection w.r.t. the feature impor-
tance values of a random forest (RF) [4]. In par-
ticular, we compared the approaches in the con-
text of pixel-wise selections on cifar10, mnist,
and f-mnist. To simulate a fair training process,
we first created a ranking for each pixel based on
randomness and the feature (i. e., pixel) impor-
tance values induced by an extra trees classifier [7]
with 100 trees, respectively. Given the same task
model f and the same amount of epochs, we then
iteratively removed pixels to obtain the same loss
Q as our static approach.

Figure 7 shows the results (the runs appear to
be “clustered” since we saved the best accuracy
in steps of 0.05-Q intervals): In can be seen that
our static mask selection quickly diverges in accu-
racy from the random selection with decreasingQ.
The RF-based selection performed better than the
random selection approach, but was outperformed
by our approach, which shows the benefits of op-
timizing both the mask weights and the model
weights simultaneously. We also compared our re-
sults with the concrete autoencoder (CAE) [3] ap-
proach, which selects a fixed (arbitrary) amount of
pixels without retaining spatial structure and Las-
soNet [18], which iteratively removes features but

can only be applied to fully-connected networks.
The CAE approach achieved a self-reported ac-
curacy of about 90.6% on mnist with a mask
loss Q of 0.064 (50 out of 784 pixels) and the
LassoNet paper reports 87.3% at the same mask
loss. In comparison, our static selection approach
yielded an accuracy of 96.11% given a lower mask
loss Q = 0.047. Similarly, on f-mnist, the CAE
achieved a self-reported accuracy of 67.7% given
a mask loss Q of 0.064, while our static mask
yielded an accuracy of 83.86% given a mask loss
of Q = 0.045. It is worth stressing that the CAE
and LassoNet approach resort to either random
forest or fully-connected networks applied to the
selected pixels, i.e., they cannot make use of pre-
dictors with spatial awareness.

4.2 Dynamic Selection Masks.

Finally, we conducted experiments for
instance-based mask selections. For the sake of
comparison, we also considered dynamic mask
selection on cifar10, f-mnist, and mnist to
illustrate the additional benefits of the instance-
based selection over the other competitors
mentioned above, see again Figure 7. The
thumbnail model g used was a small linear layer.
The Q reported is the average over all instance-
dependent losses per batch. The static selection
approach starts dropping in performance at a
mask loss Q of 0.125, while the dynamic mask
approach could retain the accuracy. A similar
effect can be observed on f-mnist and cifar10,
although the differences are much more apparent

7



12× 12 48× 48
thumbnails

48× 48

original 12× 12

Figure 8: An examples of the instance-based selection for the dataset. Missing pixels were filled with
average color based on the instances given in the training set (image size: 384× 384 pixels).

for cifar10. Overall, since the dynamic approach
yielded instance-based masks, less pixels were se-
lected. It is worth stressing that for the dynamic
approach, one has to transfer the selection mask
per instance. For pixel-wise selection, this might
only pay off if a few pixels are selected (since
the coordinates per selected pixel need to be
transferred as well). This problem is alleviated
by selecting blocks, as shown next.

The potential of the dynamic selection ap-
proach is demonstrated on the ship dataset.
Here, we considered thumbnails of size 12 × 12
and 48× 48, respectively, which are processed by
the thumbnail model g to identify the relevant
parts of the input data per instance, see again
Figure 3. We used a small convolutional network
as thumbnail model g.3 In Figure 9 (a), the dif-
ference between dynamic and static block selec-
tion is shown (12 × 12-block masks). Static se-
lection quickly becomes inferior for this dynamic
task. In contrast, both, the 12 × 12 and the
48 × 48 thumbnail selection performed well, see
Figure 9 (b). The Q loss per block was 1

12×12×k

and 1
48×48×k , respectively. Overall, only a frac-

tion of the original data needs to be transferred.
For instance, using the model with Q ≈ 0.025 and
12 × 12 thumbnails, one would on average trans-
fer less than 100 · (0.025 + 2 · 144

384·384 ) ≈ 2.7% of
the original data per instance. Figure 8 shows
two instances along with the (dynamic) masks for
different mask loss Q. The unimportant blocks
(e.g., water or ground) were removed, but blocks
containing ships or landmass remained.

3Composed of one selective kernel convolution [20] with
2 convolutional layers, 8 filters per layer, kernel size 3, a
dilation rate of 1 and 2, respectively, followed by point-wise
convolution.
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(a) static vs. dynamic
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(b) 12× 12 vs. 48× 48

Figure 9: Comparing dynamic and static mask
selection as well as different block sizes on the
ship dataset.

5 Conclusions.

The transfer of data between servers and clients
can become a major bottleneck during the in-
ference phase of a neural network. We propose
a framework that allows to automatically select
the relevant parts of the input data needed by a
model. Our approach resorts to various types of
selection masks (channel, pixel, and block) that
are optimized together with any given task model
during the training phase. In addition to static
selection, we also introduce instance-based selec-
tion to deal with tasks with shifting feature im-
portance such as segmentation. Our experiments
show that it is often possible to achieve a good
accuracy with significantly less input data that
needs to be transferred.

In addition, our mask selections are inferred
from the task model. Hence, the selections even-
tually made also provides insights into what is
considered relevant by the model and can, there-
fore, help to identify and understand learned pat-
terns and potential biases.
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A Reproducibility

We provide all the source code used for our ex-
periments via an open GitHub repository.4 For
training the models and assessing their quality,
different machines, and GPU devices (NVIDIA
K20, K40, GTX1080, and V100) were used.

The chosen parameters for our static and dy-
namic experiments are summarized in Table 3a
and 3b, respectively. The scripts with our pa-
rameter settings to run the corresponding exper-
iments can be found in the code repository (di-
rectory exp_scripts). The data transformations
applied during training are listed in Table 2.

Table 2: Dataset augmentations and transforms

dataset vert. flip horiz. flip crop normalize

mnist
f-mnist
cifar10
svhn
galaxy10
remote
ship

To run the experiments, the necessary require-
ments need to be installed (e.g., via pip install
-r requirements.txt). The individual experi-
ments can be started via the command line. For
instance, the block experiment on svhn (using
the normal “any” selection) can be started via:

python create_mask.py
--dataset svhn --mask-type
static
--any-granularity subCXLIVdrant
--lambda-patience 5
--lambda-init 0.125
--lambda-factor 1.25 --n-epochs
300
--use-warmup-net 1 --lr 0.001
--n-repeats 10

By executing this command, a corresponding
log file and checkpoints in the directory runs will
be created. Note that the flag --use-warmup-net
1 enables the use of pre-trained models and

4https://github.com/StefOe/selection-masks
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optimizers. The mask type (i. e., random,
static, or dynamic) can be changed via the flag
--mask-type, which is, together with the flag
--dataset, the only required parameter. For in-
stance, the dynamic mask experiment for mnist
can be reproduced via the following command:

python create_mask.py
--dataset mnist --mask-type
dynamic
--dynamic-mask linear
--any-granularity subpixel
--lambda-patience 5
--lambda-init 0.0005
--lambda-factor 1.5 --n-epochs
400
--use-warmup 1 --lr 0.0005
--n-repeats 10

The remaining experiments can be started in
a similar fashion. An overview over the
flags and options can be obtained via python
create_mask.py --help.

(a) Parameters used for static experiments

granularity dataset λinit λfac p lr mask epochs any-init

channel remote 0.1 1.25 10 0.001 300 3

pixel cifar10 1 1.05 5 0.001 300 3
mnist 0.0005 1.5 5 0.005 400 3
f-mnist 0.0005 1.5 5 0.005 400 3
galaxy10 1 1.5 2 0.001 300 3

block
(12× 12) svhn 0.125 1.25 5 0.001 300 3

(b) Parameters used for dynamic experiments

granularity mask model g dataset λinit λfac p lr mask epochs

pixel linear mnist 0.0005 1.5 5 0.0005 400
f-mnist 0.0005 1.5 2 0.0005 400

convatt cifar10 0.1 1.15 10 0.001 300

block
(12× 12) convatt ship 0.025 1.15 9 0.0005 400
(48× 48) convatt ship 0.025 1.15 9 0.0005 400

B Broader Impact

We expect that such selection masks will play
an important role for many data-intensive do-
mains to alleviate the data transfer problem be-
tween centralized storage servers and clients: In
many cases, the collected data are stored on cen-
tralized storage servers. The transfer of data be-
tween such servers and the users has already be-
come a severe bottleneck. For instance, practi-
tioners in remote sensing already resort to re-
duced versions of the data since a full data transfer
would be too time-consuming (i. e., instead of the
full multi-spectral image data, reduced versions
are often considered, such as channels computed
via the so-called Normalized Difference Moisture

Index (NDMI)). A similar situation is given in as-
tronomy, where the data transfer will become a
key bottleneck in future with projects producing
exabytes of data per year [1,9,13]. Today’s storage
servers already provide advanced APIs to select or
crop the data prior to the transmission (e.g., the
Planet API mentioned above can be used to select
pieces of the data beforehand; similarly, services
such as the Copernicus Open Access Hub allow
to select subsets of the data and also provide pre-
views of the data). The methods presented in this
work offer the potential to alleviate the data trans-
fer bottleneck in such domains, which, in the end,
will lead to less resources that have to be spent
for the overall infrastructure (e.g., more powerful
servers, faster network connections, . . . ). Natu-
rally, while our work addresses the two aforemen-
tioned application domains, the approaches devel-
oped are generally applicable to other domains as
well (e.g., IoT data, medical image data, . . . ). We
therefore believe that the results presented in this
work will affect a broad range of domains and ap-
plications.
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