
Traceable Automatic Feature Transformation via

Cascading Actor-Critic Agents

Meng Xiao1,2 Dongjie Wang3 Min Wu4 Ziyue Qiao5 Pengfei Wang1

Kunpeng Liu6 Yuanchun Zhou1,∗ Yanjie Fu3,∗

Abstract
Feature transformation for AI is an essential task to boost
the effectiveness and interpretability of machine learning
(ML). Feature transformation aims to transform original
data to identify an optimal feature space that enhances the
performances of a downstream ML model. Existing studies
either combines preprocessing, feature selection, and gener-
ation skills to empirically transform data, or automate fea-
ture transformation by machine intelligence, such as rein-
forcement learning. However, existing studies suffer from:
1) high-dimensional non-discriminative feature space; 2) in-
ability to represent complex situational states; 3) inefficiency
in integrating local and global feature information. To fill
the research gap, we propose a novel group-wise cascading
actor-critic perspective to develop the AI construct of au-
tomated feature transformation. Specifically, we formulate
the feature transformation task as an iterative, nested pro-
cess of feature generation and selection, where feature gen-
eration is to generate and add new features based on orig-
inal features, and feature selection is to remove redundant
features to control the size of feature space. Our proposed
framework has three technical aims: 1) efficient generation;
2) effective policy learning; 3) accurate state perception.
For an efficient generation, we develop a tailored feature
clustering algorithm and accelerate generation by feature
group-group crossing based generation. For effective policy
learning, we propose a cascading actor-critic learning strat-
egy to learn state-passing agents to select candidate feature
groups and operations for fast feature generation. Such a
strategy can effectively learn policies when the original fea-
ture size is large, along with exponentially growing feature
generation action space, in which classic Q-value estima-
tion methods fail. For accurate state perception of feature
space, we develop a state comprehension method consider-
ing not only pointwise feature information but also pairwise
feature-feature correlations. Finally, we present extensive
experiments and case studies to illustrate 24.7% improve-
ments in F1 scores compared with SOTAs and robustness in
high-dimensional data.
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1 Introduction
Many applications and industrial sectors need to build
ML systems. In practice, one of the essential steps in
building an ML system is data preprocessing, trans-
formation, and refinery. This is because, when data
space is imperfect and low-quality, it is hard to de-
velop an effective ML system, regardless of model fanci-
ness. Fundamentally, this step can be generalized as
a task of feature transformation, that is, transforming
an original feature set into an optimized feature set
that enhances the performances of a downstream ML
model. Solving the feature transformation task can de-
velop a more discriminative feature space, reconstruct
contrastive pattern representations, improve traceabil-
ity and explainability, and enhance downstream predic-
tive performances.

Feature Space

Downstream ML Task

Feature Generation Optimal Feature
Space

Input Output

Feature Transformation

Figure 1: Given the input feature space, the automatic
feature transformation task aims to output an optimal
feature space via iteration between feature generation

and feature selection.

One typical strategy of existing systems (Figure 1)
is to iterate feature generation and selection to trans-
form and refine the original feature space. More re-
cent studies focused on automating such transforma-
tion tasks by machine intelligence, such as reinforcement
learning [29, 3, 24], to decide features and operations for
crossing, generation, and subsetting.

There are three challenges in existing systems: Is-
sue 1: Overcoming the curse of dimensionality. Previ-
ous studies, such as [24], used Deep Q-networks (DQN)
to select candidate features and operations for feature
space reconstruction. DQN regards all the candidate
features to generate as action space and has to estimate
the Q-value of each candidate. However, when an orig-
inal feature set is big, the action space for agents will
exponentially grow, and the learning process is com-
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putationally costly. The key question to answer is:
how can we propose a better autonomous framework
for both low-dimensional and high-dimensional feature
space? Issue 2: accurate state perception of uncertain
feature space. An intuitive way is to use the features
in a feature set as descriptive statistics of the state of
a feature space [10, 3]. But, notice that a feature set
varies over time during the transformation process; a
feature set could include imperfect and redundant fea-
tures; the fine-grained state of a feature space will vary
even when a feature or operation is selected for the gen-
eration. As a result, it is challenging to perceive the
state and structure of feature space for learning unbi-
ased policies. The key question to answer is: how can
we learn effective and accurate state representation to
improve the comprehension of reinforced agents? Issue
3: generation with the trade-off between efficiency and
global crossing among features. If we adopt a path-like
generation strategy based on a single feature’s locally
generated candidates [3], we will miss the globally op-
timized feature space. If we adopt a globally crossing
strategy, we sacrifice efficiency. How can we efficiently
generate features while considering the structure infor-
mation of a feature space?
Our Insights: a group-wise cascading actor-critic
perspective. We formulate the task of feature trans-
formation as an iterative, nested process of feature gen-
eration and selection, where generation is to add new
features, and selection is to reduce unnecessary fea-
tures. We show that cascading actor-critic agents can
learn more robust and accurate policies even under high-
dimensional feature space with large action space. We
highlight that group-wise feature crossing based genera-
tion can generate features efficiently while maintaining
more global feature-feature crossing interactions. We
found that statistics, autoencoder, and graph are three
effective perspectives to perceive the situational state of
varying and uncertain feature spaces. We demonstrate
that our method can strategically unify the above three
insights into a technical learning framework.
Summary of Proposed Approach. Inspired by
these findings, we propose a novel tRaceable Automatic
Feature Transformation (RAFT) framework. The
framework has three goals: 1) autonomous feature
generation via cascading actor-critic agents. We
use three actor-critic agents to select candidate features
and operations to conduct feature crossing and generate
new features. The actor component learns the prob-
ability distribution of actions through policy gradient
update and directly outputs the selected action by sam-
pling. This strategy can avoid estimating the Q-value
of each action and, thus, accelerate large feature space
transformation. The critic through uses gradient sig-

nals from temporal-difference errors at each iteration to
evaluate and enhance selection policies. The collabora-
tion between actor and critic components can converge
quickly model convergence and learn robust generation
policies. 2) accurate state representation. An ef-
fective state representation should describe not only the
key dimensions of feature space but also model intercon-
nected feature-feature correlations. To achieve this goal,
we propose three advanced state representation meth-
ods from the statistic, encoding-decoding, and graph
embedding perspectives. 3) feature clustering and
fast group-wise crossing. We adopt a group-wise
feature group-group crossing to generate a large num-
ber of features. We propose to cross feature groups with
less information overlap in order to generate more infor-
mative dimensions. To maximize feature dissimilarity
across groups, we develop a novel feature-feature dis-
tance metric for hierarchical feature grouping. Finally,
the experimental results on 17 datasets with 3 appli-
cation scenarios illustrate 24.7% improvements in F1
scores and better robustness in high-dimensional data
compared with SOTAs.

2 Problem Formulation

Feature Set and Target: We aim to reconstruct the
feature space of such datasets D < F , y >. Here,
F is a feature set in which each column denotes a
feature, and each row denotes a data sample; y is the
target label set corresponding to samples. To efficiently
produce new features, we divide the feature set F into
different feature groups via clustering, denoted by C.
Each feature group is a subset of F .
Operation Set: We perform a mathematical operation
on existing features in order to generate new ones. The
collection of all operations is an operation set, denoted
by O. There are two types of operations: unary and
binary. The unary operations include “square”, “exp”,
“log”, and etc. The binary operations are “plus”,
“multiply”, “divide”, and etc.
Cascading Agent. We develop a new cascading agent
structure for feature generation. This structure is made
up of three agents: two feature group agents and one
operation agent. They share state information and
sequentially select feature groups and operations.
Problem Statement: Our work aims to reconstruct
an optimal and traceable feature space to improve down-
stream ML tasks through mathematically transforming
original features. Formally, given a dataset D < F , y >,
an operator set O, and a downstream ML task A (e.g.,
classification, regression, outlier detection), our purpose
is to obain an optimal feature space F∗ that maximizes
the performance indicator P of the task A through it-
erative feature transformation. The optimization goal
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can be defined as follows:

(2.1) F∗ = argmaxF̂ (PA(F̂ , y)),

where F̂ can be viewed as a subset of a combination
of the original feature set F and the generated new
features Fg, and Fg is produced by applying the
operations O to the original feature set F .

3 Methodology

We present the proposed framework RAFT as illus-
trated in Figure 2. We demonstrate the technical details
of each component in the following sections.

3.1 Feature Space Clustering To efficiently recon-
struct feature space and provide strong reward signals
to agents, we propose a feature space clustering com-
ponent. It divides the feature set into different feature
groups, which builds a foundation for conducting group-
wise feature generation.

Features-Group Distance Function: We propose
this function to measure the similarity between two
clusters of features. Suppose we have two clusters ci and
cj , the formal definition of the features-group distance
function is given by:

(3.2)

D(ci, cj) =

1

|ci| · |cj |
∑
fi∈ci

∑
fj∈cj

d(fi, fj)|I(fi, y)− I(fj , y)|,

where d(·) is a generic pair-wise distance function (e.g.,
the euclidean distance, cosine similarity, etc) and I(·)
is pairwise mutual information (PMI). The left part of
Equation 3.2 (i.e., d(fi, fj)) aims to quantify the nu-
meric difference between fi and fj . The right part (i.e.,
|I(fi, y) − I(fj , y)|) aims to quantify the relevance dif-
ferences between distinct features fi, fj and the target
y. This function seeks to aggregate features with similar
information and the same contribution to differentiat-
ing the target label. Because our assumption is that
high (low) informative features are generated by cross-
ing more distinct (similar) features.

Feature-Group (FG) Clustering: Variable feature
space sizes make it inappropriate to employ K-means
or density-based clustering techniques during feature
generation. We propose an FG-Clustering algorithm
inspired by agglomerative clustering. Specifically, given
a feature set Ft at the t-th step, we first initialize each
feature column in Ft as a cluster at the beginning.
Then, we use the features-group distance function to
calculate the distance between any two feature clusters.
After that, we merge the two closest clusters to generate
a new cluster and remove the former ones. We reiterate
this process until the smallest distance between any two
clusters breaks a certain threshold. Finally, we cluster

Ft into different feature groups, defined as Ct = {ci}|C|i=1.

3.2 State Representation for Feature Space and
Operation To help cascading agents understand the
current feature space for effective policy learning, we
need to extract meaningful information from the space
and use it as the state representation. The assumption is
that an effective state representation must not only cap-
ture the knowledge of feature space but also comprehend
the correlations between features. To achieve this goal,
we introduce three state representation methods from
different perspectives. To ease description, in the fol-
lowing parts, suppose given the feature set F ∈ RM×N ,
where M is the number of total samples, and N is the
number of feature columns.

Statistic Information (si): We utilize the statistic
information (i.e. count, standard deviation, minimum,
maximum, first, second, and third quartile) of the fea-
ture space as the state representation. Specifically, we
first obtain the descriptive statistics matrix of F column
by column. Then, we calculate the descriptive statistics
of the outcome matrix row by row to obtain the meta
descriptive matrix that shape is R7×7. Finally, we ob-
tain the state representation by flatting the descriptive
matrix obtained from the former step. The state repre-
sentation is defined as Zsi(F) ∈ R1×49.

Autoencoder (ae): We propose an autoencoder-based
state representation approach. We believe an efficient
state representation can reconstruct the original feature
space. Specifically, we first apply an autoencoder
to transform each column of F into a latent matrix
Z ∈ Rk×N , where k is the dimension of the latent
representation of each column. Then, we apply another
autoencoder to transform each row of Z into another
matrix Z ′ ∈ Rk×d, where d is the dimension of the latent
representation of each row. After that, we want to use
Z ′ to reconstruct the original feature space F . When
the model converges, we flat Z ′ into one-dimensional
vector and regard it as the state representation, denoted
by Zae(F) ∈ R1×kd.

Graph Autoencoder (gae): In addition to recon-
structing the feature space, we expect to preserve
feature-feature correlations in the state representation.
Thus, we propose a graph autoencoder [12] based state
representation approach. Specifically, we first build a
complete correlation graph G by calculating the simi-
larity between each pair of feature columns. The ad-
jacency matrix of G is A ∈ RN×N , where a node is
a feature column in F and an edge reflects the sim-
ilarity between two nodes. Then, we adopt a one-
layer GCN [11] to aggregate feature knowledge of F
based on A to produce an enhanced feature embedding
Z ∈ RN×k, where k is the dimension of latent em-
bedding. The calculation process is defined as follows:
Z = ReLU(D−

1
2AD− 1

2F>W), where D is the diago-
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s1t

<latexit sha1_base64="0ADL6Dqz+XqYs6QeMHIq/3zAgp0=">AAAB+XicbVDLSsNAFJ3UV62vqEs3g1VwVRIp6rLixmUF+4A2hMl00g6dTMLMTbGE/IkbF4q49U/c+TdO2yy09cCFwzn3ztx7gkRwDY7zbZXW1jc2t8rblZ3dvf0D+/CoreNUUdaisYhVNyCaCS5ZCzgI1k0UI1EgWCcY3838zoQpzWP5CNOEeREZSh5ySsBIvm33gT1BdjtkEnI/i3Pfrjo1Zw68StyCVFGBpm9/9QcxTSPzABVE657rJOBlRAGnguWVfqpZQuiYDFnPUEkipr1svnmOz40ywGGsTEnAc/X3REYiradRYDojAiO97M3E/7xeCuGNl3GZpMAkXXwUpgJDjGcx4AFXjIKYGkKo4mZXTEdEEQomrIoJwV0+eZW0L2vuVa3+UK82zoo4yugEnaIL5KJr1ED3qIlaiKIJekav6M3KrBfr3fpYtJasYuYY/YH1+QNPF5QE</latexit>

Agento

<latexit sha1_base64="aLGlps/xS9EAkG5DIE3szQjsUT0=">AAAB+HicbVDLSsNAFJ3UV62PRl26GSyCq5JIUZcFNy4r2ge0MUymk3boZBJmboQa+iVuXCji1k9x5984abPQ1gMDh3Pu5Z45QSK4Bsf5tkpr6xubW+Xtys7u3n7VPjjs6DhVlLVpLGLVC4hmgkvWBg6C9RLFSBQI1g0m17nffWRK81jewzRhXkRGkoecEjCSb1cHEYExJSK7m/nwEPt2zak7c+BV4hakhgq0fPtrMIxpGjEJVBCt+66TgJcRBZwKNqsMUs0SQidkxPqGShIx7WXz4DN8apQhDmNlngQ8V39vZCTSehoFZjKPqZe9XPzP66cQXnkZl0kKTNLFoTAVGGKct4CHXDEKYmoIoYqbrJiOiSIUTFcVU4K7/OVV0jmvuxf1xm2j1nSKOsroGJ2gM+SiS9REN6iF2oiiFD2jV/RmPVkv1rv1sRgtWcXOEfoD6/MHH/CTWQ==</latexit>

So
t

<latexit sha1_base64="ne1UVfnoHM8KbrwGWIMGTjkpies=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69BKvgqSRS1GPBi8cKpi20sWy2m3bpZjfsToRS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8KBXcoOd9O4W19Y3NreJ2aWd3b/+gfHjUNCrTlAVUCaXbETFMcMkC5ChYO9WMJJFgrWh0O/NbT0wbruQDjlMWJmQgecwpQSsFpoePqleueFVvDneV+DmpQI5Gr/zV7SuaJUwiFcSYju+lGE6IRk4Fm5a6mWEpoSMyYB1LJUmYCSfzY6fuuVX6bqy0LYnuXP09MSGJMeMksp0JwaFZ9mbif14nw/gmnHCZZsgkXSyKM+Gicmefu32uGUUxtoRQze2tLh0STSjafEo2BH/55VXSvKz6V9Xafa1SP8vjKMIJnMIF+HANdbiDBgRAgcMzvMKbI50X5935WLQWnHzmGP7A+fwB5wWOqg==</latexit>

sot

aot
<latexit sha1_base64="+ZQwmpmZnTEpPigBq081TtqrD5Y=">AAAB63icbVDLSgNBEOz1GeMr6tHLYBQ8hV0J6jHgxWME84BkCbOT2WTIPJaZWSEs+QUvHhTx6g9582+cTfagiQUNRVU33V1Rwpmxvv/tra1vbG5tl3bKu3v7B4eVo+O2UakmtEUUV7obYUM5k7RlmeW0m2iKRcRpJ5rc5X7niWrDlHy004SGAo8kixnBNpdUMrCDStWv+XOgVRIUpAoFmoPKV3+oSCqotIRjY3qBn9gww9oywums3E8NTTCZ4BHtOSqxoCbM5rfO0IVThihW2pW0aK7+nsiwMGYqItcpsB2bZS8X//N6qY1vw4zJJLVUksWiOOXIKpQ/joZMU2L51BFMNHO3IjLGGhPr4im7EILll1dJ+6oWXNfqD/Vq47yIowSncAaXEMANNOAemtACAmN4hld484T34r17H4vWNa+YOYE/8D5/AC10jj8=</latexit>opt

<latexit sha1_base64="7eXkE/D8yVg0/wz2ZroMCtI7c7g=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeCF48VTFtoY9lsN+3SzSbsTgql9Dd48aCIV3+QN/+N2zYHbX0w8Hhvhpl5YSqFQdf9dgobm1vbO8Xd0t7+weFR+fikaZJMM+6zRCa6HVLDpVDcR4GSt1PNaRxK3gpHd3O/NebaiEQ94iTlQUwHSkSCUbSSP+7hU9IrV9yquwBZJ15OKpCj0St/dfsJy2KukElqTMdzUwymVKNgks9K3czwlLIRHfCOpYrG3ATTxbEzcmGVPokSbUshWai/J6Y0NmYSh7Yzpjg0q95c/M/rZBjdBlOh0gy5YstFUSYJJmT+OekLzRnKiSWUaWFvJWxINWVo8ynZELzVl9dJ86rqXVdrD7VK3c3jKMIZnMMleHADdbiHBvjAQMAzvMKbo5wX5935WLYWnHzmFP7A+fwB7zmOuQ==</latexit>

vot

if        is binary <latexit sha1_base64="+ZQwmpmZnTEpPigBq081TtqrD5Y=">AAAB63icbVDLSgNBEOz1GeMr6tHLYBQ8hV0J6jHgxWME84BkCbOT2WTIPJaZWSEs+QUvHhTx6g9582+cTfagiQUNRVU33V1Rwpmxvv/tra1vbG5tl3bKu3v7B4eVo+O2UakmtEUUV7obYUM5k7RlmeW0m2iKRcRpJ5rc5X7niWrDlHy004SGAo8kixnBNpdUMrCDStWv+XOgVRIUpAoFmoPKV3+oSCqotIRjY3qBn9gww9oywums3E8NTTCZ4BHtOSqxoCbM5rfO0IVThihW2pW0aK7+nsiwMGYqItcpsB2bZS8X//N6qY1vw4zJJLVUksWiOOXIKpQ/joZMU2L51BFMNHO3IjLGGhPr4im7EILll1dJ+6oWXNfqD/Vq47yIowSncAaXEMANNOAemtACAmN4hld484T34r17H4vWNa+YOYE/8D5/AC10jj8=</latexit>opt

(b) Feature Set (Group) and Operation State Representation Methods

overall features

feature cluster #1

feature cluster #2

feature cluster #n
…

Operation

⠇⠇⠇⠇⠇

⠇

Feature Space State Representation

Operation State Representation
Operation 

Representation 

…

Clusters 
Representation 

Overall 
Representation 

Binary

Unary Generated 
Feature(s)

(d) Feature Space Evaluator

 Downstream Task 
Evaluation

Feature Space 
Quality

Feature Group(s) Crossing 

Reward 

(a) Feature Space 
Clustering

FG-Clustering
<latexit sha1_base64="mxhVZpaOByLzK3BYEpk+0ZSm2EU=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CS2Cp7JbSvVY8OKxgv2AdinZbLaNzSZLkhXK0v/gxYMiXv0/3vw3pu0etPXBwOO9GWbmBQln2rjut1PY2t7Z3Svulw4Oj45PyqdnXS1TRWiHSC5VP8CaciZoxzDDaT9RFMcBp71gervwe09UaSbFg5kl1I/xWLCIEWys1A1HmVefj8pVt+YugTaJl5Mq5GiPyl/DUJI0psIQjrUeeG5i/Awrwwin89Iw1TTBZIrHdGCpwDHVfra8do4urRKiSCpbwqCl+nsiw7HWsziwnTE2E73uLcT/vEFqohs/YyJJDRVktShKOTISLV5HIVOUGD6zBBPF7K2ITLDCxNiASjYEb/3lTdKt17xmrXHfqLYqeRxFuIAKXIEH19CCO2hDBwg8wjO8wpsjnRfn3flYtRacfOYc/sD5/AEdWI69</latexit>

d12
<latexit sha1_base64="IcRWT1TC5sCRHY68GxmgTF0v+io=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CS2Cp7Jbi3osePFYwX5Au5RsNtvGZpMlyQpl6X/w4kERr/4fb/4b03YP2vpg4PHeDDPzgoQzbVz32ylsbG5t7xR3S3v7B4dH5eOTjpapIrRNJJeqF2BNORO0bZjhtJcoiuOA024wuZ373SeqNJPiwUwT6sd4JFjECDZW6oTDrH45G5arbs1dAK0TLydVyNEalr8GoSRpTIUhHGvd99zE+BlWhhFOZ6VBqmmCyQSPaN9SgWOq/Wxx7QydWyVEkVS2hEEL9fdEhmOtp3FgO2NsxnrVm4v/ef3URDd+xkSSGirIclGUcmQkmr+OQqYoMXxqCSaK2VsRGWOFibEBlWwI3urL66RTr3lXtcZ9o9qs5HEU4QwqcAEeXEMT7qAFbSDwCM/wCm+OdF6cd+dj2Vpw8plT+APn8wcgY46/</latexit>

d23 <latexit sha1_base64="8SSoG7Jcdn0DytCEywWSxjs+2F4=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CS2Cp7JbSvVY8OKxgv2AdinZbLaNzSZLkhXK0v/gxYMiXv0/3vw3pu0etPXBwOO9GWbmBQln2rjut1PY2t7Z3Svulw4Oj45PyqdnXS1TRWiHSC5VP8CaciZoxzDDaT9RFMcBp71gervwe09UaSbFg5kl1I/xWLCIEWys1A1HWb0xH5Wrbs1dAm0SLydVyNEelb+GoSRpTIUhHGs98NzE+BlWhhFO56VhqmmCyRSP6cBSgWOq/Wx57RxdWiVEkVS2hEFL9fdEhmOtZ3FgO2NsJnrdW4j/eYPURDd+xkSSGirIalGUcmQkWryOQqYoMXxmCSaK2VsRmWCFibEBlWwI3vrLm6Rbr3nNWuO+UW1V8jiKcAEVuAIPrqEFd9CGDhB4hGd4hTdHOi/Ou/Oxai04+cw5/IHz+QMh6I7A</latexit>

d24
<latexit sha1_base64="PTE4cTX9nLVlNt0I9U9Y3KkVlxg=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CS2Cp7KrpXosePFYwX5Au5RsNtvGZpMlyQpl6X/w4kERr/4fb/4b03YP2vpg4PHeDDPzgoQzbVz32ylsbG5t7xR3S3v7B4dH5eOTjpapIrRNJJeqF2BNORO0bZjhtJcoiuOA024wuZ373SeqNJPiwUwT6sd4JFjECDZW6oTD7Ko+G5arbs1dAK0TLydVyNEalr8GoSRpTIUhHGvd99zE+BlWhhFOZ6VBqmmCyQSPaN9SgWOq/Wxx7QydWyVEkVS2hEEL9fdEhmOtp3FgO2NsxnrVm4v/ef3URDd+xkSSGirIclGUcmQkmr+OQqYoMXxqCSaK2VsRGWOFibEBlWwI3urL66RzWfMatfp9vdqs5HEU4QwqcAEeXEMT7qAFbSDwCM/wCm+OdF6cd+dj2Vpw8plT+APn8wcjbo7B</latexit>

d34 <latexit sha1_base64="aRTCT4sgPYRgareMkhn/ZhlMPw0=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CS2Cp7IrrXosePFYwX5Au5RsNtvGZpMlyQpl6X/w4kERr/4fb/4b03YP2vpg4PHeDDPzgoQzbVz32ylsbG5t7xR3S3v7B4dH5eOTjpapIrRNJJeqF2BNORO0bZjhtJcoiuOA024wuZ373SeqNJPiwUwT6sd4JFjECDZW6oTDrN6YDctVt+YugNaJl5Mq5GgNy1+DUJI0psIQjrXue25i/Awrwwins9Ig1TTBZIJHtG+pwDHVfra4dobOrRKiSCpbwqCF+nsiw7HW0ziwnTE2Y73qzcX/vH5qohs/YyJJDRVkuShKOTISzV9HIVOUGD61BBPF7K2IjLHCxNiASjYEb/XlddK5rHlXtfp9vdqs5HEU4QwqcAEeXEMT7qAFbSDwCM/wCm+OdF6cd+dj2Vpw8plT+APn8wcmeY7D</latexit>

d45

<latexit sha1_base64="+ZQwmpmZnTEpPigBq081TtqrD5Y=">AAAB63icbVDLSgNBEOz1GeMr6tHLYBQ8hV0J6jHgxWME84BkCbOT2WTIPJaZWSEs+QUvHhTx6g9582+cTfagiQUNRVU33V1Rwpmxvv/tra1vbG5tl3bKu3v7B4eVo+O2UakmtEUUV7obYUM5k7RlmeW0m2iKRcRpJ5rc5X7niWrDlHy004SGAo8kixnBNpdUMrCDStWv+XOgVRIUpAoFmoPKV3+oSCqotIRjY3qBn9gww9oywums3E8NTTCZ4BHtOSqxoCbM5rfO0IVThihW2pW0aK7+nsiwMGYqItcpsB2bZS8X//N6qY1vw4zJJLVUksWiOOXIKpQ/joZMU2L51BFMNHO3IjLGGhPr4im7EILll1dJ+6oWXNfqD/Vq47yIowSncAaXEMANNOAemtACAmN4hld484T34r17H4vWNa+YOYE/8D5/AC10jj8=</latexit>opt

<latexit sha1_base64="rO/QxmFuMC90TqQRKbn21eGcEyQ=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LFbBU0mkqMeCF48VTFtoY9lsN+3SzSbsToRS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MJXCoOt+O4W19Y3NreJ2aWd3b/+gfHjUNEmmGfdZIhPdDqnhUijuo0DJ26nmNA4lb4Wj25nfeuLaiEQ94DjlQUwHSkSCUbSSzx6HPeyVK27VnYOsEi8nFcjR6JW/uv2EZTFXyCQ1puO5KQYTqlEwyaelbmZ4StmIDnjHUkVjboLJ/NgpObdKn0SJtqWQzNXfExMaGzOOQ9sZUxyaZW8m/ud1MoxugolQaYZcscWiKJMEEzL7nPSF5gzl2BLKtLC3EjakmjK0+ZRsCN7yy6ukeVn1rqq1+1qlfpbHUYQTOIUL8OAa6nAHDfCBgYBneIU3RzkvzrvzsWgtOPnMMfyB8/kDw8+Okw==</latexit>

cht
<latexit sha1_base64="FyEgxJZG+UczuchgLtaAZAZXhTM=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LFbBU0mkqMeCF48VTFtoY9lsN+3SzSbsToRS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MJXCoOt+O4W19Y3NreJ2aWd3b/+gfHjUNEmmGfdZIhPdDqnhUijuo0DJ26nmNA4lb4Wj25nfeuLaiEQ94DjlQUwHSkSCUbSSzx55D3vlilt15yCrxMtJBXI0euWvbj9hWcwVMkmN6XhuisGEahRM8mmpmxmeUjaiA96xVNGYm2AyP3ZKzq3SJ1GibSkkc/X3xITGxozj0HbGFIdm2ZuJ/3mdDKObYCJUmiFXbLEoyiTBhMw+J32hOUM5toQyLeythA2ppgxtPiUbgrf88ippXla9q2rtvlapn+VxFOEETuECPLiGOtxBA3xgIOAZXuHNUc6L8+58LFoLTj5zDH/gfP4Avz2OkA==</latexit>

cet

<latexit sha1_base64="+ZQwmpmZnTEpPigBq081TtqrD5Y=">AAAB63icbVDLSgNBEOz1GeMr6tHLYBQ8hV0J6jHgxWME84BkCbOT2WTIPJaZWSEs+QUvHhTx6g9582+cTfagiQUNRVU33V1Rwpmxvv/tra1vbG5tl3bKu3v7B4eVo+O2UakmtEUUV7obYUM5k7RlmeW0m2iKRcRpJ5rc5X7niWrDlHy004SGAo8kixnBNpdUMrCDStWv+XOgVRIUpAoFmoPKV3+oSCqotIRjY3qBn9gww9oywums3E8NTTCZ4BHtOSqxoCbM5rfO0IVThihW2pW0aK7+nsiwMGYqItcpsB2bZS8X//N6qY1vw4zJJLVUksWiOOXIKpQ/joZMU2L51BFMNHO3IjLGGhPr4im7EILll1dJ+6oWXNfqD/Vq47yIowSncAaXEMANNOAemtACAmN4hld484T34r17H4vWNa+YOYE/8D5/AC10jj8=</latexit>opt
<latexit sha1_base64="rO/QxmFuMC90TqQRKbn21eGcEyQ=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LFbBU0mkqMeCF48VTFtoY9lsN+3SzSbsToRS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MJXCoOt+O4W19Y3NreJ2aWd3b/+gfHjUNEmmGfdZIhPdDqnhUijuo0DJ26nmNA4lb4Wj25nfeuLaiEQ94DjlQUwHSkSCUbSSzx6HPeyVK27VnYOsEi8nFcjR6JW/uv2EZTFXyCQ1puO5KQYTqlEwyaelbmZ4StmIDnjHUkVjboLJ/NgpObdKn0SJtqWQzNXfExMaGzOOQ9sZUxyaZW8m/ud1MoxugolQaYZcscWiKJMEEzL7nPSF5gzl2BLKtLC3EjakmjK0+ZRsCN7yy6ukeVn1rqq1+1qlfpbHUYQTOIUL8OAa6nAHDfCBgYBneIU3RzkvzrvzsWgtOPnMMfyB8/kDw8+Okw==</latexit>

cht

<latexit sha1_base64="+ZQwmpmZnTEpPigBq081TtqrD5Y=">AAAB63icbVDLSgNBEOz1GeMr6tHLYBQ8hV0J6jHgxWME84BkCbOT2WTIPJaZWSEs+QUvHhTx6g9582+cTfagiQUNRVU33V1Rwpmxvv/tra1vbG5tl3bKu3v7B4eVo+O2UakmtEUUV7obYUM5k7RlmeW0m2iKRcRpJ5rc5X7niWrDlHy004SGAo8kixnBNpdUMrCDStWv+XOgVRIUpAoFmoPKV3+oSCqotIRjY3qBn9gww9oywums3E8NTTCZ4BHtOSqxoCbM5rfO0IVThihW2pW0aK7+nsiwMGYqItcpsB2bZS8X//N6qY1vw4zJJLVUksWiOOXIKpQ/joZMU2L51BFMNHO3IjLGGhPr4im7EILll1dJ+6oWXNfqD/Vq47yIowSncAaXEMANNOAemtACAmN4hld484T34r17H4vWNa+YOYE/8D5/AC10jj8=</latexit>opt

<latexit sha1_base64="RexSvsDznmOEb/8GribhqAXIbvA=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LFbBU0mkqMeCF48VTFtoY9lsN+3SzSbsToRS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MJXCoOt+O4W19Y3NreJ2aWd3b/+gfHjUNEmmGfdZIhPdDqnhUijuo0DJ26nmNA4lb4Wj25nfeuLaiEQ94DjlQUwHSkSCUbSSbx6jHvbKFbfqzkFWiZeTCuRo9Mpf3X7CspgrZJIa0/HcFIMJ1SiY5NNSNzM8pWxEB7xjqaIxN8FkfuyUnFulT6JE21JI5urviQmNjRnHoe2MKQ7NsjcT//M6GUY3wUSoNEOu2GJRlEmCCZl9TvpCc4ZybAllWthbCRtSTRnafEo2BG/55VXSvKx6V9Xafa1SP8vjKMIJnMIFeHANdbiDBvjAQMAzvMKbo5wX5935WLQWnHzmGP7A+fwB2UOOoQ==</latexit>

sft

<latexit sha1_base64="8j04W1WFYoTxYP5fR0Jou0DjSxM=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69BKvgqSRS1GPBi8cKpi20sWy2m3bpZjfsToRS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8KBXcoOd9O4W19Y3NreJ2aWd3b/+gfHjUNCrTlAVUCaXbETFMcMkC5ChYO9WMJJFgrWh0O/NbT0wbruQDjlMWJmQgecwpQSsF5lH1sFeueFVvDneV+DmpQI5Gr/zV7SuaJUwiFcSYju+lGE6IRk4Fm5a6mWEpoSMyYB1LJUmYCSfzY6fuuVX6bqy0LYnuXP09MSGJMeMksp0JwaFZ9mbif14nw/gmnHCZZsgkXSyKM+Gicmefu32uGUUxtoRQze2tLh0STSjafEo2BH/55VXSvKz6V9Xafa1SP8vjKMIJnMIF+HANdbiDBgRAgcMzvMKbI50X5935WLQWnHzmGP7A+fwB5vmOqg==</latexit>

sot <latexit sha1_base64="aTWvGRRdDljcCCY55bPm2E+DqQI=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LFbBU0mkqMeCF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilB93HfrniVt05yCrxclKBHI1++as3iFkacYVMUmO6npugn1GNgkk+LfVSwxPKxnTIu5YqGnHjZ/NTp+TcKgMSxtqWQjJXf09kNDJmEgW2M6I4MsveTPzP66YY3viZUEmKXLHFojCVBGMy+5sMhOYM5cQSyrSwtxI2opoytOmUbAje8surpHVZ9a6qtftapX6Wx1GEEziFC/DgGupwBw1oAoMhPMMrvDnSeXHenY9Fa8HJZ47hD5zPH2IAjcg=</latexit>rt

One-hot Lookup Table

<latexit sha1_base64="or01g03LWME6hhomwERS9KGGCmk=">AAAB8HicbVDLTgJBEOzFF+IL9ehlIpp4IruGqEcSLx4xkYeBhcwOA0yYnd3M9JqQDV/hxYPGePVzvPk3DrAHBSvppFLVne6uIJbCoOt+O7m19Y3Nrfx2YWd3b/+geHjUMFGiGa+zSEa6FVDDpVC8jgIlb8Wa0zCQvBmMb2d+84lrIyL1gJOY+yEdKjEQjKKVHk03ZV1v2sNeseSW3TnIKvEyUoIMtV7xq9OPWBJyhUxSY9qeG6OfUo2CST4tdBLDY8rGdMjblioacuOn84On5NwqfTKItC2FZK7+nkhpaMwkDGxnSHFklr2Z+J/XTnBw46dCxQlyxRaLBokkGJHZ96QvNGcoJ5ZQpoW9lbAR1ZShzahgQ/CWX14ljcuyd1Wu3FdK1bMsjjycwClcgAfXUIU7qEEdGITwDK/w5mjnxXl3PhatOSebOYY/cD5/AMOKkE0=</latexit>
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Agent2

Figure 2: An overview of the proposed framework RAFT in t-th iteration. (a) aims to cluster the input feature
set. (b) aims to extract the state representations and help the cascading agents understand the current feature
space. (c) aims to select the mathematical transformation. (d) aims to evaluate the generated feature set and

obtain the overall reward.

nal degree matrix of A, and W ∈ RN×k is the weight
matrix of the GCN. Finally, we average Z column-
wisely to obtain the state representation, denoted by
Zgae(F) ∈ R1×k.

For the selected mathematical operation, we use its
one-hot vectors as the state representation, denoted by
Zo(op) ∈ R1×|O|.

3.3 Feature Space Evaluator We evaluate the
quality of feature space and provide reward signals to
reinforced agents to let them learn better feature trans-
formation policies. We assess the feature space from the
following two feature utility perspectives:

Downstream Task Evaluation: We utilize the im-
provement of a downstream task (e.g., regression, clas-
sification, outlier detection) as one feature utility mea-
surement. In detail, we use a downstream ML task with
a task-specific indicator (e.g., 1-RAE, Precision, Recall,
F1) to obtain the downstream task performance on the
feature space. The performance is denoted by PA(F , y).

Feature Space Quality: We also expect that the
generated feature space should contain less redundant
information and be more relevant to the target label.
Thus, we customize a feature space quality metric based
on mutual information, which is defined as:

(3.3) U(F|y) = − 1

|F|2
∑

fi,fj∈F

I(fi, fj) +
1

|F|
∑
f∈F

I(f, y),

where fi, fj , f are distinct features in F , I refers to the
mutual information function, and |F| is the size of the
feature set F .

3.4 Cascading Agents To intelligently select suit-
able features and operations for feature crossing, we de-
compose the selection process into three Markov Deci-
sion Processes (MDPs). They cascade and sequentially
select the first feature cluster, mathematical operation,
and the second feature cluster. We develop a cascading
actor-critic agent structure to make sure that all three
agents collaborate with each other. Figure 2(c) shows
the model structure. To ease the description, we adopt
the t-th iteration as an example to illustrate the calcu-
lation process. Assuming that the feature set is Ft and
its feature clusters Ct, we aim to obtain the next new
feature space Ft+1 by generating new features gt.

First Feature Cluster Agent: Agent1 is to select
the first candidate feature group. Its learning system
includes the following: State: the state is the embedding
vector of the current feature space Ft, denoted by
S1t = sft , where sft = Z(Ft). Action: the action is
the first candidate feature group cht selected by Agent1
from Ct, denoted by a1t = cht . Reward : the reward is the
feature space quality score of the selected first feature
group, dented by r1t = U(cht |y).

Operation Agent: Agento is to select a candidate
mathematical operation. Its learning system includes:
State: the state is the combination of the current feature
space Ft and the selected first feature group cht , denoted

by Sot = sft ⊕s1t , where⊕ is the a row-wise concatenation
and s1t = Z(cht ). Action: the action is the candidate
operation opt selected by Agento from the operation
set O, denoted by aot = opt. Reward : the reward
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is the integration of performance improvements of the
downstream task and the quality score of the new
generated feature space, denoted by rot = U(Ft+1|y) +
PA(Ft+1, y)− PA(Ft, y).

Second Feature Cluster Agent: Agent2 is to select
the second candidate feature group. State: the state is
the combination of the embedding of the current feature
space sft , the first candidate feature group s1t , and the

selected operation sot , denoted by S2t = sft ⊕ s1t ⊕ sot ,
where sot = Zo(op). Action: the action is the second
candidate feature group selected by Agent2 from Ct,
denoted by a2t = clt. Reward : the reward is the quality
score of the new generated feature space Ft+1, denoted
by r2t = U(Ft+1|y)

Feature Group(s) Crossing: After we have two
candidate feature groups and one operation, we need to
cross feature groups to create new features for refining
feature space. Based on the type of operation op, we
propose two feature generation strategies to generate
new features gt.

(3.4) gt =

{
opt(c

1
t ) : if opt is unary

opt(c
1
t , c

2
t ) : if opt is binary

.

Specifically, if op is unary (e.g., square, sqrt), we con-
duct it on the first selected feature group; if op is binary
(e.g., plus, divide), we apply it to the two candidate
feature groups. Then, gt is added into the Ft to form
the new feature set Ft+1. If the feature space size ex-
ceeds a maximization threshold, redundant features are
eliminated using feature selection to control the feature
space size. We reiterate the feature transformation pro-
cess until finding the optimal feature set F∗ or achieving
the maximum iteration number.

3.5 Actor-Critic Optimization Strategy We
adopt the same training strategy (actor-critic) to train
the three agents in order to learn smart and ideal
feature transformation policies.

The actor-critic paradigm consists of two components:

Actor : The actor aims to learn the selection policy π(·)
based on the current state in order to select suitable
candidate feature groups or operations. In the t-th
iteration, with given state St, the agent will pick an
action at, defined as:

(3.5) at ∼ πθ(St),

where θ is the parameter of policy network π. The
output of the πθ(·) is the probability of each candidate
action. ∼ operation means the sampling operation.

Critic: The critic aims to estimate the potential reward
of an input state, given by:

(3.6) vt = V (St),

where V (·) is the state-value function and vt is the
obtained value.

We update the Actor and Critic in cascading agents
after each iteration of feature transformation. Suppose
at the t-th iteration, for one agent, we can obtain the
memory as Mt = (at,St,St+1, rt). Then, the formal
definition of policy gradient is given by:

(3.7) ∇J(θ)t = ∇θlogπθ(at|St)(Q(St, at)− V (St)),

where (Q(St, at)−V (St)) is the advantage function (δ).
π(at|St) denote the probability of selected action at.
Q(St, at) can be estimated by the state-value function
(i.e., Critic) and the reward of the current step, which
is defined as:

(3.8) Q(St, at) ≈ rt + γV (St+1).

where γ ∈ [0, 1] is the discounted factor. During the
training phase, suppose the RAFT has explored the
feature transformation graph n steps and collected the
memories. Then, we optimize the parameter of Critic
to provide a more precise state-value estimation by
minimizing this:

(3.9) Lc =
1

n

n∑
i=1

(ri + γV (Si+1)− V (Si))2.

After that, we optimize the policy of Actor based on
Equation 3.7:

(3.10) La =
1

n

n∑
i=1

(logπθ(ai|Si) ∗ δ + βH(πθ(Si))),

where δ is the advantage function. H(·) is an entropy
regularization term that aims to increase the random-
ness in exploration. We use β to control the strength of
the H. The overall loss function for each agent is:

(3.11) L = Lc + La.

After agents converge, we expect to discover the optimal
policy π∗ that can choose the most appropriate action
(i.e. feature group or operation).

4 Experiment
4.1 Data Description We used 17 publicly available
datasets from UCI [17], LibSVM [5], Kaggle [9], and
OpenML [16] to conduct experiments. The 17 datasets
involve 6 classification tasks, 7 regression tasks, and
4 outlier detection tasks. Table 1 shows the statistic
information of these datasets. We also categorized these
datasets into High (higher than 5), Mid (between 0.01 to
5), and Low (between 0 to 0.01) based on the standard
deviation of the feature set. The dataset has a larger
standard deviation, indicating that its value range is
also larger, and vice versa.
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Table 1: Overall Performance. The best results are highlighted in bold. The second-best results are highlighted
in underline. We annotate the performance improvement of RAFT compared with the original feature space.

Name Source Task Samples Features Data Std. RFG ERG LDA AFT NFS TTG GRFG RAFT

PimaIndian UCIrvine C 768 8 High 0.693 0.703 0.676 0.736 0.762 0.747 0.776 0.789+6.9%

SVMGuide3 LibSVM C 1243 21 Mid 0.703 0.747 0.683 0.829 0.831 0.766 0.850 0.858+5.0%

Amazon Employee Kaggle C 32769 9 High 0.744 0.740 0.920 0.943 0.935 0.806 0.946 0.946+1.7%

German Credit UCIrvine C 1001 24 High 0.695 0.661 0.627 0.751 0.765 0.731 0.772 0.774+4.7%

Wine Quality Red UCIrvine C 999 12 High 0.599 0.611 0.600 0.658 0.666 0.647 0.686 0.697+3.6%

Wine Quality White UCIrvine C 4900 12 High 0.552 0.587 0.571 0.673 0.679 0.638 0.685 0.693+2.2%

Openml 618 OpenML R 1000 50 Low 0.415 0.427 0.372 0.665 0.640 0.587 0.672 0.803+20.7%

Openml 589 OpenML R 1000 25 Low 0.638 0.560 0.331 0.672 0.711 0.682 0.753 0.782+16.1%

Openml 616 OpenML R 500 50 Low 0.448 0.372 0.385 0.585 0.593 0.559 0.603 0.717+21.9%

Openml 607 OpenML R 1000 50 Low 0.579 0.406 0.376 0.658 0.675 0.639 0.680 0.756+14.7%

Openml 620 OpenML R 1000 25 Low 0.575 0.584 0.425 0.663 0.698 0.656 0.714 0.720+10.5%

Openml 637 OpenML R 500 50 Low 0.561 0.497 0.494 0.564 0.581 0.575 0.589 0.644+15.2%

Openml 586 OpenML R 1000 25 Low 0.595 0.546 0.472 0.687 0.748 0.704 0.783 0.802+16.7%

WBC UCIrvine D 278 30 Low 0.753 0.766 0.736 0.743 0.755 0.752 0.785 0.979+31.4%

Mammography OpenML D 11183 6 Low 0.731 0.728 0.668 0.714 0.728 0.734 0.751 0.832+9.6%

Thyroid UCIrvine D 3772 6 Mid 0.813 0.790 0.778 0.797 0.722 0.720 0.954 0.998+17.8%

SMTP UCIrvine D 95156 3 Mid 0.885 0.836 0.765 0.881 0.816 0.895 0.943 0.949+16.2%
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Figure 3: Comparison of different distance functions using in FG-Clustering.
4.2 Evaluation Metrics We used F1-score, Preci-
sion, Recall, and ROC/AUC to evaluate classification
tasks. We used 1-Relative Absolute Error (1-RAE) [24],
1-Mean Average Error (1-MAE), 1-Mean Square Error
(1-MSE), and 1-Root Mean Square Error (1-RMSE)
to evaluate regression tasks. We adopted ROC/AUC,
Mean Average Precision (MAP), F1-score, and Recall
to assess outlier detection tasks.

4.3 Baseline Algorithms We compared our work
RAFT with seven widely-used feature engineering meth-
ods: (1) RFG randomly selects candidate features and
operations for generating new features without any pol-
icy learning; (2) ERG is a expansion-reduction method,
which applies operations to all features to expand the
feature space, then selects critical features as a new fea-
ture space. (3) LDA [2] extracts latent features from

the feature set via matrix factorization. (4) AFT [8] is
an enhanced ERG implementation that iteratively ex-
plores feature space and adopts multi-step feature selec-
tion to reduce redundant features. (5) NFS [3] mimics
feature transformation path for each feature and opti-
mizes the entire transformation process based on rein-
forcement learning. (6) TTG [10] records the feature
transformation process using a transformation graph,
then uses reinforcement learning to explore the graph
to determine the best feature set. (7) GRFG [24] is
an automatic feature generation method, which is opti-
mized through DQN.

4.4 RQ1: Overall Performance This experiment
aims to answer: Can RAFT effectively improve the
quality of the original feature space? Table 1 shows the
overall performance of all models on all datasets. We
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Figure 4: Comparison of different state representation methods.
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Figure 5: Model converge with other reinforcement learning method as backbone.

can observe that RAFT significantly outperforms other
baselines. This observation indicates the effectiveness
of our work in feature space reconstruction. Another
interesting observation is that RAFT beats RFG in
most cases. This observation validates that reinforced
agents can model feature engineering knowledge to learn
better transformation policies than random generation
strategies. We also can find that RAFT is superior
to non-group-wise feature generation frameworks (i.e.,
NFS and TTG). The underlying driver is that group-
wise feature generation can efficiently refine the feature
space and provide strong reward signals for reinforced
agents to learn more intelligent policies. Moreover, the
superiority of RAFT compared with GRFG indicates
that the actor-critic training strategy can learn more
robust and effective policies than DQN-based agents.

4.5 RQ2: Study of the Distance Function This
experiment aims to answer: How do different dis-
tance functions affect the quality of reconstructed fea-
ture space? We adopted euclidean distance and cosine
distance in the feature clustering component to observe
the difference in model performance. Figure 3 shows

performance comparison on different datasets. We can
find that euclidean distance outperforms cosine distance
on the datasets with high standard deviation. But, the
observation is the opposite on low standard deviation
datasets. A possible reason is that the value range of
cosine distance is [−1, 1] but the euclidean distance is
[−infinity,+infinity]. Thus, the euclidean distance may
enlarge more distances between feature groups when
confronted with a high standard deviation dataset. It
will produce more informative features to refine the fea-
ture space. Thus, this experiment provides a strategy
to customize feature distance for different datasets.

4.6 RQ3: Study of the State Representation
Methods This experiment aims to answer: How do
different state representation approaches affect the re-
constructed feature space? Apart from the introduced
state representation methods (i.e., si, ae, and gae), we
also try combinations of them such as si+ae, si+gae,
ae+gae, and all. For each combination method, we con-
catenated the state representations from different ap-
proaches. Figure 4 shows the comparison results. We
can notice that gae outperforms other methods in most
tasks. A possible reason is that gae captures not only
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the knowledge of the feature set but also feature-feature
correlations. It preserves more knowledge of the feature
set in the state, which makes agents can learn effective
policies better. Another interesting observation is that
although the combination-based method captures more
characteristics of the feature space, their performances
still cannot outperform others. A potential interpreta-
tion is that directly concatenating different states may
include redundant and noisy information, leading rein-
forced agents to learn suboptimal policies.

4.7 RQ4: Comparison with Value-based Ap-
proaches This experiment aims to answer: How does
the training strategy affect the quality of the refined fea-
ture space? We developed three model variants of
RAFT: RAFTDQN, RAFTDDQN, and RAFTDuelingDQN

by replacing actor-critic agents with Deep Q-Network
(DQN), Double DQN (DDQN), and Dueling DQN. Fig-
ure 5 shows the comparison results. We can observe that
RAFT has a comparable converge efficiency in compar-
ison to RAFTDDQN and RAFTDuelingDQN. Moreover,
RAFT significantly outperforms other model variants.
A possible reason is that actor-critic agents directly op-
timize the transformation policies. Thus, they exten-
sively explore the high-dimensional feature space trans-
formation tasks compared with other baselines.

4.8 RQ5: The Traceability of Automatic Fea-
ture Generation This experiment aims to answer:
How is the traceability of the feature space generated by
RAFT? We selected the dataset “Wine Quality Red”
as an example to show traceability. We visualized the
original and generated features in Figure 6. The size
of each sector area represents the importance of each
feature. We can find that the ‘alcohol’ in the original
dataset is far more critical than other features. How-
ever, the generated feature has a more balanced im-
portance distribution for all features. Meanwhile, we
can easily figure out the transformation process of each
generated feature by its name. For instance, the most
critical column in generated feature is “alcohol−residual
sugar”, which is generated by two original features “al-
cohol” and “residual sugar”.

Wine Quality Red (Original)

F1-Score:0.672F1-Score:0.672

free sulfur dioxide
citric acid

pH

residual sugar

fixed acidity
chlorides density

volatile acidity

sulphates

total sulfur dioxide

alcohol

(a) The Original Feature

Wine Quality Red

F1-Score:0.696F1-Score:0.696
alcohol-chlorides

sulphates-chlorides

sulphates-residual sugar
alcohol

residual sugar-alcohol

chlorides-alcohol

alcohol-total sulfur...

alcohol-residual sugar

(b) The Generated Feature

Figure 6: The illustration of model traceability.

5 Related Works

Reinforcement Learning (RL) is the study of how
intelligent agents should act in a given environment in
order to maximize the expectation of cumulative re-
wards [20]. According to the learned policy, we may
classify reinforcement learning algorithms into two cat-
egories: value-based and policy-based. Value-based
algorithms (e.g. DQN [15], Double DQN [23]) esti-
mate the value of the state or state-action pair for ac-
tion selection. Policy-based algorithms (e.g. PG [21])
learn a probability distribution to map state to action
for action selection. Additionally, an actor-critic re-
inforcement learning framework is proposed to incor-
porate the advantages of value-based and policy-based
algorithms [18]. In recent years, RL has been ap-
plied to many domains (e.g. spatial-temporal data min-
ing, recommended systems) and achieves great achieve-
ments [25, 26]. In this paper, we adopted actor-critic
based method to construct the cascading agents.
Automated Feature Engineering aims to enhance
the feature space through feature generation and fea-
ture selection in order to improve the performance of
machine learning models [4]. Feature selection is to
remove redundant features and retain important ones,
whereas feature generation is to create and add mean-
ingful variables. Feature Selection approaches include:
(i) filter methods (e.g., univariate selection [6], correla-
tion based selection [28]), in which features are ranked
by a specific score like redundancy, relevance; (ii) wrap-
per methods (e.g., Reinforcement Learning [14], Branch
and Bound [13]), in which the optimized feature subset
is identified by a search strategy under a predictive task;
(iii) embedded methods (e.g., LASSO [22], decision tree
[19]), in which selection is part of the optimization ob-
jective of a predictive task. Feature Generation methods
include: (i) latent representation learning based meth-
ods, e.g. deep factorization machine [7], deep repre-
sentation learning [1]. Due to the latent feature space
generated by these methods, it is hard to trace and ex-
plain the extraction process. (ii) feature transforma-
tion based methods, which use column-wise arithmetic
operations [10, 3] or group-wise arithmetic operations
[24, 27] to generate new features.

6 Conclusion

In this paper, we propose a traceable automatic feature
transformation framework called RAFT. The RAFT
can utilize cascading actor-critic agents to develop opti-
mal features, hence enhancing the performance of sub-
sequent tasks. We design an FG-cluster algorithm with
two distance functions based on a group-wise feature
generation procedure for greater efficiency. In addition,
we offer three feature state representation approaches to

Copyright © 2023 by SIAM
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assist cascade agents in evaluating the current feature
set and, as a result, making more informed decisions.
Extensive studies are conducted on RAFT to demon-
strate the efficacy of each component and its application
potential in numerous research fields.
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