
Simple and Robust Dynamic Two-Dimensional Convex Hull

Emil Toftegaard Gæde∗ Inge Li Gørtz � ∗ Ivor van der Hoog �∗ Christoffer Krogh∗

Eva Rotenberg � ∗

Abstract

The convex hull of a data set P is the smallest convex set
that contains P . A dynamic data set is one where points
are inserted and deleted. In this work, we present a new
data structure for convex hull, that allows for efficient
dynamic updates, in theory and practice.

In a dynamic convex hull implementation, the fol-
lowing traits are desirable: (1) algorithms for efficiently
answering queries as to whether a specified point is in-
side or outside the hull, (2) adhering to geometric ro-
bustness, and (3) algorithmic simplicity.

Furthermore, a specific but well-motivated type of
two-dimensional data is rank-based data. Here, the
input is a set of real-valued numbers Y where for any
number y ∈ Y its rank is its index in Y ’s sorted
order. Each value in Y can be mapped to a point
(rank,value) to obtain a two-dimensional point set.
Note that for a single update, a linear number of
(rank,value)-pairs may change; posing a challenge
for dynamic algorithms. It is desirable for a dynamic
convex hull implementation to also (4) accommodate
rank-based data.

In this work, we give an efficient, geometrically ro-
bust, dynamic convex hull algorithm, that facilitates
queries to whether a point is internal. Furthermore,
our construction can be used to efficiently update the
convex hull of rank-ordered data, when the real-valued
point set is subject to insertions and deletions. Our im-
proved solution is based on an algorithmic simplification
of the classical convex hull data structure by Overmars
and van Leeuwen [STOC’80], combined with new algo-
rithmic insights.

Our theoretical guarantees on the update time
match those of Overmars and van Leeuwen, namely
O(log2 |P |), while we allow a wider range of functional-
ities (including rank-based data). Our algorithmic sim-
plification includes simplifying an 11-case check down
to a 3-case check that can be written in 20 lines of eas-
ily readable C-code. We extend our solution to pro-
vide a trade-off between theoretical guarantees and the
practical performance of our algorithm. We test and
compare our solutions extensively on inputs that were

∗Technical University of Denmark, Kongens Lyngby, Denmark

generated randomly or adversarially, including bench-
marking datasets from the literature.

Acknowledgements. This research was sup-
ported by Independent Research Fund Denmark grant
2020-2023 (9131-00044B) “Dynamic Network Analysis”
and Eva Rotenberg’s Carlsberg Foundation Young Re-
searcher Fellowship CF21-0302 - “Graph Algorithms
with Geometric Applications”. This project has ad-
ditionally received funding from the European Union’s
Horizon 2020 research and innovation programme un-
der the Marie Sk lodowska-Curie grant agreement No
899987.

1 Introduction

In analysis of spatial data, computing the convex hull
yields one of the most fundamental characteristics of
the data set. The convex hull itself serves as a com-
putational stepping stone towards promptly answering
relevant queries as they arrive online. Seen from the
static perspective, the problem of computing the con-
vex hull has received much attention. In this paper,
we study the dynamic setting, where data points may
arbitrarily be added, deleted, or altered. Convex hulls
have many applications for evolving or changing data
sets, illustrating the need for an efficient, practical, and
publicly available dynamic convex hull implementation.

Problem statement. The convex hull CH(P) of
a point set P is the minimal convex shape that con-
tains all points in P . Convex hulls are one of the
most prominent studied objects in computational ge-
ometry [9] due to their many applications which include
top-queries [28, 37], clustering [33, 25, 44], road network
analysis [34, 47, 25], and data pruning/dimension reduc-
tion [26, 38, 30, 35]. A convex hull data structure can
store CH(P) either explicitly or implicitly. An explicit
data structure stores the vertices (or edges) of the hull,
in their cyclical ordering, as a balanced binary tree.

An implicit convex hull data structure supports
(a subset of) common convex hull queries without
maintaining the edges of the convex hull. The points
of P that lie on the convex hull of P are called the
extreme points of P . An implicit data structure stores
a data structure on P that can answer queries on the
convex hull such as [13]:

ar
X

iv
:2

31
0.

18
06

8v
2

 [
cs

.C
G

]
 3

1
O

ct
 2

02
3

https://orcid.org/0000-0002-8322-4952
https://orcid.org/0009-0006-2624-0231
https://orcid.org/0000-0001-5853-7909

1. Finding the extreme point of P in a query direction,
2. Deciding whether a line intersects CH(P),
3. Finding the two hull vertices tangent to a query,
4. Deciding whether a query point q lies in CH(P),
5. Finding the intersection with a query line,
6. Finding the intersection between two hulls.

We briefly note that with any explicit convex hull
(storing h points) one can answer each of these queries
in O(log h) time. We wish to dynamically maintain a
convex hull supporting these queries subject to point
insertions and deletions.

Related work. In the static setting, where the
data set does not change, computing an explicit convex
hull of a set of n points can be done in optimal O(n log n)
time, e.g., with Graham’s scan [27] or Andrew’s vertical
sweep line [2], or with the QuickHull O(n log n) expected
time algorithm [5]. Crucially, Graham’s scan takes O(n)
time if the point set is already sorted by their radial
ordering. There also exist static, theoretically optimal,
output-sensitive algorithms, due to Kirkpatrick and
Seidel [31] and later Chan [11]: They obtain O(n log h)
running time where h denotes the number of points of
P that lie on the convex hull. In a dynamic setting, the
only data structure to explicitly maintain the convex
hull is the O(log2 n) algorithm by Overmars and van
Leeuwen [40]. This is also the best explicit dynamic
convex hull algorithm with worst-case updates.

The first dynamic implicit data structure for the
convex hull is by Chan [12], who achieves a linear-size
data structure with O(log1+ε n) amortized update time,
and supports queries 1–3 in O(log n) time (here, ε > 0 is
some arbitrarily small constant). The update time was
improved by Brodal and Jacob [9] to O(log n log log n)
amortized. The original work by Chan [12] can answer

queries 4–6 in O(log3/2 n) worst case time. This result
was later improved by Chan [13] to support these queries
in O(log1+ε n) expected time.

Convex hull implementations. Despite its nu-
merous practical applications, implementations of dy-
namic convex hulls are scarce. Many approaches rely
upon static algorithms for the convex hull (e.g., [7, 45,
8, 23]), and thus have a linear update time. The CGAL
library for computational geometry algorithms has no
implementation of dynamic convex hull algorithms. In-
stead, they use a dynamic algorithm for maintaining
the Delaunay triangulation of a point set, which it-
self contains the convex hull. However, dynamic De-
launay triangulations have near-linear update time and
linear recourse, rendering them useless for polylogarith-
mic dynamic updates. Chi, Haćıgümüş, Hsiung, and
Naughton [16] provide a Java implementation of the dy-
namic algorithm by Overmars and van Leeuwen, which
they use for an application in scheduling. Compared

to ours, their algorithm lacks complete geometric ro-
bustness, it does not facilitate queries, and it cannot
be extended to handle rank-ordered data. Indepen-
dently, Cisneros [19] presents a C implementation of
the algorithm by Overmars and van Leeuwen. Unfor-
tunately, this implementation is insertion-only and has
memory leaks. The algorithms for implicit convex hulls
by Chan [12] and Brodal and Jacobs [9] are not imple-
mented and do not support the operations required for
our applications. The newer algorithm by Chan [13]
does support these operations. It is our impression that
the three latter papers [12, 9, 13], present algorithms
that are sufficiently complex that further simplifications
and new ideas are needed if they should be implemented
in a way that is efficient in practice.

Applications of (dynamic) convex hull. Con-
vex hulls, or convex hull queries, have countless appli-
cations. Here, we list some broad areas of application of
dynamic convex hull queries. In Appendix C we elabo-
rate on recent applications.

Query 4 can be used for constraint satisfaction
problems. Indeed, consider a set of constraints given
by a collection of halfplanes. Each line supporting these
halfplanes can be mapped to a point (i.e. its dual). The
feasible region is subsequently given by the convex hulls
of these points. Using Query 4, we can efficiently test if
a candidate value satisfies all constraints.

Query 5 can, given a preference vector specifying
the weight of the x and y coordinates, return the pre-
ferred element of P . Repeated application of the con-
vex hull can give the top k preferred elements [37, 28].
Top-direction queries are often used as an intermediary
pipeline step in database algorithms [18, 16, 42].

Query 6 can be used to determine a line that
minimizes the maximal distance to P . This has a
direct application in (linear) regression, where we want
to replace P by a line that for any x-coordinate, can
predict the corresponding value in P [14, 46, 23].

The explicit convex hull itself (represented as a sub-
set of point P ′ ⊂ P) has applications as a pruning
step for classification algorithms. Intuitively, the convex
hull P ′ is the subset of ‘extremal’ points in P . Many
classification algorithms are most sensitive to these ex-
tremal values. By maintaining the convex hull, one can
subsequently run classification algorithms on smaller-
complexity input [44, 48, 26, 29]. Similarly, sometimes
only extremal points are interesting for learning al-
gorithms (pruning the number of points in the train-
ing data). Examples include support vector machines
(SVM) algorithms that use convex hull computations in
their underlying algorithms [7, 45, 15, 20, 36]. Existing
SVM algorithms use static convex hulls algorithms.

We want to briefly note one special application of

convex hull algorithms. Suppose that we are storing
a (large) set of values Y ⊂ R. The rank of each
y ∈ Y , is its index in the sorted order of Y and we
want to support rank queries that for query values q
report the corresponding rank. If Y is a set subject
to insertions and deletions then this is the dynamic
indexing problem and it is well-studied [3, 6, 10, 41, 43].
Recently, a new family of indexing data structures,
called learned indexes, has been introduced [32, 22, 23].
Consider a set of values Y and the corresponding two-
dimensional point set PY that maps every value in x
to the coordinate (rank,value). By maintaining the
convex hull of PY , recent work [32, 22, 23] uses ML
techniques that, for some given parameter ε, predict
the rank of each element with some additive error ε.

Our contribution. Via new theoretical insights,
we provide a new practical algorithm for the dynamic
convex hull problem, and provide an efficient, geomet-
rically robust implementation. Our implementation
makes use of the CGAL CORE library, to facilitate us-
age in geometric computations. More specifically:

• We establish a characterization for where to insert
edges into a dynamic convex hull based on edge-to-
edge comparison. This allows for storing the convex
hull as a collection of edges (as opposed to points)
which simplifies update logic compared to [40, 16].

• We apply this characterization to the algorithm
by Overmars and van Leeuwen [40] to get an
implementation of a linear-size data structure to
explicitly maintain a convex hull of size h in a
balanced binary tree with O(log2 n) update time
that facilitates queries in O(log h) time.

• We observe that OvL [40], even when simpli-
fied using our streamlined edge-based logic, comes
with considerable overhead by maintaining what is
called concatenable queues. We propose a new defi-
nition of explicit convex hull, where we do not store
the edges of the convex hull in their cyclical order-
ing. Instead, we only require that we may (contrary
to previous implicit convex hulls) answer queries 1–
6 and that we can report the h points on the convex
hull in O(h log n) time.

• With our edge-based logic, we construct a new
algorithm, Eilice, for maintaining this hull in
O(log2 n) worst-case update time with O(log n)
queries.

• We provide both a geometrically robust version of
Eilice, as well as an approximate version since both
versions have applications in practice.

• For rank-based convex hulls, we present and imple-
ment new algorithms with the guarantees.
Note: These are the first dynamic algorithms for
rank-based hulls with polylogarithmic update time.

(a) (b)

Figure 1: (a) The hulls CH(P) and CH+(P). (b)
Given two upper convex hulls CH+(R) and CH+(B),
we construct their bridge.

• We compare our implementations (the simplified
OvL and the new Eilice) to the preexisting dynamic
convex hull implementations on a variety of gener-
ated and adversarial outputs. We conclude that:

– geometric robustness comes at an expense of
computation time,

– as soon as the access pattern has less than
a few hundred queries per update, dynamic
algorithms have a clear advantage,

– we obtain improved performance compared to
the state-of-the-art (including [18, 16]).

2 Preliminaries

Let P be a set of n points in R2. For any two points
(α, β) we denote by αβ the segment between them. We
say that a line ℓ separates P whenever it contains at
least one point of P in the interior of either halfplane
bounded by the line. The convex hull CH(P) is the
edge-set of the minimal convex shape that contains all
points in P . Equivalently, the convex hull consists of all
points P ′ such that each line through (p1, p2) ∈ P ′×P ′

does not separate P .
We say a point a precedes a convex hull edge α

if it has an x-coordinate that is lesser or equal than
the left endpoint of α. The upper convex hull CH+(P)
is defined as the convex hull of the set P ∪ {0,−∞}
((Figure 1 (a)). The lower convex hull CH−(P) is
defined as the convex hull of P ∪ {0,∞}, and when
we view convex hulls as an area in R2, CH(P) =
CH+(P) ∩ CH−(P).

Consider two point sets A and B that are separated
by a vertical line. The convex hull CH(A∪B) is formed
by two segments of CH(A) and CH(B), together with
up to two edges called bridges. Commonly, a bridge is
defined as a minimal segment ab for points (a, b) ∈ A×B
where the line extending ab does not separate A ∪ B,
see Figure 1(b). One of the bridges coincides with
CH+(A ∪B), and one with CH−(A ∪B).

Partial Hull Trees Overmars and van
Leeuwen [40] maintain the convex hull of a two-
dimensional point set P by maintaining CH+(P) and
CH−(P) in two separate linear-size data structures

that can answer each of the queries (1)–(6) in O(log h)
time where h is the size of the convex hull. By
computing the points of intersection between CH+(P)
and CH−(P) they can identify all edges of CH(P).

They store CH+(P) and CH−(P) in a data struc-
ture that we will refer to as a Partial Hull Tree (PHT).
We recall the data structure for storing the upper convex
hull CH+(P) as these data structures are symmetrical.

Definition 1. Given a two-dimensional point set P ,
the Partial Hull Tree stores P in a leaf-based balanced
binary tree T+ (sorted by x-coordinates). For each
interior node v ∈ T+, denote by π(v) the points in the
leaves at the subtree rooted at v. For each node v ∈ T+

with children (x, y) and parent v′, the Partial Hull Tree
stores:

• The unique bridge e+(v) between the upper hulls
CH+(π(x)) and CH+(π(y)).

• A concatenable queue E∗(v). This is a balanced
binary tree of the vertices of CH+(π(v)) that are
not in CH+(π(v′)) (where v′ is the parent of v).

• For the root r of T ∗, E∗(r) equals CH+(P).

Dynamically maintaining a Partial Hull Tree.
Let p be a point added to or removed from P and denote
by ρ the root-to-leaf path to p. In [40], they restore the
Partial Hull Tree by computing for every node v ∈ ρ the
bridge e+(v). Let x and y be the children of v. We define
a pivot (αx, βx, γx) as any triple of consecutive points
on CH+(π(x)). Overmars and van Leeuwen consider a
pair of pivots (αx, βx, γx) and (αy, βy, γy) of x and y.
Through a case distinction of 11 cases (Figure 2) they
can conclude if e+(v) has its left endpoint preceding or
succeeding βx. This gives the following dynamic update
algorithm [40] that has two main steps:

Traversing down. First, they traverse the path
from the root to the leaf containing p. For every node v
they encounter, they consider the concatenable queues
E∗(v),E∗(x),E∗(y). Here x and y denote the left and
right child of v, respectively. Through the split and
join operations of balanced binary trees, they obtain
the convex hulls CH+(π(x)\p) and CH+(π(y)\p) in
O(log n) time as balanced binary trees E(x) and E(y).

Bubbling up. Next, they traverse the path from
the leaf containing p to the root bottom-up and compute
for every vertex v on the path the bridge e+(v). Let v
have children x and y:

1. Each inner node of E(x) represents an vertex βx. In
O(1) time they obtain the predecessor or successor
of βx on CH+(π(x)\p). The endpoints of these
edges give a pivot (αx, βx, γx).

2. Similarly, each inner node of E(y) comes with a
pivot. Given two pivots, they decide in O(1) time if

x y

βx
βy

Figure 2: The 9 main cases for a line through the pivots
(βx, βy). For each case, [40] can exclude at least 1

4 of the
remaining convex hull points as an endpoint of e+(v).
The 9’th case is further split into three others.

the endpoints of e+(v) succeed, precede or coincide
with the pivots (Figure 2). Depending on the case,
they recurse down E(x) and/or E(y).

3. Since there are at most O(n) points on CH+(π(x))
and CH+(π(v)), they recurse at most O(log n)
times before they find the bridge e+(v) between
CH+(π(x)) and CH+(π(y)).

Given the bridge e+(v), they update E∗(v). After
having updated E∗(r) for the root r, they have com-
puted the convex hull CH+(P).

Runtime analysis. There are O(log n) nodes v on
the root-to-leaf path ρ in T+. They iterate over ρ to
obtain for all v ∈ ρ a binary tree E(v) in O(log2 n) total
time. Then, they traverse ρ from p towards the root.
For each v ∈ ρ that the three steps are performed in
O(log n) time. Thus the total running time is O(log2 n).

The logarithmic method We briefly mention
the logarithmic method, since Ferragina and Vin-
ciguerra [23] used it to maintain convex hulls to predict
the rank of elements in a fully dynamic set. The loga-
rithmic method transforms (decomposable) static data
structures into insertion-only dynamic structures (see
e.g. [39]). It uses a bucketing scheme of buckets that
increases in size exponentially. In Appendix D we de-
scribe the logarithmic technique applied to the convex
hull, and why doing so leads to incorrect query algo-
rithms and hulls.

3 Simplified Algorithm for Convex Hulls

In this section, we establish a new characterization for
where to insert new edges into a dynamic convex hull.
In this analysis, we use edges of the current convex
hull as pivots, as opposed to the analysis in [40] that
uses points (Figure 2). We then use it to provide a
more straightforward implementation of the algorithm
in [40]. Our analysis makes the algorithm in [40] not
only simpler but also more efficient as we may store and

traverse fewer pointers. To this end, we denote by T+

the Partial Hull Tree of P where we redefine bridges
and concatenable queues:

Definition 2. Let v ∈ T+ have children x and y. We
define its bridge e+(v) as a maximal segment ab for
points (a, b) ∈ CH+(π(x))×CH+(π(y)) where the line
extending ab does not separate π(x) ∪ π(y) (Figure 3).

(a) (b)
yx

v

Figure 3: (a) v ∈ T+ with children x and y. We show
the upper convex hull CH+(π(y)). (b) We redefine the
bridge e+(v) as the maximal non-separating segment
between CH+(π(x)) and CH+(π(y)).

Definition 3. Let v ∈ T+ have children x and y.
Denote by E(v) the edges of CH+(π(v)) in their cyclical
ordering. We define E∗(x) := E(x)\E(v) (Figure 4).
The concatenable queue (or c-queue) is E∗(x) stored in
its cyclical ordering as a balanced binary tree.

Lemma 3.1. Let v ∈ T+ have children x and y. Given
E(v), E∗(x), and E∗(y), we may obtain E(x) in O(log n)
time using the split and join operations on binary trees.

Proof. The edges of E∗(x) are a contiguous interval in
E(v). Moreover, an edge is in E(x) ∩ E(y) if and only
if it precedes the bridge e+(v). Thus, we achieve the
lemma through Algorithm 1.

Whenever we invoke Algorithm 1, we store the tree
ER so that we may invert the algorithm to obtain E(v)
from E∗(x) in O(log n) time.

The Partial Hull Tree and its implementa-
tion. The Partial Hull Tree T+ is a balanced binary
tree on P sorted by x-coordinate. Each node v ∈ T+

with children x and y stores the bridge e+(v) between
CH+(π(x)) and CH+(π(y)) and the c-queue E∗(v).
The Partial Hull Tree T− is defined analogously, using
lower convex hulls.

We note that we can avoid storing P twice: by
maintaining only one tree T where every node v main-
tains both e+(v) and e−(v). We choose to implement
the Partial Hull Tree and all c-queues as AVL trees be-
cause we want to have worst-case guarantees. To sim-
plify our internal algorithm’s logic, we define the leaves
of our c-queue to be points that are the endpoints of
their parent edges. With slight abuse of notation, we

(a) (b)
yx

v

Figure 4: (a) Hulls E(x) and E(y). (b) The root v stores
E∗(v) = E(v). Its left child x stores E∗(x) = E(x)\E(v).

refer indistinguishably between edges σ ∈ E(v) and
their c-queue node. That is, for each node w ∈ T
there is a unique ancestor v of w where the bridge
e+(w) = σ ∈ E∗(v).

Algorithm 1 splitHull(left child x, balanced tree E(v))

(EL,ER ← E(v).Split(e+(v))
E(x)← EL(v).Join(E∗(x))
return (E(x),ER)

3.1 Recomputing bridges using only edges
Let v ∈ T have children x and y. Our new definition of

bridges and c-queues allows for new logic to recompute
the bridge e+(v) from E(x) and E(y) in O(log n) time.
We show this through two lemmas:

In Lemma 3.2, we consider two edges (α, β) ∈
E(x)×E(y). In our data structure, these are both roots
of a subtree in their respective trees. We can decide in
O(1) time whether e+(v)’s endpoints succeed or precede
these edges: discarding at least one child of either α or
β until we find one endpoint of e+(v).

In Lemma 3.3, let e+(v) = (a, b). Given a and
β ∈ E(y), we can decide in O(1) time whether b precedes
or succeeds β. The result of these two lemmas is an
O(log n) algorithm to find e+(v) (Algorithm 2).

Lemma 3.2. Let v ∈ T have children x and y. Given
edges α ∈ E(x) and β ∈ E(y) with center points
l and r, respectively, we can decide whether e+(v)’s
endpoints succeed/precede α and β in O(1) time using
only arithmetic and comparisons.

Proof. The proof is a case distinction, depending on
the slope of the segment lr. Denote by (a, b) the
(unknown) endpoints of e+(v). We consider three cases
(where the first two are not mutually exclusive) and
their consequence:

Slope(α) ≤ Slope(lr): a must precede α.
Denote by (α1, α2) the endpoints of α. Consider the
triangle ∆ = (α1, l, r). Since slope(α) ≤ slope(lr), and
r per construction has a x-coordinate greater or equal to
that of α2, the point α2 must be on or under the edge lr
of this triangle (Figure 5). Per definition of convexity,
the bridge e+(v) bounds a halfplane that contains all

α1

α2l

l′
r α1

α2

l

r
l′

Figure 5: Lemma 3.2, case 1, for upward and downward
slopes. The purple triangle denotes ∆.

points in CH+(π(v)). Thus, the bridge e+(v) bounds a
halfplane that must contain ∆.

We claim that any point l′ in π(x) right of α1 cannot
be an endpoint of e+(v). Indeed, any such point l′

must lie on or above the line through α1r (since the
halfplane bounded by e+(v) must contain both a1 and
r). This implies that we have found a l′ ∈ π(x) such
that the segment α1l′ has a greater slope than α: which
contradicts the assumption that α was part of the upper
convex hull of π(x).

Slope(lr) ≤ Slope(β): b must succeed β. This
proof is symmetric to the previous case.

Slope(α) > Slope(lr) > Slope(β). Denote by
m a vertical line separating π(x) and π(y) (we can
compute such an m in constant time). Denote by γ
the intersection point between the supporting lines of α
and β. We prove that:

• if γ lies on or left of m, a must succeed α, and
• if γ lies on or right of m, b must precede β.

We prove the first subcase (Figure 6), as the second
subcase is symmetric. Denote by Γ the area that can
contain b, the area bounded by the halfplane supporting
β and right of m. Because γ lies left of m, Γ is entirely
contained in the halfplane bounded by the supporting
line of β. Consider any vertex l′ ∈ π(x) preceding α, the
segment l′b must be contained in the halfplane bounded
by α. However, this implies that the segment l′b bounds
a halfplane that excludes α2. Thus, a must succeed α.
Note that if a succeeds α (and, a lies in the green area
of the figure) then b may succeed or precede β.

l

rγα2

Γ

m

Figure 6: Lemma 3.2, case 3.

Lemma 3.3. Let v ∈ T be an internal node with chil-
dren x and y. Given the left endpoint a of e+(v) and any
edge β ∈ E(y), we can decide whether the right endpoint

b of e+(v) succeeds or precedes β in O(1) time using
only arithmetic and comparisons.

Proof. Denote by r the center point of β. The sequence
of edges on the upper convex hull of π(v) per definition
has decreasing slope. It immediately follows that if
Slope(ar) > Slope(β) then b must precede β. Similarly,
if Slope(ar) < Slope(β) then b must succeed β. Finally,
if Slope(ar) = Slope(β) then the points a, r and the
endpoints of β are collinear. Since our bridge is the
maximal segment bounding a halfplane that contains
π(v), b must succeed β.

Corollary 3.1. Let v ∈ T have children x and y.
Given E(x) and E(y) as balanced trees, we may compute
the bridge e+(v) in O(log n) time (Algorithm 2).

Algorithm 2 FindBridge(node v, α ∈ E(x), β ∈ E(y))

1: while ! (α.isLeaf and β.isLeaf) do
2: (l, r) ← (α, β).getCenter()
3: if Slope(α) ≤ Slope(lr) and !α.isLeaf then
4: α ← α.leftChild
5: if Slope(lr) ≤ Slope(β) and !β.isLeaf then
6: β ← β.rightChild
7: if neither first two cases apply then
8: if β.isLeaf then
9: α ← α.rightChild

10: else if α.isLeaf then
11: β ← β.leftChild
12: else
13: γ ← intersectLines(α, β)
14: m ← verticalLineSeparating(π(x), π(y))
15: if γ left of m then
16: α ← α.rightChild
17: else
18: β ← β.leftChild
19: return (α, β)

3.2 The update algorithm using c-queues Now,
we are ready to present our implementation of the
dynamic algorithm in [40], using our edge-based logic.
We call this algorithm OvL. Let us insert or delete a
point p ∈ P and denote by ρ the root-to-leaf path to p
in T . We compute for all v ∈ ρ the bridge e+(v). This
allows us to restore all c-queues, and store CH+(P) in
E∗(r) (where r is the root of T). Our algorithm works
in two steps, that both take O(log2 n) time:

Traversing down. We start at the root r where
E∗(r) = E(r). We traverse ρ from the root to p. For
each node v, we assume we have E(v) as a balanced
binary tree. Let p lie in the left child x of v (p ∈

π(x)). We invoke splitHull(x, E(v)): destroying E(v)
and storing ER(v) in v. The splitHull function gives us
E(x) in O(log n) time, and with E(x) we recurse on x.

Bubbling up. For the leaf l that contains p, the
bridge e+(l) equals (p, p). We create or delete this
bridge accordingly. From the downwards traversal in
the previous step, we have the tree E(l) at l. We traverse
ρ from l to the root. For each node v, we compute
E(v) as follows. Let x and y be the children of v. If
x is the child on the path, we computed E(x) before
moving up to v and we have E(y) from our downwards
traversal. We first invoke Algorithm 2 to compute e+(v)
in O(log n) time (Corollary 3.1). We then compute E(v)
joining E(x) and E(y) around the bridge e+(v).

Theorem 3.1. Let P be a two-dimensional point set.
We can maintain the edges of CH+(P) subject to
insertions and deletions in P as a balanced binary tree
E(r) in O(log2 n) worst-case time per update.

The balanced binary tree E∗(r) at the root stores
the h edges of CH+(P). Queries 1–6 can subsequently
be answered in O(log h) time using the standard search
algorithms over E∗(r) [13].

4 Improving the Solution

The update algorithm presented in [40] differs from our
new approach in the following choices:

• It traverses the path ρ in T twice: once top-down
to ensure that we can compute for all v ∈ ρ the tree
E(v), and once bottom-up to compute the bridges.

• It stores points in P multiple times (both in T and
in the c-queues) requiring either double the space
or pointers that point to non-contiguous data.

• It uses the split and join operations on binary trees.
Although these have O(log n) theoretical running
time, they are inefficient in practice.

In Appendix A, we resolve these issues. Our
algorithm no longer maintains the convex hull CH+(P)
in a balanced binary tree. Instead, we maintain a new
structure that we call the Partial Bridge Tree (PBT).

Definition 4. The Partial Bridge Tree (PBT) stores a
point set P in a leaf-based balanced binary tree T (sorted
by x-coordinate). Each node v ∈ T stores e+(v) and
e−(v).

We can cleverly navigate our Partial Bridge Tree to get
two properties:

1. ∀v ∈ T , given an edge e ∈ CH+(π(v)), we can find
its successor on CH+(π(v)) in O(log n) time.

2. ∀v ∈ T , given an edge e ∈ CH+(π(v)), we can
find the median edge of all edges preceding e on
CH+(π(v)), in O(log n) time.

The first property allows us to report CH+(P) in
O(h log n) time. The second property naively allows
us to answer Queries 1–6 in O(log2 n) time. Hence,
we obtain an output that is somewhere in between the
implicit and explicit convex hull.

Maintaining the Partial Bridge Tree. The sec-
ond property naively also gives us an O(log3 n) update
time to maintain the Partial Bridge Tree. Indeed, con-
sider after inserting or deleting point p in P the path ρ
from p to the root of T . To restore the Partial Bridge
Tree, we need to compute for all v ∈ ρ (with children x
and y) the bridge e+(v). Algorithm 2 requires as input
v plus two edges (α, β) ∈ E(x)×E(y). We then recurse
by replacing α with α′ (the median successor, or prede-
cessor, on E(x)). In Section 3.2, we obtained α′ in O(1)
time because we had E(x) as a balanced binary tree. Us-
ing Property 2, we may instead get α′ in O(log n) time.
Thus, we obtain an update algorithm with O(log3 n)
update time and O(log2 n) query time just by replacing
the functions ‘α.leftChild’ and ‘α.rightChild’ with the
algorithm from Property 2.

We can, however, do better. We show that invoking
Property 2 O(log n) times takes O(log n) worst-case
total time. This creates a new algorithm for dynamic
convex hull which we call Eilice. Eilice has a worst-
case update time of O(log2 n), matching OvL [40], and
a query time of O(log n). This update algorithm no
longer requires us to maintain c-queues. In addition, we
no longer require the initialization step of OvL: ensuring
that we traverse T exactly once. Thus, it circumvents
the downsides of OvL at the cost of query time efficiency.

5 Rank-based Convex Hulls

Finally, we consider rank-based convex hulls. Let Y be
a set of values, where the rank of y ∈ Y is its index in
the sorted order. We denote by PY the two-dimensional
point set that is obtained by mapping each value in
Y to (rank,value) and wish to dynamically maintain
CH(PY). The problem in this setting is that after
inserting into or deleting from Y , the x-coordinate of
linearly many points in PY changes. Changing a value y
may change CH(PY) by Θ(n) edges, even if y itself was
not on the convex hull (Figure 14). The key observation
to maintaining the convex hull in this setting is the
following. After updating an element y ∈ Y a bridge
e+(v) = (a, b) in the Partial Hull Tree is updated if and
only if y is in the subtree rooted at v. That is, if y is
not in the subtree rooted at v then the x-coordinates
of (a, b) may both increase or decrease by one, but the
bridge e+(v) remains a segment between the same two
values. Since the convex hull is implied by the set of
all bridges in T , we may still maintain the Partial Hull
Tree with the previous root-to-leaf update strategy.

Implicit bridges In a Partial Hull Tree T , the
leaves store the values in PY , sorted by x-coordinate.
I.e., we store the values of Y in the leaves of T in
their stored order. For a node v with children x
and y, the bridge e+(v) is the bridge between the
convex hulls CH+(π(x)) and CH+(π(y)). For a bridge
e+(v), we can no longer store the endpoints of the
bridge explicitly: as the x-coordinate of all bridges may
radically change after an update in Y . We define the
implicit bridge ε+(v) which stores only the two values
(y1, y2) corresponding to the endpoints of e+(v). At this
point, we wish to note that we can easily maintain the
Partial Hull Tree using implicit bridges with a factor
O(log n) overhead. Indeed, we may run any of the two
proposed algorithms. Whenever we need to consider a
bridge α = e+(x), we can get the corresponding values
(y1, y2) from the implicit bridge. Then, we may perform
a binary search over Y to obtain their corresponding
ranks. Thus, at O(log n) overhead, we always have
explicit access to the endpoints of α.

In Appendix B we show that we can cleverly nav-
igate T to avoid this overhead. Our key contribution
is that we show that we can perform a similar trick
as for Eilice: performing O(log n) such rank queries
in O(log n) total time. This gives the first dynamic
algorithm for rank-based convex hulls with worst-case
O(log2 n) update time. Our solution has O(log h) query
time (used as an extension on OvL) or O(log n) query
time (when applied as an extension of Eilice).

6 Experiments

In order to examine the empirical performance of our
data structures, we perform a series of tests across
several types of input, comparing the performance of our
structure variants with each other, and to state of the
art implementations of static convex hull algorithms.

Test environment and implementations. For
experiments we consider the following implementations:

Simplified OvL our simplified Partial Hull Tree struc-
ture using concatenable queues.

Eilice our simplified Partial Hull Tree structure with-
out concatenable queues.

CHHN a Java implementation of the original Over-
mars and van Leeuwen structure [17].

Eddy CGAL implementation of Eddy’s algorithm [21]
(O(nh) construction time).

GA CGAL implementation of Andrew’s variant of the
Graham scan algorithm [1] (O(n log n) construction
time).

The implementations of our data structures are
available at [4]. As a robustness check, we have
compared the points we have found on the hull to those

found by static convex hull algorithms implemented in
CGAL, and verified that they are in agreement.

We note that comparing implementations across
programming languages is inherently a dubious task.
Not only do the languages differ in their approach to
things like memory management, which can greatly in-
fluence practical performance, but in this case, the com-
parisons are further troubled by the fact that geometric
robustness has not been implemented for CHHN. The
comparisons between the Java and C++ implementa-
tions should therefore not be seen as direct performance
comparisons, but rather the Java implementation acts
as an indicator of existing solutions.

The experiments are run on a cluster node with an
Intel Xeon Gold 6226R CPU on a single core at 2.8GHz.

Test data. We generated four distinct data sets of
220 points each, following Gamby and Katajainen [24]
who perform experimental analysis on static convex hull
algorithms. The first three categories are from [24], and
the last is tailored to measure behaviour when all points
lie on the convex hull. Recall that h denotes the number
of points in CH(P). We consider the following data
sets:

Uniformly random data each point of P is drawn
uniformly at random from a square; thus, the
expected number of extremal points is Θ(log n).

Disk-truncated data where each point is drawn uni-
formly at random, but only added to P when it lies
in a pre-specified disk. Here, the expected number
of extremal points is Θ(n1/3).

Bell data where data is generated according to a nor-
mal distribution (and thus, we expect Θ(

√
log n)

extremal points).
Circular data where points are sampled from the

boundary of a pre-specified disk; i.e. every data
point belongs to the hull.

For the uniformly random and Bell data points, we
follow the specifications of [24]. For the disk-truncated
and circular points, we consider disks of radius 1000
centered at (0, 0). We note that in all cases, contrary
to Gamby and Katajainen [24], we do not restrict the
points to have integer coordinates. This restriction
served to avoid correctness issues that can arise in
practice when comparing floating point values of finite
precision. Integration with the CGAL geometry kernel
allows us to circumvent these geometric robustness
issues, at some cost of performance, opening up for use
in applications that do not allow for such a restricted
input.

Experiments. The contribution of this work is
an updatable, queriable convex hull implementation for
two-dimensional and rank-based datasets. We thus test

for the following categories:

Dynamic construction a simulated dynamic sce-
nario in which we construct the hull of a point set
by repeated extension.

Extension the time it takes to extend the point set P
with an additional point set and obtain the convex
hull of their union.

Queries the time it takes to perform a sequence of
point-containment queries on an existing hull.

Updates the time it takes to perform an interspersed
sequence of insertions and deletions on an existing
hull.

The dynamic construction test serves to emulate
behaviour one might encounter in a typical dynamic
setting. The hull is repeatedly extended, so that queries
can be answered often on the current state of the
hull. This brings a clear disadvantage to the static
algorithms, and thus we examine how various rates of
extension affect their performance.

For extensions, the static algorithms simply rebuild
the hull. This is to determine if the dynamic variations
can compare to simply rebuilding the hull using a static
algorithm, eliminating the need for a dynamic structure
in cases where queries are needed on an irregular basis.
Each measurement of extension adds 50, 000 new points,
while each set of updates consists of 1000 updates split
evenly between insertions and deletions. There is no
overlap between inserted and deleted points, and the
order of updates is random, emulating the updates
pattern one might encounter in practical applications.

Due to the speed at which queries can be an-
swered, we for each measurement perform 220 queries
for points chosen according to a uniform distribution
over a bounding box of the area in which the full test
data resides.

Results and discussion. For ease of readability,
we highlight only tests on specific data sets. The
remainder can be found in Appendix E, and the raw
results can be found in [4].

In Figure 8 we show the dynamic construction test
using 500 point extensions. At roughly a million points
and forward we see that exact Eilice beats the static
variations, while the inexact implementations take over
sooner.

In practical applications, one’s access pattern might
require access to the hull more often than once every 500
updates. For a scenario with access every 50 updates we
get the results seen in Figure 9 where the clear benefit
of a dynamic structure can be seen.

To explicitly showcase the difference in performance
when comparing exact and inexact implementations, we
show in Figure 7 the extension time on uniform data.

Figure 7: Extension time on uniform data.

Figure 8: Dynamic construction time using 500 point
extensions on uniform data.

What should be noted here is the gap between the inex-
act and exact data structures. Replacing simple floating
point comparisons with more robust and involved oper-
ations takes a large toll on performance. This is perhaps
not surprising, but it is necessary if one wants to guar-
antee correct comparisons, and thus correct behaviour.
We also show the time spent extending the rank-ordered
implementation. This is because rank-ordered integers
avoid some of the pitfalls of geometric robustness, and
thus fall into a similar category as the inexact imple-
mentations. Of note is that the rank-ordered imple-
mentation has to do additional bookkeeping, placing it
somewhat in the middle of the extremes. We also note
the logarithmic nature of the exact dynamic implemen-
tations. The jagged curve of CHHN does not stem from

Figure 9: Dynamic construction time using 50 point
extensions on uniform data.

the usage of an amortized structure, but rather the Java
language’s built-in garbage collector periodically per-
forming memory cleaning. The static algorithms have a
large advantage here, requiring a single reconstruction
for every 50, 000 insertions, placing them far ahead of
most of the competition.

To clarify the behaviour of extension we also show
in Figure 10 the behaviour excluding the exact dynamic
implementations. Although tempting to simply claim
that our simplification causes a speedup of an order
of magnitude compared to the regular Overmars and
van Leuween structure, the difference here between Java
and C++ muddles any conclusions. Here it is also
clearer that the static algorithms have super-logarithmic
growth, however, the constants associated with the
exact implementations mean that data has to grow
much larger for the exact dynamic implementations to
extend faster.

For the queries, we specifically consider the circular
and uniform random data. Recall that the expected
number of points on the hull of the uniform data, h, is
O(log n) for this point set. The benefit of maintaining
concatenable queues is that they provide the ability
to answer queries in O(log h) time rather than worst-
case O(log n). In Figure 11, however, we see that
the Eilice algorithm obtains similar performance to
the simplified OvL solution, even whilst not having
concatenable queues. This behaviour can be explained
as follows: the Eilice query algorithm considers an edge
e+(v) = α on the upper convex hull. Then, Eilice
either outputs the correct answer or considers the left
(or right) child x of v. If the Eilice algorithm does
not output the correct answer, there exist two cases.
Either the bridge e+(x) is also on the convex hull, or

Figure 10: Extension time on uniform data of select
implementations.

the x-coordinate of e+(x) succeeds the left endpoint of
α. The Eilice algorithm makes a comparison that the
simplified OvL does not make, only in the latter case.
Due to how the tree is defined and constructed, that
case is rare. Thus, in practice, the Eilice and simplified
OvL algorithms oftentimes execute the same decision
tree before reaching the desired output (even though
Eilice has a worse worst-case guarantee).

For the update measurements, shown in Figure 12,
we again see the logarithmic behaviour for both dynamic
algorithms. As expected, Eilice beats simplified OvL
by virtue of not having the overhead associated with
maintaining concatenable queues.

Our experiments highlight several key points when
deciding what algorithms to employ for dynamic convex
hulls in practice. If geometric robustness is not neces-
sary, one can achieve much greater performance. This
might be the case in applications that accept erroneous
queries, in which data is inherently already unreliable,
or where data happens to be distributed enough that
errors become unlikely. As an example of the latter,
the uniform random data set was correctly handled by
the inexact data structures, while the circular data was
much more prone to precision errors.

If geometric robustness is necessary, but queries can
be relegated to infrequent batches, static recomputa-
tions might be preferred, if the queries are infrequent
enough or the data sizes are large enough.

If both geometric robustness and dynamic be-
haviour is required, or data is rank-based, Eilice is the
clear winner. While leaving out the concatenable queues
gives worse worst-case guarantees, it requires an adver-
sarial query pattern for the overhead of Eilice to become
worse.

Figure 11: Query time on circular and uniform data.

To conclude: We simplify the bridge-finding pro-
cedure of Overmars and van Leuween, by a clever change
from vertex based to edge-based computations. This
simplification leads to much less error-prone implemen-
tations, at no practical cost. We implement and test
our simplified data structure, along with an additional
trade-off between queries and updates, by leaving out
concatenable queues. The implementations are publicly
available at [4]. We examine the practical implications
of these simplifications, providing insight into not only
how our structure performs, but also what factors one
should consider when employing a dynamic convex hull
data structure, with guidance for various use cases.

Finally, the simplified algorithm also easily ex-
tends to rank-ordered data, accommodating updates
and queries in polylogarithmic time, thus giving the first
data structure for dynamic maintenance of convex hulls
of rank-ordered data with non-trivial update bounds.

Figure 12: Time spent on an interspersed sequence of
500 insertions and 500 deletions on an existing convex
hull on uniform data.

References

[1] A. M. Andrew. Another efficient algorithm for convex
hulls in two dimensions. Inf. Process. Lett., 9(5):216–
219, 1979.

[2] Alex M Andrew. Another efficient algorithm for con-
vex hulls in two dimensions. Information Processing
Letters, 1979.

[3] Manos Athanassoulis and Anastasia Ailamaki. Bf-tree:
approximate tree indexing. Proceedings of the 40th
International Conference on Very Large Databases,
2014.

[4] Anonymous authors. Dynamic Convex Hull imple-
mentations. https://anonymous.4open.science/r/

DynamicConvexHull-1E62/, 2023.
[5] C Bradford Barber, David P Dobkin, and Hannu Huh-

danpaa. The quickhull algorithm for convex hull. Tech-
nical report, Technical Report GCG53, The Geometry
Center, MN, 1993.

[6] Michael A Bender, Erik D Demaine, and Martin
Farach-Colton. Cache-oblivious b-trees. Proceedings
41st Annual Symposium on Foundations of Computer
Science, 2000.

[7] Kristin P Bennett and Erin J Bredensteiner. Geometry
in learning. MAA NOTES, 2000.

[8] Antoine Bordes and Léon Bottou. The huller: a simple
and efficient online svm. In Machine Learning: ECML
2005: 16th European Conference on Machine Learning,
Porto, Portugal, October 3-7, 2005. Proceedings 16,
pages 505–512. Springer, 2005.

[9] Gerth Stølting Brodal and Riko Jacob. Dynamic pla-
nar convex hull. The 43rd Annual IEEE Symposium on
Foundations of Computer Science, 2002. Proceedings.,
2002.

https://anonymous.4open.science/r/DynamicConvexHull-1E62/
https://anonymous.4open.science/r/DynamicConvexHull-1E62/

[10] Chee-Yong Chan and Yannis E Ioannidis. Bitmap in-
dex design and evaluation. Proceedings of the 1998
ACM SIGMOD international conference on Manage-
ment of data, 1998.

[11] Timothy M Chan. Optimal output-sensitive convex
hull algorithms in two and three dimensions. Discrete
& Computational Geometry, 1996.

[12] Timothy M Chan. Dynamic planar convex hull oper-
ations in near-logarithmic amortized time. Journal of
the ACM (JACM), 2001.

[13] Timothy M Chan. Three problems about dynamic
convex hulls. Proceedings of the twenty-seventh annual
symposium on Computational geometry, 2011.

[14] Yuan-Chi Chang, Lawrence Bergman, Vittorio
Castelli, Chung-Sheng Li, Ming-Ling Lo, and John R
Smith. The onion technique: Indexing for linear
optimization queries. ACM SIGMOD International
Conference on Management of data, 2000.

[15] Asdrúbal López Chau, Xiaoou Li, and Wen Yu. Con-
vex and concave hulls for classification with support
vector machine. Neurocomputing, 2013.

[16] Yun Chi, Hakan Haćıgümüş, Wang-Pin Hsiung, and
Jeffrey F Naughton. Distribution-based query schedul-
ing. Proceedings of the VLDB Endowment, 2013.

[17] Yun Chi, Hakan Haćıgümüş, Wang-Pin Hsiung, and
Jeffrey F Naughton. Java implementation convex
hull. https://github.com/yunchi/Dynamic_Convex_

Hull, 2013.
[18] Yun Chi, Hyun Jin Moon, and Hakan Hacigümüş.

icbs: incremental cost-based scheduling under piece-
wise linear slas. Proceedings of the VLDB Endowment,
4(9):563–574, 2011.

[19] Jose Alberto Cisneros. Maintenance of the convex hull
of a dynamic set. Master’s thesis, 2007.

[20] David Crisp and Christopher J Burges. A geometric
interpretation of v-svm classifiers. Advances in neural
information processing systems, 1999.

[21] William F. Eddy. A new convex hull algorithm for
planar sets. ACM Trans. Math. Softw., 3(4):398–403,
1977.

[22] Paolo Ferragina and Giorgio Vinciguerra. Learned
data structures. Recent Trends in Learning From Data:
Tutorials from the INNS Big Data and Deep Learning
Conference (INNSBDDL2019), 2020.

[23] Paolo Ferragina and Giorgio Vinciguerra. The pgm-
index: a fully-dynamic compressed learned index with
provable worst-case bounds. Proceedings of the VLDB
Endowment, 2020.

[24] Ask Neve Gamby and Jyrki Katajainen. Convex-hull
algorithms: Implementation, testing, and experimen-
tation. Algorithms, 2018.

[25] Xu Gao and Fusheng Yu. Trajectory clustering using
a new distance based on minimum convex hull. 2017
Joint 17th World Congress of International Fuzzy Sys-
tems Association and 9th International Conference on
Soft Computing and Intelligent Systems (IFSA-SCIS),
2017.

[26] Thomas Giorginis, Stefanos Ougiaroglou, Georgios

Evangelidis, and Dimitris A Dervos. Fast data reduc-
tion by space partitioning via convex hull and mbr com-
putation. Pattern Recognition, 2022.

[27] Ronald L. Graham. An efficient algorithm for deter-
mining the convex hull of a finite planar set. Informa-
tion Processing Letters (IPL), 1972.

[28] Sun-Young Ihm, Ki-Eun Lee, Aziz Nasridinov, Jun-
Seok Heo, and Young-Ho Park. Approximate convex
skyline: a partitioned layer-based index for efficient
processing top-k queries. Knowledge-Based Systems,
2014.

[29] MA Jayaram and Hasan Fleyeh. Convex hulls in image
processing: a scoping review. American Journal of
Intelligent Systems, 2016.

[30] Hamid Reza Khosravani, AE Ruano, and Pedro M
Ferreira. A convex hull-based data selection method
for data driven models. Applied Soft Computing, 2016.

[31] David G Kirkpatrick and Raimund Seidel. The ulti-
mate planar convex hull algorithm? SIAM journal on
computing, 1986.

[32] Tim Kraska, Alex Beutel, Ed H Chi, Jeffrey Dean, and
Neoklis Polyzotis. The case for learned index struc-
tures. Proceedings of the 2018 international conference
on management of data, 2018.

[33] Luca Liparulo, Andrea Proietti, and Massimo Panella.
Fuzzy clustering using the convex hull as geometrical
model. Advances in Fuzzy Systems, 2015.

[34] Kaiqi Liu and Jianqiang Wang. Fast dynamic vehicle
detection in road scenarios based on pose estimation
with convex-hull model. Sensors, 2019.

[35] Dragos D Margineantu and Thomas G Dietterich.
Pruning adaptive boosting. ICML, 1997.

[36] Michael E Mavroforakis, Margaritis Sdralis, and Ser-
gios Theodoridis. A novel svm geometric algorithm
based on reduced convex hulls. 18th International Con-
ference on Pattern Recognition (ICPR’06), 2006.

[37] Kyriakos Mouratidis. Geometric approaches for top-k
queries [tutorial]. 2017.

[38] George Ostrouchov and Nagiza F Samatova. On
fastmap and the convex hull of multivariate data: to-
ward fast and robust dimension reduction. IEEE trans-
actions on pattern analysis and machine intelligence,
2005.

[39] Mark H Overmars. The design of dynamic data
structures. Springer Science & Business Media, 1983.

[40] Mark H Overmars and Jan van Leeuwen. Dynamically
maintaining configurations in the plane (detailed ab-
stract). Proceedings of the twelfth annual ACM Sym-
posium on Theory of Computing, 1980.

[41] Rasmus Pagh and Flemming Friche Rodler. Cuckoo
hashing. Journal of Algorithms, 2004.

[42] Hongchao Qin, Rong-Hua Li, Ye Yuan, Guoren Wang,
Lu Qin, and Zhiwei Zhang. Mining bursting core
in large temporal graphs. Proceedings of the VLDB
Endowment, 2022.

[43] Jun Rao and Ross. Kenneth. Cache conscious indexing
for decision-support in main memory. Conference on
Very Large Data Bases (VDLB), 1999.

https://github.com/yunchi/Dynamic_Convex_Hull
https://github.com/yunchi/Dynamic_Convex_Hull

[44] Jörg Sander, Martin Ester, Hans-Peter Kriegel, and
Xiaowei Xu. Density-based clustering in spatial
databases: The algorithm gdbscan and its applications.
Data mining and knowledge discovery, 1998.

[45] Di Wang, Hong Qiao, Bo Zhang, and Min Wang. On-
line support vector machine based on convex hull ver-
tices selection. IEEE transactions on neural networks
and learning systems, 2013.

[46] Tom F Wilderjans, Eva Ceulemans, and Kristof Meers.
Chull: A generic convex-hull-based model selection
method. Behavior research methods, 2013.

[47] Da Yan, Zhou Zhao, and Wilfred Ng. Efficient algo-
rithms for finding optimal meeting point on road net-
works. Proceedings of the VLDB Endowment, 2011.

[48] Bo Yuan and Chew Lim Tan. Convex hull based skew
estimation. Pattern Recognition, 2007.

yz

x

(a) (b)

α ∈ E(x)α = e+(w)

2

1

Figure 13: (a) A node v with children x and y. We
show the medians as vertices with the same colour as
the corresponding node.

A Eilice: updates without c-queues

The update algorithm OvL has three components that
make it practically less efficient:

• It traverses the path ρ in T twice: once top-down
to ensure that we can compute for all v ∈ ρ the tree
E(v), and once bottom-up to compute the bridges.

• It stores points in P multiple times (both in T and
in the c-queues) requiring either double the space
or pointers that point to non-contiguous data.

• It uses the split and join operations on binary trees.
Although these have O(log n) theoretical running
time, are very inefficient in practice.

In this subsection, we show that we may avoid
maintaining c-queues and these downsides by navigating
only T . As a result, we obtain different outputs than the
OvL algorithm. We no longer are able to store CH(P)
in a balanced binary tree. Instead, we ensure that at all
times we can report the h points on CH(P) in O(h log n)
time. In addition, we show that we facilitate convex hull
queries in O(log n) time as opposed to O(log h) time.

Key definitions. Definition 4 gives the definition
of our data structure: the Partial Bridge Tree T (PBT).
Let v ∈ T be an internal node, then per definition, v has
two children. The median med(v) is the leftmost point
in the subtree of the right child of v (see Figure 13 (a)).
Our key observation is that for every node v: the bridge
e+(v) (when projected onto the x-axis) is an x-interval
that contains med(v):

Lemma A.1. Let v be a node in T and e be the corre-
sponding bridge. Then e+(v) either has med(v) as its
right endpoint or has two endpoints that precede and
succeed med(v), respectively.

Proof. Let v have children x and y. The lemma follows
from the fact that med(v) is the leftmost point in π(y),
all points in π(x) precede med(v), and e+(v) = (a, b) ∈
π(x)× π(y).

We may use this lemma, together with the following
observation to obtain an equivalent to Corollary 3.1:

Observation 1. Let w ∈ T and denote by α =
e+(w) = (a, b). For any vertex l in the left subtree un-
der w with bridge γ = e+(l), there are two cases (see
Figure 13(b)):

1. The left endpoint of γ succeeds a. Then all bridges
in the right subtree of l are either not on E(x) (as
they are ‘covered’ by α) or also succeed a.

2. The right endpoint of γ precedes a. Then γ ∈ E(x).

Lemma A.2. Let v ∈ T have children x and y. Re-
call that E(x) and E(y) are the convex hull edges of
CH+(π(x)) and CH+(π(y)) in their cyclical ordering.
Given edges α = e+(x) and β = e+(y), we may compute
the bridge e+(v) in O(log n) time (Algorithm 2+3).

Proof. We no longer have access to E(x) and E(y) as
balanced binary trees. In Algorithm 2, we consider
edges (α, β) ∈ E(x) × E(y) and we use Lemma 3.2
to decide whether the bridge endpoints e+(v) precede
or succeed α. Suppose that the left endpoint of e+(v)
precedes α (all other scenarios are symmetrical). Then,
we replace α by an edge α′ ∈ E(x) that precedes α. In
Section 3, we obtain α′ by simply replacing α with its
left child in the balanced binary tree on E(x).

Since we no longer have this binary tree, for any
edge α ∈ E(x) its left child (or right child) is no longer
well-defined. Thus all code lines that say α.leftChild
(or α.rightChild) were no longer well-defined. However,
for all α ∈ E(x) there exists a node w ∈ T where
α = e+(w). We now note that Algorithm 3 gives us
an edge α′ preceding α on E(x).

This leads to a simple alteration of Algorithm 2.
Note that the function α.rightChild() can be defined
analogously. We replace all calls:

• α.leftChild by α.leftChild(),
• β.leftChild by β.leftChild(),
• α.rightChild by α.rightChild(),
• β.rightChild by β.rightChild().

In each iteration of the while loop, either α is a leaf
in T or an edge on E(x). We may call invoke the function
leftChild() at most O(log n) times until we reach a leaf
of T . Thus, Algorithm 2 terminates in O(log n) time
and computes the bridge e+(v).

Algorithm 3 α.leftChild() for α = e+(w) and α ∈ E(x)

1: l← the left child of w in T
2: γ ← e+(l)
3: if γ.x succeeds α.x then
4: return l.leftChild()
5: return (e+(l), l)

Lemma A.3. Given the Partial Bridge Tree T , we can
report the h edges on CH+(P) in O(h log n) time.

Proof. This lemma follows almost immediately from
Observation 1 and the leftChild() and rightChild()
functions. Indeed, let r be the root of T , then
e+(r) = α ∈ E(r) = CH+(P). We recursively in-
voke e+(r).leftChild() to obtain an edge β ∈ CH+(P).
All edges of CH+(P) in between α and β = e+(w),
per definition succeed α and precede β. Thus, we may
recurse into the right subtree of w to obtain vertices
x ∈ T . We may again apply Observation 1 to note that
if e+(x) ∈ CH+(P) if and only if it precedes β and suc-
ceeds α. This way, each time we explore a new subtree in
T we find at least one edge of CH+(P). Since our func-
tion recurses at most O(log n) times before it reaches
a leaf of T and thus we output CH+(P) in O(h log n)
time.

Update algorithm. Let p be a point that is
inserted or deleted in P . We restore the Partial Bridge
Tree as follows: we do a root-to-leaf traversal in T to
the leaf l that contains p: spending O(1) time per node.
For deletions, we may avoid this by following a pointer
to the leaf in T . Denote by ρ the path from l to the
root of T . For all v ∈ ρ, bottom-up, we use Lemma A.2
to compute e+(v) and this restores the Partial Bridge
Tree. Thus, we have an O(log2 n) update algorithm to
maintain our Partial Bridge Tree.

A.1 Supporting queries What remains is to show
that our data structure can answer Queries (1)-(6) in
O(log n) time. The standard algorithms to answer these
queries assume access to a balanced binary tree E(r)
that stores the upper convex hull edges in their sorted
order. Each of these algorithms subsequently does the
following: they consider an edge α ∈ E(r). They can
either answer the query immediately using α or discard
all edges of the convex hull preceding or succeeding α.
Doing this for both the upper and lower convex hull
allows queries can be answered in O(log h) time where
h is the number of edges in E(r). Using Algorithm 3
to navigate T instead of E(r) allows our approach to
immediately answer queries in O(log n) time instead.
To illustrate this, we show how to answer Query (4):
deciding whether a query point q lies in CH(P).

Lemma A.4. Let q be an arbitrary query point in R2.
Using our data structure we can test if q ∈ CH(P) using
our Partial Hull Tree in O(log n) time.

Proof. Note that q lies in CH(P) if and only if it
lies in both CH+(P) and CH−(P). The point q lies
in CH+(P) if and only if there exists a unique edge

γ∗ ∈ E(r) where: q succeeds the left endpoint of γ∗, q
precedes the right endpoint of γ∗. Moreover, q must lie
below the line through γ∗. Denote by r the root of the
Partial Hull Tree.

Per definition, e+(r) ∈ E(r). Set α← e+(r) We test
in O(1) time whether q succeeds the left endpoint of α
and precedes the right endpoint of α, If both conditions
are true then γ∗ = α, we output whether q is below
the line through α. If q precedes the left endpoint of α
then γ∗ must precede α on the upper convex hull. Thus,
we may step left from α using Algorithm 3. It follows
that in O(log n) steps, we find γ and answer the query
accordingly.

Maintaining our data structure, with the above
query algorithms, implies the following theorem:

Theorem A.1. Let P be a two-dimensional point set.
We can store P in an O(n) size data structure with
O(log2 n) worst-case time per update such that we may
report the h edges on CH(P) in O(h log n) worst-case
time. Moreover, we support all convex hull queries in
O(log n) worst-case time.

B Ranked-based convex hulls

In this section, we consider rank-based convex hulls. Let
Y be a set of values, where the rank of y ∈ Y is its
index in the sorted order. We denote by PY the two-
dimensional point set that is obtained by mapping each
value in Y to (rank,value) and wish to dynamically
maintain CH(PY). The problem in this setting is that
after inserting into or deleting from Y , the x-coordinate
of O(n) points in PY changes. Changing a value y may
change CH(PY) by O(n) edges, even if y itself was not
on the convex hull (Figure 14). The key observation
to maintaining the convex hull in this setting is the
following. After updating an element y ∈ Y a bridge
e+(v) = (a, b) in the Partial Hull Tree is updated if and
only if y is in the subtree rooted at v. That is, if y is
not in the subtree rooted at v then the x-coordinates
of (a, b) may both increase or decrease by one, but the
bridge e+(v) remains a segment between the same two
values. Since the convex hull is implied by the set of
all bridges in T , we may still maintain the Partial Hull
Tree with the previous root-to-leaf update strategy.

Implicit bridges In a Partial Hull Tree T , the
leaves store the values in PY , sorted by x-coordinate.
I.e., we store the values of Y in the leaves of T in
their stored order. For a node v with children x
and y, the bridge e+(v) is the bridge between the
convex hulls CH+(π(x)) and CH+(π(y)). For a bridge
e+(v), we can no longer store the endpoints of the
bridge explicitly: as the x-coordinate of all bridges may
radically change after an update in Y . We define the

implicit bridge ε+(v) which stores only the two values
(y1, y2) corresponding to the endpoints of e+(v). At this
point, we wish to note that we can easily maintain the
Partial Hull Tree using implicit bridges with a factor
O(log n) overhead. Indeed, we may run any of the two
proposed algorithms. Whenever we need to consider a
bridge α = e+(x), we can get the corresponding values
(y1, y2) from the implicit bridge. Then, we may perform
a binary search over Y to obtain their corresponding
ranks. Thus, at O(log n) overhead, we always have
explicit access to the endpoints of α.

In the remainder of this section we show that we
can cleverly navigate T to avoid this overhead. To this
end, we recall that for a vertex v its median med(v)
was the leftmost child in the right subtree rooted at
v. We define the widths ω+

1 (v) (and ω+
2 (v)) to be the

rank-difference between y1 and med(v) (and y2 and
med(v)). Finally, we denote ω(e+(x)) = ω+

1 (v)+ω+
2 (v).

See Figure 14(b) for an example. In our Partial Hull
Tree, we now require that each v ∈ T stores the size
of its subtree, a pointer to the median of v med(v),
and two implicit bridges ε+(v), ε−(v) plus their widths
ω+
1 (v), ω+

2 (v), ω−
1 (v), ω−

2 (v). We note:

Lemma B.1. Let v ∈ T , and denote by r the rank of
med(v). Given r and v, we can compute the bridge
e+(v) in O(1) time.

Proof. The x-coordinate of the left endpoint of e+(v) is
simply r minus ω+

1 (v). The x-coordinate of the right
endpoint of e+(v) is r plus ω+

1 (v). The y-coordinates of
both endpoints are stored in the implicit bridge ε+(v).

B.1 Updates using c-queues Recall that for any
v ∈ T , E(v) was a balanced binary tree on the convex
hull edges CH+(π(v)) in their cyclical ordering. If
v had a child x, then the concatenable queue E∗(x)
was defined as the balanced binary tree E(X)\E(v).
We now define E(v) and E∗(x) analogously, where the
inner nodes of the balanced binary trees store implicit
edges bridges instead. Moreover, we demand that every
α ∈ E(x) stores the sum over all its descendants β
of ω(β). Note that these sums can be maintained at

(a) (b) ω+
1 (v)ω+

2 (v)

Figure 14: (a) A set Y of values, mapped to PY .
Deleting the blue value adds O(n) edges to CH(PY).
(b) The bridge e+(v), the vertex med(v) as a square
and the corresponding widths.

O(log n) time per insertion, deletion, split or join in
the tree. Moreover, for each tree rotation, these sums
can be updated in O(1) time. When storing the convex
hull for rank-ordered data, we demand that each node
v ∈ T stores E∗(v); with the aforementioned sums in
each node.

Let us insert or delete a value y ∈ Y . The update
algorithm consists of three components which we will
explain in order:

• an initialization over the root-to-leaf traversal in T
to y,

• a bubble-up update strategy, where we compute
for each node v on the leaf-to-root path the new
bridge e+(v). We compute the bridge with its exact
coordinates; from which we will derive ε+(v) and
the widths in O(1) time. Finally,

• a search algorithm to recompute for v the bridge
e+(v).

Traversing down. We start at the root r where
E∗(r) = E(r). We do a root-to-leaf traversal to y. For
each node v that we encounter, we store the rank of
med(v). We assume that as we arrive at a node v, we
have E(v) as a balanced binary tree. Let y ∈ π(x) for
the left child x of v. We invoke splitHull(x, E(v)), store
ER(v) in v. We compute E(x) from the result of splitHull
and recurse.

Bubbling up. In the leaf l that contains y, the
bridge e+(l) equals (y, y) and med(l) = y. We then
consider each node v on the leaf-to-root path from l in
T . Note that we have stored the rank r of med(v) Using
r, E(x), and ER(v), we recompute e+(v). From e+(v)
and r, we compute ε+(v) and the corresponding widths.
This allows us to compute E(v) and continue upwards
in T . If our update requires us to rotate v in T , we
recompute the bridge of all rotating nodes.

Recomputing bridges. Given a node v ∈ T , the
rank r of med(v), E(x), and ER(v) we do as follows.
Denote by x the left child of v and by z the right child
of v. From r, we can compute the ranks of med(x)
and med(z) in O(1) time. Given ER(v) we can compute
E(z) from E∗(z) using a single join operation. The root
of E(x) is α′ = ε+(x). We apply Lemma B.1 to compute
α = e+(x) in O(1) time. Similarly, we obtain β = e+(z)
in O(1) time. It follows that we may apply Lemma 3.2.

Suppose that the Lemma indicates that we may
discard the subtree of E(x) right of α. Let γ = e+(w)
be the left child of α (for some w ∈ T). Denote by
γ′ = ε+(w) the left child of γ′. The rank of the right
endpoint of γ is equal to the rank of the left endpoint of
α, minus the width of all edges between γ and α. Thus,
we may compute the edge γ from γ′ in O(1) time by
subtracting the width sum stored in γ. We can perform

a symmetrical procedure to compute an edge ζ ∈ E(z)
and recurse to compute e+(v). Doing this for all v ∈ T
on the leaf-to-root path from the update implies the
following theorem:

Theorem B.1. Let Y be a dynamic set of values. We
can maintain the edges of CH+(PY) (stored as implicit
edges ε(w)) subject to insertions and deletions in P as
a balanced binary tree E(r) in O(log2 n) worst-case time
per update.

What remains is to show that we can support
queries in O(log h) time. Let r be the root of the Partial
Hull Tree T and denote by E(r) the corresponding
concatenable queue. The root of E(r) is the implicit
bridge ε+(r). We may maintain the rank of med(r) at
no additional overhead. Thus by Lemma B.1, we may
compute the edge α at the root of E(r) in O(1) time.
From here, we can perform queries in the same way that
we find bridges: deciding whether to go into the left or
right subtree of our current edge in E(r), and computing
the explicit edge at the root of the new subtree in O(1)
time. It follows that we may answer Queries (1)-(6) in
O(log h) time (where h is the number of edges on the
convex hull of PY .

B.2 The update algorithm without c-queues
Let v ∈ T and r be the rank of med(v). Finally let
x be any child of v. In the previous section we showed
that we may compute the rank r′ of med(x) from r in
O(1) time by subtracting from (or adding to) r the size
of the other subtree of v. By Lemma B.1, we may use r′

to compute e+(x) from ε+(x) in O(1) time. This implies
that by maintaining our new concatenable queues E∗(x),
we may run the algorithm of Section A, without any
additional overhead (other than maintaining for every
node v ∈ T the size of its subtree).

Our repository also includes implementations for
maintaining rank-based convex hulls.

C Applying Dynamic Convex Hull

We review three applications of a dynamic convex hull
in VDLB.

Query scheduling. For the query scheduling
problem we consider incoming database queries, which
each come with associated costs and gains. Efficient
queries may be prioritized, whereas expensive queries
may even be dropped if they bring too little gain com-
pared to the other current queries. The goal is to pri-
oritize queries to maximize the gains. At VDLB 2011,
Chi, Moon, and Haćıgümüş [18] study this problem, as-
suming that the cost/gain function of queries follows a
piecewise linear function. I.e., the gains of answering
a query diminish piecewise linearly with the response

time. They present a heuristic optimizer that relies
upon a dynamic convex hull algorithm. This convex
hull algorithm maps (dualizes) the piecewise linear func-
tions to two-dimensional points. Because they work
with dualized points, they need to maintain the con-
vex hull explicitly. They maintain the convex hull using
the Overmars and van Leeuwen algorithm. They subse-
quently can use the convex hull to deduce which queries
to prioritize. At VDLB 2013, Chi, Haćıgümüş, Hsi-
ung, and Naughton [16] study the same problem, under
the assumption that there exists some underlying cost
distribution on query time per query type. On a high
level, they design an equation that maps every query q
to a two-dimensional point which they call their Shep-
ard score. They subsequently want to prioritize queries
with critical Shepard scores. To this end, they maintain
the Shepard scores (dualized) in the convex hull data
structure by Overmars and van Leeuwen. The authors
present their own Java implementation to maintain this
hull, which can be found at [17].

Mining bursty subgraphs In temporal graphs,
each edge can be represented as a triple (u, v, t), where
u, v are two end nodes of one edge and t denotes the
interaction time between u and v [42]. A time-frame is
bursty whenever a large number of events occurs in a a
short time. In VDLB 2022, Qin, Li, Yuan, Wang, Qin
and Zhang [42] study the problem of ‘mining’ bursty
patterns in a temporal graph. They present a dynamic
program, that for every vertex u in the graph computes
the cumulative density of a ‘front’ from u in the graph
G over time. To compute this front, they repeatedly
recompute the (lower) convex hull of their function from
u. This step may be replaced by a dynamic convex hull
algorithm.

PGM index Ferragina and Vinciguerra [23] study
a dynamic sorted set of values Y subject to rank queries.
They map Y to the point set PY and choose some
ε > 0. A segment s ε-covers a consecutive set of
values (y1, . . . , yk) whenever s is within distance ε of
all corresponding points (p1, . . . , pk). An ε-cover is
a set of segments S that together ε-cover all points
in PY . Denote by mε the minimal size for an ε-
cover. The authors present an amortized O(log n)
algorithm to maintain an ε-cover. They claim to
support rank queries in O(log n(logmε + log ε)) time.
Their approach (under the hood) maintains the convex
hull of PY through the logarithmic method: splitting
Y over buckets B, and maintaining for the points
PB a minimal ε-cover (through indirectly maintaining
CH(PB)). Their approach has the same pitfall as hull
queries under the logarithmic method: when Y is split
over buckets, the complexity CH(PB) (and thereby
the complexity of the ε-cover) may significantly exceed

that of CH(PY). Without an algorithm to maintain
CH(PY) explicitly, their query time is O(log n(log n +
log ε)).

D The Logarithmic Method and Convex Hull

Here we describe the logarithmic technique applied to
the convex hull, and why doing so leads to incorrect
query algorithms and hulls.

Consider P under insertions and Graham’s scan
algorithm (which uses O(n) time for a sorted input set).
We store P in buckets Bi of 2i elements, where each Bi

is either full or empty. Denote by π(B) ⊂ P the points
stored in a bucket B. For each bucket B we store the
convex hull CH(π(B)) Whenever we insert an element,
we insert it in B2. Suppose that an insertion causes B2

to be full and let the first k buckets be full. We then
merge buckets B2, . . . , Bk into the new bucket Bk+1.
During the merge, we ensure that the new bucket Bk+1

contains all values in sorted order in O(2k+1) time by
the same procedure as merge sort. Then, we construct
the convex hull in O(2k+1) time using Graham’s scan.
This procedure has O(log n) amortized update time.
However it does not maintain the convex hull of P , nor
does it answer convex hull queries correctly:

Consider (Figure 15) a set P of red and blue points
where the convex hull of P contains three points. When
we split the convex hull over two buckets (red and blue)
both convex hulls contain many points. Moreover, sup-
pose that we query whether a point q lies in CH(P) (the
black square). It may be that q is in none of the convex
hulls CH(Bi), even though it does lie in CH(P). This
inconsistency causes [23] to store something slightly dif-
ferent from advertised (Appendix C).

(a) (b)

Figure 15: (a) A point set P and its convex hull. (b)
When we split P over two buckets B, B′, the hulls
CH(π(B)) and CH(π(B′)) have considerably higher
complexity, and don’t contain the black query square.

E Additional Results

Figure 16: Dynamic construction time using 500 point
extensions on various distributions.

Figure 17: Dynamic construction time using 500 point
extensions on various distributions.

Figure 18: Extension time on various distributions. Figure 19: Extension time on various distributions.

Figure 20: Update time on various distributions. Figure 21: Update time on various distributions.

Figure 22: Query time on various distributions. Figure 23: Query time on various distributions.

	Introduction
	Preliminaries
	Simplified Algorithm for Convex Hulls
	Recomputing bridges using only edges
	The update algorithm using c-queues

	Improving the Solution
	Rank-based Convex Hulls
	Experiments
	Eilice: updates without c-queues
	Supporting queries

	Ranked-based convex hulls
	Updates using c-queues
	The update algorithm without c-queues

	Applying Dynamic Convex Hull
	The Logarithmic Method and Convex Hull
	Additional Results

