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Abstract

The problem of branched transportation aims to describe the movement of masses when,
due to concavity effects, they have the interest to travel together as much as possible, because
the cost for a path of length ℓ covered by a mass m is proportional to mαℓ with 0 < α < 1.
The optimization of this criterion let branched structures appear and is suitable to applications
like road systems, blood vessels, river networks. . . Several models have been employed in the
literature to present this transport problem, and the present paper looks at a dynamical one,
similar to the celebrated Benamou-Brenier formulation of Kantorovitch optimal transport. The
movement is represented by a path ρt of probabilities, connecting an initial state µ0 to a final
state µ1, satisfying the continuity equation ∂tρ + divx q = 0 together with a velocity field v
(with q = ρv being the momentum). The transportation cost to be minimized is non-convex

and finite on atomic measures:
∫ 1

0

( ∫

Ω
ρα−1|q| d#(x)

)

dt.
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1 Introduction

The optimal mass transportation theory consists in the study of transporting a given mass distri-
bution µ0 on Ω (that we assume to be a compact and convex subset of Rd) into a final configuration
µ1, by minimizing the total transportation cost, the latter being suitably defined: clearly, µ0 and µ1

are required to satisfy the mass balance condition
∫

Ω dµ0 =
∫

Ω dµ1. From now on, we will assume
that they are normalized to be probability measures. The cost for moving a unit mass from a
position x to a position y is taken equal to c(x, y), a function a priori given, which determines the
nature of the problem and provides the total minimal cost

C(µ0, µ1) = min

{
∫

Ω×Ω
c(x, y) dγ(x, y) : γ ∈ Γ(µ0, µ1)

}

(1.1)

where Γ(µ0, µ1) is the class of admissible transport plans, i.e. probabilities on the product space
Ω×Ω having first and second marginals given by µ0 and µ1 respectively. The cases c(x, y) = |x−y|p
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with p ≥ 1 have been particularly studied, and the cost C(µ0, µ1) in (1.1) provides, through the
relation

Wp(µ0, µ1) =
(

C(µ0, µ1)
)1/p

,

the so-called Wasserstein distance Wp which metrizes the weak* convergence on the space of prob-
abilities P(Ω). A very wide literature on the subject is available; we simply mention the books
[2, 26, 25] where one can find a complete list of references.

Thanks to the fact that the space Wp(Ω) of probability measures endowed with these distances
turns out to be a geodesic space, dynamical models for optimal transportation are of particular
interest. Being a geodesic space means that the distance between two points is always equal to the
infimum of the lengths of the curves connecting these points, and that this infimum is actually a
minimum:

Wp(µ0, µ1) = min

{∫ 1

0
|ρ′t|Wp dt : ρ ∈ Lip([0, 1];Wp(Ω)), ρ0 = µ0, ρ1 = µ1

}

,

where |ρ′|Wp is the metric derivative of the measure-valued Lipschitz curve ρ, defined as (we refer
the reader to [2], for more details)

|ρ′t|Wp = lim
h→0

Wp(ρt+h, ρt)

h
.

Since the curves connecting two points of this space are actually curves of measures, they can
be described through the so-called continuity equation: it is well-known (see [2], Theorem 8.3.1)
that for every Lipschitz or absolutely continuous curve ρt in the space Wp(Ω) (p > 1 for simplicity)
there exists a map q from [0, 1] into the space of vector valued measures, such that qt ≪ ρt (hence
qt = vt · ρt, v being the velocity vector) which represents the flux q = ρv and satisfies

∂tρ+ divx q = 0 and ‖vt‖Lp(ρt) = |ρ′t|Wp , (1.2)

(the degenerate case p = 1 being a little bit more involved, since qt ≪ ρt is no more guaranteed
and the L1−norm has to be replaced by the mass of the measure qt, see [1]).

On the other hand, every time that we have a pair (ρ, q) satisfying ∂tρ+divx q = 0 with q ≪ ρ,
so that qt = vt · ρt, we can infer that |ρ′t|Wp ≤ ‖vt‖Lp(ρt). This means that one can minimize the
functional

Ap(ρ, q) :=

{

∫ 1
0

(

∫

Rd |vt|p dρt
)

dt if q ≪ ρ and qt = vt · ρt,
+∞ otherwise,

(1.3)

which is nothing but the integral in time of the kinetic energy when p = 2, and the cost in (1.1)
can be recovered through the equality

C(µ0, µ1) = min

{
∫ 1

0

(
∫

Rd

∣

∣

∣

∣

dqt
dρt

(x)

∣

∣

∣

∣

p

dρt(x)

)

dt : ∂tρ+ divx q = 0, ρ0 = µ0, ρ1 = µ1

}

.

The problem above is the one which was proposed by Benamou and Brenier in [3] as a dynamical
version of optimal transportation. It has the advantage that it is the minimization of a convex
functional of ρ and q, under linear constraints.

Other variants of mass transportation problems have been studied and can be expressed in this
way by considering in (1.3) other convex functions of the pair (ρ, q). Recently, Dolbeault, Nazaret
and Savaré introduced in [17] new classes of distances over P(Rd) based on the minimization of

2



the functional (where λ is a given reference measure on R
d and ρ and q are identified with their

densities w.r.t. λ)
∫ 1

0

(∫

Rd

Φ(ρ, q) dλ

)

dt, where Φ(ρ, q) =
|q|p

h(ρ)p−1
=

( |q|
h(ρ)

)p

h(ρ), p ≥ 1,

which are connected to the non-linear mobility continuity equation ∂tρ + divx
(

h(ρ)v
)

= 0 (a
treatment of the limiting case h(ρ) ≡ 1, corresponding to consider Φ(ρ, q) = |q|p, can also be
found in [13]). If the function h is concave (for example h(ρ) = ρβ , with β ∈ [0, 1]), this problem
turns out to be convex as well. The main interest that motivated Dolbeault et al. to the study of
these distances lies in the possible applications to diffusion equations of the type of the non-linear
mobility continuity equation ∂tρ+divx

(

h(ρ)v
)

= 0 above, where the vector field v depends on ρ in
a way such that the equation can be interpreted as a gradient flow of a given functional with respect
to these new family of dynamical distances. Moreover, the equations of the geodesics (which are
similar to a mean-field game system, see [19]) and the conditions for these distances to be finite are
being studied in [24].

In connection with congestion effects and crowd motion, other models include penalizations on
high densities: in [14] the case

Φ(ρ, q) =
|q|p
ρp−1

+ cρ2 p ≥ 1, c ≥ 0

has been considered as a model for crowd motion in a congested situation (for instance in case of
panic). This problem as well is convex.

A completely different situation occurs in the case opposite to congestion, when concentration

effects are present and the mass has the interest to travel together as much as possible, in order
to save part of the cost. This happens very often in many applications, as discovered by Gilbert
who in [18] formulated a mathematical model for the transportation of signals along telephone
cables. More recently the Gilbert’s model has been refined and considered in the framework of
mass transportation, under the name of branched transport, to emphasize the fact that transport
rays may bifurcate. All these models have in common the fact that the cost for a mass m moving
on a path of length ℓ is proportional to mαℓ (0 < α < 1, so that (m1 + m2)

α < mα
1 + mα

2 ). In
[4, 5, 6, 7, 21] for every 0 < α < 1 a transportation cost from ρ0 to ρ1 is considered through a
suitable use of probabilities defined on spaces of curves in Ω, with [21] (the so called irrigation

patterns model) dealing with the case of a single source ρ0 = δx0
. See Section 4 to have a glance

at the details of these models and their formulations. On the other hand, the model of [27] can
be seen as the natural extension of the original Gilbert’s model and uses vector measures having
prescribed divergence ρ0 − ρ1: these vector measures are the continuous generalization of the finite
weighted and oriented graphs that were present in Gilbert’s original formulation.

A first attempt to obtain a dynamical formulation of branched transportation through curves
of measures was made in [10], and later refined in [11, 12]: in these papers the starting point
is the geodesic formulation of the Wasserstein distance, where the length functional is modified
considering an energy of the type

∫ 1

0
g(ρt) |ρ′t|Wp dt.

The weight function g is a local term of the moving mass, forcing the mass to concentrate and thus
giving raise to branching phenomena.

These models are not satisfactory yet, because they are in general not equivalent to those by
Gilbert, Xia or Bernot-Caselles-Morel. A tentative to perform some modifications in the functionals
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defined on curves of measures so as to obtain equivalence with the other models has been made
in [11], where on the other hand some quite involved distinction between moving mass and still
mass has been done. In all of these models, the branched transportation is studied avoiding the
Benamou-Brenier approach consisting in the minimization of a suitable cost F(ρ, q) under the
constraint of the continuity equation ∂tρ+ divx q = 0, that we believe is the most natural for this

kind of problems. The only approach to dynamical branched transportation using the continuity
equation is, as far as we know, the one of [9]. Yet, to prove semicontinuity and hence existence,
even in this model, the problem is reduced to the minimization of a functional of the form

∫

θα dH1(x, t)

(which is the energy of Xia in [27]) and the dynamical features are not completely exploited.
In the present paper we follow a more direct approach: for all pairs (ρ, q) verifying the continuity

equation, with ρ0 = µ0 and ρ1 = µ1, we define a functional F(ρ, q) and we show that this functional
is both lower semicontinuous and coercive with respect to a suitable convergence on (ρ, q), and this
provides directly the existence of an optimal dynamical path. The paper is organized as follows:

• in Section 2 we give the precise setting and state the main results;

• Section 3 is devoted to the proofs giving the existence of an optimal path ρt;

• in Section 4 we show that our model is equivalent to the other models of branched trans-
portation available in the literature, comparing it to the traffic plan model of [4], which is
one of the most flexible (and anyway equivalent to the others, as shown in [6], Chapter 9);

• in the Appendix we deal with some inequalities involving Wasserstein distances and branched
distances, that is distances over the space of probabilities given by the minima of some
branched transportation problems. These inequalities have already been studied in [23] and
[16], but some very precise issues concerning dα and W1/α are very close to the topics of this
paper and deserve being treated here. New and simpler proofs are provided.

2 Problem setting and main results

In this section we fix the notation and state the main results of the paper. In the following Ω will
denote a given subset of Rd, where all the mass dynamics will take place; for the sake of simplicity
we assume that Ω is convex and compact. The space P(Ω) of all Borel probabilities on Ω can then
be endowed with the weak* convergence, which is metrized by the Wasserstein distances (see the
Introduction). In the following, we will also use the notation M(Ω;Rd) to indicate the space of
R
d-valued Radon measures over Ω, while L k will indicate the k−dimensional Lebesgue measure.

The main objects to be considered will be pairs (ρ, q) with

ρ ∈ C
(

[0, 1];P(Ω)
)

, q ∈ L1
(

[0, 1];M(Ω;Rd)
)

(2.1)

satisfying the continuity equation formally written as (here ν stands for the outer normal versor to
∂Ω)

{

∂tρ+ divx q = 0, in [0, 1] × Ω
q · ν = 0, on [0, 1] × ∂Ω,

(2.2)

4



whose precise meaning is given in the sense of distributions, that is
∫ 1

0

[

∫

Ω
∂tφ(t, x) dρt(x) +

∫

Ω
Dxφ(x, t) · dqt(x)

]

dt = 0 (2.3)

for every smooth function φ with φ(0, x) = φ(1, x) = 0.

Definition 2.1. We denote by D the set of all pairs (ρ, q) satisfying (2.1) and (2.3). Moreover,

given µ0, µ1 ∈ P(Ω), we define the set D(µ0, µ1) of admissible configurations connecting µ0 to µ1

as

D(µ0, µ1) =
{

(ρ, q) ∈ D : ρ0 = µ0, ρ1 = µ1

}

.

The velocity vector v can be defined as the Radon-Nikodym derivative of the vector measure q
with respect to ρ:

v =
dq

dρ
.

Among all pairs (ρ, q) ∈ D satisfying the continuity equation above, we consider a cost function
F(ρ, q) of the form

F(ρ, q) =

∫ 1

0
F (ρt, qt) dt, (2.4)

where F is defined through

F (ρ, q) :=

{

Gα(|v|1/α · ρ) if q = v · ρ,
+∞ if q is not absolutely continuous w.r.t. ρ

and Gα (0 < α < 1) is a functional defined on measures, of the kind studied by Bouchitté and
Buttazzo in [8]: Gα(λ) = +∞ if λ is not purely atomic, while (# stands for the counting measure)

Gα(λ) =

∫

Ω
|λ({x})|α d#(x) =

∑

i∈N

|λi|α, if λ =
∑

i∈N

λiδxi .

In this way our functional F becomes

F(ρ, q) =

∫ 1

0

[

∫

Ω
|vt(x)|ρt({x})α d#(x)

]

dt =

∫ 1

0

[

∑

i∈N

|vt,i|ραt,i
]

dt, (ρ, q) ∈ D,

and the dynamical model for branched transport we consider is

Bα(µ0, µ1) := min
(ρ,q)∈D(µ0,µ1)

F(ρ, q). (2.5)

Our main goal is to show that the minimization problem (2.5) above admits a solution. This
will be obtained through the direct methods of the calculus of variations, consisting in proving
lower semicontinuity and coercivity of the problem under consideration, with respect to a suitable
convergence.

Remark 2.2. We point out that the weak* convergence of the pairs (ρ, q) does not directly imply
the lower semicontinuity in (2.5), since the functional is not jointly convex. On the other hand, if
(ρn, qn) ∈ D and we assume

(ρnt , q
n
t ) ⇀ (ρt, qt), for L 1−a.e. t ∈ [0, 1],

then a simple application of Fatou’s Lemma would lead to the desired semicontinuity property of F
(because one could prove that F is a lower semicontinuous functional on measures, as a consequence
of the semicontinuity of Gα and of the convexity of (x, y) 7→ |x|p/yp−1).
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In order to prove in the easiest possible way a semicontinuity result, we will introduce a conver-
gence which is stronger than the weak convergence of measures on [0, 1]×Ω, but weaker than weak
convergence for every fixed time t. This convergence will be compatible with the compactness we
can infer from our variational problem.

Definition 2.3. We say that a sequence (ρn, qn) τ -converges to (ρ, q) if (ρn, qn) ⇀ (ρ, q) in the

sense of measures and

sup
n∈N, t∈[0,1]

F (ρnt , q
n
t ) < +∞.

Theorem 2.4. Let (ρn, qn) be a sequence such that F(ρn, qn) ≤ C, then up to a time reparametriza-

tion, (ρn, qn) is τ -compact.

Theorem 2.5. Let (ρn, qn) ∈ D be a sequence τ -converging to (ρ, q). Then

F(ρ, q) ≤ lim inf
n→∞

F(ρn, qn).

As a consequence we obtain the following existence result.

Theorem 2.6. For every µ0, µ1 ∈ P(Ω), the minimization problem (2.5) admits a solution.

Remark 2.7. We remark that, for some choices of the data µ0, µ1 and of the exponent α, the
statement of Theorem 2.6 could be empty, because the functional F could be constantly +∞ on
every admissible path (ρ, q) joining µ0 to µ1. This issue will be solved in Section 4, where the
equivalence with other variational models for branched transportation will be proven. Since for
these models finiteness of the minima has been widely investigated, we can infer for instance that
if α > 1 − 1/d then every pair µ0 and µ1 can be joined by a path of finite energy. On the other
hand, if α ≤ 1− 1/d, µ0 = δx0

and µ1 is absolutely continuous w.r.t. L d, then there are no finite
energy paths connecting them.

3 Proofs

A preliminary inequality to all the proofs is the following: if q ≪ ρ, then qt = vt · ρt and

F (ρt, qt) =
∑

i

ρt({xi})α|vt(xi)| =
∑

i

(

ρt({xi})|vt(xi)|1/α
)α

≥
(

∑

i

ρt({xi})|vt(xi)|1/α
)α

= ‖vt‖L1/α(ρt)
,

(3.1)

due to the sub-additivity of the function x 7→ xα. This inequality and its consequences will be
discussed in the Appendix as well. In particular it also follows

F (ρt, qt) ≥ ‖vt‖L1(ρt) = |qt|(Ω). (3.2)

3.1 Proof of Theorem 2.4

Due to the fact that the functional F is 1-homogeneous in the velocity, it is clear that reparametriza-
tions in time do not change the values of F . By reparametrization, we mean replacing a pair (ρ, q)
with a new pair (ρ̃, q̃) of the form ρ̃t = ρϕ(t), q̃t = ϕ′(t)qϕ(t) (which equivalently means that q̃ is the
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image measure of q through the inverse of the map (t, x) 7→ (ϕ(t), x)). Thanks to this invariance,
if (ρn, qn) is such that F(ρn, qn) ≤ C, then one can define a new pair (ρ̃n, q̃n), with

F (ρ̃nt , q̃
n
t ) = F(ρ̃n, q̃n) = F(ρn, qn) ≤ C, for every t.

After that, we only need to prove compactness for the weak convergence of measures on [0, 1]×Ω,
a fact which only requires bounds on the mass of ρ̃n and q̃n. The bound on ρ̃n is straightforward,
since for every t the measure ρ̃nt is a probability, while for q̃n, which is absolutely continuous w.r.t.
ρ̃n, it is enough to use (3.2) in order to bound the mass of q by C.

This allows to extract a subsequence (ρ̃nk
t , q̃nk

t ) which converges weakly to a pair (ρ, q). The only
nontrivial point is that we a priori restricted our attention to pairs (ρ, q) where ρ ∈ C

(

[0, 1];P(Ω)
)

and q ∈ L1
(

[0, 1];M(Ω;Rd)
)

, so that we need to prove that ρ is continuous and that q is of the
form

∫

qt dt. Yet, the inequality (3.1) applied to the pairs (ρ̃n, q̃n), proves a uniform bound on the
L1/α norm of the velocities, which implies that the curves ρ̃n are uniformly Lipschitz continuous
according to the distance W1/α, and this property is inherited by the limit measure ρ.

For the decomposition of q, just use the inequality (3.1), thus obtaining a uniform bound on
‖vnt ‖L1/α(ρnt )

, which a fortiori gives a uniform bound on the Benamou-Brenier functional

A1/α(ρ
n, qn) =

∫ 1

0
‖vnt ‖

1/α

L1/α(ρnt )
dt.

This functional being lower semicontinuous, we can deduce the same bound at the limit: this in
particular implies that q is absolutely continuous w.r.t. ρ, with an Lp density. Since ρ is a measure
on [0, 1] ×Ω which is of the form

∫

ρt dt, the same disintegration will be true for q.
This means that we have actually found an admissible pair (ρ, q) which is the τ−limit of

(ρ̃nk
t , q̃nk

t ) and the proof is complete.

3.2 Proof of Theorem 2.5

We consider here a sequence (ρn, qn), where qn = vn · ρn (otherwise the functional F would not be
finite-valued), satisfying the continuity equation and such that (ρn, qn) τ−converges to (ρ, q).

First of all we define a sequence of measures mn on [0, 1] × Ω through

m
n =

∫

(

∑

i

ρnt ({xi,t})α|vnt (xi,t)|δxi,t

)

dt,

where the points xi,t are the atoms of qnt (i.e. the atoms of ρnt where the velocity vnt does not
vanish). We notice that F(ρn, qn) = m

n([0, 1] × Ω).
In order to prove lower semicontinuity of F we can assume F(ρn, qn) to be bounded. This

bound implies the convergence m
n ⇀ m, up to the extraction of a subsequence (not relabeled). It

is clear that, on this subsequence, we have

lim
n→∞

F(ρn, qn) = lim
n→∞

m
n([0, 1] × Ω) = m([0, 1] × Ω),

then in order to prove the desired semicontinuity property, it is enough to get some proper lower
bounds on m.

Notice that, since we have m
n([a, b] × Ω) =

∫ b
a F (ρnt , q

n
t ) dt and F (ρnt , q

n
t ) ≤ C (by definition of

τ−convergence), we know that the marginal of mn on the time variable is a measure with an L∞
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density bounded by the constant C on [0, 1]. This bound is uniform and will be then satisfied by
the limit measure m too: in particular, this implies that we can write m =

∫

mt dt.
Let us fix a closed set Q, as well as a time interval [a, b], and take the function

χM (x) := (1−M dist(x,Q))+, x ∈ Ω,

where ( · )+ stands for the positive part: observe that χM is positive, takes the value 1 on Q, is
M -Lipschitz and vanishes outside a 1/M -neighborhood of Q. Indicating by 1E the characteristic
function of a generic set E, i.e. the function which takes the value 1 on E and 0 elsewhere, we
consider φ(t, x) = χM (x)α1[a,b](t), which is upper semicontinuous on [0, 1] × Ω. Then we have

∫

φ(t, x) dm(t, x) ≥ lim sup
n→∞

∫

φ(t, x) dmn(t, x)

= lim sup
n→∞

∫ b

a

(

∑

i

ρnt ({xi})α|vnt (xi)|χM (xi)
α

)

dt,

where the points xi are, as before, the atoms of qn (and we omitted the dependence on n and t). We

then decompose the product ρnt ({xi})αχM (xi)
α as

(

ρnt ({xi})χM (xi)
)α−1 ·

(

ρnt ({xi})χM (xi)
)

(where
ρnt χM > 0). Notice that ρnt ({xi})χM (xi) ≤

∫

χM dρnt . Then we can estimate the right-hand side in
the previous inequality as

∫ b

a

(

∑

i

ρnt ({xi})α|vnt (xi)|χM (xi)
α

)

dt ≥
∫ b

a

(
∫

χM dρnt

)α−1
(

∑

i

ρnt ({xi})|vnt (xi)|χM (xi)

)

dt

=

∫ b

a

(∫

χM dρnt

)α−1(∫

χM d|qnt |
)

dt.

We go on by estimating from above
∫

χM dρnt : we have

∫

Ω
χM (x) dρnt (x) ≤

∫

Ω
χM (x) dρns (x) +M W1(ρ

n
t , ρ

n
s ),

which is a consequence of the definition of W1 by duality with 1-Lipschitz functions (see [26],
Theorem 1.14). To estimate the W1 distance we use W1 ≤ W1/α and the following fact

W1/α(ρ
n
t , ρ

n
s ) ≤

∫ t

s
|(ρnz )′|w1/α

dz ≤
∫ t

s
‖vnz ‖L1/α(ρz) dz,

then applying inequality (3.1) we have in the end

∫

Ω
χM (x) dρnt (x) ≤

∫

Ω
χM (x) dρna(x) + CM(b− a), for every t ∈ [a, b].

In this way we have

∫ b

a

(
∫

χM dρnt

)α−1(∫

χMd|qnt | dt
)

dt ≥
(
∫

χM dρna+CM(b− a)

)α−1∫ b

a

(
∫

χM d|qnt |
)

dt

=

(
∫

χM dρna + CM(b− a)

)α−1 ∫

φ1/α d|qn|.
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Hence, we may go on with

∫

φdm ≥ lim sup
n→∞

[

(∫

χM dρna + CM(b− a)

)α−1 ∫

φ1/α d|qn|
]

≥
(∫

χM dρa+CM(b− a)

)α−1 ∫

φ1/α d|q|.

In the last inequality the second factor has been dealt with in the following way: suppose |qn| ⇀ σ,
then we have σ ≥ |q|; moreover φ ≥ φ̃ where φ̃(t, x) := χM (x)1(a,b)(t), and this last function is l.s.c.
and positive, so that

lim inf
n→∞

∫

φ1/α d|qn| ≥ lim inf
n→∞

∫

φ̃1/α d|qn| ≥
∫

φ̃1/α dσ ≥
∫

φ̃1/α d|q| =
∫

φ1/α d|q|,

since the boundaries t = a and t = b are negligible for |q|.
After that, we can divide by (b−a) (keeping for a while M fixed) and pass to the limit as b → a.

This gives, for L 1−a.e. a ∈ [0, 1],

∫

χM (x)α dma(x) ≥
(∫

χM(x) dρa(x)

)α−1 ∫

χM (x) d|qa|(x).

We let now M → ∞, so that χM monotonically converges to the characteristic function of the set
Q, and we have, by dominated convergence w.r.t. ma, ρa and |qa|,

ma(Q) ≥ ρa(Q)α−1|qa|(Q). (3.3)

In the last term the convention 0·∞ = 0 is used (if |qa|(Q) = 0). This inequality is proven for closed
sets, but by regularity of the measures it is not difficult to prove it for arbitrary sets. Actually, if
S ⊂ Ω is an arbitrary Borel set, we can write

ma(S) ≥ ma(Q) ≥ ρa(Q)α−1|qa|(Q) ≥ ρa(S)
α−1|qa|(Q),

for every Q ⊂ S closed, and take a sequence of closed sets Qk such that |qa|(Qk) → |qa|(S), since
|qa| is, for L 1−a.e. a ∈ [0, 1], a finite (and hence regular) measure on the compact set Ω. We want
now to prove that

• q ≪ ρ,

• qa = va · ρa is atomic for L 1−a.e. a ∈ [0, 1] (i.e. ρa is atomic on {va 6= 0})

• ma(Ω) ≥ F (ρa, qa), for L 1−a.e. a ∈ [0, 1].

This would conclude the proof.
The first statement follows from the inequality (3.1), and the behavior of the Benamou-Brenier

functional A1/α(ρ
n, qn) as in the proof of Theorem 2.4, which guarantees an L1/α density of q w.r.t.

ρ. As a consequence, since ρ is a measure on [0, 1] × Ω which disintegrates w.r.t. the Lebesgue
measure on [0, 1], the same will be true for q and we can write qt = vt · ρt.

For the second statement, take the inequality ma(S) ≥ ρa(S)
α−1|qa|(S) which is valid for any

Borel set S, and apply it to sets which are contained in the Borel set Vε := {x ∈ Ω : |va(x)| > ε}.
For those sets, we have easily ma(S) ≥ ερa(S)

α. This means that the measure λ := ε1/αρaxVε

satisfies the inequality λ(S)α ≤ m(S) for every Borel set S ⊂ Vε. Since m is a finite measure, this
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implies that λ is atomic (see Lemma 3.1 below). If the same is performed for every ε = 1/k, this
proves that ρa is purely atomic on the set {x : |va(x)| 6= 0}, that is qa = va · ρa is purely atomic.

Once we know that qa is atomic we infer that F (ρa, qa) =
∑

i ρa({xi})α−1|qa|({xi}) and we only
need to consider Q = {xi} in (3.3) and add up:

ma(Ω) ≥
∑

i

ma({xi}) ≥ F (ρa, qa),

which finally concludes the proof.

Lemma 3.1. Take two finite positive measures λ and µ on a domain Ω, and α ∈ (0, 1). Suppose

that the inequality λ(S)α ≤ µ(S) is satisfied for every Borel set S ⊂ Ω. Then λ is purely atomic.

Proof. Consider a regular grid on Ω of step 1/k, for k ∈ N, and build a measure λk by putting, in
every cell of the grid, all the mass of λ in a single point of the cell. This measure λk is atomic and
we have

Gα(λk) =
∑

i

λ(Si)
α ≤

∑

i

µ(Si) = µ(Ω) < +∞,

where the Si are the cells of the grid. If we let k goes to ∞, the step of the grid goes to zero and we
obviously have λk ⇀ λ. On the other hand, the functional Gα is lower semicontinuous (see [8]) and
this implies Gα(λ) ≤ lim infk→∞Gα(λk) ≤ µ(Ω) < +∞. In particular, λ is atomic, thus proving
the assertion.

3.3 Proof of Theorem 2.6

In order to prove existence, one only needs to take a minimizing sequence and apply Theorem 2.4
to get a new minimizing sequence which is τ−converging: this new sequence is obtained through
reparametrization (which does not change the value of F) and by extracting a subsequence. Since
the constraints in the problem are linear, i.e. ρi = µi for i = 0, 1 and the continuity equation, the
limit (ρ, q) will satisfy the same constraints as well. The semicontinuity proven in Theorem 2.5
allows to obtain the existence of a solution.

4 Equivalence with previous models

In this section we prove the equivalence of problem (2.5) with the other previous formulations of
branched transport problems, existing in literature. In particular, as a reference model we will take
the one presented in [6], in which the energy is defined as

Eα(Q) =

∫

C

∫ 1

0
|σ(t)|α−1

Q |σ′(t)| dt dQ(σ),

where C = C([0, 1]; Ω), Q is probability measure over C and concentrated on the set Lip([0, 1]; Ω)
(traffic plan) and for every x ∈ Ω, the quantity |x|Q is the multiplicity of x with respect to Q,
defined by

|x|Q = Q ({σ ∈ C : x ∈ σ([0, 1])}) .
Given µ0, µ1 ∈ P(Ω), the corresponding minimum problem is then given by

dα(µ0, µ1) = min
Q∈TP (µ0,µ1)

Eα(Q),

10



where TP (µ0, µ1) is the set of traffic plans with prescribed time marginals at t = 0, 1, that is

TP (µ0, µ1) = {Q ∈ C : Q concentrated on Lip([0, 1]; Ω), (ei)♯Q = µi, i = 0, 1},

and et : C → Ω is the evaluation map at time t, given by et(σ) = σ(t) for every σ ∈ C.
Remark 4.1. We point out that this model is completely equivalent to the one developed by Xia
(see [27] for the presentation of the model and [6], Chapter 9, for the equivalence), which is based
on a relaxation procedure, starting from an energy defined on finitely atomic probability measures
µ0 and µ1. In particular, thanks to this relaxed formulation, we get that for every µ0 and µ1, there
exist two sequences µn

0 and µn
1 of finitely atomic probability measures, weakly converging to µ0 and

µ1 respectively, and such that
dα(µ

n
0 , µ

n
1 ) → dα(µ0, µ1). (4.1)

We also need to consider a slight modification of the functional Eα above, introduced in [7],

Cα(Q) =

∫

C

∫ 1

0
|(σ(t), t)|α−1

Q |σ′(t)| dt dQ(σ),

where now the synchronized multiplicity |(x, t)|Q is

|(x, t)|Q = Q({σ ∈ C : σ(t) = x}).

This second multiplicity accounts for the quantity of curves passing at the same time through the
same point, while the one used in the definition of Eα considered all the curves passing eventually
through the point: in this sense, the model corresponding to the energy Cα is more dynamical in
spirit. As a straightforward consequence of the definition of the two multiplicities, we get

|σ(t)|Q ≥ |(σ(t), t)|Q, (4.2)

so that Eα(Q) ≤ Cα(Q). Concerning the comparison between the minimization of Eα and Cα, we
recall the following result (see [7], Theorem 5.1).

Theorem 4.2. Let µ0, µ1 ∈ P(Ω), with µ0 a finite sum of Dirac masses. Then for every α ∈ [0, 1]
we get

min
Q∈TP (µ0,µ1)

Eα(Q) = min
Q∈TP (µ0,µ1)

Cα(Q).

We are now in a position to state and prove a result giving the equivalence between our model
and the one relative to the energy Eα.

Theorem 4.3. For every α ∈ (0, 1) and µ0, µ1 ∈ P(Ω) we get

Bα(µ0, µ1) = min
Q∈TP (µ0,µ1)

Eα(Q) = dα(µ0, µ1). (4.3)

Proof. We first prove the inequality Bα(µ0, µ1) ≥ dα(µ0, µ1). Clearly, if Bα(µ0, µ1) = +∞ there
is nothing to prove; otherwise, take (ρ, q) optimal, which implies, by the way, that q = v · ρ and
that q is atomic. Thanks to the superposition principle (see [2], Theorem 8.2.1) we can construct a
probability measure Q ∈ C such that ρt = (et)♯Q and Q is concentrated on absolutely continuous
integral curves of v, in the sense that

∫

C

∣

∣

∣

∣

σ(t)− σ(0) −
∫ t

0
vs(σ(s)) ds

∣

∣

∣

∣

dQ(σ) = 0, for every t ∈ [0, 1].
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Using this information, together with the fact that Eα ≤ Cα and exchanging the order of integration,
we get

Eα(Q) ≤ Cα(Q) =

∫

C

∫ 1

0
|(σ(t), t)|α−1

Q |σ′(t)| dt dQ(σ)

=

∫ 1

0

∫

C

|(σ(t), t)|α−1
Q |σ′(t)| dQ(σ) dt

=

∫ 1

0

∫

C

|(σ(t), t)|α−1
Q |vt(σ(t))| dQ(σ) dt

=

∫ 1

0

∫

Ω
|(x, t)|α−1

Q |vt(x)| dρt(x) dt.

Then we observe that, by virtue of the fact that ρt = (et)♯Q, there holds

|(x, t)|Q = Q({σ ∈ C : σ(t) = x}) = ρt({x}),

so that we can rewrite the last integral as

∫ 1

0

∫

Ω
ρt({x})α−1 |vt(x)| dρt(x) dt =

∫ 1

0

∫

ρt({x})α−1 d|qt|(x) dt =
∫ 1

0

∑

i∈N

|vt,i|ραt,i dt,

which then gives
dα(µ0, µ1) = min

Q∈TP (µ0,µ1)
Eα(Q) ≤ F(ρ, q) = Bα(µ0, µ1).

In order to prove the reverse inequality, we first prove that

Bα(µ0, µ1) ≤ min
Q∈TP (µ0,µ1)

Cα(Q). (4.4)

Take Q ∈ TP (µ0, µ1) optimal for Cα, then we know that there exists a pair (ρ, q) which is a solution
of the continuity equation, with ρt = (et)♯Q and qt = vt · ρt. The velocity v may be chosen as

vt(x) =

∫

σ′(t) dQt,x(σ),

where Qt,x is the disintegration of Q with respect to the evaluation function et (see [20] for this
representation formula of the velocity field v). This means that each Qt,x is a probability measure
concentrated on the set {σ ∈ C : σ(t) = x} and Q =

∫

Qt,x dρt(x). Therefore, arguing as before

Cα(Q) =

∫ 1

0

∫

C

|(σ(t), t)|α−1
Q |σ′(t)| dQ(σ) dt

=

∫ 1

0

∫

Ω
|(x, t)|α−1

Q

(∫

|σ′(t)| dQt,x(σ)

)

dρt(x) dt

≥
∫ 1

0

∫

Ω
|(x, t)|α−1

Q |vt(x)| dρt(x) dt

=

∫ 1

0

∫

Ω
ρt({x})α−1

Q |vt(x)| dρt(x) dt,

that gives the desired inequality (4.4) since, even if we do not know that qt or ρt are atomic we can
restrict the last integral to the set of atoms of ρ.
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Summarizing, up to now we have shown

dα(µ0, µ1) ≤ Bα(µ0, µ1) ≤ min
Q∈TP (µ0,µ1)

Cα(Q),

and equality holds whenever µ0 is a finite sum of Dirac masses, thanks to Theorem 4.2. In order
to conclude, it is enough to notice that thanks to Remark 4.1, we may take two sequences µn

0 and
µn
1 of finitely atomic probability measures such that µn

0 ⇀ µ0, µ
n
1 ⇀ µ1 and

dα(µ
n
0 , µ

n
1 ) → dα(µ0, µ1),

thus getting

dα(µ0, µ1) ≤ Bα(µ0, µ1) ≤ lim inf
n→∞

Bα(µ
n
0 , µ

n
1 ) ≤ lim

n→∞
dα(µ

n
0 , µ

n
1 ) = dα(µ0, µ1),

hence concluding the proof.

Remark 4.4. Observe that in the previous Theorem, we did not only prove the equality of the
minima, but we also provided a natural way to pass from a minimizer of our formulation à la

Benamou-Brenier to a minimizer of the traffic plans model and back. The two problems are thus
equivalent in the sense that they describe the same kind of energy and the same optimal structures
of branched transport: the simple equality of the minima (4.3) is just a consequence of this more
important fact.

Appendix: the distances dα and W1/α

This last section is devoted to estimates between the distance dα induced by the branched transport
and the Wasserstein distances Wp. In particular, in [23] the following estimates are proven for
α > 1− 1/d and p ≥ 1:

dα ≤ CW d(α−1)+1
p .

As far as lower bounds on dα are concerned, the most trivial one is dα ≥ W1 but [16], Theorem 8.1,
also proves dα ≥ W1/α, which is slightly better. Moreover, for scaling reasons (w.r.t. the mass) it
is not possible to go beyond p = 1/α in this last inequality.

In this paper we already needed to estimate some branched transport cost in terms of W1/α

distances and metric derivatives. In this section we prove the inequalities

W1/α ≤ dα ≤ CW
d(α−1)+1
1/α ∀α ∈ (1− 1/d, 1].

These inequalities are just a particular case of those that are already known. We restrict our
attention to p = 1/α in the first one and p ≥ 1/α in the second one (as we said, they are proven in
[16, 23]), but the proof we will provide is different and somehow simpler.

The first inequality will be approached through the formulation of branched transport we gave
in this paper, but the main tool (i.e. inequality (3.1)) is essentially in common with [16] and [22].
What is different is the way to extend this idea to generic measures, i.e. non-atomic ones.

Theorem 4.5. For every µ0, µ1 ∈ P(Ω) we get

W1/α(µ0, µ1) ≤ dα(µ0, µ1). (4.5)
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Proof. We first observe that thanks to the results of the previous section, for every µ0, µ1 ∈ P(Ω)
we get

dα(µ0, µ1) =

∫ 1

0

[

∫

Ω
|vt(x)|ρt({x})α d#(x)

]

dt.

for a suitable (ρ, q) admissible in the formulation (2.5), with q = ρv. Moreover, using once more
the inequality (3.1) the right-hand side in the previous expression can be estimated as

∫ 1

0

[∫

Ω
|vt(x)|ρt({x})α d#(x)

]

dt ≥
∫ 1

0
‖vt‖L1/α(ρt)

dt

and finally, using the fact that (ρ, q) is solution of the continuity equation, we can infer (see [2],
Theorem 8.3.1)

|ρ′t|W1/α
≤ ‖vt‖L1/α(ρt), for L 1-a.e. t ∈ [0, 1],

so that

dα(µ0, µ1) ≥
∫ 1

0
|ρ′t|W1/α

dt ≥ W1/α(µ0, µ1),

where in the last inequality we just estimated the length of a curve by the distance between its
endpoints. Thus we have obtained (4.5), concluding the proof.

In order to prove the other inequality, first of all we have to introduce some notations: we set
Q = [0, 1)d and QL = [0, L)d, for every j ∈ N we consider the following subset of multi-indexes

Bj = {z ∈ N
d : ‖z‖∞ ≤ 2j − 1},

and observe that #(Bj) = 2jd, then we make a partition of the cube QL by dyadic cubes having
edge length L/2j , i.e.

QL =

2jd
⋃

i=1

Qi
j :=

⋃

z∈Bj

LQ+ Lz

2j
.

For every µ ∈ P(Ω) such that Ω ⊂ QL, its dyadic approximation is given by

aj(µ) =

2jd
∑

i=1

µi
j δxi

j
,

where µi
j = µ(Qi

j) and xij is the center of Qi
j. We shall always assume that Ω ⊂ QL for a suitable

L, then the following estimate is well-known (Proposition 6.6, [6]).

Proposition 4.6. Let α ∈ (1− 1/d, 1], then for every µ ∈ P(Ω) we have

dα(aj(µ), µ) ≤
2(d(1−α)−1)j

21−d(1−α) − 1

L
√
d

2
. (4.6)

The main tool if one wans to estimate dα from above by a power of Wp is to show that the
distance dα between two dyadic approximations can be estimated in terms of their 1/α-Wasserstein
distance: this is the content of the next result.

Lemma 4.7. Let α ∈ (1− 1/d, 1], then for every µ0, µ1 ∈ P(Ω) we get

dα(aj(µ0), aj(µ1)) ≤ CW1/α(aj(µ0), aj(µ1)) 2
jd(1−α), (4.7)

with C depending only on N and α.
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Proof. Let us consider an optimal transport γj between aj(µ0) and aj(µ1), for the cost c(x, y) =
|x− y|1/α, that is γj ∈ P(Ω × Ω) and it is of the form

γj =

2jd
∑

i,k=1

Mj(i, k)δxi
j
⊗ δxk

j
,

with the 2jd × 2jd matrix {Mj(i, k)}i,k belonging to the convex set M given by

M =







{ai,k}i,k : ai,k ≥ 0,

2jd
∑

i=1

ai,k = µ1(Q
k
j ),

2jd
∑

k=1

ai,k = µ0(Q
i
j)







.

We know by optimality that {Mj(i, k)}i,k can be taken to belong to Ext (M), the set of extremal
points of M, which consists of the so-called acyclic matrices (see [15]). They are those matrices
belonging to M such that the following property holds:

s
∏

r=1

airkrairkr+1
= 0,

for every 2 ≤ s ≤ 2jd and every set of indices i1 < · · · < is ∈ {1, . . . , 2jd}, k1 < · · · < kj ∈
{1, . . . , 2jd} (the convention i2jd+1 = i1 and k2jd+1 = k1 is used). This implies in particular that

#{(i, k) : Mj(i, k) 6= 0} ≤ 2 · 2jd, (4.8)

that is {Mj(i, k)}i,k has at most 2 ·2jd non-zero entries: in other terms, this optimal transport plan
γj does not move more than 2 · 2jd atoms. Setting |xij − xkj | = ℓi,k, we then get

W1/α(aj(µ0), aj(µ1)) =





2jd
∑

i,k=1

Mj(i, k) ℓ
1/α
i,k





α

,

and using (4.8) and Jensen’s inequality

dα(aj(µ0), aj(µ1)) ≤
2jd
∑

i,k=1

Mj(i, k)
αℓi,k =

2jd
∑

i,k=1

(

Mj(i, k) ℓ
1

α
i,k

)α

≤





2jd
∑

i,k=1

Mj(i, k) ℓ
1

α
i,k





α

(#{(i, k) : Mj(i, k) 6= 0})1−α

≤ CW1/α(aj(µ0), aj(µ1)) 2
jd(1−α),

concluding the proof.

Theorem 4.8. Let α ∈ (1− 1/d, 1], then for every p ≥ 1/α, we get

dα(µ0, µ1) ≤ CWp(µ0, µ1)
d(α−1)+1, (4.9)

with a constant C depending only on d, α and on the diameter of Ω.
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Proof. It is enough to show the validity of (4.9) for p = 1/α, then the general case will be just a
consequence of the monotonicity property of the Wasserstein distances, i.e.

W1/α ≤ Wp, for every p ≥ 1/α.

Using the triangular inequality, (4.6) and (4.7), we get for every j ∈ N

dα(µ0, µ1) ≤ dα(µ0, aj(µ0)) + dα(aj(µ0), aj(µ1)) + dα(aj(µ1), µ1)

≤ C 2(d(1−α)−1)j + dα(aj(µ0), aj(µ1))

≤ C 2(d(1−α)−1)j + CW1/α(aj(µ0), aj(µ1)) 2
jd(1−α),

and

W1/α(aj(µ0), aj(µ1)) ≤ W1/α(aj(µ0), µ0) +W1/α(µ0, µ1) +W1/α(aj(µ0), µ1)

≤ C 2−j +W1/α(µ0, µ1),

which finally gives

dα(µ0, µ1) ≤ C 2(d(1−α)−1)j + CW1/α(µ0, µ1) 2
jd(1−α)

= C 2(d(1−α)−1)j
(

1 +W1/α(µ0, µ1) 2
j
)

.

It is now sufficient to choose the index j in such a way that

diam(Ω)

2j
≤ W1/α(µ0, µ1) ≤

diam(Ω)

2j−1
,

which in turn yields

2(d(1−α)−1)j (1 +W1/α(µ0, µ1)2
j) ≤ CW1/α(µ0, µ1)

d(α−1)+1,

thus giving the thesis.

Remark 4.9. As we briefly mentioned, observe that the distances dα and W1/α have exactly the
same scaling with respect to the mass.

Remark 4.10. We point out that the very same µ0 and µ1 of Example 6.19 in [6] show that the
exponent d(α− 1) + 1 in inequality (4.9) cannot be improved.
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