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Abstract

A well-balanced scheme for a gravitational hydrodynamic system is defined as a scheme which could precisely
preserve a hydrostatic isothermal solution. In this paper,we will construct a well-balanced gas-kinetic symplecticity-
preserving BGK (SP-BGK) scheme. In order to develop such a scheme, we model the gravitational potential as a
piecewise step function with a potential jump at the cell interface. At the same time, the Liouville’s theorem and
symplecticity preserving property of a Hamiltonian flow have been used in the description of particles penetration,
reflection, and deformation through a potential barrier. The use of the symplecticity preserving property for a Hamil-
tonian flow is crucial in the evaluation of the high-order moments of a gas distribution function when crossing through
a potential jump. As far as we know, the SP-BGK method is the first shock capturing Navier-Stokes flow solver with
well-balanced property for a gravitational hydrodynamic system. A few theorems will be proved for this scheme,
which include the necessity to use an exact Maxwellian for keeping the hydrostatic state, the total mass and energy
(the sum of kinetic, thermal, and gravitational ones) conservation, and the well-balanced property to keep a hydro-
static state during particle transport and collision processes. Many numerical examples will be presented to validate
the SP-BGK scheme.

Key Words:gas-kinetic scheme, hydrodynamic equations, gravitational potential, symplecticity preserving, well-
balanced scheme.

1. Introduction

Generally, flow equations with source terms can be written as

Ut + ∇ · F(U) = S, (1)

whereU is the vector of conservative flow variables with corresponding fluxesF(U) andS is the source term. For a
gas flow under an external time-independent gravitational field, there exists a special solution, i.e., the hydrostaticor
well-balanced equilibrium solution with a constant temperature and zero fluid velocity. This solution is an intrinsic
solution due to the balance between the flux gradient and source term, i.e.,

∇ · F(U) = S. (2)

In order to capture the physical solution for a slowly evolving gravitational hydrodynamic system, the numerical
scheme has to be a well-balanced one in keeping the hydrostatic solution in the special situation, and has the shock
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capturing property in the general case. Theoretically, it seems that to design a well-balanced shock capturing scheme
for the gravitational hydrodynamic system is much more difficult than that for the shallow water equations.

There have been many attempts to construct well-balanced gas dynamic codes which preserve the hydrostatic
solution ([4, 15, 2]). The schemes in [4, 15, 2] are designed based on the condition Eq.(2), such as to explicitly enforce
this balance even for the updated non-hydrostatic solution, then use the re-balanced quantities in the evaluation of
fluxes in the next time step. However, for a transient flow, theuse of Eq.(2) directly in the design of the numerical
scheme may be problematic, because in general case Eq.(2) isnot satisfied in a physical evolution process, especially
for flow around discontinuities. So, our aim of this paper is to design a scheme with correct particle transport and
collision across a potential barrier, which will automatically becomes a well-balanced one when the solution is settling
down to the hydrostatic one. But, the scheme is still accurate in capturing any general gas evolution process.

In the past years, a gas-kinetic BGK scheme has been successfully developed for compressible Euler and Navier-
Stokes equations without gravitational field ([11, 12]). The main part of the BGK scheme is to find a gas distribution
function f at a cell interface. Physically, the inclusion of gravitational effect is only to change the particle trajectory.
Therefore, it should have no much difficulty for the gas-kinetic scheme to include the gravitational effect in the modifi-
cation of the time evolution of a gas distribution function through the particle acceleration and deceleration processes.
Along this line, the gas kinetic scheme (GKS) has been extended to a gravitational system [10], which much improved
the solution in comparison with operator splitting method.However, mathematically, the use of a piecewise linear
gravitational potential makes the exact solution complicated and a simplification of the numerical scheme in [10] can
not keep a precise well-balanced solution. Therefore, the scheme presented in [10] is not a well-balanced one.

In this paper, in order to design a precise well-balanced scheme we are going to approximate the gravitational
potential as a piecewise constant function inside each cellwith a potential jump at the cell interface. The detailed
particle transport process across a potential barrier willbe followed. In the construction of such a scheme, the use
of the symplecticity property of a Hamiltonian flow and the Liouville’s theorem becomes important in the correct
description of particle penetration, reflection, and deformation processes across a potential barrier. In a previous paper
[14], following the approach of Perthame and Simeoni for theshallow water equations [6], a well-balanced kinetic
flux vector splitting scheme for gravitational Euler equations has been developed. However, in the above approach,
only a few simple moments of a gas distribution function are needed, and these simple moments can be intuitively
guessed instead of derived with a solid physical and mathematical foundation. In order to extend the above scheme to
high-order accuracy and to solve the gravitational NS equations, a gas-kinetic BGK model with both particle transport
and collision has to be solved. In designing such a scheme, much more high-order moments of a gas distribution
function have to be evaluated after the interaction with a potential barrier. It becomes much harder to construct them
intuitively. Furthermore, to model the particle transportplus collision processes through a potential barrier is much
more challenging than that in the collision-less case. For example, around a potential jump at a cell interface, a multiple
equilibrium states have to be constructed on both sides of a jump. In the construction of such an equilibrium state for
the BGK model, the second law of thermodynamics has to be satisfied.

The paper is organized as follows. In section 2, we will present the basic physical principles about the particle
interaction with a potential barrier. The symplectic principle plays an important role in the design of the well-balanced
scheme. Section 3 gives a brief review of the previous BGK scheme without external forcing field. Section 4 presents
particle transport mechanism and the construction of a symplecticity preserving BGK for the gravitational gas dynamic
system. Section 5 is about the theoretical analysis of the schemes, such as the necessity of using an exact Maxwellian
and the well-balanced property. Section 6 shows the numerical tests. The last section is the conclusion.

2. Particle transport mechanism across a potential barrier

In this paper, the gravitational potentialφ is modeled as a piecewise constant function. Withφ j in jth-cell and
φ j+1 in ( j + 1)th cell, there exists a potential jump at the cell interface, i.e.,∆φ j+1/2 = φ j+1 − φ j . Now what we need
to figure out is the effect on an initial gas distribution function next to the potential barrier when the particles move
towards the barrier. The associated physical process couldbe reflection or penetration of the particles from the barrier.
What we have to evaluate is the relationship between the moments of the gas distribution functions before and after
interaction with the potential barrier. Since all particles are located next to the potential jump, the modification of
the particle distribution function happens instantly. Therefore, once a time-dependent gas distribution function next
to the potential barrier is given, the corresponding distribution after particle collision with the potential barriercan be
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evaluated at that moment. Since the potential jump only affects normal velocity and its moments, so in this section we
only consider distribution functions with 1-D velocity. The results obtained in this section will be used in this paper
many times on the construction of symplecticity-preserving scheme.

For an initial gas distribution functionf (u) next to a potential barrier and these particles impacted with the potential
jump, the particle velocityu changes tou′, and the distribution function becomesf (u′). We are going to use the
following three physical principles to find the relation between the velocity moments off (u′) and f (u).
a. Hamiltonian preserving property: the Hamiltonian functionH of a particle keeps a constant, where

H =
1
2

u2
+ φ(x). (3)

This is actually the energy conservation for a particle movement under a conservative potential field. Since we only
consider the interaction of a particle with a potential barrier at an instant of time, there are no collisions between
particles. Therefore, the energy conservation for individual particle is precisely conserved, i.e.,

1
2

u2
+ φ =

1
2

(u′)2
+ φ′, (4)

from which the relation betweenu andu′ can be obtained.
b. Liouville’s theorem: the probability density of a particle in phase space keeps aconstant along its movement
trajectory,

f (u′) = f (u). (5)

In other words, the particle isn’t lost or created during itsimpact with the potential.
c. The symplecticity preserving property: for a Hamiltonian phase flow, we have

∫ ∫

D′
dx′du′ =

∫ ∫

D
dxdu, (6)

whereD′ andD are the phase volume on the trajectory of the Hamiltonian phase flow.
During the impact of the particles with the potential barrier, we can specially chooseD = (u1, u2) × (ut1, ut2), then

D′ = (u′1, u
′
2) × (u′t1, u′t2) sinceD andD′ are on the trajectory of the same particle. Therefore, Eq.(6) goes to

∫ u′2

u′1

u′du′ =
∫ u2

u1

udu. (7)

This relationship will be the most important one in the construction of the moments between betweenf (u′) and
f (u). Therefore, the developed scheme in the present paper which uses this relationship will be called symplecticity-
preserving scheme.

With the above three physical principles, we can derive the relationship between thenth-order velocity moments
of f (u′) and that off (u). From (5) and (7), we have

∫ u′2

u′1

f (u′)u′du′ =
∫ u2

u1

f (u)udu (8)

Moreover, (3) tells us thatu′ is a function ofu, i.e., u′ = u′(u). So, combining with (8), we can get a general
formulation,

nth-orderu moment=
∫ u′2

u′1

f (u′)(u′)ndu′ =
∫ u2

u1

f (u)(u′(u))n−1udu, (9)

which connects the moments of the distribution functions before and after impacting with a potential barrier at an
instant of time. The above distribution function can represent the portion of particles which are reflected or penetrated
at the barrier.
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3. A review of gas-kinetic BGK-NS scheme without external forcing field

The BGK equation without external forcing field in 2-D is

ft + ~u · ∇ f =
g− f
τ

, (10)

where f is the gas distribution function andg is the equilibrium state approached byf , ∇ f is the gradient off with
respect to~x, ~x = (x, y), and~u = (u, v) is the particle velocity. The particle collision timeτ is related to the viscosity
and heat conduction coefficients, i.e.,τ = µ/p whereµ is the dynamic viscosity coefficient andp is the pressure. The
relation between massρ, momentum (ρU, ρV), and energyρE densities with the distribution functionf is
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
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





=

∫∫∫

ψ f dudvdξ, (11)

where

ψ = (ψ1, ψ2, ψ3, ψ4)T
= (1, u, v,

1
2

(u2
+ v2
+ ξ2))T ,

dξ = dξ1dξ2...dξK , and K is the number of degrees of internal freedom, i.e.,K = (4− 2γ)/(γ − 1) for 2-D flow. Since
mass, momentum, and energy are conserved during particle collisions, f andg satisfy the conservation constraint,

∫∫∫

(g− f )ψαdudvdξ = 0, α = 1, 2, 3, 4 (12)

at any point in space and time. The integral solution of (10) is

f (~x, t, ~u, ξ) =
1
τ

∫ t

0
g(~x′, t′, ~u, ξ)e−(t−t′)/τdt′ + e−t/τ f0(~x− ~ut, ~u, ξ), (13)

where~x′ = ~x− ~u(t − t′) is the particle trajectory. The solutionf in (13) solely depends on the modeling off0 andg.
For a finite volume scheme, we need to evaluate the fluxes across a cell interface in order to update the cell averaged

conservative flow variables. In the BGK scheme, the fluxes aredefined by
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Fρ

FρU

FρV

FρE





























=

∫∫∫

uψ f dudvdξ, (14)

which depends on the gas distribution functionf in Eq.(13) at the cell interface. Let’s consider the construction of the
distribution function at the cell interface~x j+1/2 = (x j+1/2, yi), where~x j+1/2 is the location of the cell interface center in
the physical domain. Locally, around this cell interface, with the assumption of the x-direction as the normal direction
and y-direction as the tangential direction, based on the BGK model a solution in this local coordinate can be obtained.

By using the MUSCL-type limiter, a discontinuous reconstruction of the macroscopic flow variables can be ob-
tained around the cell interface (see fig.1). The initial gasdistribution function f0 in (13) on both sides of a cell
interface can be constructed as

f l
0(~x, ~u, ξ) = gl

0(1+ al(x− x j+1/2) + bl(y− yi) − τ(alu+ blv+ Al)), x ≤ x j+1/2,

f r
0 (~x, ~u, ξ) = gr

0(1+ ar (x− x j+1/2) + br (y− yi) − τ(aru+ brv+ Ar)), x > x j+1/2,

(15)

where the Chapman-Enskog expansion up to the Navier-Stokesorder has been used in the above initial reconstruction.
Heregl

0 andgr
0 are the corresponding Maxwellians toWl

= (ρl , (ρU)l, (ρV)l , (ρE)l) andWr
= (ρr , (ρU)r , (ρV)r , (ρE)r)
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at both sides of the interface. The Maxwellian distributionfunction corresponding toW = (ρ, (ρU), (ρV), (ρE)) has
the form

g = ρ
(

λ

π

)

K+2
2

eλ((u−U)2
+(v−V)2

+ξ2), (16)

whereλ is equal tom/2kT, m is the molecular mass,k is the Boltzmann constant, andT is the temperature. The
equilibrium distribution functions around the cell interface can be modeled as

gl(~x, t, ~u, ξ) = gl
j+1/2(1+ al(x− x j+1/2) + b

l
(y− yi) + A

l
t), x ≤ x j+1/2,

gr(~x, t, ~u, ξ) = gr
j+1/2(1+ ar (x− x j+1/2) + b

r
(y− yi) + A

r
t), x > x j+1/2.

(17)

In the case without external forcing term,gl
j+1/2 andgr

j+1/2 in the above equation are the same distribution functions,

i.e.,gl
j+1/2 = gr

j+1/2 (see fig.2), which can be obtained using the conservation constraint (12) at~x = ~x j+1/2 andt → 0,

∫∫∫

gl
j+1/2ψdudvdξ =

∫∫∫

gr
j+1/2ψdudvdξ =Wj+1/2

=

∫∫∫

u>0
f l
0(~x j+1/2, ~u, ξ)ψdudvdξ +

∫∫∫

u<0
f r
0 (~x j+1/2, ~u, ξ)ψdudvdξ.

(18)

Therefore, at the cell interface the final distribution function can be fully determined using the integral solution (13).
The final distribution function can be written as

f (~x j+1/2, t, ~u, ξ)

=



















f l(~x j+1/2, t, ~u, ξ) u ≥ 0,

f r (~x j+1/2, t, ~u, ξ) u < 0,

=























1
τ

∫ t

0
gl(~x j+1/2 − ~u(t − t′), t′, ~u, ξ)e−(t−t′)/τdt′ + e−t/τ f l

0(~x j+1/2 − ~ut), u ≥ 0,

1
τ

∫ t

0
gr (~x j+1/2 − ~u(t − t′), t′, ~u, ξ)e−(t−t′)/τdt′ + e−t/τ f r

0 (~x j+1/2 − ~ut), u < 0,

(19)

which can be used to evaluate the fluxes

F l
j+1/2(t) = Fr

j+1/2(t)

=

∫∫∫

u>0
u f l(~x j+1/2, t, ~u, ξ)ψdudvdξ +

∫∫∫

u<0
u f r (~x j+1/2, t, ~u, ξ)ψdudvdξ.

(20)

The update of the cell averaged conservative variables becomes

Wn+1
j =Wn

j +
1
∆x

∫ tn+1

tn

[

Fr
j−1/2(t) − F l

j+1/2(t)
]

dt+
1
∆y

∫ tn+1

tn

[

Fr
i−1/2(t) − F l

i+1/2(t)
]

dt, (21)

whereF l
j−1/2(t) ... Fr

i+1/2(t) are the fluxes at the center of the cell interfaces.
The definitions and constructions of all parameters relatedto the spatial and temporal slopes, such asa, b andA,

can be found in [11] and [12].
In summary, at the cell interface~x j+1/2 we can construct the equilibrium distribution functionsgl

j+1/2 andgr
j+1/2

from initial distribution f l
0 and f r

0 . Also, we can find fluxesF l
j+1/2(t) andFr

j+1/2(t) from the integral solutionf l and
f r . Without external forcing field, all the particles running into the cell interface can freely cross it. Therefore,
the equilibrium states and fluxes at the interface have unique values, i.e.,gl

j+1/2 = gr
j+1/2 andF l

j+1/2(t) = Fr
j+1/2(t).

However, with the approximation of constant potential inside each cell and a potential jump at the cell interface, the
modeling of equilibrium stateg around a cell interface has to be considered separately on different sides of the cell
interface, wheregl

j+1/2 , gr
j+1/2 in general case. But, the mathematical formulae described in (17) and the integral
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solution in Eq.(19) can be still used. One of the main reason for the validity of the integral solution is that there is no
gravitational force inside each cell. However, the construction of the equilibrium states and the calculation of fluxes
will not be as simple as that in (18) and (20). In the evaluation of the equilibrium states and the fluxes, the physical
principles for the particle transport discussed in the lastsection have to be used. In the next section, the determination
of g and fluxes will be described.

4. The symplecticity preserving BGK(SP-BGK) scheme

In this section, we will construct a well-balanced gas-kinetic scheme for hydrodynamic equations under gravita-
tional field. In order to clarify the concepts, we are going touse a similar procedure as that of the construction of the
BGK-NS scheme without external forcing field.

4.1. The initial data reconstruction

For a hydrostatic solution, the flow variables satisfy the conditions,

U = 0, V = 0, λ = constant, Ba= constant, (22)

whereBa = ρe2λφ. In order to avoid introducing errors in the initial reconstruction for the hydrostatic case, it is
reasonable to use the variables (U, V, λ, Ba) in the reconstruction. More specifically, we firstly apply aMUSCL-type
limiter to reconstruct the slopes of (U, V, λ, Ba), i.e., (SU , SV, Sλ, SBa) inside each cell. Since

ρ =
Ba
e2λφ

, ρE =
1
2
ρ(U2

+ V2) +
K + 2

4λ
ρ,

we can get the corresponding slopes for other flow variables,

Sρ =
1

e2λφ
SBa− 2ρφSλ,SρU = SρU + ρSU ,SρV = SρV + ρSV,

SρE =

[

1
2

(U2
+ V2) +

K + 2
4λ

]

Sρ + ρ

[

USU + VSV −
K + 2
4λ2

Sλ

]

,

where (Sρ, SρU , SρV, SρE) are the slopes of (ρ, ρU, ρV, ρE) inside that cell. Therefore, we can reconstruct (ρ, ρU, ρV, ρE)
in each cell using their cell averaged quantities and the above slopes. Here, all slopes become zeros when the initial
flow is in a hydrostatic state, and the reconstruction will not introduce numerical errors. In the general case, the above
reconstruction works as well.

4.2. The gas-kinetic SP-BGK scheme

With the modeling of piecewise constant gravitational potential inside each cell, i.e.,φ j inside thejth cell, there
is a potential jump at the cell interface~x j+1/2. It is obvious that the distribution functionf also satisfies the equation
(10) inside each cell since there is no external forcing terminside each cell. Therefore, the similar framework used
in the constructing BGK-NS scheme can be extended here to design the SP-BGK scheme with gravitational field.
For example, with the initial reconstruction, the non-equilibrium states around each cell interface can be obtained.
Also, due to the potential jump, the equilibrium states are different in the left and right hand sides of the interface,
but the integral solution of the BGK model can be still used inthe construction of the local solution separately around
the cell interface. However, at the cell interface, we have to consider the effect of the potential jump on the particle
movement. Since the equilibrium states,gl

j+1/2 andgr
j+1/2, and the fluxes,F l

j+1/2(t) andFr
j+1/2(t), involve the particle

interaction with the potential jump, we will show thatgl
j+1/2 , gr

j+1/2 in Eq.(17)(see fig.4), andF l
j+1/2(t) , Fr

j+1/2(t) in
the general case. Their determination depends on the particle transport modeling. The potential jump gives a critical
speedUc =

√

2|φ j − φ j+1|, which provides a threshold for the particle movement. Because of the potential jump, not
all particles running into the cell interface could go through freely. Some may be reflected due to less kinetic energy to
overcome the potential barrier (see fig.3). For these particles passing through the cell interface, their momentum and
energy need to be modified due to particle acceleration during the transport process.
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Without losing generality, we only discuss the case ofφ j < φ j+1 in this subsection. Using similar methods and
ideas, all the formulae for the caseφ j > φ j+1 can be easily obtained. Let’s assume the initial reconstructed gas
distribution at a cell interface before the interaction with the potential jump is

f (~x j+1/2, t, ~u, ξ) =



















f j(~x j+1/2, t, ~u, ξ), u ≥ 0,

f j+1(~x j+1/2, t, ~u, ξ), u < 0.
(23)

Starting from the above distribution function, the particle collision with the potential jump changes distribution
functions tof l

j+1/2(t, ~u, ξ) and f r
j+1/2(t, ~u, ξ) at the left and right hand sides of the cell interface respectively, which can

be represented as

f l
j+1/2(t, ~u, ξ) =







































f j(~x j+1/2, t, ~u, ξ), u > 0,

f̃ j(~x j+1/2, t, ~u, ξ), 0 ≥ u > −Uc,

f j+1(~x j+1/2, t, ~u, ξ), u ≤ −Uc,

(24)

and

f r
j+1/2(t, ~u, ξ) =



















f j(~x j+1/2, t, ~u, ξ), u ≥ 0,

f j+1(~x j+1/2, t, ~u, ξ), u < 0.
(25)

The definition of the above distribution functions is from the following physical consideration (see fig.3). Because
the potential jump is only at the normal direction of the cellinterface, it only affects the normal particle velocity,u.
In (24), f̃ j is the distribution function of the reflected particle in thejth cell with the original distribution function
f j which has a positive particle velocity less thanUc. Here f j+1 is the distribution function of the particle in thejth
cell coming from the (j + 1)th cell with the original distribution functionf j+1 with negative particle velocity. This
particle has been accelerated in the negative normal direction after passing through the cell interface. Also,f j is the
distribution function of the particle in the (j + 1)th cell coming from thejth cell with the original distribution function
f j and positive velocity higher thanUc. This particle has been be decelerated in the positive normal direction after
passing through the cell interface. Therefore, the effect of the potential jump modifies the distribution function, but the
particle velocity moments of the modified distribution function and the original ones are related through the physical
principles which have been introduced in section 2.

Here, we will show the procedure of the SP-BGK scheme first, then clarify the detailed derivation of the formulae
for equilibrium states and fluxes.

Using particle free transport mechanism in Eq.(13) for the initial gas distribution functionf0, i.e., f j(~x j+1/2, t, ~u, ξ) =
f l
0(~x j+1/2 − ~ut, ~u, ξ) and f j+1(~x j+1/2, t, ~u, ξ) = f r

0 (~x j+1/2 − ~ut, ~u, ξ), and due to their interaction with the potential jump,
the initial condition will be changed according to Eq.(24) and (25), from which two sets of conservative variables at
different sides of the cell interface can be obtained,

Wl
j+1/2 =

∫∫∫ ∞
−∞ f l

j+1/2(t = 0, ~u, ξ)ψdudvξ

=

∫∫∫

+∞
0

f j(~x j+1/2, t = 0, ~u, ξ)ψdu+
∫∫∫ 0

−Uc
f̃ j(~x j+1/2, t = 0, ~u, ξ)ψdudvdξ

+

∫∫∫ −Uc

−∞ f j+1(~x j+1/2, t = 0, ~u, ξ)ψdudvdξ,

(26)

and

Wr
j+1/2 =

∫∫∫ ∞
−∞ f r

j+1/2(t = 0, ~u, ξ)ψdudvξ

=

∫∫∫

+∞
0

f j(~x j+1/2, t = 0, ~u, ξ)ψdudvdξ +
∫∫∫ 0

−∞ f j+1(~x j+1/2, t = 0, ~u, ξ)ψdudvdξ,
(27)

from which, two Maxwelliansgl
j+1/2 andgr

j+1/2 in the equilibrium states (17) can be fully determined. Then, following
the method used in the development of BGK-NS scheme [12], thefinal gas distribution at the left and right hand sides of
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a cell interface, i.e.,f l and f r in (19), can be obtained. When choosing the integral solutions as the original distribution
functions, i.e., f j(~x j+1/2, t, ~u, ξ) = f l(~x j+1/2, t, ~u, ξ) and f j+1(~x j+1/2, t, ~u, ξ) = f r (~x j+1/2, t, ~u, ξ), and considering their
interactions with the potential jump, these distribution functions will be modified as Eq.(24) and (25), from which the
corresponding fluxes at different sides of the cell interface can be determined,

F l
j+1/2(t) =

∫∫∫

+∞
−∞ u f l

j+1/2(t, ~u, ξ)ψdudvdξ

=

∫∫∫

+∞
0

u f j(~x j+1/2, t, ~u, ξ)ψdu+
∫ ∫ 0

−Uc
uf̃ j(~x j+1/2, t, ~u, ξ)ψdudvdξ

+

∫∫∫ −Uc

−∞ uf j+1(~x j+1/2, t, ~u, ξ)ψdudvdξ,

(28)

and
Fr

j+1/2(t) =
∫∫∫

+∞
−∞ u f r

j+1/2(t, ~u, ξ)ψdudvdξ

=

∫∫∫

+∞
0

uf j(~x j+1/2, t, ~u, ξ)ψdudvdξ +
∫∫∫ 0

−∞ u f j+1(~x j+1/2, t, ~u, ξ)ψdudvdξ.

(29)

Note that due to the potential jump, in general we havegl
j+1/2 , gr

j+1/2 andF l
j+1/2 , Fr

j+1/2. Finally, we can use (21) to
update the cell averaged conservative variables.

In the above formulae (26), (27), (28) and (29), we need to findthenth order velocity moments of the modified
distribution functions,f̃ j , f j+1 and f j , which can be evaluated from the moments of the original distribution funcions
f j , f j+1 and f j respectively by (9). Let’s figure out how to evaluate thenth order normal velocity moments of̃f j(u),
f j+1(u) and f j(u).
a. The nth-order normal velocity moments of f̃ j

Recall thatf̃ j is the distribution function of the reflected particle in thejth cell. Assume that the normal particle
velocity isu before the reflection, and the distribution of the particle before reflection isf j(u) with 0 < u < Uc. After
the reflection, its velocity becomesu′ andu′ = −u, for these particles, (9) gives

∫ 0

−Uc

f̃ j(u′)(u′)ndu′ =
∫ 0

Uc

f j(u)u(−u)n−1du =
∫ Uc

0
f j(u)(−1)nundu. (30)

b. The nth-order normal velocity moments of f j+1

f j+1 is the distribution function of the particle in thejth cell coming from the (j+1)th cell. Its distribution function
before crossing the potential jump isf j+1 with normal velocityu < 0. After passing through the interface, the normal
velocity changes fromu to u′, whereu andu′ are related by the Hamiltonian preserving property, i.e.,

1
2

u2
+ φ j+1 =

1
2

(u′)2
+ φ j.

So,u′ = −
√

u2 + U2
c , Eq.(9) gives

∫ −Uc

−∞
f j+1(u′)(u′)ndu′ =

∫ 0

−∞
f j+1(u)(−1)n−1u(u2

+ U2
c)(n−1)/2du. (31)

c. The nth-order normal velocity moments of f j

f j is the distribution function of the particle in the (j + 1)th cell coming from thejth cell. Its distribution function
before passing through the potential jump isf j with normal velocityu > Uc. After passing through the cell interface,
the normal velocity changes tou′. The relation betweenu andu′ becomes

1
2

u2
+ φ j =

1
2

(u′)2
+ φ j+1.

So,u′ =
√

(u)2 − U2
c , Eq.(9) deduces

∫

+∞

0
f j(u

′)(u′)ndu =
∫

+∞

Uc

f j(u)u(u2 − U2
c)(n−1)/2du. (32)
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Based on the above moment evaluations, we can get the formulae for Wl
j+1/2, Wr

j+1/2, F l
j+1/2(t) andFr

j+1/2(t) by
(26)- (32) for the caseφ j < φ j+1. The formulae for the caseφ j > φ j+1 can be found similarly. All the formulae are
given in the appendix for both 1-D and 2-D cases. Therefore, the SP-BGK scheme is presented.

4.3. Limiting Cases

a. The 1st order SP-BGK scheme
When all the slopes in the reconstruction are zeros, and all slopesa, b andA of the distribution function in (15) and

(17) become zeros, the SP-BGK scheme becomes a 1st order scheme. Now, the distribution function in (13) becomes

f (~x j+1/2, t, ~u, ξ) =























(1− e−t/τ)gl
j+1/2 + e−t/τgl

0, u ≥ 0,

(1− e−t/τ)gr
j+1/2 + e−t/τgr

0, u < 0.

Or, with the definition of a small parameterε, i.e., 0< ε < 1, the distribution function becomes

f (~x j+1/2, t, ~u, ξ) =























(1− ε)gl
j+1/2 + εg

l
0, u ≥ 0,

(1− ε)gr
j+1/2 + εg

r
0, u < 0,

(33)

which is called the 1st-order SP-BGK scheme.

b. The SP-KFVS scheme
When the collision timeτ goes to+∞, the distribution function in (19) becomes

f (~x j+1/2, t, ~u, ξ) =



















f l(~x j+1/2, t, ~u, ξ) u ≥ 0,

f r (~x j+1/2, t, ~u, ξ) u < 0,

=



















f l
0(~x j+1/2 − ~ut), u ≥ 0,

f r
0 (~x j+1/2 − ~ut), u < 0.

(34)

The above solution solely comes from free transport and there is no contribution of the equilibrium statesg in the
integral solutionf . It equals to solve

ft + ~u · ∇ f = 0

directly when the initial distribution function is modeledas (15). In other words, we don’t consider particle collision
here, and needn’t to model the equilibrium distribution functiong in (17). This is exactly the same scheme introduced
in [14], which is called SP-KFVS scheme. It is actually a limiting case of the SP-BGK scheme.

In this section, with the assumption of piecewise constant gravitational potential, a SP-BGK scheme is presented.
As will be presented in the next section, the SP-BGK scheme isa well-balanced scheme for the gravitational hydro-
dynamic system. This is the first well-balanced scheme, which has the shock capturing property as well in the general
case.

5. Theoretical analysis

For simplicity, we are going to prove all the theorems in the 1-D case. But all the conclusions still hold for higher
dimensions as well, because there is no dynamic difference in higher dimensions when the potential jump is modeled
as a piecewise constant function.
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In the current scheme, the updated flow variables inside eachcell are the mass, momentum, and energy densities
(kinetic+ thermal ones). The gravitational energy is not explicitly included. However, for an isolated gravitational
system, the total energy (kinetic+ thermal+ gravitational ones) conservation is a necessary conditionin order to get
a correct physical solution. In the following theorem, we are going first to prove that the conservation of total energy
in the current kinetic scheme is satisfied.
Theorem 3.1:The SP-KFVS and SP-BGK schemes are mass and total energy conservative schemes.
Proof The only difference between the SP-KFVS and SP-BGK schemes is that they have different original distri-
bution functionsf j(u) and f j+1(u). However, whateverf j(u) and f j+1(u) are, the mass and total energy are conserved
when the fluxes are calculated by (92) and (93) or (94) and (95)in the appendix. The concept of conservation of a
variable means that the change of that variable in any fixed domain depends only on the fluxes across the interfaces
of that control volume. In the following proof, we assume thecontrol volume consists of many cells between the
cell indexK1 andK2, whereK1 < K2. Then, we need to prove that the change of the mass and total energy in the
control volume depends only on the fluxes at the interfacesxK1−1/2 andxK2+1/2. Without losing generality, we assume
φ j < φ j+1 everywhere.
Mass conservation:

For mass, in each cell we have

ρn+1
j = ρn

j +
1
∆x

∫ tn+1

tn

[

Fr
j−1/2,ρ − F l

j+1/2,ρ

]

dt, (35)

whereFr,l
j+1/2,ρ are the mass fluxes. The total mass in the control volume is

∑K2
j=K1

ρ j , and

∑K2
j=K1

ρn+1
j =

∑K2
j=K1

ρn
j +

1
∆x

∫ tn+1

tn

∑K2
j=K1

[

Fr
j−1/2,ρ − F l

j+1/2,ρ

]

dt. (36)

From (92) and (93), we have

F l
j+1/2,ρ

=

∫ ∫

+∞
0

f j(u)ududξ −
∫ ∫ Uc

0
f j(u)ududξ +

∫ ∫ 0

−∞ f j+1(u)ududξ

=

∫ ∫

+∞
Uc

f j(u)ududξ +
∫ ∫ 0

−∞ f j+1(u)ududξ

= Fr
j+1/2,ρ.

(37)

Therefore, from (36) and (37),
∑K2

j=K1
ρn+1

j =
∑K2

j=K1
ρn

j +
1
∆x

∫ tn+1

tn

[

Fr
K1−1/2,ρ − F l

K2+1/2,ρ

]

dt, (38)

which gives the mass conservation in the computational domain.
Total energy conservation:

The kinetic energy and thermal energy, i.e.,ρE, is updated by

(ρE)n+1
j = (ρE)n

j +
1
∆x

∫ tn+1

tn

[

Fr
j−1/2,ρE − F l

j+1/2,ρE

]

dt, (39)

whereFr,l
j+1/2,ρE are the fluxes ofρE. Because the external potentialφ is independent of time, the potential energy, i.e.,

ρφ is updated by

ρn+1
j φ j = ρ

n
jφ j +

1
∆x

∫ tn+1

tn

[

Fr
j−1/2,ρφ j − F l

j+1/2,ρφ j

]

dt. (40)

With the definition of total energyT E = ρE + ρφ, we get

T En+1
j = T En

j +
1
∆x

∫ tn+1

tn

[

Fr
j−1/2,ρφ j − F l

j+1/2,ρφ j

+Fr
j−1/2,ρE − F l

j+1/2,ρE

]

dt.
(41)
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The updating of the total energy in the control volume (i.e.
∑K2

j=K1
T Ej) becomes

∑K2
j=K1

T En+1
j =

∑K2
j=K1

T En
j +

1
∆x

∫ tn+1

tn

∑K2
j=K1

[

Fr
j−1/2,ρφ j

−F l
j+1/2,ρφ j + Fr

j−1/2,ρE − F l
j+1/2,ρE

]

dt.
(42)

According to (92) and (93), we get

F l
j+1/2,ρE =

∫ ∫

+∞
0

f j(u) 1
2(u3
+ uξ)dudξ +

∫ ∫ Uc

0
f j(u) 1

2(−u3 − uξ)dudξ

+

∫ ∫ 0

−∞ f j+1(u) 1
2(u(u2

+ U2
c) + uξ)dudξ,

Fr
j+1/2,ρE =

∫ ∫

+∞
Uc

f j(u) 1
2(u(u2 − U2

c) + uξ)dudξ

+

∫ ∫ 0

−∞ f j+1(u) 1
2(u3
+ uξ)dudξ.

(43)

A direct calculation gives

Fr
j+1/2,ρE − F l

j+1/2,ρE = F l
j+1/2,ρ(φ j+1 − φ j) = Fr

j+1/2,ρ(φ j+1 − φ j). (44)

So, from (42) and (44), the total energy update becomes

∑K2
j=K1

T En+1
j =

∑K2
j=K1

T En
j +

1
∆x

∫ tn+1

tn

[

Fr
K1−1/2,ρφK1

−F l
K2+1/2,ρφK2 + Fr

K1−1/2,ρE − F l
K2+1/2,ρE

]

dt,
(45)

which guarantees the total energy conservation in the wholecomputational domain. Based on the above proof, the
SP-BGK and SP-KFVS schemes are conservative methods. Therefore, the above two schemes can give the correct
shock location even with the external gravitational forcing terms. This is a generalization of Lax-Wendroff theorem to
the system with gravitational source term [5].

Lemma 3.2: The densityρ(x) in a hydrostatic state under the gravitational fieldφ(x) satisfies

ρ(x) = C1e−2λ̃φ(x), (46)

whereC1 andλ̃ are constants.
Proof For a hydrostatic solution under the gravitational fieldφ(x), we have

px = −ρφx,T = constant,U = 0. (47)

SinceT = constant andλ = m/2kT, we knowλ = λ̃, whereλ̃ is also a constant. Then from (47) and the ideal gas
equation of state

p =
1

2λ̃
ρ,

we have
1

2λ̃
ρx = −ρφx.

Therefore, with a constant,C1, the solution becomes

ρ(x) = C1e−2λ̃φ(x).

Remark: without losing generality, in the following proofs, we letC1 = 1 for the hydrostatic solution. So, in the
hydrostatic case, the state has the form

ρ = e−2λ̃φ(x), U = 0, (48)
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whereλ̃ is a constant. Numerically, if we let the potentialφ(x) be a constant,φ j, in the jth cell, then

ρ j+1 = ρ je
−2λ̃(φ j+1−φ j ), U j = 0, (49)

whereρ j andU j are cell average quantities in that cell.

Lemma 3.3:For the two equilibrium statesWl
j+1/2 = (ρl

j+1/2, (ρU)l
j+1/2, (ρE)l

j+1/2) andWr
j+1/2 = (ρr

j+1/2, (ρU)r
j+1/2, (ρE)r

j+1/2),
they have the following properties when the initial flow is ina hydrostatic state.

1. Both velocities are equal to zero, i.e.,

U l
j+1/2 = U r

j+1/2 = 0. (50)

2. They have the same temperature at both sides of all cell interfaces, i.e.

λl
j+1/2 = λ

r
j+1/2 = λ̃, (51)

whereλ satisfies

ρE − 1
2
ρU2
= ρ

K + 1
4λ

, (52)

macroscopically withK = (3− γ)/(γ − 1) in 1-D, andλ̃ has the constant valueλ of the hydrostatic solution.
3. The densities at the same cell interface satisfy

ρr
j+1/2 = ρ

l
j+1/2e−2λ̃(φ j+1−φ j ) (53)

4. In the same cell,
ρl

j+1/2 = ρ
r
j−1/2 (54)

Proof As the definition,Wl
j+1/2 and Wr

j+1/2 are determined by (88) and (89) or (90) and (91) forφ j < φ j+1 or
φ j > φ j+1 when f j(u) = g j(u), whereg j(u) is a Maxwellian corresponding to the cell average conservative variables,
(ρ j , (ρU) j, (ρE) j). Here, we only prove the case forφ j < φ j+1. The other case can be proved similarly. From direct
calculation, we can get

ρl
j+1/2 =

ρ j

2
+ ρ j(

λ̃

π
)

1
2

∫ 0

−Uc

e−λ̃u2
du− ρ j+1(

λ̃

π
)

1
2 Uc + ρ j+1λ̃(

λ̃

π
)

1
2

∫

+∞

0
e−λ̃t
√

t + U2
cdt, (55)

ρr
j+1/2 = ρ j λ̃(

λ̃

π
)

1
2

∫

+∞

U2
c

e−λ̃t
√

t − U2
cdt +

ρ j+1

2
, (56)

(ρU)l
j+1/2 = (ρU)r

j+1/2 = 0, (57)

(ρE)l
j+1/2 =

K
4λ̃
ρl

j+1/2 +
ρ j

8λ̃
− ρ j

4λ̃

√

λ̃
π
e−λ̃U2

c Uc +
ρ j

4λ̃

√

λ̃
π

∫ 0

−Uc
e−λ̃u2

du

+
ρ j+1

4

√

λ̃
π

∫

+∞
0

e−λ̃t
√

t + U2
cdt,

(58)

and

(ρE)r
j+1/2 =

K

4λ̃
ρr

j+1/2 +
ρ j

4

√

λ̃

π

∫

+∞

U2
c

e−λ̃t
√

t − U2
cdt +

ρ j+1

8λ̃
, (59)

whereUc =
√

2(φ j+1 − φ j).
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1. From (55) and (56), we can easily see thatρl
j+1/2 > 0 andρr

j+1/2 > 0 whenρ j > 0 andρ j+1 > 0. SinceU = ρU/ρ,
from (57), we know that

U l
j+1/2 = U r

j+1/2 = 0.

2. From (55),

ρl
j+1/2

K+1
4λl

j+1/2
=

K
4λl

j+1/2
ρl

j+1/2 +
ρ j

8λl
j+1/2
+

ρ j+1

4λl
j+1/2

√

λ̃
π
Uc +

ρ j

4λl
j+1/2

√

λ̃
π

∫ 0

−Uc
e−λ̃u2

du

+
ρ j+1

4λl
j+1/2

λ̃

√

λ̃
π

∫

+∞
0

e−λ̃t
√

t + U2
cdt.

(60)

Since (ρE)l
j+1/2 −

1
2ρ

l
j+1/2(U l

j+1/2)
2
= ρl

j+1/2
K+1

4λl
j+1/2

andU l
j+1/2 = 0, we have

(ρE)l
j+1/2 − ρ

l
j+1/2

K + 1

4λl
j+1/2

= 0. (61)

Therefore, substitute (49), (58) and (60) into (61), we get

(λl
j+1/2 − λ̃)

{

1
λl

j+1/2λ̃
( K

4 ρ
l
j+1/2 +

ρ j

8 −
ρ j

4

√

λ̃
π
e−λ̃U2

c Uc

+
ρ j

4

√

λ̃
π

∫ 0

−Uc
e−λ̃u2

du) + 1
λl

j+1/2

ρ j+1

4

√

λ̃
π

∫

+∞
0

e−λ̃t
√

t + U2
cdt

}

= 0.

(62)

Becausee−λ̃u2
is a monotonic increasing function on [−Uc, 0], so

ρ j

4

√

λ

π

∫ 0

−Uc

e−λu2
du−

ρ j

4

√

λ

π
e−λU2

c Uc > 0. (63)

Then we know the summation in the brace{...} of (62) is strictly larger than zero. Therefore,

λl
j+1/2 = λ̃.

has to be satisfied.
Similarly, we can have

(λr
j+1/2 − λ̃){ 1

λr
j+1/2λ̃

(
K
4
ρr

j+1/2 +
ρ j+1

8
) +

1
λr

j+1/2

ρ j

4

√

λ̃

π

∫

+∞

U2
c

e−λ̃t
√

t − U2
cdt} = 0.

Again, the summation in the brace{...} is strictly larger than zero. So,

λr
j+1/2 = λ̃.

3. It is easy to prove that
∫ 0

−Uc

e−λ̃u2
du = e−λU2

c Uc + 2λ̃
∫ 0

−Uc

e−λ̃u2
u2du, (64)

and

2
∫ 0

−Uc

e−λ̃u2
u2du =

∫ U2
c

0
e−λ̃x√xdx. (65)

So, ρr
j+1/2 = ρ

l
j+1/2e−2λ̃(φ j+1−φ j ),

(55),(56)
⇐======⇒ λ̃

∫

+∞
U2

c
e−λ̃t
√

t − U2
cdt =

∫ 0

−Uc
e−λ̃(u2

+U2
c )du−Uce−2λ̃U2

c+λ̃e−2λ̃U2
c
∫

+∞
0

e−λ̃t
√

t + U2
cdt,

(64)
⇐==⇒

∫

+∞
U2

c
e−λ̃t
√

t − U2
cdt =
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2e−λ̃U2
c

∫ 0

−Uc
e−λ̃u2

u2du+ e−2λ̃U2
c

∫

+∞
0

e−λ̃t
√

t + U2
cdt,

le f t:x=t−U2
c ;right:x=t+U2

c⇐=================⇒
∫

+∞
0

e−λ̃x√xdx = 2
∫ 0

−Uc
e−λ̃u2

u2du+
∫

+∞
U2

c
e−λ̃x√xdx

⇐⇒
∫ U2

c

0
e−λ̃x√xdx = 2

∫ 0

−uc
e−λ̃u2

u2du.

Therefore, from (65), we can conclude that

ρr
j+1/2 = ρ

l
j+1/2e−2λ̃(φ j+1−φ j ).

4. ρl
j+1/2 = ρ

r
j−1/2,

(55),(56)
⇐======⇒ ρ j

2 + ρ j( λ̃π )
1
2

∫ 0

−Uc
e−λ̃u2

du− ρ j+1( λ̃
π
)

1
2 Uc + ρ j+1λ̃( λ̃

π
)

1
2

∫

+∞
0

e−λ̃t
√

t + U2
cdt

= ρ j−1λ̃( λ̃
π
)

1
2

∫

+∞
U2

c
e−λ̃t
√

t − U2
cdt +

ρ j

2 ,

(49)
⇐==⇒ ρ j

∫ 0

−Uc
e−λ̃u2

du− ρ je−λ̃U2
c Uc + ρ j λ̃

∫

+∞
U2

c
e−λ̃x√xdx = ρ j λ̃

∫

+∞
0

e−λ̃x√xdx,

(64)
⇐==⇒ 2λ̃ρ j

∫ 0

−Uc
e−λ̃u2

u2du+ ρ j λ̃
∫

+∞
U2

c
e−λ̃x√xdx = ρ j λ̃

∫

+∞
0

e−λ̃x√xdx.

From (65), we know that the last equality holds. Therefore,

ρl
j+1/2 = ρ

r
j−1/2.

Remark: the above lemma, especially part 2, illustrates that starting from a hydrostatic state with the same temper-
ature, the constructed equilibrium states at both sides of acell interface have the equal temperature as well. In order
words, in the hydrostatic case, the particle interaction with the potential barrier and the particle collisions among them-
selves never alter the equilibrium temperature both sides of a cell interface. This is consistent with the second law of
thermodynamics. Otherwise, the temperature differences generated by the particle collisions could be used drive an
engine and a pure work could have been extracted from an initially isothermal system. This violates the 2nd-law of
thermodynamics.

Theorem 3.4:For a well-balanced kinetic scheme, the equilibrium distribution function must be an ”Exact Maxwellian”.
Proof In order to keep the hydrostatic solution (49) the numericalmass flux at both sides of a cell interface must be
zero.

Without losing generality, we only consider the case forφ j+1 > φ j . Since the gas must be isotropic, we can assume
the equilibrium distribution function isρ(x)G(u2) and definea =

√

2(φ j+1 − φ j), then we require

Fr
j+1/2,ρ =

∫

+∞

a
ρ jG(u2)udu+

∫ 0

−∞
ρ j+1G(u2)udu = 0, (66)

whereFr
j+1/2,ρ is the mass flux at the right side of the interface. Because of (49), we have

1
2

∫

+∞

a2
G(x)dx+ e−λa2

∫ 0

−∞
G(u2)udu = 0. (67)

Take the derivative of (67) witha2, we get

− 1
2

G(a2) − λe−λa2

∫ 0

−∞
G(u2)udu = 0. (68)

It is obvious from (68) that
G(a2) ∼ e−λa2

, (69)
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which means that the equilibrium distribution function is an exact Maxewellian distribution.

Theorem 3.5:Both the 1st-order SP-KFVS and SP-BGK schemes are well-balanced schemes.
Proof In order to prove a scheme to be a well-balanced one, we only need to verify that the scheme can keep the
hydrostatic solution (48) forever. Numerically, the initial condition for this case is given by (49) in thejth cell. At the
next time step, the above solution must be kept by the well-balanced numerical scheme, i.e.,Wn+1

j = Wn
j . From (21),

we must have
Fr

j−1/2 = F l
j+1/2. (70)

Therefore, to complete the proof, we have to show that mass fluxes (Fr,l
j+1/2,ρ), momentum fluxes (Fr,l

j+1/2,ρU) and energy

fluxes (Fr,l
j+1/2,ρE) satisfy the condition (70) respectively.

The 1st-order SP-KFVS scheme:the original distribution function at the cell interface is

f (x j+1/2, t, u, ξ) =



















g j(u), u ≥ 0,

g j+1(u), u < 0,
(71)

whereg j(u) is the Maxwellian corresponding to (ρ j , (ρU) j, (ρE) j). The proof is only a direct calculation of the fluxes
at the interface using (92) and (93) or (94) and (95) in two different cases forφ j < φ j+1 or φ j > φ j+1. Also the initial
hydrostatic condition (49) will be used. The results are thefollowings.
a. For mass flux,

F l
j+1/2,ρ = Fr

j+1/2,ρ = 0. (72)

b. For momentum flux,

F l
j+1/2,ρU = Fr

j−1/2,ρU =
ρ j

2λ
. (73)

c. For energy flux,
F l

j+1/2,ρE = Fr
j+1/2,ρE = 0. (74)

Hence, the first order 1st order SP-KFVS scheme is a well-balanced one.

The 1st order SP-BGK scheme:the original distribution function is

f (x j+1/2, t, u, ξ) =























(1− ǫ)g j(u) + ǫgl
j+1/2(u), u ≥ 0,

(1− ǫ)g j+1(u) + ǫgr
j+1/2(u), u < 0,

(75)

whereǫ is a constant between 0 and 1,g j(u) is the same as in the proof for the 1st order SP-KFVS scheme,gl
j+1/2

andgr
j+1/2 are two equilibrium states corresponding toWl

j+1/2 andWr
j+1/2 respectively. Here,Wl

j+1/2 andWr
j+1/2 are the

macroscopic variables calculated by (88) and (89) or (90) and (91) when

f j(u) = g j(u) and f j+1(u) = g j+1(u).

So, the fluxes are the linear combination of two kinds of fluxesF1 andF2 calculated by

f1 =



















g j(u), u ≥ 0,

g j+1(u), u < 0,
and f2 =























gl
j+1/2(u), u ≥ 0,

gr
j+1/2(u), u < 0,

respectively.
From the above proof for the 1st order SP-KFVS scheme, we knowthat the first kind fluxesF1 can satisfy (70)

itself. Therefore, we only need to prove thatF2 can satisfy (70), too. Note that in the proof for the 1st orderSP-KFVS
scheme, the hydrostatic initial condition is the key. But from the Lemma 3.3, we can see that the equilibrium states
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also satisfy the hydrostatic initial condition. So, similarly, we get the following results for the fluxes corresponding to
f2 from a direct calculation by using (92) and (93) or (94) and (95) in two different cases forφ j < φ j+1 or φ j > φ j+1.
a. For mass flux,

F l
j+1/2,ρ = Fr

j+1/2,ρ = 0. (76)

b. For momentum flux,

F l
j+1/2,ρU =

ρl
j+1/2

2λl
j+1/2

,

Fr
j−1/2,ρU =

ρr
j−1/2

2λr
j−1/2

.

(77)

Based on Eq.(51) and (54),
F l

j+1/2,ρU = Fr
j−1/2,ρU . (78)

c. For energy flux,
F l

j+1/2,ρE = Fr
j+1/2,ρE = 0. (79)

From all the above proofs, we can conclude that both the 1st-order SP-KFVS and SP-BGK schemes can keep the
initial hydrostatic solution forever. Therefore, they arewell-balanced schemes.

Remark: The 2nd order SP-KFVS and SP-BGK schemes are well-balanced schemes.
We use (U, λ, ρe2λφ) to do the reconstruction. All the three variables are constants when the solution is in a

hydrostatic state. So, the slopes are all zeros after using the MUSCL-type limiter. In other words, the 2nd-order
schemes go back to the 1st-order method when the solution is in hydrostatic state, which can be kept forever. Therefore,
the 2nd-order schemes are also well-balanced schemes.

6. Numerical examples

In this section, we will present numerical results of four 1-D examples by using 1st and 2nd order SP-KFVS and SP-
BGK schemes, and also a 2-D example using a 2nd-order SP-BGK scheme. Each of the examples is very sensitiveto
the accuracy of the scheme. Some of the tests run for millionsof numerical steps. If the scheme is not a well-balanced
one, the accumulation of any small numerical error would become significant for such a long time integration [10].

6.1. Shock tube under gravitational field

This case is the standard Sod test under gravitational field.The computational domain isx ∈ [0, 1] which is divided
into 100 cells. Reflection boundary condition is used on bothends. The initial condition is

ρ = 1.0,U = 0.0, p = 1.0 for x ≤ 0.5,

and
ρ = 0.125,U = 0.0, p = 0.1 for x > 0.5.

The gravitational forceG takes a valueG = −1.0 in the x-direction. So the potential jump at each cell interface
becomes

∆φ = −G∆x = 0.01.

The computational results att = 0.2 are presented in fig. 5, 6 for the density, pressure and velocity from the 1st-order
SP-KFVS, 1st and 2nd-order SP-BGK schemes. From these figures, we can find that SP-KFVS scheme has larger
numerical dissipation than that in SP-BGK scheme, and 1st-order scheme is more dissipative than 2nd-order one. The
results calculated by the 2nd order SP-BGK scheme fits the exact solution very well. Due to the gravitational force, the
density distribution inside the tube is pulled back in the negative x-direction. In some region, the flow velocity even
becomes negative.
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6.2. Isolated gravitational system with adiabatic wall

The second test case is also on a computational domainx ∈ [0, 1] with 50 cells. There are limited number of
gravitational potential jumps at locationsx = 0.21, 0.41, 0.61 and 0.81 with a large value

∆Φ = 2.0.

The initial flow distributions inside the domain has constant values of

ρ = 1.0, ρU = 0.0, andρE = 2.5.

After a long time (t = 1000), the flow distributions settle down into a piecewise constant state which are shown in
the fist picture of fig. 7, where the symbols are the numerical solutions and the solid lines are the exact hydrostatic
solutions. The velocity distributions are also shown in fig.7. For the 1st order schemes, the oscillation of velocity
around zero is on the order of 10−7. This is mainly caused by the error in numerical integrations because there is no
exact solution for most integrals in Eq.(92)-(95). In fact,the precision of numerical integration for the integrals ison
the order of 10−6 ∼ 10−7. Since the potential jumps are large and the high order scheme uses more integral evaluations,
the velocity distribution calculated by 2nd order scheme is a little bit worse than the 1st-order ones. Ifa better accuracy
can be achieved for the numerical evaluation of the integrals, the velocity error can be further reduced to machine zero.

6.3. Perturbation of the 1D isothermal equilibrium solution

This test case is from LeVeque and Bale’s paper [4]. We consider an ideal gas withγ = 1.4 on an initial isothermal
hydrostatic state,

ρ0(x) = p0(x) = e−x, andU0(x) = 0,

for x ∈ [0, 1]. Initially, the pressure is perturbed by

p(x, t = 0) = p0(x) + ηeα(x−x0)2
,

whereα = 100,x0 = 0.5 andη is the amplitude of the perturbation. The gravitational field is the same as in example
6.1. The computation is conducted with 100 grid points in thewhole domain and stops at timet = 0.25. Fig. 8, show
the results from SP-KFVS and SP-BGK schemes, where SP-KFVS has larger numerical dissipation than SP-BGK
scheme. The results calculated by the 2nd order SP-BGK scheme matches the exact solution very well.

Also in fig. 9, we show the convergency rate of our 2nd-order SP-BGK scheme, where the number of cells is N and
the error is theL∞ error. From the figures, we can conclude our 2nd-order SP-BGK scheme has a 2nd-order accuracy
even with the modeling of piecewise constant potential.

6.4. One-dimension gas falling into a fixed external potential.

This case is taken from the paper by Slyz and Prendergast [9] to investigate the numerical accuracy of the BGK
scheme. The gas is initially stationary (U = 0) and homogeneous (ρ = 1, e = 1, wheree is the internal energy). The
gravitational potential has the form of a sine wave,

φ = −φ0
L
2π

sin
2πx
L
,

whereL = 64 is the length of the computational domain andφ0 = 0.02. The ratio of the specific heatγ = 5/3. The
periodic boundary conditions are implemented in this system. Simulation results are presented with∆x = 1 and at the
output timet = 250000 (more than 500000 time steps). After the initial transition, the system is expected to reach an
isothermal hydrostatic distribution, where the temperature settles to a constant with zero velocity, i.e.,

T(x, t) = T0, andU = 0.

The velocity and temperature distributions computed by different symplecticity preserving schemes are shown in
fig. 11, 12. The numerical error is smaller than that in [10]. Moreover, the results can be further improved if a better
numerical integration for the integral evaluation can be adopted.
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6.5. Rayleigh-Taylor instability.

This test case also comes from [4]. Consider an isothermal equilibrium idea gas (γ = 1.4) in a 2D polar coordinate
(r, θ),

ρ0(r) = e−α(r+r0), p0(r) =
1.5
α

e−α(r+r0), U0 = 0,

where


















α = 2.68, r0 = 0.258 forr ≤ r1,

α = 5.53, r0 = −0.308 forr > r1,
and



















r1 = 0.6(1+ 0.02 cos(20θ)) for density,

r1 = 0.62324965 forpressure,

The potential satisfies−∇φ(r) = 1.5. The time evolutions of the density distributions at timest = 0, 0.8, 1.4 and 2.0
are shown in fig. 13. Fig. 14 shows a scatter plot of the densityas a function of the radius. These figures clearly show
that the hydrostatic solution can be well kept and the flow motion is limited around the unstable interface.

7. Conclusion

In this paper, based on the Liouville’s theorem and symplecticity-preserving property of a Hamiltonian flow, a
well-balanced gas-kinetic BGK scheme (SP-BGK) has been developed for a hydrodynamic system under gravitational
field with the modeling of piecewise constant potentials. Asshown in the paper, in order to design such a scheme, the
equilibrium state used has to be an exact Maxwellian distribution function. At the same time, the physical mechanism
of particle transport across a potential barrier has to be explicitly followed in the equilibrium states modeling and
the flux evaluation. As far as we know, the method presented inthis paper is the first exact well-balanced scheme
for the Navier-Stokes equations under gravitational field.At the same time, the particle transport mechanism across
a potential jump in the current kinetic formulation followsthe physical principles closely, which is valid under any
general physical situation. Both the shock capturing and well-balanced properties are automatically obtained under the
corresponding physical conditions. Mathematically, it has been proved that the SP-BGK method is a well-balanced
scheme which could keep the hydrostatic state forever. In this paper, the design of the well-balanced scheme comes
from the first principles of physics, instead of using the well-balanced condition as the starting point in the design of
such a scheme.
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Appendix

Formulae in the two-dimensional case:

1. Equilibrium states
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Case 1.φ j < φ j+1, defineUc =
√

2(φ j+1 − φ j).

Wl
j+1/2 =

∫∫∫

+∞
0

f j(x j+1/2, 0, u, v, ξ)





























1
u
v

1
2(u2
+ v2
+ ξ2)





























dudvdξ

+

∫∫∫ Uc

0
f j(x j+1/2, 0, u, v, ξ)





























1
−u
v

1
2(u2
+ ξ2)





























dudvdξ

+

∫∫∫ 0

−∞ f j+1(x j+1/2, 0, u, v, ξ)













































− u√
u2+v2+U2

c

u
− uv√

u2+U2
c

1
2(−u

√

u2 + U2
c − uv2√

u2+U2
c

− u√
u2+U2

c

ξ2)













































dudvdξ.

(80)

Wr
j+1/2 =

∫∫∫

+∞
Uc

f j(x j+1/2, 0, u, v, ξ)













































u√
u2−U2

c

u
uv√

u2−U2
c

1
2(u
√

u2 − U2
c +

uv2√
u2−U2

c

+
u√

u2−U2
c

ξ2)













































dudvdξ

+

∫∫∫ 0

−∞ f j+1(x j+1/2, 0, u, v, ξ)





























1
u
v

1
2(u2
+ v2
+ ξ2)





























dudvdξ.

(81)

Case 2.φ j > φ j+1, defineUc =
√

2(φ j − φ j+1).

Wl
j+1/2 =

∫∫∫

+∞
0

f j(x j+1/2, 0, u, ξ)





























1
u
v

1
2(u2
+ v2
+ ξ2)





























dudvdξ

+

∫∫∫ −Uc

−∞ f j+1(x j+1/2, 0, u, ξ)













































− u√
u2−U2

c

u
− uv√

u2−U2
c

1
2(−u

√

u2 − U2
c − uv2√

u2−U2
c

− u√
u2−U2

c

ξ2)













































dudvdξ.

(82)
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Wr
j+1/2 =

∫∫∫

+∞
0

f j(x j+1/2, 0, u, ξ)













































u√
u2+U2

c

u
uv√

u2+U2
c

1
2(u
√

u2 + U2
c +

uv2√
u2+U2

c

+
u√

u2+U2
c

ξ2)













































dudvdξ

+

∫∫∫ 0

−Uc
f j+1(x j+1/2, 0, u, ξ)





























1
−u
v

1
2(u2
+ v2
+ ξ2)





























dudvdξ

+

∫∫∫ 0

−∞ f j+1(x j+1/2, 0, u, ξ)





























1
u
v

1
2(u2
+ v2
+ ξ2)





























dudvdξ.

(83)

2. Fluxes

Case 1.φ j < φ j+1, defineUc =
√

2(φ j+1 − φ j).

F l
j+1/2(t) =

∫∫∫

+∞
0

f j(x j+1/2, t, u, ξ)





























u
u2

uv
1
2(u3
+ uv2

+ uξ2)





























dudvdξ

+

∫∫∫ Uc

0
f j(x j+1/2, t, u, ξ)





























−u
u2

−uv
1
2(−u3 − uv2 − uξ2)





























dudvdξ

+

∫∫∫ 0

−∞ f j+1(x j+1/2, t, u, ξ)































u
−u
√

u2 + U2
c

uv
1
2(u(u2

+ U2
c) + uv2

+ uξ2)































dudvdξ.

(84)

Fr
j+1/2(t) =

∫∫∫

+∞
Uc

f j(x j+1/2, t, u, ξ)































u
u
√

u2 − U2
c

uv
1
2(u(u2 − U2

c) + uv2
+ uξ2)































dudvdξ

+

∫∫∫ 0
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Case 2.φ j > φ j+1, defineUc =
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Formulae in the one-dimensional case:

1. Equilibrium states:

Case 1.φ j < φ j+1, defineUc =
√

2(φ j+1 − φ j).
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Case 2.φ j > φ j+1, defineUc =
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2(φ j − φ j+1).
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2. Fluxes:

Case 1.φ j < φ j+1, defineUc =
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2(φ j+1 − φ j).
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Case 2.φ j > φ j+1, defineUc =
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2(φ j − φ j+1).
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Remarks on the integral evaluation: in the above formulae, there are many integrals which can notbe analytically

evaluated, e.g.,
∫ 0

−∞ f j+1(− u√
u2+U2

c

)du. Therefore, a numerical integration method in [7] has been used.
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Figure 1:Reconstruction of the conservative variables at the cell interface.

Figure 2: The modeling of the initial and equilibrium distribution functions at the cell interface for the BGK scheme without external forcing field.

Figure 3:The particles’ movement at the interface with potential jump φ j < φ j+1.
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Figure 4: The modeling of the initial and equilibrium distribution functions at the cell interface for the SP-BGK schemewith a potential jump at
the cell interface.
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Figure 5:Density distributions for the shock tube problem under gravitational field.
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Figure 6:Pressure and velocity distributions for the shock tube problem under gravitational field.
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Figure 7:The first figure shows the Density, pressure and velocity distributions calculated by 2nd order SP-BGK for isolated gravi-
tational system with adiabatic wall. Other figures are velocity distributions in this test case.
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Figure 8:Perturbation of pressure on an isothermal equilibrium solution. Left: η = 0.01; right:η = 0.001.
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Figure 9:Convergency rate of the 2nd-order SP-BGK scheme for perturbation of pressure on an isothermal equilibrium solution with
η = 0.01 on the left figure, andη = 0.001 on the right figure.
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Figure 10:Density distribution calculated by 2nd-order SP-BGK for gas falling into a fixed external potentialin 1-D case.
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∫ 0

−∞ g(u)(− u√
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)du, where there is no analytic solution.
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Figure 12:Temperature distributions for gas falling into a fixed external potential in 1-D case.

Figure 13:Rayleigh-Taylor instability with gravitational field directed radially inward. Density contours at timet = 0, 0.8,1.4, 2.0
are shown in the four quadrants, starting with the initial data in the upper right corner and progressing clockwise.
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Density scatter at t=0
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Density scatter at t=2.0
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Figure 14:Scatter plots of the density in the cell vs. the distance of the cell center from the origin.

31


	1 Introduction
	2 Particle transport mechanism across a potential barrier
	3 A review of gas-kinetic BGK-NS scheme without external forcing field
	4 The symplecticity preserving BGK(SP-BGK) scheme
	4.1 The initial data reconstruction
	4.2 The gas-kinetic SP-BGK scheme
	4.3 Limiting Cases

	5 Theoretical analysis
	6 Numerical examples
	6.1 Shock tube under gravitational field
	6.2 Isolated gravitational system with adiabatic wall
	6.3 Perturbation of the 1D isothermal equilibrium solution
	6.4 One-dimension gas falling into a fixed external potential.
	6.5 Rayleigh-Taylor instability.

	7 Conclusion

