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Abstract

A well-balanced scheme for a gravitational hydrodynamitem is defined as a scheme which could precisely
preserve a hydrostatic isothermal solution. In this paperwill construct a well-balanced gas-kinetic sympletyici
preserving BGK (SP-BGK) scheme. In order to develop suchhamse, we model the gravitational potential as a
piecewise step function with a potential jump at the cekiface. At the same time, the Liouville’s theorem and
symplecticity preserving property of a Hamiltonian flow baween used in the description of particles penetration,
reflection, and deformation through a potential barriere Tike of the symplecticity preserving property for a Hamil-
tonian flow is crucial in the evaluation of the high-order manmts of a gas distribution function when crossing through
a potential jump. As far as we know, the SP-BGK method is thst $inock capturing Navier-Stokes flow solver with
well-balanced property for a gravitational hydrodynamjstem. A few theorems will be proved for this scheme,
which include the necessity to use an exact Maxwellian fepkeg the hydrostatic state, the total mass and energy
(the sum of kinetic, thermal, and gravitational ones) coret®on, and the well-balanced property to keep a hydro-
static state during particle transport and collision psses. Many numerical examples will be presented to validate
the SP-BGK scheme.

Key Words:gas-kinetic scheme, hydrodynamic equations, gravitatipatential, symplecticity preserving, well-
balanced scheme.

1. Introduction
Generally, flow equations with source terms can be written as
Ui+V-FU) =S, (1)

whereU is the vector of conservative flow variables with correspogdluxesF(U) andS is the source term. For a
gas flow under an external time-independent gravitatioe#d fthere exists a special solution, i.e., the hydrostatic
well-balanced equilibrium solution with a constant tengtere and zero fluid velocity. This solution is an intrinsic
solution due to the balance between the flux gradient anctederm, i.e.,

V.FU)=S. )

In order to capture the physical solution for a slowly evotyigravitational hydrodynamic system, the numerical
scheme has to be a well-balanced one in keeping the hydoostéition in the special situation, and has the shock
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capturing property in the general case. Theoreticallyedtnss that to design a well-balanced shock capturing scheme
for the gravitational hydrodynamic system is much mof@diilt than that for the shallow water equations.

There have been many attempts to construct well-balancedig@amic codes which preserve the hydrostatic
solution ([4, 15, 2]). The schemes In [4] 15, 2] are desigrestd on the condition EQI(2), such as to explicitly enforce
this balance even for the updated non-hydrostatic solutleen use the re-balanced quantities in the evaluation of
fluxes in the next time step. However, for a transient flow,uke of Eq[(R) directly in the design of the numerical
scheme may be problematic, because in general casé Equ@)satisfied in a physical evolution process, especially
for flow around discontinuities. So, our aim of this paperasiesign a scheme with correct particle transport and
collision across a potential barrier, which will automatig becomes a well-balanced one when the solution issettli
down to the hydrostatic one. But, the scheme is still aceuratapturing any general gas evolution process.

In the past years, a gas-kinetic BGK scheme has been sudgibessiveloped for compressible Euler and Navier-
Stokes equations without gravitational field ([11, 12]).€Trhain part of the BGK scheme is to find a gas distribution
function f at a cell interface. Physically, the inclusion of gravibathl efect is only to change the particle trajectory.
Therefore, it should have no mucHiitulty for the gas-kinetic scheme to include the gravitadiaftect in the modifi-
cation of the time evolution of a gas distribution functitbindugh the particle acceleration and deceleration presess
Along this line, the gas kinetic scheme (GKS) has been exigtala gravitational systern |10], which much improved
the solution in comparison with operator splitting methétbwever, mathematically, the use of a piecewise linear
gravitational potential makes the exact solution compéidaand a simplification of the numerical scheme.in [10] can
not keep a precise well-balanced solution. Therefore,¢herme presented in [10] is not a well-balanced one.

In this paper, in order to design a precise well-balance@mmehwe are going to approximate the gravitational
potential as a piecewise constant function inside eachwitl a potential jump at the cell interface. The detailed
particle transport process across a potential barrierheilfollowed. In the construction of such a scheme, the use
of the symplecticity property of a Hamiltonian flow and theouville’s theorem becomes important in the correct
description of particle penetration, reflection, and defation processes across a potential barrier. In a previapsrp
[14], following the approach of Perthame and Simeoni forghellow water equations![6], a well-balanced kinetic
flux vector splitting scheme for gravitational Euler eqoas has been developed. However, in the above approach,
only a few simple moments of a gas distribution function azeded, and these simple moments can be intuitively
guessed instead of derived with a solid physical and mattieahéoundation. In order to extend the above scheme to
high-order accuracy and to solve the gravitational NS equsta gas-kinetic BGK model with both particle transport
and collision has to be solved. In designing such a schemehmore high-order moments of a gas distribution
function have to be evaluated after the interaction with &ipkal barrier. It becomes much harder to construct them
intuitively. Furthermore, to model the particle transpaltis collision processes through a potential barrier istmuc
more challenging than that in the collision-less case. kangple, around a potential jump at a cell interface, a mialtip
equilibrium states have to be constructed on both sideswhaj In the construction of such an equilibrium state for
the BGK model, the second law of thermodynamics has to bsfieati

The paper is organized as follows. In seciidn 2, we will pnésee basic physical principles about the particle
interaction with a potential barrier. The symplectic pipie plays an important role in the design of the well-bakhc
scheme. Sectidd 3 gives a brief review of the previous BGkesehwithout external forcing field. Sectioh 4 presents
particle transport mechanism and the construction of a #etipity preserving BGK for the gravitational gas dynamic
system. Sectiol] 5 is about the theoretical analysis of theraes, such as the necessity of using an exact Maxwellian
and the well-balanced property. Sectidn 6 shows the nualeeists. The last section is the conclusion.

2. Particle transport mechanism across a potential barrier

In this paper, the gravitational potentiglis modeled as a piecewise constant function. Within jth-cell and

#j+1 in (j + 1)th cell, there exists a potential jump at the cell interfage, Agj.1/2 = @jr1 — ¢j. Now what we need

to figure out is the #ect on an initial gas distribution function next to the patainbarrier when the particles move
towards the barrier. The associated physical process beuldflection or penetration of the particles from the barrie
What we have to evaluate is the relationship between the mtzoé the gas distribution functions before and after
interaction with the potential barrier. Since all partickere located next to the potential jump, the modification of
the particle distribution function happens instantly. fgfere, once a time-dependent gas distribution functiod ne
to the potential barrier is given, the corresponding distiion after particle collision with the potential barrzan be
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evaluated at that moment. Since the potential jump ofigcgs normal velocity and its moments, so in this section we
only consider distribution functions with 1-D velocity. &@mesults obtained in this section will be used in this paper
many times on the construction of symplecticity-preseg\dgoheme.

For an initial gas distribution functioh(u) next to a potential barrier and these particles impactéultive potential
jump, the particle velocity changes tar, and the distribution function becomé&r). We are going to use the
following three physical principles to find the relationween the velocity moments d{u’) and f ().

a. Hamiltonian preserving property: the Hamiltonian functiond of a particle keeps a constant, where

H = 507 + 6. 3)

This is actually the energy conservation for a particle nmoset under a conservative potential field. Since we only
consider the interaction of a particle with a potential karat an instant of time, there are no collisions between
particles. Therefore, the energy conservation for indigigarticle is precisely conserved, i.e.,

1 2 _ 1 N2 ’

SWHo= S+, @)
from which the relation betweamandu’ can be obtained.

b. Liouville’s theorem: the probability density of a particle in phase space keepgrstant along its movement
trajectory,

(W) = f(u). (5)

In other words, the particle isn’t lost or created duringrntpact with the potential.
c. The symplecticity preserving property. for a Hamiltonian phase flow, we have

ffD,dXdu’szDdxdu, (6)

whereD’ andD are the phase volume on the trajectory of the Hamiltonias@lflaw.
During the impact of the particles with the potential batrnee can specially chood® = (uz, Up) x (uty, uty), then
D’ = (U}, u,) X (U'ty, U'ty) sinceD andD’ are on the trajectory of the same particle. Therefore[Jrggés to

U, Up
f u'du’ = f udu. @)
u Up

1

This relationship will be the most important one in the constion of the moments between betwegfu’) and
f(u). Therefore, the developed scheme in the present papehwhbes this relationship will be called symplecticity-
preserving scheme.

With the above three physical principles, we can derive éhationship between theth-order velocity moments
of f(u) and that off (u). From [5) and[{l7), we have

fu * fuudy = fu 1uz f(u)udu (8)

1

Moreover, [B) tells us that’ is a function ofu, i.e., W = W (u). So, combining with[{(8), we can get a general
formulation,

w, Uy
nth-orderu moment= f fU)(W)"du' = f f(u)(U'(u)" tudu, 9)
Uy Uy
which connects the moments of the distribution functior®tgeand after impacting with a potential barrier at an
instant of time. The above distribution function can represghe portion of particles which are reflected or penatrate
at the barrier.



3. Areview of gas-kinetic BGK-NS scheme without external freing field
The BGK equation without external forcing field in 2-D is

fadvi=97" (10)
T

wheref is the gas distribution function anglis the equilibrium state approached byV f is the gradient off with
respect taX, X = (x,y), andd = (u, V) is the particle velocity. The particle collision times related to the viscosity
and heat conduction cfiicients, i.e.r = u/p whereu is the dynamic viscosity cdiécient andp is the pressure. The
relation between mags momentumgU, pV), and energyE densities with the distribution functiohis

P
’;3 =ff v fdudvdz, (11)
pE

where 1
¥ = (1 ¥, 3, 0a)" = (Lu,V, E(Uz +V + &),

dé = dé1dé,...dék, and K is the number of degrees of internal freedom, Ke=, (4 — 2y)/(y — 1) for 2-D flow. Since
mass, momentum, and energy are conserved during partitikats, f andg satisfy the conservation constraint,

ff (g — fy,dudvdé = 0, a=1234 (12)

at any point in space and time. The integral solutiori_of (0) i
t
F(R1,0,8) = - f g%, v, 0 )e O/ dt + VT fo(X - Ut U, &), (13)
T Jo

wherex' = X - i(t - ') is the particle trajectory. The solutidnin (I3) solely depends on the modelingfafandg.
For a finite volume scheme, we need to evaluate the fluxessa| interface in order to update the cell averaged
conservative flow variables. In the BGK scheme, the fluxeslafimed by

F,
';PU = f f f uy f dudvdé, (14)
oV
Foe

which depends on the gas distribution functioim Eq.(13) at the cell interface. Let’s consider the constan of the
distribution function at the cell interfacg.1/2 = (Xj+1/2, Vi), whereX|. 1> is the location of the cell interface center in
the physical domain. Locally, around this cell interfacéhwhe assumption of the x-direction as the normal directio
and y-direction as the tangential direction, based on thK B®del a solution in this local coordinate can be obtained.

By using the MUSCL-type limiter, a discontinuous reconstien of the macroscopic flow variables can be ob-
tained around the cell interface (seelfig.1). The initial dissribution functionfy in (I3) on both sides of a cell
interface can be constructed as

f)(X 0,8 = gh(L+a (X — Xjs172) + By —y) —r@u+bv+ A)), X< X172,
(15)
f(X 0,&) = go(1+ a' (X = Xj1/2) + B (y - yi) — r(@u+ b'v+ A)), X> Xju1/2,

where the Chapman-Enskog expansion up to the Navier-Stolles has been used in the above initial reconstruction.
Hereg'O andgj are the corresponding Maxwellians\td = (o, (0U)1, (0V)1, (0E)) andW' = (or, (0U)r, (0V)r, (0E)r)



at both sides of the interface. The Maxwellian distributionction corresponding t&/ = (p, (oU), (0V), (0E)) has
the form

K+2
2

g= p(i) AUV (16)
/8

where is equal tom/2kT, mis the molecular masg is the Boltzmann constant, afidis the temperature. The
equilibrium distribution functions around the cell intece can be modeled as

| =l —|
gl(x t, lj, 5) = g|j+1/2(1 + aI(X - Xj+1/2) +b (y - yl) + Alt)» X< Xj+1/2»
17)

gr(x t, d’ f) = grj+1/2(1 + ér(X - Xj+1/2) + Br (y - yl) + Krt)’ X> Xj+1/2-

In the case without external forcing terlgﬁ,ﬂ/2 andggﬂ/2 in the above equation are the same distribution functions,
ie., g|j+1/2 =g, (see fid.P), which can be obtained using the conservatiost@int [12) atX = Xj.1,2 andt — 0,

JII g|j+1/2¢dUdVd§ =[If 0] ,q/0dudvdé = Wi,

= fffu>0 f(l)()?jJr]_/z, lj, f)l//dUdVdf + fffu<0 fé ()?j+1/2, lj, f)l//dUdVdf

Therefore, at the cell interface the final distribution ftior can be fully determined using the integral solution)(13
The final distribution function can be written as

f ()?j+1/29 t7 ljy f)
{ f'(Ksy2 .0, 8)  ux0,

f'(Xjr1/2, 1,0, &) u<o, (19)

(18)

1 fot 0 (Kjr12 — Ot - t),0, 0, &)e D dt + eV fl(Kjp2 -0, u>0,

t ’ —(t=t)/T4t —t/T
3 [ (Kiraz — Ut - 1),t, 0, eV rdt + e (K12 - 0Uf),  u<0O,
which can be used to evaluate the fluxes

F=+1/2(t) = FE+1/2(t)

(20)
= fffu>0 uf'(Xjs1/2, t, O, &)wdudvde + fffu<0 uf" (Xjs1/2, t, O, E)ydudvdé.
The update of the cell averaged conservative variablesheso
1 1 the1 | 1 the1 |
W™= Wi+ E(ft [Fgfl/z(t) - Fj+1/2(t)] dt+ A_yft [Fir—l/z(t) - Fi+l/2(t)] dt, (21)

WhereF'jfl/z(t) F{H/Z(t) are the fluxes at the center of the cell interfaces.
The definitions and constructions of all parameters relaig@le spatial and temporal slopes, suclagsandA,
can be found in [11] and [12].
In summary, at the cell interfacg, 1> we can construct the equilibrium distribution functicgjgu2 andd’,;,
from initial distribution f) and f{. Also, we can find fluxe§|,; ,(t) and Fi,1/2(0) from the integral solutiorf' and
f'. Without external forcing field, all the particles runningo the cell interface can freely cross it. Therefore,
the equilibrium states and fluxes at the interface have eniglues, i.e.g'jﬂ/2 = 93+1/2 and F|j+l/2(t) = F]fﬂ/z(t).
However, with the approximation of constant potentialdieseach cell and a potential jump at the cell interface, the
modeling of equilibrium statg around a cell interface has to be considered separatelyftaratit sides of the cell
interface, whereg'j+1/2 # 0j,1,» in general case. But, the mathematical formulae describgil4) and the integral
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solution in Eq[(IP) can be still used. One of the main reasoithie validity of the integral solution is that there is no
gravitational force inside each cell. However, the cortdtom of the equilibrium states and the calculation of fluxes
will not be as simple as that i (IL8) arid(20). In the evaluatbthe equilibrium states and the fluxes, the physical
principles for the particle transport discussed in thedastion have to be used. In the next section, the deterrmaimati
of g and fluxes will be described.

4. The symplecticity preserving BGK(SP-BGK) scheme

In this section, we will construct a well-balanced gas-kinecheme for hydrodynamic equations under gravita-
tional field. In order to clarify the concepts, we are goingise a similar procedure as that of the construction of the
BGK-NS scheme without external forcing field.

4.1. The initial data reconstruction
For a hydrostatic solution, the flow variables satisfy theditions,

U =0,V =0, 1= constant Ba= constant (22)

whereBa = pe'. In order to avoid introducing errors in the initial recanstion for the hydrostatic case, it is
reasonable to use the variablés ¥, A, Ba) in the reconstruction. More specifically, we firstly appli& SCL-type
limiter to reconstruct the slopes di(V, A, Ba), i.e., Su, Sv, S,, Sg,) inside each cell. Since

2
E= 2,2 K+
p= e2/1¢ . P 2;O(U +V%) + P
we can get the corresponding slopes for other flow variables,

1
Sy = e21¢ Sea— 20051, Spu = SpU + pSu, Spv = SpV +pSv,

1 K 2
Sy = [5U7+V2) + K+2ls plusy+vs, - & AL

where §,, S,u, Syv. Sye) are the slopes op( pU, p\/, pE) inside that cell. Therefore, we can reconstruciqU, pV, pE)
in each cell using their cell averaged quantities and theabtwpes. Here, all slopes become zeros when the initial
flow is in a hydrostatic state, and the reconstruction witlintroduce numerical errors. In the general case, the above
reconstruction works as well.

4.2. The gas-kinetic SP-BGK scheme

With the modeling of piecewise constant gravitational ptitd inside each cell, i.e¢; inside thejth cell, there
is a potential jump at the cell interfadg.1/». It is obvious that the distribution functiohalso satisfies the equation
(I10) inside each cell since there is no external forcing tierside each cell. Therefore, the similar framework used
in the constructing BGK-NS scheme can be extended here tgrdéee SP-BGK scheme with gravitational field.
For example, with the initial reconstruction, the non-déiQuum states around each cell interface can be obtained.
Also, due to the potential jump, the equilibrium states dféetent in the left and right hand sides of the interface,
but the integral solution of the BGK model can be still usethiaconstruction of the local solution separately around
the cell interface. However, at the cell interface, we havednsider the féect of the potential jump on the particle
movement. Since the equilibrium statg%,l/2 andg,, ,, and the quxesI,:'+1/2(t) and F,+1/2(t) involve the particle
interaction with the potential jump, we will show thg\gt_w2 # i1, INEQ. 1) (see figl4), anEHl/Z(t) # FJ+1/2(t) in
the general case. Their determination depends on the lparanisport modeling. The potential jump gives a critical
speedU; = +/2|¢j — ¢j.1], which provides a threshold for the particle movement. Bseaof the potential jump, not
all particles running into the cell interface could go thgbdreely. Some may be reflected due to less kinetic energy to
overcome the potential barrier (seelflg.3). For these pastigassing through the cell interface, their momentum and
energy need to be modified due to particle acceleration gtini@ transport process.
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Without losing generality, we only discuss the cas@pk ¢j.1 in this subsection. Using similar methods and
ideas, all the formulae for the cage > ¢;.1 can be easily obtained. Let's assume the initial recontdugas
distribution at a cell interface before the interactionhathie potential jump is

fi(Xjs12, t, 0,6, u=0,

f()?j+l/2, t, U’ é‘:) = { (23)
fj+1()?j+1/2, t,0,8), u<DO.

Starting from the above distribution function, the pa#icbllision with the potential jump changes distribution
functions tofj'+1/2(t, ad, &) and fj'+1/2(t, a4, £) at the left and right hand sides of the cell interface respely, which can
be represented as

fi(Xjs12, £, 0,6,  u>0,
fj|+1/z(t’ 0,é) = f~i(>?j+1/2, t,d, &), O>u>-Ug, (24)

fjJrl()?jJrl/z, t,d,8), us<-Ug,
and _
fj()?jJrl/Z, t,d, f), u=>0,
fjr+1/2(t’ g, f) = { (25)
fj+1()?j+1/2, t,0,8), u<O.

The definition of the above distribution functions is frone tollowing physical consideration (see ffig.3). Because
the potential jump is only at the normal direction of the delerface, it only &ects the normal particle velocity,

In (24), ﬂ is the distribution function of the reflected particle in thik cell with the original distribution function

f; which has a positive particle velocity less thidn Here?j+l is the distribution function of the particle in thjeh

cell coming from the | + 1)th cell with the original distribution functiorfj,; with negative particle velocity. This
particle has been accelerated in the negative normal direafter passing through the cell interface. Alip,is the
distribution function of the particle in thg ¢ 1)th cell coming from thejth cell with the original distribution function

f; and positive velocity higher thad.. This particle has been be decelerated in the positive ratirection after
passing through the cell interface. Therefore, tfiect of the potential jump modifies the distribution functibat the
particle velocity moments of the modified distribution ftina and the original ones are related through the physical
principles which have been introduced in secfibn 2.

Here, we will show the procedure of the SP-BGK scheme firet ttiarify the detailed derivation of the formulae
for equilibrium states and fluxes.

Using particle free transport mechanism in Eg.(13) for il gas distribution functiotf, i.e., fj(Xj.1/2, t, 0. &) =
f(')(>?1+1/2 — 0t 0,&) and fj,1(Xj11/2,1, 0, &) = f{(Xj41/2 — UL, U, &), and due to their interaction with the potential jump,
the initial condition will be changed according to Eql(24pd25), from which two sets of conservative variables at
different sides of the cell interface can be obtained,

\N}Jrl/Z = ffﬁ):o fj|+1/2(t =0, d, &)ydudvé
= 11 fi(Risajz t = 0,0 &)pdu+ [[[7, fi(Risajo,t = 0,0, &)ydudvas (26)

+ fff_::C ?j+1()?j+1/2»t =0, 0, &)ydudvds,
and
Wi = fff:o fl,12(t = 0,0, &)ydudvé
(27)
= [ F | (Risnjz.t = 0.0, Eyduavdé + [[[° fiua(Risazs t = 0, 0, &ydudva,

from which, two Maxwelliang‘;]',rl/2 andd|,, , in the equilibrium state§ (17) can be fully determined. THeliowing
the method used in the development of BGK-NS scheme [12}irthkgas distribution at the left and right hand sides of
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acell interface, i.e.f' andf" in (I9), can be obtained. When choosing the integral salstas the original distribution
functions, i.e.,fj(Xji1/2, 1,0, &) = f'(>?j+1/2, t,0,¢&) and fj,1(Xjr12, 1, 0,8) = f'(Xj+1/2, 1,0, &), and considering their
interactions with the potential jump, these distributiandtions will be modified as E@.(R4) arid{25), from which the
corresponding fluxes atftierent sides of the cell interface can be determined,

F5+1/z(t) = fff:: Ufjl+1/2(t» d, &)ydudvde
= fffom ufij(Xj+1/2, t, U, E)ydu + ff_ouc ufj(Rjs1/2,t. U, €)wdudvdé (28)

+ fff_jc U?j+1()?j+1/2, t, 0, &)ydudvde,

and
Fle® = fff:o ufl,q/o(t. 0. £)yrdudvds
(29)
= [ UF(Rira/2.t, O E)pduavdé + [ (12 ufia(Riens2,t, 0 Oydudvee.

Note that due to the potential jump, in general we fglve, # df,, , andF},, , # F! , .. Finally, we can usé(21) to
update the cell averaged conservative variables.

In the above formulad (26), (R7]._(28) and](29), we need totfiechth order velocity moments of the modified
distribution functions,ﬂ-, ?Hl and?j, which can be evaluated from the moments of the originatitigion funcions
f;, fj.1 and f; respectively by[(0). Let's figure out how to evaluate ttik order normal velocity moments df(u),

f i 1(u) andf;(u).
a. The nth-order normal velocity moments of f;

Recall thatﬂ- is the distribution function of the reflected particle in tjtle cell. Assume that the normal particle
velocity isu before the reflection, and the distribution of the partiaédoe reflection isfj(u) with 0 < u < U¢. After
the reflection, its velocity becomesandu’ = —u, for these particles 19) gives

0 . 0 Uc
iuc f(u)(U)"du’ = fuc f (U)u(-u)"*du =f0 fj(u)(—1)"u"du. (30)

b. The nth-order normal velocity moments of?j+1

f 1 is the distribution function of the particle in thh cell coming from the [+ 1)th cell. Its distribution function
before crossing the potential jumpfis.. with normal velocityu < 0. After passing through the interface, the normal
velocity changes from to u’, whereu andu’ are related by the Hamiltonian preserving property, i.e.,

1 1
EUZ +t @i = E(U )2+ ¢j.

So,u = — /U2 + UZ, Eq.[9) gives

—-Uc 0
f fia(W)W)du = f fir1(U)(- 1) tu(u? + UA)D2qy, (31)

00

c. The nth-order normal velocity moments of?j

Tj is the distribution function of the particle in th¢+€ 1)th cell coming from thejth cell. Its distribution function

before passing through the potential jumgd;isvith normal velocityu > U.. After passing through the cell interface,
the normal velocity changes td. The relation betweenandu’ becomes

1 1,
EUZ + ¢J = E(U )2 + ¢j+]_.
So,u’ = 4/(u)2 - U2, Eq.[9) deduces
+00 +00
fo f(u)(u)"du = fu f;(uyu(u® — U2)2dy, (32)
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Based on the above moment evaluations, we can get the fcerfmna’N}ﬂ/z, er+1/2- F|j+l/2(t) and FE+1/z(t) by

(26)- (32) for the case; < ¢j.1. The formulae for the casg > ¢;.1 can be found similarly. All the formulae are
given in the appendix for both 1-D and 2-D cases. TherefoeeSIP-BGK scheme is presented.

4.3. Limiting Cases

a. The 1st order SP-BGK scheme
When all the slopes in the reconstruction are zeros, antbaksa, b andA of the distribution function in{15) and
(I2) become zeros, the SP-BGK scheme becomes a 1st orderescNew, the distribution function ifi.(13) becomes

(1-e")gj,,+ € ux0,
f()?j+l/29 t7 u» f) =
(1- e‘t/T)g;+l/2 +eVTgl, u<O.

Or, with the definition of a small parameteri.e., 0< ¢ < 1, the distribution function becomes

(1- s)gljJrl/z + Sg:), u>0,
f(Xjr12, 1,0, &) = (33)
(1-8)d,10+8%% U<O,

which is called the 1st-order SP-BGK scheme.

b. The SP-KFVS scheme
When the collision time goes to+oo, the distribution function in (19) becomes

f'(Rjs1/2,1,0,6) u>0,
f(Xji1/2, 1, 0,8) =
f'(Xjr1/2, 1, G, &) u<o,
(34)

f(l)()?j+1/2 — at), u=0,
f(;()?j+l/2 - ljt), u<o0.

The above solution solely comes from free transport ancetieeno contribution of the equilibrium statgsn the
integral solutionf. It equals to solve
ft +0-Vf=0

directly when the initial distribution function is modeled [15). In other words, we don't consider particle collisio
here, and needn’t to model the equilibrium distributiondiion g in (I4). This is exactly the same scheme introduced
in [14], which is called SP-KFVS scheme. It is actually a limj case of the SP-BGK scheme.

In this section, with the assumption of piecewise constaatitational potential, a SP-BGK scheme is presented.
As will be presented in the next section, the SP-BGK scheraensll-balanced scheme for the gravitational hydro-
dynamic system. This is the first well-balanced scheme, lvhits the shock capturing property as well in the general
case.

5. Theoretical analysis

For simplicity, we are going to prove all the theorems in the tase. But all the conclusions still hold for higher
dimensions as well, because there is no dynantferdince in higher dimensions when the potential jump is neatlel
as a piecewise constant function.



In the current scheme, the updated flow variables inside eglthre the mass, momentum, and energy densities
(kinetic + thermal ones). The gravitational energy is not explicitigluded. However, for an isolated gravitational
system, the total energy (kineticthermal+ gravitational ones) conservation is a necessary conditionder to get
a correct physical solution. In the following theorem, we going first to prove that the conservation of total energy
in the current kinetic scheme is satisfied.
Theorem 3.1: The SP-KFVS and SP-BGK schemes are mass and total energgreatige schemes.
Proof The only diference between the SP-KFVS and SP-BGK schemes is that theydifi@rent original distri-
bution functionsf;(u) and f;,1(u). However, whatevef;(u) and f;.1(u) are, the mass and total energy are conserved
when the fluxes are calculated hy92) ahd (93)at (94) Bndi(P#)e appendix. The concept of conservation of a
variable means that the change of that variable in any fixedadlo depends only on the fluxes across the interfaces
of that control volume. In the following proof, we assume tintrol volume consists of many cells between the
cell indexK; andK;, whereK; < K. Then, we need to prove that the change of the mass and taag\eim the
control volume depends only on the fluxes at the interfages » andx,.1,2. Without losing generality, we assume
@i < ¢j+1 everywhere.
Mass conservation:

For mass, in each cell we have

1 the1
1 I
P =R N [Fi 120 = Flaa|dt (35)
whereFL'l/zp are the mass fluxes. The total mass in the control vqunZ;%(jEpj, and
1_ thet

Zl KlpT+ Z] KlpJ ij; Z] Kl[ ;l/2,p j+1/2p]dt (36)

From [92) and[{93), we have
|
I:iJrl/Z,p

= [ fi(wududg - [ [ f(wududz + [ 7 fj,1(u)ududs
(37)

= [ [ fiwududg + [ [ fjea(udud

— r
- l:J'Jrl/Z,p'

Therefore, from[(36) and (87),
K. T
ZJzKl'OTJrl Zl KlpJ 1 ’ [FrKl 1/2,p F:<2+1/2p] dt, (38)

which gives the mass conservation in the computatlonal doma
Total energy conservation:
The kinetic energy and thermal energy, ik, is updated by

tn+—1
(B = (oE)) + = f [F e — Floaae] (39)
WhereF;+'l 2, € are the fluxes gbE. Because the external potentigils independent of time, the potential energy, i.e.,
pP is updated by
1 the1 |

n+i|.¢J p?¢j + B( I [F]r—l/Z,p¢i - Fj+l/2,p¢j] dt. (40)

With the definition of total energy E = pE + pg, we get

tn+

TEnﬂ T En ’ [F; l/2p¢] J+1/2p¢1
(41)
+F571/2,pE - F|j+l/2,pE] dt.

10



The updating of the total energy in the control volume @%Kl TE;) becomes

K; e
i TEP = S0 TE + & [ 512, [Flyan¢i

(42)
J+1/2p¢l +Fi 10k FI]+1/2,pE] dt.
According to [92) and(33), we get
e = [ fiU3U + ue)dude + [ 7 f(U)3(-u® - ug)dude
+ [ 2 faa(WIu? + U2) + ug)dude,
(43)

20 = ff f(u)3(u(u? — U2) + ué)dudé

+f f_(; fira(u) 3 (u® + ug)dudé.

A direct calculation gives

I I
FE+1/2,pE - Fj+l/2,pE = Fj+1/2,p(¢i+1 —-¢j) = FE+1/2,p(¢j+1 - ). (44)

So, from [42) and{44), the total energy update becomes

K K tor
S TE = S8 TE + &5 L7 [Fie 12,9
(45)

—F!

I
-F K2+l/2,pE] dt,

r
Kp+1/2pPK2 + Fi 172,08

which guarantees the total energy conservation in the wetmieputational domain. Based on the above proof, the
SP-BGK and SP-KFVS schemes are conservative methods. foleréthe above two schemes can give the correct
shock location even with the external gravitational fogdierms. This is a generalization of Lax-Wenfitheorem to

the system with gravitational source tetim [5].

Lemma 3.2: The densityp(x) in a hydrostatic state under the gravitational fig{d) satisfies
p(¥) = Cre 0, (46)

whereC; and2 are constants.
Proof For a hydrostatic solution under the gravitational fig{d), we have

Px = —pdx, T = constantU = 0. 47

SinceT = constant and = m/2kT, we knowA = 1, where is also a constant. Then frofi {47) and the ideal gas

equation of state
1
p= le»

we have 1
ﬁpx = —pPPx.
Therefore, with a constan®;, the solution becomes

o(X) = Cre 210,

Remark: without losing generality, in the following proofs, we I = 1 for the hydrostatic solution. So, in the
hydrostatic case, the state has the form

p=e210 Yy =0, (48)
11



wherel is a constant. Numerically, if we let the potentigk) be a constanty;, in the jth cell, then

pj+1 = pj€ e 201~ 2 Uj =0, (49)

wherep; andU; are cell average quantities in that cell.

|
Lemma 3.3: For the two equilibrium stated/; ., , = (0, ». (pU)Hl/z, (PE)J+1/2) andw! 1+1/2 (prj+l/2, (pU)rHl/z, (pE)EH/Z),
they have the following properties when the initial ﬁow issimydrostatic state.

1. Both velocities are equal to zero, i.e.,

UI+1/2 = U1, =0. (50)

2. They have the same temperature at both sides of all ceifates, i.e.

/l|j+1/2 = /IE+1/2 =4, (51)
whereA satisfies K1
+
E-ZpU?= , 52
P 2‘0 P~ (52)

macroscopically withK = (3—-v)/(y — 1) in 1-D, andl has the constant valukof the hydrostatic solution.
3. The densities at the same cell interface satisfy

Plarz = Pla1p€ 2A6ya-0) (53)

4. In the same cell,
.0|j+1/2 = .0271/2 (54)
Proof As the definition,W}+l , and erfl/z are dete_rmined bﬂES)_anﬂBg) ©r190) apd] (91)@r< $js1 OF
#j > ¢j+1 whenfj(u) = gj(u), whereg;(u) is a Maxwellian corresponding to the cell average conseevaariables,

(0j. (PV);, (pE);). Here, we only prove the case fpr < ¢;.1. The other case can be proved similarly. From direct
calculation, we can get

0i ;l 5 0 ~ +00 p
Plae =5 +pi(3)? f e du—pja(s 1y uc+p.+m( o) f et Jt+ Uz, (55)
1 Pj+1
P = A [ et 22 (56)
(PU)J+1/2 (PU)G+1/2 =0, (57)

| Pij Pj /lU Pj —Au?
(pE)]+l/2 4/1pj+l/2+8/1 41\/7 Ue+ 22 \/7fu du

i 3 too 3
+’%\/;fo et i+ UZdt,

(58)

and

K p +l
E)js12 = P:+1/2 \/7112 - Uzdt + = (59)

whereU¢ = 1/2(¢j+1 — ¢;)-

12



1. From [G5) and{36), we can easily see Mﬂ/z > 0andpi,, , > 0whenp; > 0andpj,1 > 0. SinceU = pU/p,
from (51), we know that

| _r _
Uj+1/2 - Uj+2l./2 =0.

2. From [5b),
K+1 _ _ K Pj Pj+1 )
p]+1/2 4/lIJrl/Z - ar ]+l/2p]+1/2 + 8/l| +1/2 * 4/ljj+1/2 \/7 4/l|1+1/2 [fUC u du
(60)
L A\f et i+ UZdt.
4/1'”1/2 fo +
[
Since (JE)Hl/2 2P,+1/2(U +1/2) le/z 44' andUHl/2 = 0, we have
K+1
[ [
(PE)ji12 TP S =0. (61)
j+1/2
Therefore, substituté_ (#9), (68) and{60) ifial(61), we get
3 1 (K | Pi P [A-U?
(’l|+1/2 A) {,{'j+1/2,1-(zpj+1/2 +3 -7 \/;e WYele
(62)

; 7 0 92 iv 3 oo 5
+%\/gf_uce”“ d“)+4'j+11/2[%\/;fo e”t\/t+U§dt}=O

Because¥ is a monotonic increasing function oAy, 0], so

\/>f P gy pJ[—AUEUC>0 (63)

Then we know the summation in the brdceg of (62) is strictly larger than zero. Therefore,

has to be satisfied.
Similarly, we can have

PJ+1 1 pj
(12— Bl r ( P]+1/2 8 \/7f2 t—U2dt} =
/lJ+l/2 1+1/2 u

Again, the summation in the brage} is strictly larger than zero. So,

/lg+1/2 = 1.
3. Itis easy to prove that

f Z e du = eYiU, + 21 f z e L2, (64)

and o2
2 f e Pdu = f e yxdx. (65)

—U, 0
So, p2+1/2 p]+1/2 e i),

T e T Ut = [°) e M0 Uge 2 4T 22 [ e T U, & [+ e \f{= Ul =

13



e - . .
2¢7V [ e ildu+ e 2V [T et i+ Udt,
—VYc

le ft:x=t—UZ;right:x=t+U2

+ 3 0 %R + 5
fome“\/idx=2f_uce*“ uzdu+fug°°e“\/>_<dx

2 ~ ~
= fou° e yxdx=2 [ (LC e Y u2du.

Therefore, from[(65), we can conclude that

roo— ~21(9j:1-07)
Pir1j2 = Pigap€ I

| T
4. Pit12 = Pj-1/2>

BREB , .0 ~ o
— H+p [}, eMdu-pia(D)iUc+pad(d)? [T et Y+ UZdt

= Pi—li(ﬁ)% chzw et \t— UZdt + 5.
@9 0 ol -AU2 7 [T oA 3 [T a-Ax
<=>pjf_uce du-pie cUc+pj,1fUC2 e yxdx = pid [ e y/xdx,

3 - - e - -
220 ﬁou e wdu+pjd [, e yVxdx = pjd [ e yxdx.

From [€5), we know that the last equality holds. Therefore,

| _r
Pi+12 = Pj-1j2:

Remark: the above lemma, especially part 2, illustrates that stgftiom a hydrostatic state with the same temper-
ature, the constructed equilibrium states at both sidesceflanterface have the equal temperature as well. In order
words, in the hydrostatic case, the particle interactidh tie potential barrier and the particle collisions amdregi-
selves never alter the equilibrium temperature both siflescell interface. This is consistent with the second law of
thermodynamics. Otherwise, the temperatuféedinces generated by the particle collisions could be useel ah
engine and a pure work could have been extracted from aalipitsothermal system. This violates the 2nd-law of
thermodynamics.

Theorem 3.4:For awell-balanced kinetic scheme, the equilibrium disttion function must be an "Exact Maxwellian”.
Proof In order to keep the hydrostatic solutién(49) the numernicass flux at both sides of a cell interface must be
zero.

Without losing generality, we only consider the casegfpr > ¢;. Since the gas must be isotropic, we can assume
the equilibrium distribution function is(X)G(u?) and definea = /2(¢;+1 — ¢;), then we require

+00 0
S j; piG(u?)udu + j: pi+1G(U?)udu = 0, (66)
whereF! , ,  is the mass flux at the right side of the interface. Becaudd3)f (ve have
1 —+00 _/132 0 5
> G(X)dx + € G(u®)udu = 0. (67)
a? —00
Take the derivative of (67) with?, we get
1 2 ~1a? 0 2
- EG(a ) — A€ G(u“)udu = 0. (68)
It is obvious from[[GB) that ,
G(a?) ~ ¥, (69)

14



which means that the equilibrium distribution function isexact Maxewellian distribution.

Theorem 3.5:Both the 1st-order SP-KFVS and SP-BGK schemes are welhbathschemes.

Proof In order to prove a scheme to be a well-balanced one, we orlg teeverify that the scheme can keep the
hydrostatic solutior (48) forever. Numerically, the ialtcondition for this case is given by (49) in tlith cell. At the
next time step, the above solution must be kept by the wédirazad numerical scheme, i.lii\/;”l = Wj”. From [21),
we must have

Fg—l/z = F|j+1/2' (70)
Therefore, to complete the proof, we have to show that mams‘l&};'l/z’p), momentum quxesR;il/z,pU) and energy
fluxes F ;+|1 /z,pE) satisfy the conditior{{70) respectively.
The 1storder SP-KFVS schemeihe original distribution function at the cell interface is
g;j(u), ux>0,
gj+1(u), u<0,

whereg;(u) is the Maxwellian corresponding tpj( (oU);, (0E);). The proof is only a direct calculation of the fluxes
at the interface using (92) arld {93) bri94) and (95) in twedént cases fap; < ¢j.1 Or ¢j > ¢j.1. Also the initial
hydrostatic conditior (49) will be used. The results areftilewings.

a. For mass flux,

F|j+1/2,p = FE+1/2,p =0 (72)
b. For momentum flux, ‘
F|j+1/2,pu = FE*l/Z,pU = % (73)
c. Forenergy flux,
FIj+l/2,pE = FE+1/2,;)E =0. (74)

Hence, the first orderst order SP-KFVS scheme is a well-balanced one.
The 1st order SP-BGK schemethe original distribution function is
(1- E)gj+l(u) + Egngl/z(U), u<o,

wheree is a constant between 0 anddj(u) is the same as in the proof for the 1st order SP-KFVS schgmﬁz

andggw2 are two_ equilibrium states correspondin )12 and\/\ljf+l/2 respectively. HereN}ﬂ/2 anderﬂ/2 are the
macroscopic variables calculated byl(88) dnd (89).ar (96)@d) when

fj(u) = gj(u) and fj.1(u) = gj.a(u).

So, the fluxes are the linear combination of two kinds of fluxeandF, calculated by

and f, =

{ gi(u), ux0, g1, u=0,
f, =
gj+1(u), u<0, df,12W), u<o,

respectively.

From the above proof for the 1st order SP-KFVS scheme, we khatthe first kind fluxe$; can satisfy[(70)
itself. Therefore, we only need to prove thrgtcan satisfy[(7I0), too. Note that in the proof for the 1st oiSlerKFVS
scheme, the hydrostatic initial condition is the key. Buinfrthe Lemma 3.3, we can see that the equilibrium states
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also satisfy the hydrostatic initial condition. So, simijawe get the following results for the fluxes correspormytio
f, from a direct calculation by usin@ (92) aid193) [orl(94) drd) (@ two different cases fagj < ¢j.1 Or ¢j > dji1.
a. For mass flux,

I
Fj+1/2,p = FE+1/2,p =0. (76)
b. For momentum flux,
FI — p|j+1/2
j+1/2,0U 2,1'i+1/2’
(77)
r _ Flap
Flovepu = 20,
Based on Eq.{31) and(b4),
I
Fj+l/2,pU = Fgfl/z,pu- (78)
c. Forenergy flux,
I
Fj+l/2,pE = FE+1/2,;)E =0. (79)

From all the above proofs, we can conclude that both the risr&P-KFVS and SP-BGK schemes can keep the
initial hydrostatic solution forever. Therefore, they arell-balanced schemes.

Remark: The 2nd order SP-KFVS and SP-BGK schemes are well-balantetes.

We use U, A, pe*) to do the reconstruction. All the three variables are cmtstwhen the solution is in a
hydrostatic state. So, the slopes are all zeros after ubagJUSCL-type limiter. In other words, the 2nd-order
schemes go back to the 1st-order method when the solutiohjglrostatic state, which can be kept forever. Therefore,
the 2nd-order schemes are also well-balanced schemes.

6. Numerical examples

In this section, we will present numerical results of foub Examples by using®land 29 order SP-KFVS and SP-
BGK schemes, and also a 2-D example using%ad2der SP-BGK scheme. Each of the examples is very sensitive
the accuracy of the scheme. Some of the tests run for mildébnamerical steps. If the scheme is not a well-balanced
one, the accumulation of any small numerical error wouldbb&e significant for such a long time integration/[10].

6.1. Shock tube under gravitational field

This case is the standard Sod test under gravitational figld computational domain ise [0, 1] which is divided
into 100 cells. Reflection boundary condition is used on leoiths. The initial condition is

p=10,U=00,p=10forx<0.5,

and

p=0125U=0.0,p=0.1forx> 0.5
The gravitational forceés takes a valu€&s = —1.0 in the x-direction. So the potential jump at each cell ifatee
becomes

A¢p = -GAx = 0.01

The computational results ait= 0.2 are presented in fif] & 6 for the density, pressure andigfoom the -order
SP-KFVS, # and 2%order SP-BGK schemes. From these figures, we can find th&FM% scheme has larger
numerical dissipation than that in SP-BGK scheme, arHer scheme is more dissipative théfi-arder one. The
results calculated by thé®order SP-BGK scheme fits the exact solution very well. Dubéagravitational force, the
density distribution inside the tube is pulled back in thgata/e x-direction. In some region, the flow velocity even
becomes negative.
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6.2. Isolated gravitational system with adiabatic wall

The second test case is also on a computational domairf0, 1] with 50 cells. There are limited number of
gravitational potential jumps at locatiors= 0.21,0.41, 0.61 and 081 with a large value

AD = 2.0.
The initial flow distributions inside the domain has constaiues of
p=10,pU =0.0, andpE = 2.5.

After a long time { = 1000), the flow distributions settle down into a piecewisastant state which are shown in
the fist picture of figll7, where the symbols are the numerighit®ns and the solid lines are the exact hydrostatic
solutions. The velocity distributions are also shown in[fig.For the # order schemes, the oscillation of velocity
around zero is on the order of 70 This is mainly caused by the error in numerical integratibacause there is no
exact solution for most integrals in Hg.{92)-(95). In fabe precision of numerical integration for the integralsiis

the order of 10° ~ 1077. Since the potential jumps are large and the high order seheses more integral evaluations,
the velocity distribution calculated by2order scheme is a little bit worse than the 1st-order onesbéitter accuracy
can be achieved for the numerical evaluation of the intsgtlaé velocity error can be further reduced to machine zero.

6.3. Perturbation of the 1D isothermal equilibrium solutio

This test case is from LeVeque and Bale’s paper [4]. We censid ideal gas witk = 1.4 on an initial isothermal
hydrostatic state,
po(X) = po(X) = €, andUg(x) = 0,

for x € [0, 1]. Initially, the pressure is perturbed by
POt =0) = Po(x) + ne" >,

wherea = 100,% = 0.5 andp is the amplitude of the perturbation. The gravitationalfislthe same as in example
[6.3. The computation is conducted with 100 grid points inwtele domain and stops at time- 0.25. Fig[8, show
the results from SP-KFVS and SP-BGK schemes, where SP-KFR#3anger numerical dissipation than SP-BGK
scheme. The results calculated by tHé@&der SP-BGK scheme matches the exact solution very well.

Also in fig.[9, we show the convergency rate of olft-Brder SP-BGK scheme, where the number of cells is N and
the error is thee® error. From the figures, we can conclude olf-@rder SP-BGK scheme has a 2nd-order accuracy
even with the modeling of piecewise constant potential.

6.4. One-dimension gas falling into a fixed external poténti

This case is taken from the paper by Slyz and Prendelgast jAyéstigate the numerical accuracy of the BGK
scheme. The gas is initially stationaty & 0) and homogeneoup & 1, e = 1, wheree s the internal energy). The
gravitational potential has the form of a sine wave,

3 L . 27ax
¢= ¢027r Sin—=—,
whereL = 64 is the length of the computational domain afd= 0.02. The ratio of the specific hegt= 5/3. The
periodic boundary conditions are implemented in this syst8imulation results are presented with = 1 and at the
output timet = 250000 (more than 500000 time steps). After the initialsion, the system is expected to reach an
isothermal hydrostatic distribution, where the tempeeatttles to a constant with zero velocity, i.e.,

T(x,t) = Tp, andU = 0.

The velocity and temperature distributions computed Wedint symplecticity preserving schemes are shown in
fig.[11, [I2. The numerical error is smaller than that in [LObrbver, the results can be further improved if a better
numerical integration for the integral evaluation can bepaed.
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6.5. Rayleigh-Taylor instability.
This test case also comes fraom [4]. Consider an isothermaélil@gum idea gasy = 1.4) in a 2D polar coordinate
(r,6),
—a(r+ro) 15 —a(r+ro)
po(r)=e s Po(r) = - € , U =0,

where

{ a =268 rp=0.258 forr <rq, { r; = 0.6(1+ 0.02 cos(20)) fordensity
and

a =553 rg =-0.308 forr > rq, r; = 0.62324965 fopressure

The potential satisfiesV¢(r) = 1.5. The time evolutions of the density distributions at tihes0, 0.8, 1.4 and 20
are shown in fig_1I3. Fig. 14 shows a scatter plot of the deasity function of the radius. These figures clearly show
that the hydrostatic solution can be well kept and the flowiomos limited around the unstable interface.

7. Conclusion

In this paper, based on the Liouville’s theorem and symjiégtpreserving property of a Hamiltonian flow, a
well-balanced gas-kinetic BGK scheme (SP-BGK) has beeeldped for a hydrodynamic system under gravitational
field with the modeling of piecewise constant potentials sAewn in the paper, in order to design such a scheme, the
equilibrium state used has to be an exact Maxwellian digie function. At the same time, the physical mechanism
of particle transport across a potential barrier has to lpdi@tty followed in the equilibrium states modeling and
the flux evaluation. As far as we know, the method presentddisnpaper is the first exact well-balanced scheme
for the Navier-Stokes equations under gravitational fidltithe same time, the patrticle transport mechanism across
a potential jump in the current kinetic formulation followse physical principles closely, which is valid under any
general physical situation. Both the shock capturing arldlmaanced properties are automatically obtained urtder t
corresponding physical conditions. Mathematically, it l@en proved that the SP-BGK method is a well-balanced
scheme which could keep the hydrostatic state forever.isnpidper, the design of the well-balanced scheme comes
from the first principles of physics, instead of using thelvsallanced condition as the starting point in the design of
such a scheme.
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Appendix

Formulae in the two-dimensional case:

1. Equilibrium states
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Case 1¢; < ¢j;1, defineUc = /2(¢j.1 — ¢)).

1
0 u
W= I fixz 0,uv, ) v dudvde
LW +v2 +&2)
1
6 -u
+fffou fj (Xj+1/2, 0, U, v, €) v dudvde 60
32+
o
Nazns
u
0
+ fir1(Xj+1/2,0,u, v, €) o w du dv de.
JIL2, B
10 2 2 _ u _ u 2
5(—uu? + UZ Yoo —«/mf )
u
w-Uz
Wio = [T 020,08 . v
i = j(Xj+1/2, U, U, V, uv udv
i+1/2 v, 11 Xjry uz_\gg
1 2 -0z u u 2
AU Uer B ) (81)
1
u
+ fff_io fira(Xj41/2,0,u,v,€) v dudvde.
(U2 + V2 + ¢2)
Case 2¢; > ¢j.1, defineU; = /2(¢; ——¢j+1)-
1
+00 u
W}+1/2 - fffo fi(Xj+1/2,0, 1, €) v dudvd¢
L+ v+ &2
- (82)
u
7UC . .
+ [f17 fialXj12.0,u.8) - ”l;it’f dudvde.
1 2_Uy2_ _u _ u 2
5(—uu? - Uz Vs mf )
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+00 u
Wiao= [ fitxi2.0.u.9) w_ dudvde
AU+ U+ \/:z\iug i Uiuggz)
1
—u (83)
+J. fﬁouc fiv1(Xj+1/2: 0, U,€) v dudvde
(U2 + V2 + &)
1
u
+ JIL2 fieax0172,0,u,€) v dudvdé.
LW+ + &2
2. Fluxes
Case 1¢j < ¢j.1, defineUc = 12(¢j+1 — ¢)).
u
+00 u2
Fla2® = Jff filxisnz tu.é) " dudvds
(U3 + UV + ug?)
-u
Uc u2
+ fffo fi(Xjr1/2.t, 1, 8) _uv dudvdé (84)
1(-u® - u? - ug?)
u
_uJiZ+ Uz
+ fff_io fiea(Xjra/2. 1. U.€) ! llJN+ ¢ dudvdé.
3(U(U? + U) + UV + ug?)
u
o ui/u?z — U2
Floae® = [I57 fiatu.é) Cy dudvdg¢
S(U(U? — U2) + uv + ug?) .
u
0 u2
IR ) E R PV
(U8 + U + ug?)
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Case 29 > ¢j.1, defineUc = /2(¢j — ¢j+1).

u
oo u2
F|j+1/2(t) = fff; fj(Xj+1/2» t,u, f) uv du dVd.f
1(u® +u? + ug?)
(86)
u
—Uc _ 2 — UZ
+ ffﬁ: fis1(Xjs1/2,t, U, ) y ldv ¢ dudvde.
2(u(u? - U2) + uv? + ug?)
u
+00 uu? + U2
FE+1/2(t) = fffo fi(Xjs1/2, t, U, &) v ¢ dudvdé
2(u(u? + U2) + uv? + ug?)
-u
u2
+ fff_ouc fiea(Xjra2. 1. U, ) _uv dudvdé (87)
1(-u® - uv - ug?)
u
0 u?
+ fff_w fiea(Xjra/2. 1. U.€) uv dudvdé.
(U8 + U + ug?)
Formulae in the one-dimensional case:
1. Equilibrium states:
Case 1¢j < ¢j.1, defineUc = /2(dj1 — ¢)).
1
+00
W}+1/2 = ffo fi(Xj+1/2, 0,1, &) . u dudé
(U +£9)
U 1
+ [ B fi(py2.0u8)|  —u |dudg .8
L +8) (88)
_ u
+ [ [ fisa(Xjr1/2,0,u,€) u dude.

HuPH U2 - =8
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u

u

dud¢
1 2_12 u 2
Z(Uyu? - Ug + ’_uz—ugf )

Wiz = ffu fj(Xj+1/2, 0, U, €)

(89)
o 1
+ [ [ fiea(Xjer2. 0.0, f)[ u ]du dé.
3+ &)
Case 29 > ¢j.1, defineUc = /2(¢j — ¢j+1).
1
J+l/2 ff fj(Xj+1/2. 0, U, 5)[ u ]dudg—‘
32+
y (90)
[ fia(Xi12,0.u.8) u dude.
HCuP -0z - =)
i T
+ fj(Xj+1/2, 0, U, &) u dudé
] 1/2 — 0 J %(u\/m = Uzé‘;Z)
1
+ [ [, Tz, 00, 5){ —u ]dudg (91)
2P+ )

1
[ 2, (.0, f){ u ]du dé.
32 +¢%)

2. Fluxes:

Case 1¢; < ¢j;1, defineUc = /2(¢j.1 — ¢)).

u
Flao® =[5 fiGaetu, é“)[ u? ]dudé’
3+ ug?)

-u
[ 1 fi2t, u,g—‘)[ W2 ]dudg

l(—u3 _ u§2) (92)
2

u
+ ff_(; fisa(Xjer/2,t U, é“)[ —u4/u? + U2 ]du dé.
L(u(u? + U2) + ug?)
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u

Flop®= [ 7 fixeztud)|  uyP-U2  |dude
U2 - Ud) + ug?)

(93)
0 u
+ [ [ fira(Xjeas2. 1,0, 8) . u? , dudé.
3(U° + u?)
Case 29 > ¢j.1, defineUc = /2(dj — ¢j+1)-
u
F|j+l/2(t) = ffo fi(Xjr1/2, 1, 1,8) 1 3u2 ) dud¢
3(U + ug”)
2
(94)
0 u
+ [ ) T2, tu ) —u4/u? - U2 dudz.
3 - Ug) + ug?)
u
+00
Floap® =[] fiuyztud u/u + U2 dudé
3 + Ug) + ug?)
0 -u
+ff—uc fir1(Xjr12, U, &) . u? dudg (95)
3(-U® - ug?)

u

+f f_(; fis1(Xjs1/2,t,U,€) u dudé.
3P+ ug?)

Remarks on the integral evaluation:in the above formulae, there are many integrals which cabaaalytically
0 . o . :
evaluated, e.g.f _ fj.a( —m)du. Therefore, a numerical integration method.in [7] has besauu
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Figure 1:Reconstruction of the conservative variables at the ctdtiace.
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Figure 2: The modeling of the initial and equilibrium dibtition functions at the cell interface for the BGK scheméhaiitt external forcing field.
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Figure 3:The particles’ movement at the interface with potential pusn < ¢;.1.
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Figure 4: The modeling of the initial and equilibrium dibttion functions at the cell interface for the SP-BGK schemita a potential jump at

the cell interface.
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Figure 5:Density distributions for the shock tube problem under gational field.
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Figure 6:Pressure and velocity distributions for the shock tube lpratunder gravitational field.
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Figure 7: The first figure shows the Density, pressure and velocityitligions calculated by™ order SP-BGK for isolated gravi-
tational system with adiabatic wall. Other figures are vigatistributions in this test case.
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Figure 10:Density distribution calculated by'®order SP-BGK for gas falling into a fixed external poteniiiel-D case.
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Figure 11:Velocity distributions for gas falling into a fixed exterrfadtential in 1-D case. The exact solution should have a zero
velocity. The error is due to the numerical integration,,eﬁéo g(u)(——==)du, where there is no analytic solution.
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Figure 12:Temperature distributions for gas falling into a fixed em#mpotential in 1-D case.

Figure 13:Rayleigh-Taylor instability with gravitational field dicted radially inward. Density contours at time: 0,0.8,1.4,2.0
are shown in the four quadrants, starting with the initidhda the upper right corner and progressing clockwise.
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- Density scatter at t=0 - Density scatter at t=0.8

- Density scatter at t=1.4 - Density scatter at t=2.0

Figure 14:Scatter plots of the density in the cell vs. the distance efcill center from the origin.
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