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Line Search Multilevel Optimization as Computational Methods for Dense
Optical Flow∗
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Abstract. We evaluate the performance of different optimization techniques developed in the context of optical
flow computation with different variational models. In particular, based on truncated Newton (TN)
methods that have been an effective approach for large-scale unconstrained optimization, we develop
the use of efficient multilevel schemes for computing the optical flow. More precisely, we compare the
performance of a standard unidirectional multilevel algorithm—called multiresolution optimization
(MR/Opt)—with that of a bidirectional multilevel algorithm—called full multigrid optimization
(FMG/Opt). The FMG/Opt algorithm treats the coarse grid correction as an optimization search
direction and eventually scales it using a line search. Experimental results on three image sequences
using four models of optical flow with different computational efforts show that the FMG/Opt
algorithm outperforms both the TN and MR/Opt algorithms in terms of the computational work
and the quality of the optical flow estimation.
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1. Introduction. The problem of optical flow computation consists of finding the two-
dimensional displacement field that represents apparent motion of objects in a sequence of
images. Many efforts have been devoted to this in computer vision and applied mathematics
[27, 37, 20, 3, 4, 13, 42, 45, 14, 12, 33, 29, 1, 2, 8, 34, 35, 38]. The computation of optical flow
is usually based on the conservation of some property during motion, either the objects’ gray
level or their shape properties. In a variational setting, the problem is usually formulated as
a minimization of an energy function, which is a weighted sum of two terms: a data term
coming from the motion modeling and a smoothing term as a result of the regularization
process. For standard optical flow algorithms, the data term is usually based on a brightness
constancy assumption, which assumes that the object illumination does not change along
its motion trajectory. The regularization process ensures that the optical flow estimation
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696 E. M. KALMOUN, L. GARRIDO, AND V. CASELLES

problem is well-posed. Many regularization terms have been investigated in the last two
decades ranging from isotropic to anisotropic. Isotropic smoothers tend to blur motion edges,
while the anisotropic ones require additional computational resources.

Two strategies might be conducted for the numerical minimization of an energy functional
arising in a variational framework like the one above. The first, which is called optimize-
discretize, is achieved by discretizing and solving the corresponding Euler–Lagrange equations.
In the second approach, called discretize-optimize, one can use directly numerical optimization
methods for solving a discrete version of the problem. While the first approach has been
commonly used for variational optical flow computation, to the best of our knowledge, the
second computational strategy has been less investigated in this context.

Adopting the first strategy, efficient algorithms have been designed to approximate the
optical flow. In particular, in [1, 2] the authors used a multiscale approximation to solve the
corresponding Euler–Lagrange equations using the Nagel–Enkelmann regularization term [38].
Thus, they computed a series of approximations where each one solves a regularized version of
the Euler–Lagrange equations starting from the previous one while keeping the original grid
fixed. A different approach is proposed in [11, 43], where the authors use fixed point iterations
to solve the corresponding Euler–Lagrange equations, fully implicit in the smoothness term
and semi-implicit in the data term. Still, this fixed point iteration leads to implicit equations,
and they linearize some of their terms using a warping technique. The equations obtained
are fully linearized using a lagged diffusivity method [11, 43, 12]. The final linear system is
solved using a linear solver such as a Gauss–Seidel-type method, or a successive overrelaxation
(SOR) method. The connections with warping are detailed in [11, 43].

On the other hand, in order to develop efficient and accurate algorithms working in real
time, there have been recent efforts to improve performance of optical flow algorithms using
multilevel techniques. We distinguish at this stage between two classes of multilevel algo-
rithms. The first, known as a coarse-to-fine multiresolution, uses a sequence of coarse grid
subproblems to find a good initialization for the finest grid problem that avoids possible local
minima. In this paper, we shall refer to this strategy as multiresolution. The second strategy
alternates between solution relaxations using the underlying algorithm and solution correc-
tions obtained from a sequence of subproblems defined on coarse grids. This leads to recursive
algorithms such as the so-called V- or W-cycle, which traverse between fine and coarse grids
in the mesh hierarchy. We will reserve the term multigrid for this class of two-way multilevel
methods. In the case of elliptic PDEs—and for a wide class of problems—multigrid methods
are known to outperform multiresolution methods [7, 25].

However, being straightforward to implement, multiresolution methods were more widely
used in computer vision and particularly for motion estimation; see, e.g., [20, 3, 5, 42, 45,
17]. For instance, Enkelmann [20] developed a coarse-to-fine algorithm for oriented smoothed
optical flow. Also, Cohen and Herlin [17] recently used a multiresolution technique with
nonuniform sampling for total variation (TV) regularization.

For the sake of optimal performance, multigrid schemes were developed to solve the
resulting Euler–Lagrange equations for both isotropic and anisotropic regularizations; see
[23, 46, 22, 29, 28, 14, 12] and the references therein. The first attempts are due to Glazer [23]
and Terzopoulos [46] using standard multigrid components. Improvements in performance
were reported on simple synthetic images, and later [5], standard multigrids were stated to
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MULTILEVEL OPTIMIZATION FOR OPTICAL FLOW 697

be not appropriate due to a possible information conflict between different scales. However,
the method was recently better adapted for optical flow computation by tuning the multigrid
components. In [22], an entirely algebraic multigrid approach was developed for a weighted
anisotropic regularization-based model. A geometrical multigrid based on Galerkin coarse
grid discretization approximation was developed for the classical Horn–Schunck method in
[29]. This algorithm was extended and paralellized in [28] for real-time computation of vector
motion fields for three-dimensional images. Another recent geometric multigrid investigation
was presented in [14, 12] with anisotropic regularization (a full account of it can be found in
[12]).

All these works have considered data terms based on the brightness constancy assumption,
which lead to less accurate optical flow fields when the image sequence contains illumination
variations in the temporal domain, which may be often found in real images. In [16], a model
is proposed for illumination-invariant optical flow computation, previously introduced in [19]
in the context of image registration. The brightness constancy assumption is replaced by the
assumption that the shapes of the image move along the sequence. In this context, the terms
of the Euler–Lagrange equation corresponding to the data attachment term which contains
derivatives of the unit normal vector fields are highly nonlinear. They will not produce systems
of equations with a symmetric and positive semidefinite matrix (usually after linearization),
the basic systems to which the previous multigrid methods for optical flow have been applied.

For that reason, in this paper we follow the second strategy of discretize-optimize that
allows us to handle such variational problems. Instead of computing the Euler–Lagrange
equations of the energy model and discretizing and solving them, our approach is based on
the use of numerical optimization methods to solve the discrete version of the energy, based
on either gray level constancy or shape properties. This leads to the need for developing effi-
cient algorithms for the numerical resolution of a large-scale optimization problem. Therefore
only large-scale unconstrained optimization methods are relevant to solving this variational
problem. One of these is the truncated Newton (TN) method [18]. It requires only the
computation of function and gradient values and then has suitable storage requirements for
large-scale problems. However, due to the intensive computations that are required to solve
the energy minimization problem, only multilevel versions of the method (multiresolution and
multigrid) are expected to provide suitable performance.

In our context, the bidirectional multigrid scheme should be adapted directly to an opti-
mization problem. Current research is still ongoing in this direction for solving some varia-
tional problems lacking a governing PDE in different fields. Recently [40, 31], the multigrid
strategy has been extended to optimization problems for TN methods. Motivated by varia-
tional problems lacking a governing PDE, the multigrid optimization was derived from the full
approximation storage (FAS) [9] for nonlinear PDEs but applied directly in an optimization
setting. With regard to nonlinear multigrids, the multigrid optimization (MG/Opt) algorithm
includes two safeguards that guarantee convergence: bounds on the coarse grid correction that
introduce a constrained optimization subproblem, and a line search that eventually scales the
coarse grid correction treated as a search direction. In [31], it has been shown that the coarse
grid subproblem is a first-order approximation of the fine grid problem. This somehow justifies
the introduction of the two safeguards. The first-order approximation suggests that the cor-
rection will be reliable only near the restricted approximation, and at the same time it relates
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698 E. M. KALMOUN, L. GARRIDO, AND V. CASELLES

the MG/Opt to the steepest descent method. The latter connection indicates that the coarse
grid correction typically will not be a well-scaled descent direction, which, in turn, implies
that a line search should be performed to adjust the scale of the multigrid search direction.
This may not be necessary when the MG/Opt is near to convergence since in that case it
will provide a Newton-like search direction for which a search step equal to 1 will likely be
accepted. These connections to both steepest descent and the Newton method suggest that
the MG/Opt will perform well far from and near the solution.

Our aim is to develop the MG/Opt method for the computation of optical flow, a problem
which has considerable computational resource requirements. To the best of our knowledge,
the MG/Opt method is studied here for the first time for optical flow computation. We
note here that four different optical flow models are used for testing the performance of the
proposed algorithm combining linear and nonlinear data terms with quadratic (or Tikhonov)
and TV regularization. Several components of the MG/Opt technique have been tuned for
high efficiency, and the algorithm is fully evaluated with respect to one-way multiresolution
optimization (MR/Opt). The proposed numerical strategy can be adapted to the minimization
of other nonlinear energy functionals such as the illumination invariant model proposed in [16]
or depth estimation in stereo problems. Although they are an important motivation for the
development of the present techniques, they will not be considered in this paper.

The outline of our paper is as follows. In section 2, we start off with a review of the
variational formulation of the optical flow problem. In section 3, we recall the basics of the
TN method. In section 4, we present multilevel algorithms applied to optimization problems.
First, we discuss the coarse-to-fine multiresolution strategy. Then, after recalling the idea
of multigrid for linear systems, we describe its application to optimization-based problems.
In section 5, we outline some of the implementation details, namely, the calculation of the
gradient of the objective functional for each of the four models considered in this paper, the
computation of the Hessian, and the image derivatives. In section 6, we report our exper-
imental results by considering three classical sequences of synthetic images: the translating
tree, the diverging tree, and the Yosemite sequences. In section 7, we conclude the paper and
indicate future research directions.

2. Variational models for optical flow. Let us consider a sequence of gray level images
I(t, x, y), t ∈ [0, T ], (x, y) ∈ Q, where Q denotes the image domain, which we assume to be
a rectangle in R

2. We shall consider either the case where t ∈ [0, T ] or the case where the
sequence is sampled at the times tj = jΔt, j = 0, . . . ,K.

Assuming that the gray level of a point does not change over time, we may write the
constraint

I(t, x(t), y(t)) = I(0, x, y),

where (x(t), y(t)) is the apparent trajectory of the point (x(0), y(0)) = (x, y). Differentiating
with respect to t and denoting (u(t, x, y), v(t, x, y)) = (x′(t), y′(t)), we obtain the optical flow
constraint

(2.1) It + uIx + vIy = 0.

The vector field w(t, x, y) := (u(t, x, y), v(t, x, y)) is called optic flow, and It, Ix, Iy denote
the partial derivatives of I with respect to t, x, y, respectively. Clearly, the single constraint
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MULTILEVEL OPTIMIZATION FOR OPTICAL FLOW 699

(2.1) is not sufficient to uniquely compute the two components (u, v) of the optic flow (this is
called the aperture problem) and only gives the component of the flow normal to the image
gradient, i.e., to the level lines of the image. As usual, in order to recover a unique flow field
a regularization constraint is added. For that, we assume that the optic flow varies smoothly
in space, or better, that it is piecewise smooth in Q. This can be achieved by including a
smoothness term of the form

(2.2) R(w) :=

∫
Q
G(∇I,∇u,∇v) dxdy,

whereG : R2×R
2×R

2 → R is a suitable function. The case G = ‖∇u‖2+‖∇v‖2 corresponds to
the Horn–Schunk model [27], the case G = trace((∇w)TD(∇I)∇w) corresponds to the Nagel–
Enkelmann model [38], and the case G =

√‖∇u‖2 + ‖∇v‖2 or G = ‖∇u‖+‖∇v‖ corresponds
to TV regularization models. For a full account of this and the associated taxonomy, we refer
the reader to [47, 26].

Both data attachment and regularization terms can be combined into a single energy
functional

(2.3)

∫
Q
(It + uIx + vIy)2 dxdy + α

∫
Q
G(∇I,∇u,∇v) dxdy,

where α > 0 is the regularization parameter weighting the relative importance of both terms.

In case of illumination changes, the gray level constancy assumption is violated and may
be replaced by the constancy of the gradient [6, 43], which can be expressed in differential
form as

(2.4)
〈w,∇Ix〉 = 0,
〈w,∇Iy〉 = 0.

Other cases include the constancy of the gradient direction [15] or the assumption that the
shapes of the image (identified as the level lines) move along the sequence [16] (this assumption
has been used in [19] in the context of image registration). Higher derivative models have been
studied in [43].

The models (2.3), (2.4) do not take into account that video sequences are sampled in time
so that our data has the form Ij(x, y) := I(tj, x, y), tj = jΔt, j = 0, . . . ,K. Without loss of
generality, let us assume that Δt = 1. In that case, the gray level constancy may be expressed
as

(2.5) Ij−1(x, y) = Ij(x+ uj(x, y), y + vj(x, y)),

where (uj(x, y), vj(x, y)) is the optical flow between images Ij−1 and Ij . As argued in [1, 2],
the linearized gray level constancy constraint (2.1) may not be a good approximation in case
of large displacements and the form (2.5) may be more appropriate [12].

A corresponding energy functional can be obtained by combining the nonlinearized form of
the brightness constancy assumption and a regularization term. For convenience, we assume
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that we want to compute the optical flow between two images I1(x, y) and I2(x, y). We may
write the energy

(2.6)

∫
Q
Ψ
(
(I1(x, y)− I2(x+ u(x, y), y + v(x, y)))2

)
dxdy + α

∫
Q
G(∇I,∇u,∇v) dxdy,

where Ψ : R → R is an increasing smooth function and α > 0. Examples of function G have
been given above (see [47, 26, 12] for an account of the many different possibilities).

Observe that the energy (2.6) is nonlinear and nonconvex. In order to develop the basic
numerical optimization methods, the variational optical flow problem is set into the simplified
minimization form

(2.7) min
w
f(w),

where f(w) := D(w) + αR(w). Here D denotes a given data term based on either (2.1) or
(2.6), and R denotes a regularization term that is either quadratic or the TV. More precisely,
we consider in this paper the case of G = ‖∇u‖2 + ‖∇v‖2 or G = ‖∇u‖ + ‖∇v‖. We also
consider Ψ(s2) = s2 for |s| ≤ γ and Ψ(s2) = γ2 for |s| > γ.

As discussed in the introduction, we adopt the strategy discretize-optimize. This means
that we shall first discretize the objective functional and then solve a finite-dimensional but
large-scale optimization problem. Therefore only large-scale unconstrained optimization meth-
ods are relevant to solving this variational problem. One of these methods that requires only
the computation of function and gradient values and has suitable storage requirements for
large-scale problems is the TN method [18]. We note that other choices of the underlying
optimization procedure—such as the BFGS quasi-Newton method—are possible. The TN
algorithm is embedded in a multilevel strategy, both multiresolution and multigrid.

3. Truncated Newton optimization. As is well known, Newton methods are based on
the second-order Taylor approximation of the objective function to build an iterative process
for approaching a local minimum. The step sk to move from the current point wk to a new
iterate wk+1 is chosen to be a minimum of the quadratic model of f given by

(3.1) qk(s) = fk + gTk s+
1

2
sTHks,

where fk = f(wk) , gk = ∇f(wk), and Hk = ∇2f(wk). The Newton step sk is then obtained
by solving the linear system

(3.2) Hks = −gk.

For large-scale problems, solving this linear system exactly will be very expensive. Instead,
TN methods use an iterative method to find an approximate solution to (3.2) and truncate the
iterates as soon as a required accuracy is reached or whenever (in the case when the Hessian
matrix Hk is not positive definite) a negative curvature is detected. One of the most well
known iterative methods among TN methods is the preconditioned conjugate gradient (PCG)
algorithm (see Algorithm 2), due to its efficiency and modest memory requirements. In this
context, we will refer to the process of finding the step sk as inner iterations, while the processD
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of updating wk using the computed sk will be called outer iterations. Our discussion in what
follows depends on the use of the PCG method as an inner solver.

Depending on how the step solution sk of the quadratic model (3.1) is exploited, two broad
classes of algorithms are distinguished: line search methods and trust region methods. Line
search methods scale the step sk by a factor αk that approximately minimizes f along the line
that passes through wk in the direction sk. On the other hand, trust region methods restrict
the search for sk to some region Bk around wk in which the algorithm “trusts” that the model
function qk behaves like the objective function f . This paper focuses on the former, the line
search method, whereas the comparison between both methods (line search and trust region)
will be the object of future work.

There are three components in the TN method related to speeding up the convergence of
inner iterations that might have a great impact on its overall efficiency: (a) the truncation
criterion, (b) the preconditioning strategy, and (c) how to handle the case when the Hessian
matrix is not positive definite. Indeed, for the latter, one of the advantages of trust region
over line search is that negative curvature directions can be properly exploited. In the PGC
algorithm (Algorithm 2), the inner iterations are truncated as soon as a negative curvature
direction is detected, that is, when pTj Hkpj is negative. In our case, we replace the negative
curvature test with the equivalent descent direction test [49]; see lines 8–11 of Algorithm 2.
From our practical experience, the descent direction test has a better numerical behavior than
the negative curvature test.

For the other two components (a) and (b), we use a scaled two-step limited memory
BFGS [39] with a diagonal scaling for preconditioning the CG method, and we truncate the
inner iterations when the following criterion is satisfied:

||rj ||M−1
k

≤ ζk||r0||M−1
k
,

where rj is the PCG residual at inner iteration j and ||rj ||M−1
k

=
√
rTj M

−1
k rj. Mk is the

preconditioning matrix and

(3.3) ζk = max
(
0.5/(k + 1), ||r0||M−1

k

)
are both being provided at outer iteration k. The matrix M−1

k may be computed easily if
Mk is updated using the BFGS method [41]. In this case, however, M−1

k does not need to be
computed since M−1

k rj = vj, and thus rTj M
−1
k rj = rTj vj .

Line search TN methods ensure that the new TN step sk provides a good descent by
performing a line minimization along this direction, and then the new outer iterate becomes

wk+1 = wk + αksk.

Exact line search is avoided due to expensive function evaluations, and normally a sufficient
function decrease is obtained by imposing the Wolfe conditions

fk+1 ≤ fk + c1αkg
T
k sk,(3.4)

gTk+1sk ≥ c2 g
T
k sk,(3.5)
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where 0 < c1 < c2 < 1. In order to obtain a maximum decrease with a minimum number
of function evaluations, interpolating polynomials is usually employed. Here in TN a cubic
interpolation was used [36].

The algorithm associated to the outer iterations of the line search TN is shown in Algo-
rithm 1. The algorithm iteratively updates wk by computing a search direction and performing
a line search until a given tolerance is reached. In our case we set tolerances on the gradient,
εg, to detect local minima, and on the function values and iterate values, εf and εx, to detect
convergence. Note also that the preconditioning matrix Mk is updated here, which can be
easily done from previous values of wk and g(wk); see [41].

Algorithm 1. Line search truncated Newton (outer iterations of TN).

1: Initialization: w0, M0 = Id, εg, εf , εx
2: for k = 0 to max outer do
3: gk = ∇f(xk)
4: if ||gk|| < εg then
5: exit with solution wk
6: end if
7: Compute sk by calling Algorithm 2.
8: Perform a line search to scale the step sk by αk.
9: wk+1 = wk + αksk.

10: Update Mk+1 by the BFGS formula.
11: if |fk+1 − fk| < εf or ||wk+1 − wk|| < εx then
12: exit with solution wk
13: end if
14: end for

4. Multilevel methods. Multilevel methods use a set of subproblems defined on coarser
levels of resolution in order to improve the convergence to the global optimum of (2.7) when
compared to using only one level of resolution. Using multiple levels of resolution allows
us to deal, in the case of optical flow computation, with large displacements and enables the
convergence to the global minimum since some local minima may disappear at sufficient coarse
resolutions.

Let us denote by Ωi the image domain at level i, where i = 0, . . . , r, where i = 0 cor-
responds to the finest level of resolution and i = r to the coarsest one. Grid spacing at
the coarser grid Ωi+1 is usually twice the spacing at the grid Ωi. Two approaches are cur-
rently widely used in the computer vision field, namely, the multiresolution and the multigrid
methods. Both are explained below.

4.1. Multiresolution methods. Multiresolution methods have been applied successfully
in many computer vision and image analysis problems where the problem can be expressed
as a global optimization problem [20, 3, 5, 42, 45, 17]. Multiresolution methods use a series
of coarse-to-fine resolution levels to obtain an estimate of the solution to the problem. An
initial estimate is obtained at the coarsest level. In our case, this estimate may be obtained by
applying the TN algorithm (see Algorithm 1). The estimate is then extended to the next level
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Algorithm 2. Preconditioned conjugate gradient (inner iterations of TN).

1: Initialization: z0 = 0, r0 = −gk, v0 =M−1
k r0, p0 = v0, ε = 10−10, ζk (see (3.3))

2: for j = 0 to max inner do
3: // Singularity test
4: if (|rTj vj | < ε or |pTj Hkpj | < ε) then
5: exit with sk = zj (for j = 0 take sk = −gk)
6: end if
7: αj = rTj vj/p

T
j Hkpj, zj+1 = zj + αjpj

8: // descent direction test replaces negative curvature test
9: if (gTk zj+1 ≥ gTk zj − ε) then

10: exit with sk = zj (for j = 0 take sk = −gk)
11: end if
12: rj+1 = rj − αjHkpj, vj+1 =M−1

k rj+1

13: // truncation test (note that ||rj+1||M−1
k

= rTj+1vj+1)

14: if (rTj+1vj+1 ≤ ζkg
T
0 v0) then

15: exit with sk = zj+1

16: end if
17: βj = rTj+1(vj+1 − vj)/r

T
j vj , pj+1 = vj+1 + βjpj.

18: end for
19: exit with sk = zj

of resolution, where it is refined. This process is repeated until the finest level is reached, where
the final estimate is obtained (see Algorithm 3), where the MR (multiresolution) method is
shown. This function is called MR(L− 1, xL−1,0), where L is the number of resolution levels
and xL−1,0 is the initial estimate on the coarsest level.

The advantage of coarse-to-fine multiresolution is that a good initial guess may be obtained
for the finest grid problem by estimating a solution to the problem using the coarser grids.
However, for linear systems it is currently known that one-way multilevel methods do not
reach the optimal efficiency of standard bidirectional multigrid methods, which are detailed
in the next section.

4.2. Multigrid methods. Multigrid methods were originally developed to solve elliptic
PDEs and at present are known to be among the most powerful numerical methods for im-
proving computational efficiency of a wide class of equations. For a classical reference on
multigrids, we refer to [9, 10]. The main characteristic of multigrid algorithms is based on
the observation that different frequencies are present in the error of the solution of the finest
grid problem. Some algorithms, called smoothers (such as Gauss–Seidel), are known to ef-
ficiently reduce the high frequency components of the error on a grid (or, in other words,
the components whose “wavelength” is comparable to the grid’s mesh size). However, these
algorithms have a small effect on the low frequency error components. This is the reason
why the application of schemes such as Gauss–Seidel to solve a problem, for a given grid,
effectively reduces the error in the first iterations of the procedure (due to smoothing of the
high frequency errors) but then converges slowly to the solution (due to smoothing of the low
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704 E. M. KALMOUN, L. GARRIDO, AND V. CASELLES

Algorithm 3. Multiresolution method.

1: function MR(i, xi,0)
2: i = L− 1: coarsest level of resolution
3: xi,0: initial estimate
4: repeat
5: Apply TN with initial estimate xi,0.
6: Let xi,1 be the result.
7: if i > 0 then
8: // Prolongate current estimate to next finer level
9: xi−1,0 = Pxi,1

10: end if
11: i = i− 1
12: until i < 0
13: return x0,1

frequency errors).
One may observe that low frequency errors appear as higher frequencies on coarser grids.

The latter may be effectively reduced using a smoother in the coarse grid. Moreover, smooth-
ing at a coarser level typically has a much lower cost than on finer grids. The core idea of
multigrid is to use a sequence of subproblems defined on coarser grids as a means to accelerate
the solution process (by relaxation such as Gauss–Seidel) on the finest grid. This leads to
recursive algorithms such as the so-called V- or W-cycle, which traverse between fine and
coarse grids in the mesh hierarchy. Since ultimately only a small number of relaxation steps
must be performed on each level, multigrid provides an asymptotically optimal method whose
complexity is only O(N), where N is the number of mesh points.

4.2.1. Multigrid for linear systems. We recall first the basics of multigrid techniques.
We consider a sparse linear system which typically results from the discretization of a PDE
on a fine grid Ωi with a given grid spacing h:

(4.1) Aixi = bi.

Let xi,0 be an initial approximation of (4.1) and xi be the exact solution. The first step of the
algorithm consists of smoothing the error xi − xi,0 by applying N0 iterations of a relaxation
scheme S to (4.1) that has the smoothing property [25]. Examples of the smoother S are
Richardson, Jacobi, or Gauss–Seidel. The obtained smooth approximation x̄i,1 satisfies (4.1)
up to a residual ri:

Aixi,1 = bi − ri.

The corresponding error equation is therefore given by

(4.2) Aiei = ri,

where ei = xi,1 − xi is the unknown smooth error. Equation (4.2) is then solved on a coarser
grid Ωi+1 with a grid spacing that has to be larger than h (typical choice is 2h, but other
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MULTILEVEL OPTIMIZATION FOR OPTICAL FLOW 705

choices are possible). For this, the fine grid error equation must be approximated by a coarse
grid equation:

(4.3) Ai+1ei+1 = ri+1.

We therefore need to transfer the residual to the coarse grid and construct a coarse version
of the fine matrix. Let R be a restriction operator mapping functions on Ωi to functions on
Ωi+1 (common examples are injection and full weighting; see [10]). The coarse residual is then
given by

ri+1 = Rri.

The coarse grid matrix may be obtained by rediscretization on Ωi+1 or by using the Galerkin
coarse grid approximation Ai+1 = RAi P . Here P is a prolongation (or interpolation) operator
mapping functions from Ωi+1 to Ωi (standard examples are linear and bilinear interpolation).

The result ei+1,∗ due to solving (4.3) is transferred back to the fine grid to obtain

ei,∗ = Pei+1,∗.

With this approximation of the fine grid error, the approximate solution is corrected to obtain

xi,2 = xi,1 + ei,∗.

In order to damp high frequency error components that might arise due to the interpolation,
N1 iterations of the smoother S are applied on the fine grid to get the new iterate xi,3.

The coarse grid problem (4.3) has a lower dimension than the original problem (4.1), but
it must be solved accurately for each iteration, which can be very costly. In a typical multigrid
with three levels or more, this problem is solved by recursively calling the algorithm γ times
until reaching the coarsest grid, where we solve (4.3) exactly with a negligible cost. The steps
of this multigrid algorithm are summarized in Algorithm 4.

The resulting xi,3 may be injected iteratively as initialization in Algorithm 4 until the
residual on the finest grid,

ri,3 = bi −Aixi,3,

is smaller than a given tolerance.
Note that for the smoothing steps N0 and N1, only the sum is important in a convergence

analysis. Typical values for the tuple (N0, N1) are (1, 1) , (2, 1), and (2, 2). For the cycling
parameter γ, only the values 1 and 2 are commonly used. The so-called V-cycle corresponds
to γ = 1, and the W-cycle corresponds to γ = 2. This is illustrated in Figure 1 for three
levels.

An important variation of multigrids, which is known as the full multigrid method (FMG)
[9] or nested iteration technique [25], combines a multiresolution approach with a standard
multigrid cycle. The FMG starts at the coarsest grid level, solves a very low-dimensional
problem, extends the solution to a finer space, performs a multigrid cycle, and repeats the
process until a multigrid cycle is performed on the finest grid level. In this way, a good
initialization is obtained to start the multigrid cycle on the finest level, which usually reduces
the total number of iterations required. The method is illustrated in Figure 1 for three levels
using a V-cycle.
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706 E. M. KALMOUN, L. GARRIDO, AND V. CASELLES

Algorithm 4. Linear multigrid V-cycle.

1: function MG-cycle(i, Ai , bi, xi,0)
2: i: level
3: Ai, bi: defines linear system to be solved
4: xi,0: initialization
5: if i is the coarsest level then
6: Solve xi,1 = A−1

i bi // Solve exactly
7: else
8: xi,1 := S(xi,0, Ai, bi, N0) // Smooth with N0 iterations
9: xi+1,0 = 0

10: ri := bi −Aixi,1 // Residual
11: ri+1 := Rri // Restrict
12: Call MG(i + 1, Ai+1, ri+1, xi+1,0) γ times // Recursive call
13: Let ei+1,∗ be the returned value
14: ei,∗ := Pei+1,∗ // Extend
15: xi,2 := xi,1 + ei,∗ // Apply correction step
16: xi,3 := S(xi,2, Ai, bi, N1) // Postsmooth with N1 iterations
17: Return xi,3
18: end if

Full Multigrid with V−Cycles

Finest

Coarsest

Finest

Coarsest

V−Cycle W−Cycle

Figure 1. V-cycle, W-cycle, and FMG with V-cycle.

4.2.2. Multigrid for optimization problems. As commented previously, the multigrid
strategy has been recently extended to optimization problems for both line search methods
and trust region problems. Previous works on nonlinear multigrid methods applied the tech-
niques directly to systems of nonlinear equations obtained by solving the first-order optimality
conditions. This approach is not suitable for problems that are not easily transformed into
systems of nonlinear equations. Another possible way to use multigrid for optimization prob-
lems is to apply the linear multigrid as inner iterations for solving the linear system (3.2) for
a given iterate wk. This idea implicitly assumes that the Newton method is the underlying
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optimization algorithm and that the Hessian matrices can be explicitly computed. Since many
large-scale optimization algorithms require only the computation of function and gradient val-
ues, it is less obvious how such multigrid algorithms can be applied. Moreover, solving the
Newton equations using multigrid may lead only to a better unilevel optimization algorithm
as long as the multigrid technique is not applied in the outer iterations.

We deal here with a multigrid algorithm that works directly with the optimization problem,
enabling us to work with problems that are not easily transformed into systems of nonlinear
equations. The line search MG/Opt strategy is described in the following.

As with multigrid for linear systems, in order to solve the optimization problem (2.7) over
an original (finest) grid level i = 0, a sequence of optimization subproblems are considered
on nested coarser grids. Given a fine grid level i ≥ 0, let fi denote a representation of the
objective function f on this level. Let wi,0 be an initial fine approximation to the optimization
problem at level i. For the finest level i = 0, the optimization problem corresponds to the
minimization of f0, the finest representation of the objective function f . However, for a coarser
level i, the optimization problem corresponds to the minimization of a function hi that shall
be specified later. The first step in the multigrid procedure is called a preoptimization phase
(analogous to presmoothing in linear multigrid) and consists of applying N0 iterations of an
optimization procedure such as TN (in our case, line search TN) to hi to obtain wi,N0 . As
for nonlinear multigrid, this wi,N0 is transferred to a coarser grid to obtain wi+1,0 := Rwi,N0 .
The residual at this level is given by

ri+1 := ∇fi+1(wi+1,0)−R∇hi(wi,N0).

The function

(4.4) hi+1(wi+1) = fi+1(wi+1)− rTi+1wi+1

is the function to be minimized on the coarse grid level i + 1. We take h0 := f0 = f on the
finest level.

Assume that wi+1,∗ is a solution to the optimization of (4.4). The error between wi+1,∗ and
the initial approximation wi+1,0 is called coarse grid correction. This correction is extended
back to level i:

si,N0 = P (wi+1,∗ −wi+1,0).

In an optimization context, this correction step used to update the current solution wi,N0 to
wi,N0+1 is considered as a search direction called recursive to distinguish it from the direct
search direction step that is computed by a given optimization procedure on the same grid
level.

Finally, in order to remove the oscillatory components that may have been introduced by
the correction step, one may finish with a postoptimization phase by applying N1 iterations
of the optimization procedure (in our work, line search TN) to hi with initial guess wi,N0+1,
obtaining wi,N0+N1+1.

The coarse optimization subproblem for hi+1 can be seen as a first-order approximation
to the fine grid problem hi since their gradients coincide on wi+1,0:

∇hi+1(wi+1,0) = ∇fi+1(wi+1,0)− ri+1 = R∇hi(wi,N0).D
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708 E. M. KALMOUN, L. GARRIDO, AND V. CASELLES

The first-order approximation suggests that the correction will be reliable only near the re-
stricted approximation, and it relates at the same time the MG/Opt algorithm to the steepest
descent method. The latter connection indicates that the coarse grid correction will not typ-
ically be a well-scaled descent direction, which, in turn, implies that a line search should be
performed to adjust the scale of the recursive search direction. However, it can be demon-
strated that the multigrid algorithm is related to the Newton method, in the sense that the
recursive search direction si is an approximate Newton direction [31]. Accordingly, in order to
improve computational efficiency, the line search for a recursive direction step si is performed
only if wi,k+αksi with αk = 1 does not reduce the value of hi. That is, if hi(wi,k+si) < hi(wi,k),
we update with wi,k+1 = wi,k + si. Otherwise a line search is performed.

In [31] bound constraints are proposed for the optimization subproblem. In the context of
our work, we have seen that bound constraints may improve robustness of the MG/Opt algo-
rithm. These bound constraints may be implemented by means of active sets [41]. However,
in our case we have seen that we do not need to set up such bounds since the line search TN
algorithm used to optimize the subproblem hi+1 already provides similar constraints. Line
search algorithms restrict the search at each iteration wi+1,k to an upper bound which depends
on the gradient norm values, and thus ensure that the update wi+1,k+1 is not far away from
wi+1,k.

We have implemented the MG/Opt algorithm using a full multigrid method (FMG) to
solve the problem, and the resulting algorithm will be denoted by FMG/Opt. As for the
linear case, the FMG/Opt starts at the coarsest grid level where enough TN iterations are
performed and prolongates the solution to the next finer level i, where Vi iterations of the
MG/Opt cycle are performed.

Algorithm 5 shows the V-cycle algorithm used for FMG/Opt. At each iteration the al-
gorithm computes a step si either directly using the inner iteration of the TN method (Al-
gorithm 2) on the current level, or recursively by means of the multigrid strategy. However,
as noted in [48, 24], the recursive call is useful only if ||Rgi,k|| is large enough compared to
||gi,k||, where gi,k = hi(wi,k) and k ≤ N0. Thus we restrict the use of a coarser level i + 1 to
the case where

(4.5) ||Rgi,k|| > κg||gi,k|| and ||Rgi,k|| > εg

for some constant κg ∈ (0,min ||R||) and where εg ∈ (0, 1) is a measure of first-order criticality
for hi+1. The latter condition is easy to check before trying to compute a step at level i+ 1.

5. Implementation issues. The numerical algorithms TN, MR/Opt, and FMG/Opt have
been implemented in C using the MegaWave2 library. In this section, we provide details about
derivative computation for both the objective function and the image.

5.1. Functional gradient calculation. The gradient of the objective function in (2.7) is
calculated analytically and given by

g = ∇f =

(
fu

f v

)
=

(
Du + αRu

Dv + αRv

)
.
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Algorithm 5. The V-cycle for the FMG/Opt algorithm.

1: function MG/Opt-cycle(i, hi, wi,0)
2: i: level
3: hi: coarse objective function at level i // h0 = f
4: wi,0: initial approximation to hi
5: if i is coarsest level then
6: task = optimize, N = max outer
7: else
8: task = preoptimize, N = N0

9: end if
10: k0 = k = 0
11: loop
12: if task is optimize, preoptimize, or postoptimize then
13: Compute si,k by calling Algorithm 2
14: else
15: wi+1,0 = Rwi,k // Restrict
16: ri+1 = ∇fi+1(wi+1,0)−R∇hi(wi,k) // Residual
17: hi+1(wi+1) = fi+1(wi+1)− rTi+1wi+1 // Next coarse objective function
18: Call MG/Opt-cycle(i+1, hi+1, wi+1,0)
19: Let wi+1,∗ be the returned solution
20: si,k = P (wi+1,∗ − wi+1,0) // Correction step
21: end if
22: Perform a line search to scale the step si,k by αk
23: wi,k+1 = wi,k + αi,ksi,k
24: Update Mi,k+1 by the BFGS formula
25: if |fi,k+1 − fi,k| < εf or ||wi,k+1 − wi,k|| < εx then
26: return wi,k+1

27: end if
28: k := k + 1
29: // Select next task to do
30: if task is preoptimize and (4.5) is satisfied then
31: task = recursive-call
32: else if task is recursive-call then
33: task = postoptimize, N = N1, k0 = k
34: end if
35: // Check if maximum number of outer iterations has been reached
36: if (task is optimize, preoptimize, or postoptimize) and (k − k0 = N) then
37: return wi,k
38: end if
39: end loop
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5.1.1. Horn–Schunck data term. For the linear data term we have

D(u, v) =
1

2

∑
i,j

ψ
([
Ixui,j + Iyvi,j + It

]2)
,

where i (respectively, j) corresponds to the discrete column (respectively, row) of the image,
with the coordinate origin located in the top-left corner of the image. The function ψ is used
to enhance robustness with respect to outliers. In our work we have used

ψ
(
x2

)
=

{
x2 if |x| ≤ γ,
γ2 otherwise,

where γ is a given threshold. The gradient D for |x| ≤ γ is therefore given by(
Du
i,j

Dv
i,j

)
=

(
Ix

[
Ixui,j + Iyvi,j + It

]
Iy [Ixui,j + Iyvi,j + It]

)
,

where Du
i,j and D

v
i,j refer to the partial derivative of D(u, v) with respect to variables ui,j and

vi,j, respectively. Here I
x, Iy, It are the spatial and temporal image derivatives for which the

computation is explained in section 5.3. Note that for |x| > γ the gradient D is (Du
i,j ,D

v
i,j)

T =

(0, 0)T .

5.1.2. Intensity constancy-based data term. The nonlinear data term based on the con-
stancy assumption is as follows:

D(u, v) =
1

2

∑
i,j

ψ
(
[I2(i+ ui,j, j + vi,j)− I1(i, j)]

2
)
.

The gradient of this functional for |x| ≤ γ is given by(
Du
i,j

Dv
i,j

)
=

(
Ix2 (i+ ui,j, j + vi,j) [I2(i+ ui,j, j + vi,j)− I1(i, j)]
Iy2 (i+ ui,j, j + vi,j) [I2(i+ ui,j , j + vi,j)− I1(i, j)]

)
.

5.1.3. Quadratic regularization term. Now we consider the regularization term and start
with the quadratic functional. We have

R(u, v) =
1

2

∑
i,j

||∇i,j(u, v)||2,

where ||∇i,j(u, v)|| =
√

(uxi,j)
2 + (uyi,j)

2 + (vxi,j)
2 + (vyi,j)

2. The partial derivatives of u, v are

computed by forward finite differences with a discretization step h, that is, uxi,j = h−1(ui+1,j−
ui,j) and u

y
i,j = h−1(ui,j+1−ui,j) (derivatives vx and vy are computed similarly). The gradient

of this functional is obtained as(
Rui,j
Rvi,j

)
=

1

h2

(
4ui,j − ui−1,j − ui,j−1 − ui+1,j − ui,j+1

4vi,j − vi−1,j − vi,j−1 − vi+1,j − vi,j+1

)
.
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5.1.4. Total variation (TV) term. In this case we suppose that

R(u, v) =
∑
i,j

||∇i,j(u, v)||.

To overcome the problem of nondifferentiability of the TV, a widely used technique consists
of approximating R by a differentiable function:

R(u, v) ≈
∑
i,j

ψi,j,

where ψi,j =
√

(uxi,j)
2 + (uyi,j)

2 + (vxi,j)
2 + (vyi,j)

2 + μ and μ is a small positive parameter.

Using again forward finite differences, the gradient of the last approximation is given by

(
Rui,j
Rvi,j

)
=

1

h

⎛
⎝ uxi−1,j

ψi−1,j
+

uyi,j−1

ψi,j−1
− uxi,j+u

y
i,j

ψi,j

vxi−1,j

ψi−1,j
+

vyi,j−1

ψi,j−1
− vxi,j+v

y
i,j

ψi,j

⎞
⎠ .

Another approximation of the TV is given by

R(u, v) ≈
∑
i,j

ϕμ (||∇i,j(u, v)||) , where ϕμ(x) =

{
|x| if |x| ≥ μ,

x2/2μ + μ/2 otherwise.

Theoretically, this approximation is two times better than the first standard approximation.
However, numerically in our implementation, both approximations lead to almost the same
results.

5.2. Hessian calculation. For computing the Newton direction in the TN method, the
linear conjugate gradient is a Hessian-free procedure (see Algorithm 2) and needs to supply
only a routine for computing the product of the Hessian with Newton direction p. This
matrix-vector product is computed via forward finite differences:

H(w) p =
g(w + εp)− g(w)

ε
,

where ε is chosen to be the square root of the machine precision divided by the norm of w.

5.3. Image gradient calculation. Differentiation is an ill-posed problem [6], and regu-
larization may be used to obtain good numerical derivatives. Such regularization may be
accomplished with a low-pass filter such as the Gaussian and is essential for motion estima-
tion [4, 44]. More recently, [21] proposed using a matched pair of low-pass and differentiation
filters as a gradient operator, which are the ones used in this work.

Usually, the derivative at an integer Ixi,j is computed by applying a separable filter com-
posed of a Gaussian filter (alternatively, a matched low-pass filter) in the y direction and the
derivative of the Gaussian (alternatively, a matched derivative) in the x direction. Conversely,
the computation of the derivative in the y direction at an integer point is performed by apply-
ing a separable filter composed of a Gaussian (or matched low-pass filter) in the x direction
and the derivative of the Gaussian (or a matched derivative) in the y direction.
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Shift of
0.5 pixels

Filter A

Filter B

0 1−1

−2−3 2 3

0.5
Point to
interpolate

54321 6 7 x

Figure 2. Filter tap interpolation by means of a shift in the Fourier domain.

For motion estimation applications it may be necessary to compute the gradient at non-
integer points, since noninteger displacements are allowed. This is the case, for instance, of
the nonlinear data term of section 5.1.2. In such cases, a simple way to proceed is a two-step
process: in a first step, the original image is interpolated at the required points using a bilin-
ear interpolation or an interpolation kernel such as [30], and then the derivative is computed
using the latter interpolated points. Another way to proceed is to first compute the gradient
at integer points and then apply an interpolation kernel over the gradient values using these
latter values. Both procedures are theoretically equivalent since differentiation and interpo-
lation are based on linear operators (and thus, they are interchangeable). Let us call this
approach linear gradient interpolation.

In this work the computation of the gradient at noninteger points is done by means
of a shift in the Fourier domain. Moreover, rather than shifting the image (or gradient)
to obtain the interpolated values, the derivative filter taps are shifted so as to obtain the
filter coefficients that have to be applied on the integer image values in order to obtain the
corresponding interpolated gradient value.

Assume that the gradient and interpolation kernels are linear, shift-invariant, and separa-
ble. Such kernels may be found in [21]. Without loss of generality, the interpolation problem
in the Fourier domain can thus be restricted to one dimension. Let us consider Figure 2, which
shows the proposed technique. On top several samples of a one-dimensional signal are shown.
Filter taps A are used to obtain the gradient at integer points (in the example the filter A
is centered on x = 4), whereas filter taps B may be used to obtain the gradient at every
noninteger point halfway between two integer points (in the example the filter B is centered
on x = 4.5). The filter taps B are obtained from filter taps A by means of a shift of 0.5 in
the Fourier domain. They can thus be applied directly on the original data. We will call this
procedure Fourier gradient interpolation.

Figure 3 shows an example in which a set of matched filters [21] of size 9 are interpolated at
noninteger points by a shift in the Fourier domain and by a linear interpolation. Performing
a linear interpolation on the filter taps in order to apply them to the original data values
is equivalent to the gradient linear interpolation approach described above. Note that, as
expected, the obtained filter taps are different for both methods. The experimental section will
show that Fourier-based interpolation leads to a better performance than linear interpolation,
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0

0.05

0.1

0.15

0.2
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0.3
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-4 -2 0 2 4

Fourier interpolated
Linear interpolated

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

-4 -2 0 2 4

Fourier interpolated
Linear interpolated

Figure 3. A set of matched filters of size 9 are interpolated at noninteger points by a shift in the Fourier
domain and by a linear interpolation.

especially in the multigrid approach.
In the two-dimensional case, if Ix has to be computed at point (i+Δi, j+Δj), where (i, j)

is an integer discrete image position and Δi < 1 and Δj < 1, the matched low-pass filter in
the y direction (respectively, the matched derivative in the x direction) is obtained by shifting
the corresponding taps Δi (respectively, Δj) in the Fourier domain. A similar procedure is
used to compute Iy at a noninteger point.

The previous scheme has a high computational load if the Fourier shift has to be applied
to each noninteger position where one needs to interpolate the gradient. The computational
load can be reduced significantly if, at the initialization of the optimization algorithm, the
gradient is computed with the Fourier gradient interpolation at all points of a grid of size
h/D. Then, each time one has to compute the gradient at a noninteger point, a bilinear
interpolation with the neighboring pixels is used. Figure 3 shows the case where D = 10.

6. Experimental results. To assess the performance of the proposed algorithms, we use
three classical sequences of synthetic images that consist of scenes of various complexity,
namely, the translating tree, the diverging tree, and the Yosemite sequences. The reference
frame and the corresponding ground truth of the synthetic sequences are shown in Figures 4
and 5. The image size of the tree sequences is 150 × 150, while the Yosemite sequence is of
size 316× 252.

Since we are more interested in the computational complexity of the proposed algorithms,
we first compare the CPU time needed by each numerical algorithm to reach a similar accuracy
using four optical flow models. All tests are performed on a PC with a 2.0 GHz Mobile Intel
DualCore processor and 1 GB RAM. We also compute the number of function and gradient
evaluations that were performed by each algorithm to reach the estimated optical flow. We
measure the overall number of function evaluations as

Nf =
L−1∑
i=0

Nf,i

Fi
,

where Nf,i is the number of function evaluations performed by the optimization algorithm at
resolution level i. For the TN and our MR/Opt and FMG/Opt algorithms, the function is
evaluated during the line search procedure. Fi is the mesh resolution ratio of a given level i
with respect to the finest level 0. In this work Fi = 22i.
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714 E. M. KALMOUN, L. GARRIDO, AND V. CASELLES

Figure 4. At the top, one frame of the original sequence is shown. At the bottom, the ground truth for the
corresponding translating (left) and diverging (right) is shown. Motion vectors have been scaled by a factor of
2.5 for better visibility.

Figure 5. At left, one frame of the Yosemite sequence is shown. At right, the corresponding ground truth
is depicted, where motion vectors have been scaled by a factor of 2.5 for better visibility.

The number of gradient evaluations is defined in a similar manner. While the function is
evaluated only during the line search procedure, the gradient is additionally evaluated during
the inner iterations of the TN algorithm (i.e., the Hessian computation). Thus, we expect the
number of function evaluations to always be lower than the gradient evaluations. Note also
that the number of gradient evaluations is more crucial to the overall computational work than
the number of objective function evaluations. Here one gradient evaluation is approximately
equivalent to two function evaluations when using quadratic regularization and three function
evaluations in the case of TV regularization.

Moreover, we compare the quality of the optical flow estimations of the numerical algo-
rithms. For this, we measure the average angular error (AAE) and the standard deviation
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(STD) of the estimated flow we with respect to the ground truth wc. For a given pixel (i, j),
the angular error (AE) between the ground truth motion vector, wci,j, and the estimated flow,
wei,j, is computed as

AE(wci,j, w
e
i,j) = cos−1

⎛
⎝ uci,ju

e
i,j + vci,jv

e
i,j + 1√

(uci,j)
2 + (vci,j)

2 + 1
√

(uei,j)
2 + (vei,j)

2 + 1

⎞
⎠ .

The AAE is the mean of the AE over all pixels Nnp of the image:

AAE(wc, we) =
1

Nnp

∑
i,j

AE(wci,j , w
e
i,j).

The STD is computed as

STD(wc, we) =

√
1

Nnp

∑
i,j

(
AE(wci,j, w

e
i,j)−AAE(wc, we)

)2
.

Before going through the performance evaluation of multilevel optimization algorithms, we
first demonstrate the competitiveness of the adopted discretize-optimize approach (numerical
optimization) versus the standard optimize-discretize approach (Gauss–Seidel) and also justify
the selection of the chosen numerical optimization algorithm. To this end, we compare the
CPU time needed to reach a similar AAE by the following algorithms: (1) the proposed line
search two-step preconditioned truncated Newton algorithm approach of section 3 (TN1), and
(2) the line search quasi-Newton limited memory BFGS (L-BFGS) approach of [32] (QN). A
positive-definite approximation to the Hessian is obtained at each iteration wk by storing
the previous steps wk and the BFGS approach. Instead of solving at each outer iteration
the Newton equation, the L-BFGS method takes advantage of the fact that the obtained
BFGS preconditioning matrix is easily invertible. Thus, in the L-BFGS approach line 7 of
Algorithm 1 is replaced by sk =M−1

k gk. The proposed algorithm TN1 is also compared to 3)
a line search L-BFGS preconditioned truncated Newton method (TN2). This corresponds to
the same algorithm as TN1, but the L-BFGS preconditioning approach [32] is used instead of
the two-step BFGS approach [39].

It should be noted that in these three numerical optimization algorithms (TN1, TN2, and
QN) the same line search approach is used [36]. The previous algorithms were compared using
the linear data term and quadratic regularization, which corresponds to the classical Horn–
Schunck model. Thus we also implemented a Gauss–Seidel Horn–Schunck smoother [27]. We
call the latter algorithm GS.

The experimental results for the four algorithms (GS, TN1, TN2, and QN) are shown
in Table 1. Best results for QN were obtained using four steps, and TN2 was set up to the
same number of steps for the preconditioner. As expected from a linear relaxation scheme,
GS has problems near the solution, and indeed in the tests it can reach an AAE below 8.00
in less than 1 second but will get stuck and does not reach the optimal solution. Overall,
TN algorithms perform better, justifying the choice of the TN as the underlying optimization
smoother within multilevel algorithms to determine direct search directions. TN1 and TN2
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Table 1
CPU time needed by the approaches GS, TN1, TN2, and QN to reach similar accuracy for the Yosemite

sequence using the Horn–Schunck model.

Algorithm GS TN1 TN2 QN

CPU time (s)
unilevel 45.22 8.90 9.36 17.20
multiresolution 10.74 5.21 5.65 9.50

AAE 7.40 6.81 6.82 6.85

perform almost the same with a slightly better performance by TN1. This algorithm will be
used in what follows as the smoother and will be denoted by Opt.

Now we report the performance evaluation of the unilevel, the multiresolution, and the
multigrid optimization algorithms applied to estimate the optical flow between two successive
frames of the above three sequences—translating tree, diverging tree, and Yosemite. We
considered four optical flow models as described above in section 2 and subsection 5.1. We
note that we used thresholding in all the data terms to remove outliers. In all experiments we
considered L = 6 levels of resolution for multilevel algorithms (multiresolution and multigrid),
and the initial guess for optical flow was zero. The stopping criteria for all algorithms were set
on the relative error of the objective function, the gradient norm, or the solution norm with
a tolerance of 10−5. For the MR/Opt algorithm, the maximum number of outer iterations
was set to 10 iterations per resolution for all the optical flow models except when using the
nonlinear data term and the TV regularization, for which we used a maximum of 15 iterations.
For the FMG/Opt, we performed two or three V-cycles when using the nonlinear data term,
while only 1 V-cycle was sufficient in the case of the linear data term. We note here that for
the purpose of a fair computational work comparison, we stopped the outer iterations once
a similar accuracy on the optical flow estimation was reached. For all the algorithms, the
maximum number of inner iterations within the Opt method was set to 20.

In Tables 2–4, we summarize the quality of the solution and the computational costs of the
three numerical algorithms for four optical flow models. Model 1 refers to the linear data term
plus the quadratic regularization; Model 2 refers to the nonlinear data term plus the quadratic
regularization; Model 3 refers to the linear data term plus the TV regularization; and, finally,
Model 4 refers to the nonlinear data term plus the TV regularization. The latter is the
most accurate for optical flow estimation but computationally the most expensive of the four
models. Indeed, Model 4 contains the nonlinear data term as well as the TV regularization,
which provides accurate optical flow estimations but is numerically more challenging than the
quadratic regularization.

In terms of the quality of the solution, by comparing the unilevel algorithm to the multi-
level algorithms, we note that the optical flow estimation of the four models is more accurate
when computed using the latter algorithms for all the tested images. In this regard, MG/Opt
has been shown to provide a more accurate estimation than MR/Opt if we take the AAE as
an accuracy measure. In particular, the most accurate optical flow estimations for the three
sequences are obtained with Model 4 using the FMG/Opt algorithm. To illustrate the results
obtained by using MG/Opt, we show first in Figure 6 the estimated motion fields of Models
2 and 4 for the translating and diverging tree sequences. In Figure 7, we plot the estimated
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Table 2
Comparison of computational work and optical flow estimation for two frames of the translating tree se-

quence using optimization algorithms Opt, MR/Opt, and FMG/Opt. Time is CPU time in seconds.

Opt MR/Opt FMG/Opt

Time 11.91 2.73 0.98
Nf 69 15 12

Model 1 Ng 572 133 37
AAE 1.83 0.90 0.89
STD 1.23 0.55 0.51

Time 14.22 5.40 2.07
Nf 89 19 25

Model 2 Ng 586 221 72
AAE 0.27 0.23 0.23
STD 0.29 0.22 0.22

Time 27.78 4.90 2.40
Nf 95 15 21

Model 3 Ng 1042 189 87
AAE 1.54 0.77 0.75
STD 0.86 0.47 0.42

Time 35.32 10.25 4.08
Nf 125 35 46

Model 4 Ng 1130 334 126
AAE 0.20 0.20 0.20
STD 0.18 0.18 0.17

Table 3
Comparison of computational work and optical flow estimation for two frames of the diverging tree sequence

using optimization algorithms Opt, MR/Opt, and FMG/Opt. Time is CPU time in seconds.

Opt MR/Opt FMG/Opt

Time 14.56 4.10 0.72
Nf 64 16 10

Model 1 Ng 695 209 27
AAE 2.06 1.99 1.82
STD 1.60 1.57 1.30

Time 16.81 5.28 1.70
Nf 82 20 16

Model 2 Ng 664 221 63
AAE 2.08 2.07 1.90
STD 1.95 2.09 1.85

Time 26.59 6.61 1.06
Nf 128 20 11

Model 3 Ng 1016 253 35
AAE 2.49 2.46 1.59
STD 1.86 1.95 1.17

Time 31.60 14.73 3.26
Nf 133 96 30

Model 4 Ng 997 492 97
AAE 2.09 2.07 1.86
STD 1.84 1.89 1.92
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Table 4
Comparison of computational work and optical flow estimation for two frames of the Yosemite sequence

using line search optimization algorithms (Opt, MR/Opt, FMG/Opt). Time is CPU time in seconds.

Opt MR/Opt FMG/Opt

Time 12.07 5.21 2.97
Nf 13 8 11

Model 1 Ng 161 60 26
AAE 6.79 6.78 6.77
STD 9.25 9.31 9.49

Time 62.20 15.59 7.06
Nf 108 27 19

Model 2 Ng 680 167 67
AAE 6.47 6.22 6.17
STD 9.28 9.15 9.18

Time 82.27 17.38 7.01
Nf 83 19 15

Model 3 Ng 856 188 81
AAE 6.33 6.07 6.08
STD 9.10 8.62 8.40

Time 205.56 25.51 14.46
Nf 218 24 21

Model 4 Ng 1821 223 121
AAE 5.75 5.49 5.45
STD 8.92 8.57 7.90

motion fields of the four models for the Yosemite sequence. The results obtained with the
other methods are visually similar, and for reasons of space we do not show them. We refer
to Tables 2–4 for the quantitative comparison.

Next we discuss the computational expense of the FMG/Opt algorithm compared to the
Opt and MR/Opt algorithms. From Tables 2–4, we remark that our algorithm significantly
outperforms both optimization algorithms in terms of the CPU running time and the number
of function and gradient evaluations for the three image sequences and the four optical flow
models. For Model 1, while linear multigrid with standard components does not work [5, 29,
28], our FMG/Opt algorithm is around 8 times faster to run than Opt and 2.5 times faster
than MR/Opt. The same almost applies for Model 2 which contains a nonlinear data term. As
expected, for Model 3 which incorporates a TV regularization term, multilevel optimization
is much more effective than unilevel optimization. In fact, our FMG/Opt algorithm takes 13
times less CPU time to run than the Opt algorithm. Finally, when used for Model 4, the
FMG/Opt algorithm shows a similar significant improvement of a factor of 12 over Opt and
more than 2 over MR/Opt.

Overall, the FMG/Opt algorithm performs at least 2 times better than the MR/Opt
algorithm and 10 times better than the Opt algorithm; see Table 5. We also note that
the FMG/Opt algorithm is less independent of the image size because it often takes similar
numbers of function and gradient evaluations when compared across the same optical flow
model.
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Figure 6. These plots show the motion fields obtained using the FMG/OPT algorithm for the diverging
(top) and translating (bottom) tree. On the left (respectively, right) the result for Model 2 (respectively, Model
4) is shown superimposed with the ground truth. Motion vectors have been scaled by a factor of 2.5 for better
visibility.

Figure 7. These plots show the motion fields obtained using the FMG/OPT algorithm for the Yosemite
sequence. From left to right, and from top to bottom, Models 1–4 are shown superimposed with the ground truth.
Motion vectors have been scaled by a factor of 2.5 for better visibility.
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Table 5
Global characteristics of Opt, MR/Opt, and FMG/Opt for optical flow models on all the three images. Nfg

is the total number of function and gradient evaluations.

Opt MR/Opt FMG/Opt

Model 1
Total time (s) 38.54 12.04 4.76
Total Nfg 1501 421 106

Model 2
Total time (s) 93.63 26.27 10.83
Total Nfg 2069 642 232

Model 3
Total time (s) 136.64 28.89 10.47
Total Nfg 3016 648 219

Model 4
Total time (s) 272.48 50.49 21.80
Total Nfg 3117 1101 376

All models
Total time (s) 541.29 117.69 47.86

Total Nfg 9703 2812 933

7. Conclusion. Based on the discretize-optimize approach, we have applied different nu-
merical optimization techniques to variational models for optical flow computation. First, we
have shown the competitiveness of this strategy compared to the classical optimize-discretize
approach. Three Newton-based optimization algorithms were superior to the Gauss–Seidel
method when applied to the classical Horn–Schunck model. In particular, TN was shown to
be a suitable unilevel optimization algorithm and was chosen as the smoother for optimization-
based multilevel methods. We then implemented the FMG/Opt algorithm based on a line
search strategy to scale the (direct) Newton or the (recursive) multigrid search direction.
Several components of the MG/Opt technique have been tuned for high efficiency, and the
algorithm has been fully evaluated with respect to unilevel and (one-way) MR/OPT. Our
experimental results have demonstrated that the FMG/Opt algorithm can be effectively used
for optical flow computation. Using different models and images, we have observed that the
FMG/Opt algorithm was faster and more accurate than both unilevel and multiresolution TN.
Further research will investigate the use of line search multigrid versus trust region multigrid
in the context of dense optical flow computation. The proposed numerical strategy can be
adapted to the minimization of other nonlinear energy functionals such as the illumination-
invariant model proposed in [16] or depth estimation in stereo problems.
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