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Brownian Motion In Dire Straits

D. Holcman1, Z. Schuss2

Abstract

The passage of Brownian motion through a bottleneck in a bounded domain is a
rare event and as the bottleneck radius shrinks to zero the mean time for such passage
increases indefinitely. Its calculation reveals the effect of geometry and smoothness
on the flux through the bottleneck. We find new behavior of the narrow escape time
through bottlenecks in planar and spatial domains and on a surface. Some applications
in cellular biology and neurobiology are discussed.

1 Introduction

The narrow escape problem is to calculate the mean first passage time (MFPT) of Brow-
nian motion from a domain with mostly reflecting boundary to a small absorbing window.
The MFPT, also known as the narrow escape time (NET), was calculated in [1]-[12] for
small absorbing windows in a smooth reflecting boundary. Several more complex cases were
considered in [6]-[8], such as the NET through a window at a corner or at a cusp in the
boundary and the NET on Riemannian manifolds. The calculation of the NET in composite
domains with long necks, as shown in Figure 1, was attempted in [12] and [13] and ultimately
accomplished in [14]. The NET problem in a planar domain with an absorbing window at
the end of a funnel was considered in [15]. The case of planar domains that consist of large
compartments interconnected by funnel-shaped bottlenecks was also considered in [15].

In this paper we consider Brownian motion in two- and three-dimensional domains whose
boundaries are smooth and reflecting, except for a small absorbing window at the end of a
cusp-shaped funnel, as shown in Figure 2. The cusp can be formed by a partial block of a
planar domain, as shown in Figure 3. The NET from this type of a domain was calculated
in [15] only for the planar case.

The results of [1]-[12] for small absorbing windows in a smooth reflecting boundary of a
domain Ω can be summarized as follows. In the two-dimensional case considered in [7] the
absorbing boundary ∂Ωa is a small window in the smooth boundary ∂Ω that is otherwise
reflecting to Brownian trajectories. The MFPT from x ∈ Ω to the absorbing boundary ∂Ωa,
denoted τ̄x→∂Ωa

, is the NET from the domain Ω to the small window ∂Ωa (of length a),
such that ε = π|∂Ωa|/|∂Ω| = πa/|∂Ω| ≪ 1 (this corrects the definition in [7]). Because the
singularity of Neumann’s function in the plane is logarithmic the MFPT is given by

τ̄x→∂Ωa
=

|Ω|
πD

ln
|∂Ω|
π|∂Ωa|

+O(1) for x ∈ Ω outside a boundary layer near ∂Ωa. (1)
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Figure 1: A mathematical idealization of a cross section of smooth and sharp connections approx-
imating the spine morphology: Left: The cross section is a composite domain that consists of a
bulky head Ω1 connected smoothly by an interface ∂Ωi = AB to a narrow neck Ω2. The entire
boundary is ∂Ωr (reflecting), except for a small absorbing part ∂Ωa = CD. Right: A cross section
of a sharp connection.

Figure 2: Left: The planar (dimensional) domain Ω′ is bounded by a large circular arc connected
smoothly to a funnel formed by moving ε apart two tangent circular arcs of radius Rc (i.e., AB = ε).
Right: Blowup of the cusp region. The red, green, and blue necks correspond to ν± = 1, 0.4, and
5 in (12), respectively.
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Figure 3: Narrow straits formed by a partial block (solid disk) of the passage from the head to
the neck of the domain enclosed by the black line. Inside the green circle the narrow straits can be
approximated by the gap between adjacent circles.

onr

Figure 4: Narrow straits formed by a cone-shaped funnel. Axes are rotated 90o about the y-axis.
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In the three-dimensional case the MFPT to a circular absorbing window ∂Ωa of small
radius a centered at 0 on the boundary ∂Ω is given by [16]

τ̄x→∂Ωa
=

|Ω|

4aD

[

1 +
L(0) +N(0)

2π
a log a+ o(a log a)

] , (2)

where L(0) and N(0) are the principal curvatures of the boundary at the center of ∂Ωa.

However, the MFPT from a domain to an absorbing interface located at the end of a
funnel, as shown in Figure 2, cannot be calculated by the methods of [6]-[8], [16], because the
contribution of the singular part of Neumann’s function to the MFPT in a composite domain
with a funnel or another bottleneck is not necessarily dominant. Also the method of matched
asymptotic expansions, used in [1]-[3], [17] for calculating the MFPT to the interface on a
smooth boundary, requires major modifications for an interface at the end of a bottleneck,
because the boundary layer problem does not reduce to the classical electrified disk problem
[19]. Altogether different boundary or internal layers at absorbing windows located at the
end of a cusp-like funnel are needed. The methods used in [12] and [13] for constructing the
MFPT in composite domains of the type shown in Figure 1(right) are made precise here and
the new method extends to domains of the type shown in Figure 1(left).

The new results of this paper are as follows. In Section 2 we prove that the MFPT to the
narrow straits formed by a partial block of a planar domain (see Figures 2 and 3) is given
by

τ̄ =

√

Rc(Rc + rc)

2rcε

π|Ω|
2D

(1 + o(1)) for ε≪ |∂Ω|, Rc, rc, (3)

where Rc and rc are the curvatures at the neck and ε is the width of the straits. More general
cases are also considered. In Section 3 we prove that the MFPT in the solid of revolution
obtained by rotating the symmetric domain Ω in Figure 2(left) about its axis of symmetry
is given by

τ̄ =
1√
2

(

Rc

a

)3/2 |Ω|
RcD

(1 + o(1)) for a≪ Rc, (4)

where the radius of the cylindrical neck is a = ε/2. In Section 4 we consider Brownian
motion on a surface of revolution generated by rotating the curve in Figure 2(left) about its
axis of symmetry. We use the representation of the generating curve

y = r(x), Λ < x < 0

where the x-axis is horizontal with x = Λ at the absorbing end AB. We assume that the
parts of the curve that generate the funnel have the form

r(x) = O(
√

|x|) near x = 0

r(x) = a+
(x− Λ)1+ν

ν(1 + ν)ℓν
(1 + o(1)) for ν > 0 near x = Λ, (5)
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where a = 1

2
AB = ε/2 is the radius of the gap, and the constant ℓ has dimension of length.

For ν = 1 the parameter ℓ is the radius of curvature Rc at x = Λ. We prove that the MFPT
from the head to the absorbing end AB is given by

τ̄ ∼ S(Λ)
2D

(

ℓ

(1 + ν)a

)ν/1+ν

ν1/1+ν

sin
νπ

1 + ν

, (6)

where S is the entire unscaled area of the surface. In particular, for ν = 1 we get the MFPT

τ̄ ∼ S
4D
√

a/2ℓ
. (7)

The case ν = 0 corresponds to an absorbing circular cap of small radius a on a closed surface.
For a sphere we get the known result

τ̄ =
2R2

D
log

sin θ
2

sin δ
2

, (8)

where θ is the angle between x and the south-north axis of the sphere and a = R sin δ/2 (see
[8]–[11]).

If a right circular cylinder of a small radius a and length L is attached to the surface at
z = Λ, the NET from the composite surface is given by

τ̄ =
S(Λ)
2D

(

ℓ

(1 + ν)a

)ν/1+ν

ν1/1+ν

sin
νπ

1 + ν

+
SL

2πDa
+
L2

2D
for a≪ ℓ (9)

(see [14] for a different derivation). We also find the NET and the exit probability when
there are N absorbing windows at the ends of narrow necks. These are related to the
principal eigenvalue of the Laplacian in dumbbell-shaped domains that consists of heads
interconnected by narrow necks, which, in turn, is related to the effective diffusion in such
domains. In Section 5 we calculate the NET from composite domains that consist of a
head connect by a funnel to a narrow cylindrical neck and calculate the principal eigenvalue
composite and dumbbell-shaped domains. Finally, in Section 6 we calculate the mean time τ̄
for a Brownian needle to turn around in a tightly fitting planar strip. For a needle of length
l0 in a strip of width l it is given by

τ̄ =
π
(π

2
− 1
)

Dr

√

l0(l0 − l)

√

DX

Dr

(

1 +O

(

√

l0 − l

l0

))

, (10)

whereDr is the rotational diffusion coefficient andDX is the translational diffusion coefficient
along the needle. We close this article by providing several applications to cellular biology.
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2 The MFPT to a bottleneck

We consider the NET problem in an asymmetric planar domain, as in Figure 3 or in an
asymmetric version of the (dimensional) domain Ω′ in Figure 2. We use the (dimensional)
representation of the boundary curves

y′ = r±(x
′), Λ′ < x′ < 0 for the upper and lower parts, respectively (11)

where the x′-axis is horizontal with x′ = Λ′ at AB. We assume that the parts of the curve
that generate the funnel have the form

r±(x
′) = O(

√

|x′|) near x′ = 0

r±(x
′) = ±a′ ± (x′ − Λ′)1+ν±

ν±(1 + ν±)ℓ
ν±
±

(1 + o(1)) for ν± > 0 near x′ = Λ′, (12)

where a′ = 1

2
AB = ε′/2 is the radius of the gap, and the constants ℓ± have dimension of

length. For ν± = 1 the parameters ℓ± are the radii of curvature R±
c at x′ = Λ′. To simplify

the conformal mapping, we first rotate the domain by π/2 clockwise to assume the shape in
Figure 2(left). The rotated axes are renamed (x′, y′) as well.

The NET of Brownian motion with diffusion coefficient D from a point x′ = (x′, y′) inside
the domain Ω′ with reflection at the boundary ∂Ω′, except for an absorbing boundary ∂Ω′

a

at the bottom of the neck, is the solution of the boundary value problem

D∆ū(x′) = − 1 for x′ ∈ Ω′ (13)

∂ū(x′)

∂n
=0 for x′ ∈ ∂Ω′ − ∂Ω′

a

ū(x′) = 0 for x′ ∈ ∂Ω′
a.

We convert to dimensionless variables by setting x′ = ℓ+x, Λ′ = ℓ+Λ, the domain Ω′ is
mapped into Ω and we have (see (14) below)

|Ω′| = ℓ2+|Ω|, |∂Ω′| = ℓ+|∂Ω|, |∂Ω′
a| = ε′ = ℓ+|∂Ωa| = ℓ+ε. (14)

Setting ū(x′) = u(x), we write (13) as

D

ℓ2+
∆u(x) = − 1 for x ∈ Ω (15)

∂u(x)

∂n
=0 for x ∈ ∂Ω− ∂Ωa

u(x) = 0 for x ∈ ∂Ωa.

2.1 Asymptotic analysis

First, we consider the case ν± = 1, ℓ+ = Rc, and l− = rc, radius 1, and A has dimensionless
radius rc/Rc. This case can represent a partial block described in Figure 3. With the scaling
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Figure 5: The image in Ωw = w(Ω) of the necks AB in Figure 2 under the conformal mapping (16).
The funnel in Figure 2 (shown inverted in the third quadrant) is mapped onto the ring enclosed
between the like-colored arcs and the large disk is mapped onto small red disk. The short black
segment AB (of length ε) is mapped onto the thick black segment AB (of length 2

√
ε+O(ε)).

(14) the bounding circle B has dimensionless We construct an asymptotic solution for small
gap ε by first mapping the domain Ω in Figure 2(left) conformally into its image under the
Möbius transformation of the two bounding circles (thin line) into concentric circles. To this
end we move the origin of the complex plane to the center of the right lower circle and set

w = w(z) =
z − α

1− αz
, (16)

where

α =− 2εRc + 2Rc + ε2Rc + 2rcε+ 2rc
2(εRc + rc +Rc)

±
√

ε(8Rcrc + 4εR2
c + 12εRcrc + 4ε2R2

c + 8r2c + 4ε2Rcrc + ε3R2
c + 4εr2c)

2(εRc + rc +Rc)

=− 1±
√

2rcε

Rc + rc
+O(ε), (17)

which maps the right lower circle into itself and Ω is mapped onto the domain Ωw = w(Ω)
in Figure 5. The straits in Figure 2(left) are mapped onto the ring enclosed between the
like-colored arcs and the large disk is mapped onto the small red disk. The radius of the
small red disk and the elevation of its center above the real axis are O(

√
ε). The short black

segment of length ε in Figure 2 is mapped onto a segment of length 2
√
ε+O(ε).
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Setting u(z) = v(w) and ε̃ = 2rcε/(Rc + rc), the system (15) is converted to

∆wv(w) = − ℓ2+
D|w′(z)|2 = − (4ε̃+O(ε̃3/2))ℓ2+

D|w(1−
√
ε̃)− 1 +O(ε̃)|4

for w ∈ Ωw (18)

∂v(w)

∂n
=0 for w ∈ ∂Ωw − ∂Ωw,a

v(w) = 0 for w ∈ ∂Ωw,a.

The MFPT is bounded above and below by that from the inverse image of a circular ring cut
by lines through the origin, tangent to the red disk at polar angles θ = c1

√
ε̃ (brown) and

θ = c2
√
ε̃ (cyan) for some positive constants c1, c2, independent of ε̃. Therefore the MFPT

from Ω equals that from the inverse image of a ring cut by an intermediate angle θ = c
√
ε̃

(black).

The asymptotic analysis of (18) begins with the observation that the solution of the
boundary value problem (18) is to leading order independent of the radial variable in polar
coordinates w = reiθ. Fixing r = 1, we impose the reflecting boundary condition at θ = c

√
ε̃,

where c = O(1) is a constant independent of ε̃ to leading order, and the absorbing condition
at θ = π. The outer solution, obtained by a regular expansion of v(eiθ), is given by

v0(e
iθ) = A(θ − π), (19)

where A is yet an undetermined constant. It follows that

∂v0(e
iθ)

∂θ

∣

∣

∣

∣

θ=π

= −A. (20)

To determine A, we integrate (18) over the domain to obtain at the leading order

2
√
ε̃
∂v0(e

iθ)

∂θ

∣

∣

∣

∣

θ=π

= −2
√
ε̃A ∼ −|Ω′|

D
, (21)

hence

A ∼ |Ω′|
2D

√
ε̃
. (22)

Now (19) gives for θ = c
√
ε̃ the leading order approximation

τ̄ ∼ Aπ =
π|Ω′|
D
√
ε̃
. (23)

The following more explicit analysis was briefly summarized in [15] for the symmetric case
ν± = 1, Rc = rc and is explicitly given here for completeness. The leading order approxima-
tion is obtained by an explicit integration of (18) with respect to θ,

v
(

eiθ
)

=
4ℓ2+ε̃

D

π
∫

θ

dϕ

ϕ
∫

c
√
ε̃

dη

|eiη − 1− eiη
√
ε̃|4
, (24)
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so that

v
(

eic
√
ε̃
)

=
4ℓ2+ε̃

D

π
∫

c
√
ε̃

dϕ

π
∫

ϕ

dη

|eiη − 1− eiη
√
ε̃|4

=
4ℓ2+ε̃

D

π
∫

c
√
ε̃

(π − η) dη

|eiη − 1− eiη
√
ε̃|4
. (25)

First, we evaluate asymptotically the integral

ℓ2+ε̃

D

π
∫

c
√
ε̃

η dη

|eiη − 1− eiη
√
ε̃|4

(26)

by setting η =
√
ε̃ζ and noting that

∣

∣

∣

∣

∣

eiζ
√
ε̃ − 1

iζ
√
ε̃

− 1

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

−2 sin2 ζ
√
ε̃

2

iζ
√
ε̃

+
sin ζ

√
ε̃

ζ ε̃
− 1

∣

∣

∣

∣

∣

= O(ζ
√
ε̃) for all η, ε̃ > 0. (27)

It follows that

4ℓ2+ε̃

D

π
∫

c
√
ε̃

η dη

|eiη − 1− eiη
√
ε̃|4

=
4ℓ2+
D

π/
√
ε̃

∫

c

ζ dζ

|1 + ζ2 +O(ε̃ζ2)|2 =
4

D(c+ 1)

(

1 +O(
√
ε̃)
)

.

(28)

Similarly, we obtain that

4ε̃

D

π
∫

c
√
ε̃

dη

|eiη − 1− eiη
√
ε̃|4

=
4

D
√
ε̃

π/
√
ε̃

∫

c

dζ

|1 + ζ2 +O(ε̃ζ2)|2 =
C

D
√
ε̃

(

1 +O(
√
ε̃)
)

, (29)

where C = O(1) is a constant, so that

v
(

eic
√
ε̃
)

=
4ℓ2+πC

D
√
ε̃

(

1 +O(
√
ε̃)
)

. (30)

To determine the value of the constant C, we note that (24) implies that

∂v
(

eiθ
)

∂n

∣

∣

∣

∣

∣

∂Ωw,a

=
∂v

∂θ

∣

∣

∣

∣

θ=π

= −4ℓ2+ε̃

D

π
∫

c
√
ε̃

dη

|eiη − 1− eiη
√
ε̃|4

= −4ℓ2+C

D
√
ε̃

(

1 +O(
√
ε̃)
)

(31)
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and the integration of (18) over Ωw gives

2
√
ε̃
∂v
(

eiθ
)

∂n

∣

∣

∣

∣

∣

∂Ωw,a

= −ℓ
2
+|Ω|
D

. (32)

Now, (31) and (32) imply that 4C = |Ω|/2, so that the MFPT to the straits, τ̄ , is

τ̄ =
ℓ2+π|Ω|
2D

√
ε̃
(1 + o(1)) =

π|Ω′|
2D

√
ε̃
(1 + o(1)) for ε̃≪ |∂Ω|, ℓ+, (33)

which is (23). In dimensional units (33) becomes

τ̄ =

√

Rc(Rc + rc)

2rcε′
π|Ω′|
2D

(1 + o(1)) for ε′ ≪ |∂Ω′|, Rc, rc. (34)

In the symmetric case Rc = rc (34) reduces to the result of [15]

τ̄ =
π|Ω′|

2D
√

ε′/Rc

(1 + o(1)) for ε′ ≪ |∂Ω′|, Rc. (35)

Next, we consider for simplicity the symmetric case ν+ = ν− > 1, so Rc = rc = ∞. After
scaling the boundary value problem (13) with (14), we can choose the bounding circles at
A and B to have radius 1 and repeat the above analysis in the domain Ωw enclosed by the
green curves, shown in Figure (5). The result (35) becomes

τ̄ =
π|Ω′|

2D
√

ε′/ℓ+
(1 + o(1)) for ε′ ≪ |∂Ω′|, ℓ+. (36)

2.2 Exit from several bottlenecks

In case of exit through any one of N well-separated necks with dimensionless curvature
parameters lj and widths ε̃j, we construct the outer solution (19) at any one of the N
absorbing windows so that (20) holds at each window. The integration of (18) over Ω gives
the following analog of (21),

N
∑

j=1

2
√

ε̃j
∂v0(e

iθ)

∂θ

∣

∣

∣

∣

θ=π

= −2

N
∑

j=1

√

ε̃jA ∼ −|Ω′|
D
, (37)

hence

A ∼ |Ω′|
2D
∑N

j=1

√

ε̃j
. (38)

Equation (33) is then generalized to

τ̄ =
π|Ω′|

2D
∑N

j=1

√

ε′j/ℓj
(1 + o(1)) for ε′j/ℓj ≪ |∂Ω|. (39)
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Equations (34)-(36) are generalized in a similar manner.

To calculate the exit probability through any one of the N necks, we apply the trans-
formation (16) separately for each bottleneck at the absorbing images ∂Ωw,a1 , . . . , ∂Ωw,aN to
obtain images Ωwj

for j = 1, 2, . . . , N . Then the probability of exiting through ∂Ωw,ai is the
solution of the mixed boundary value problem

∆wv(w) = 0 for w ∈ Ωwi
(40)

∂v(w)

∂n
=0 for w ∈ ∂Ωwi

−
N
⋃

i=1

∂Ωw,ai

v(w) = 1 for w ∈ ∂Ωw,ai
v(w) = 0 for w ∈ ∂Ωw,aj , j 6= i.

The outer solution, which is the exit probability through window ∂Ωw,i, is an unknown
constant pi. We construct boundary layers at each absorbing boundary ∂Ωw,aj for j 6= i by
solving the boundary value problem in Ωwj

, which is of the type shown in Figure 5 with a
neck of width εj . In each case the boundary layer is a linear function

vj(θ) = δi,j −Aj(θ − π) for all j, (41)

such that

vj(0) ∼ δi,j + Ajπ = pi for all j. (42)

To determine the value of the constant pi, we note that

∂v
(

eiθ
)

∂n

∣

∣

∣

∣

∣

∂Ωw,a

=
∂vj(θ)

∂θ

∣

∣

∣

∣

θ=π

= −Aj , (43)

so the integration of (40) over Ωwi
gives

N
∑

j=1

Aj |∂Ωw,aj | =
N
∑

j=1

2Aj
√

ε̃j = 0. (44)

The N +1 equations (42) and (44) for the unknowns pi, A1, . . . , AN give the exit probability
from an interior point in the planar case as

pi =

√

ε′/ℓi
∑N

j=1

√

ε′j/ℓj
. (45)

3 The NET in a solid funnel-shaped domain

We consider now the NET problem in the solid of revolution obtained by rotating the sym-
metric domain Ω′ in Figure 2(left) about its axis of symmetry. The absorbing end of the
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neck becomes a circular disk of radius a′ = ε′/2. Due to cylindrical symmetry of the mixed
boundary value problem (15) the MFPT in cylindrical coordinates centered on the axis of
symmetry is independent of the angle. It follows that with the scaling (14) the boundary
value problem (15) in the scaled spatial domain Ω can be written in cylindrical coordinates
as

∆u =
∂2u

∂r2
+

1

r

∂u

∂r
+
∂2u

∂z2
= −ℓ

2
+

D
. (46)

Equation (46) can be considered as a two-dimensional problem in the planar cross section
by a plane through the axis of symmetry of Ω in the (r, z) plane. Here r is the distance to
the axis of symmetry of Ω, the z axis is perpendicular to that axis and the origin is inside
the cross section of Ω, at the intersection of the axis with the tangent to the osculating circle
to the cross section at the gap. Setting u1 = ur1/2, the MFPT equation (46) takes the form

∂2u1(r, z)

∂r2
+
∂2u1(r, z)

∂z2
= −ℓ

2
+

D

(

r1/2 +
u1(r, z)

4r2

)

(47)

in the cross section, with mixed Neumann-Dirichlet boundary conditions, as in the planar
case. We assume that in dimensionless variables AB = ε ≪ 1 < |Ω|1/3, so the funnel is a
narrow passage. The transformation to the rotated and translated coordinates is given by
r̃ = r − 1− ε/2, z̃ = −z + 1. Setting u1(r, z) = ũ(r̃, z̃), equation (47) becomes

∂2ũ(r̃, z̃)

∂r̃2
+
∂2ũ(r̃, z̃)

∂z̃2
= −ℓ

2
+

D







(

r̃ + 1 +
ε

2

)1/2

− ũ(r̃, z̃)

4
(

r̃ + 1 +
ε

2

)2






. (48)

3.1 Asymptotic solution

We construct an asymptotic solution for small gap ε by first mapping the cross section in
the (r, z)-plane conformally into its image under the Möbius transformation (16),

w(ζ) = ρeiη =
ζ − α

1− αζ
, (49)

where α is given in (17) for the symmetric case Rc = rc = 1. Setting ũ(ζ) = v(w), equation
(48) becomes

∆wv(w) =
ℓ2+

D|w′(ζ)|2











−
∣

∣

∣

∣

Re
w + α

1 + αw
+ 1 +

ε

2

∣

∣

∣

∣

1/2

− v

4

∣

∣

∣

∣

Re
w + α

1 + αw
+ 1 +

ε

2

∣

∣

∣

∣

2











. (50)

Because the normalized head of Figure 2(left) is mapped into the narrow hot dog–shaped
region in Figure 5 of width

√
ε at ρ = 1, we approximate

w = eiη +O(
√
ε),

∣

∣

∣

∣

w + α

1 + αw

∣

∣

∣

∣

= 1 +O(
√
ε). (51)
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We also have

w′(ζ) =
(1 + αw)2

α2 − 1
(52)

|w′(ζ)|2 =
∣

∣

∣

∣

(1 + wα)2

1− α2

∣

∣

∣

∣

2

=
|1− w +

√
εw|4

4ε
(1 +O(

√
ε)), (53)

so that (47) reduces to

∆wv = − ℓ2+
D

4ε(1 +O(
√
ε))

|1− w +
√
ε w|4

(√
2 +

1

16
v

)

, (54)

or equivalently,

v′′ +
ε

4|eiη − 1− eiη
√
ε|4v =

ℓ2+
D

4
√
2ε

|eiη − 1− eiη
√
ε|4
(

1 +O(
√
ε)
)

. (55)

Setting v = ℓ2+(y − 16
√
2)/D, we obtain the leading order equation

y′′(η) +
ε

4|eiη − 1− eiη
√
ε|4y(η) = 0. (56)

The boundary conditions are

y′(c
√
ε) = 0, y(π) = 16

√
2. (57)

The outer solution is the linear function

youter(η) =Mη +N, (58)

where M and N are yet undetermined constants. The absorbing boundary condition in (57)
gives

youter(π) =Mπ +N = 16
√
2. (59)

A boundary layer correction is needed to satisfy the boundary conditions at the reflecting
boundary at η = c

√
ε. To resolve the boundary layer at η = c

√
ε, we set η =

√
εξ and

expand

ε2

|eiη − 1− eiη
√
ε|4 =

1

(1 + ξ2)2
+O(

√
ε).

Writing ybl(η) = Y (ξ), we obtain to leading order the boundary layer equation

Y ′′(ξ) +
1

4(1 + ξ2)2
Y (ξ) = 0, (60)

which has two linearly independent solutions, Y1(ξ) and Y2(ξ) that are linear functions for
sufficiently large ξ. Initial conditions for Y1(ξ) and Y2(ξ) can be chosen so that Y2(ξ) → const
as ξ → ∞ (e.g., Y2(0) = −4.7, Y ′

2(0) = −1, see Figure 6). Setting
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Figure 6: Two linearly independent solutions of (60). The linearly growing solution Y1(ξ) (red)
satisfies the initial conditions Y1(0) = 0, Y ′

1(0) = 2. The asymptotically constant solution Y2(ξ)
(blue) satisfies the initial conditions Y2(0) = −4.7, Y ′

2(0) = −1. The asymptotic value is Y2(∞) ≈
−5.

ybl(η) = AY1

(

η√
ε

)

+BY2

(

η√
ε

)

, (61)

where A and B are constants to be determined, we seek a uniform approximation to y(η)
in the form yunif(η) = youter(η) + ybl(η). The matching condition is that AY1 (η/

√
ε) +

+BY1 (η/
√
ε) remains bounded as ξ → ∞, which implies A = 0. It follows that at the

absorbing boundary η = π we have

yunif(π) =Mπ + β − 5B = 16
√
2 (62)

y′unif(π) =M.

At the reflecting boundary we have to leading order

y′unif(c
√
ε) = y′outer(c

√
ε) + y′bl(c

√
ε) =M +B

Y ′
2(c)√
ε

= 0, (63)

which gives

B = −M
√
ε

Y ′
2(c)

, N = 16
√
2− 5M

√
ε

Y ′
2(c)

−Mπ. (64)

The uniform approximation to v(w) is given by

vunif(ρe
iη) =M

(

η − π − 5
√
ε

Y ′
2(c)

)

, (65)
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so that using (52), we obtain from (65)

∂u

∂n

∣

∣

∣

∣

ζ∈∂Ωa

=
∂v(ρeiη)

∂η

∣

∣

∣

∣

η=π

w′(ζ)
∣

∣

∣

ζ=−1

=
2M√
ε
(1 +O(

√
ε)). (66)

To determine the value of M , we integrate (15) over Ω, use (66), and the fact that

∫

∂Ωa

dS =
πε2

4
, (67)

to obtain M = −2ℓ2+|Ω|/Dπε3/2. Now (65) gives the MFPT at any point x in the head as

τ̄ = u(x) ∼ v
(

ρec
√
ε
)

∼ 2ε−3/2 ℓ
2
+|Ω|
D

= 2ε−3/2 |Ω′|
ℓ+D

for ε≪ 1. (68)

The dimensional radius of the absorbing end of the funnel is a′ = ℓ+ε/2 (see (14)), so (68)
can be written in physical units as

τ̄ =
1√
2

(

ℓ+
a′

)3/2
V

ℓ+D
(1 + o(1)) for a′ ≪ ℓ+, (69)

where V = |Ω′| is the volume of the domain.

3.2 Exit from several bottlenecks

The generalization of (69) to exit through N well-separated necks is found by noting that
(67) becomes

∫

∂Ωa

dS =

N
∑

j=1

πε2j
4
, (70)

and the integration of (13) over Ω′ gives the compatibility condition (dimensional)

∫

∂Ω′

∂u(x′)

∂n′ dS ′ =M
N
∑

j=1

ℓjπε
2
j

4
√
εj

= −|Ω′|
D

(71)

which determines

M = − 4|Ω′|
D
∑N

j=1
ℓjπε

3/2
j

. (72)

Hence, using the dimensional a′j = ℓjεj/2, we obtain

τ̄ = −Mπ =
1√
2

|Ω′|

D
∑N

j=1
ℓj

(

a′j
ℓj

)3/2
. (73)
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To calculate the exit probability from one of N necks, we note that the boundary layer
function is to leading order linear, as in Section 2.2. Therefore in the three-dimensional case
the exit probability is given by

pi =
ε
3/2
i ℓi

∑N
j=1

ε
3/2
j ℓj

=
a′i

3/2ℓ
−1/2
i

∑N
j=1

a′j
3/2ℓ

−1/2
j

. (74)

4 Diffusion and NET on a surface of revolution

We consider now Brownian motion on a surface of revolution generated by rotating the curve
in Figure 2(left) about its axis of symmetry and assume ν+ = ν− = ν and ℓ+ = ℓ− = ℓ. The
projection of the Brownian motion from the surface to the z-axis gives rise to a drift. The
backward Kolmogorov operator [22] of the projected motion, scaled with (14), is given by

L∗u(z) =
D

ℓ2

{

1

1 + r′2(z)
u′′(z) +

[

r′(z)

r(z)(1 + r′(z)2)
− r′(z)r′′(z)

(1 + r′(z)2)2

]

u′(z)

}

. (75)

The operator L∗ corresponds to the Itô equation

dz = a(z) dt+ b(z) dw, (76)

where the drift a(z) and noise intensity b(z) are given by

a(z) =
D

ℓ2

{

r′(z)

r(z)(1 + r′(z)2)
− r′(z)r′′(z)

(1 + r′(z)2)2

}

, b(z) =

√

2D

ℓ2(1 + r′2(z))
(77)

and w(t) is standard Brownian motion on the line. The potential of the drift is A(z) =
−
∫ z

Λ
a(t) dt.

To calculate the MFPT from z = 0 to the end of the funnel at z = Λ, we note that due to
rotational symmetry the solution of the Andronov-Pontryagin-Vitt boundary value problem
[22] for the MFPT u(z, θ) on the surface is independent of θ. Therefore the problem reduces
to

1

r(z)
√

1 + r′2(z)

∂

∂z

[

r(z)
√

1 + r′2(z)

∂u(z)

∂z

]

= −ℓ
2

D
(78)

u′(0) = u(Λ) = 0.

The MFPT is given by

u(0) =
ℓ2

2πD

0
∫

Λ

√

1 + r′2(t)

r(t)
S(t) dt. (79)
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Figure 7: The drift a(z) in (77) (left panel) and its potential A(z) (right panel) near the cusp.
The projection of the Brownian motion on the axis of symmetry has an effective high barrier in
the neck.

where S(t) is the (scaled) area of the surface of revolution from z = t to z = 0, given by

S(t) = 2π

0
∫

t

r(s)
√

1 + r′2(s) ds. (80)

The main contribution to (79) comes from Λ < t < Λ+ δ for a sufficiently small δ, such that
δ ≫ a (note that the singularity of 1/r(z) near z = 0 is integrable). Thus (79) and (80) give
for ν > 0

τ̄ = u(0) ∼ ℓ2S(Λ)

2πD

Λ+δ
∫

Λ

√

1 + r′2(t)

r(t)
dt ∼ S(Λ)

2D

(

ℓ

(1 + ν)a

)ν/1+ν

ν1/1+ν

sin
νπ

1 + ν

, (81)

where S = S(Λ) is the entire unscaled area of the surface. In particular, for ν = 1 we get
the MFPT

τ̄ ∼ S
4D
√

a/2ℓ
. (82)

The case ν = 0 corresponds to an absorbing circular cap of a small radius a on a closed
surface. For a sphere the solution of (78) gives the known result

τ̄x→∂Ωi
=

2R2

D
log

sin θ
2

sin δ
2

, (83)

where θ is the angle between x and the south-north axis of the sphere and a = R sin δ/2
(see [8]–[11]). If a right circular cylinder of a small radius a and length L′ = ℓL is attached
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to the surface at z = Λ, then the integration in (81) extends now to Λ− L, giving

u(0) ∼ ℓ2S(Λ)

2πD

0
∫

Λ

√

1 + r′2(t)

r(t)
dt+

ℓ2

2πDa

Λ
∫

Λ−L

[S(Λ) + 2πa(t− Λ)] dt

=
S(Λ)
2πD

0
∫

Λ

√

1 + r′2(t)

r(t)
dt+

S(Λ)L′

2πDa
+
L′2

2D
, (84)

where the integral is given by (81), (82), or (83) for the various values of ν. Note that while
τ̄ on the surface depends on the fractional power −ν/(1+ν) of the neck’s radius a, the power
of a in the three-dimensional case is −3/2, as indicated in (69).

The case ν = 0 is not the limit of (81), because the line (5) blows up. This case
corresponds to a conical funnel with an absorbing circle of small radius a and length H (see
Figure 4). We assume that the radius of the other base of the cone, b, is smaller than a, but
that b≪ S1/2. The generator of the cone is the line segment

r(x) = a + C(x− L) for Λ− L < x < Λ, (85)

where C is the (positive) slope. In this case (84) is replaced by

u(0) =
S(Λ)
2πD

0
∫

Λ

√

1 + r′2(t)

r(t)
dt+

S(Λ)
√
1 + C2

2πDC
log

(

1 +
CL′

a

)

+
(1 + C2)

2DC2

[

(a+ CL′) log

(

1 +
CL′

a

)

+
1

2
[(a+ CL′)2 − a2]

]

,

which reduces to (84) in the limit CL′ ≪ a and for a ≪ CL′ can be simplified to leading
order to

u(0) =
S(Λ)
2πD

0
∫

Λ

√

1 + r′2(t)

r(t)
dt+

S(Λ)
√
1 + C2

2πDC
log

CL′

a

+
(1 + C2)L′2

2D
log

CL′

a
+O(1). (86)

Note that the last term in (86) blows up as a → 0 while that in (84) does not. This is due
to the degeneration of the NET problem in the cylinder, as noted in [6].

5 The principal eigenvalue in domains with bottlenecks

The narrow escape time is related to the leading eigenvalues of the Neumann or mixed
Neumann-Dirichlet problem for the Laplace equation in domains that consists of compart-
ments and narrow necks. In domains that consists of compartments interconnected by narrow
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Figure 8: A dumbbell-shaped domain consists of two large compartments Ω1 and Ω3 connected by
a narrow neck Ω2. The bottleneck is the interval AB.

necks the MFPT from one compartment to the other, as defined in [18], is to leading order
(in the limit of shrinking neck) independent of the initial point of the escaping trajectory
and is twice the MFPT from the compartment to the narrowest passage in the bottleneck
(e.g., the interval AB in Figure 8). Indeed, the reciprocal of this MFPT is to leading order
the rate at which trajectories reach the bottleneck from the first compartment, so the recip-
rocal of the MFPT is the lowest eigenvalue of the mixed Neumann-Dirichlet boundary value
problem in the first compartment with Dirichlet conditions on the cross section of the neck.

There is a spectral gap of order 1 from the smallest eigenvalue to the next one. It follows
that long transition times of Brownian trajectories between compartments connected by
bottlenecks are exponentially distributed and therefore the leading eigenvalues of Neumann’s
problem for the Laplace equation in a domain that consists of compartments interconnected
by narrow necks are to leading order the eigenvalues of a Markov chain with transition rates
that are the reciprocals of the MFPTs through the narrow necks, as is the case for diffusion
in a potential landscape with several deep wells (high barriers) [20, 21] (see also [15]). The
evaluation of the leading eigenvalues of the Neumann problem for the Laplace equation in
domains with bottlenecks reduces to the computation of the leading order eigenvalue for the
mixed Neumann-Dirichlet boundary value problem for the Laplace equation in a domain
with reflecting (Neumann) boundary except for a small absorbing (Dirichlet) window at the
end of a funnel. Some estimates on the asymptotic behavior of the leading eigenvalue are
given in [36], [37] and references therein.

5.1 Eigenvalue of the mixed problem in domains with bottlenecks

First we consider the principal eigenvalue of the mixed Neumann-Dirichlet problem for the
Laplace equation in a composite domain that consists of a head Ω1 connected by a funnel
to a narrow cylindrical neck Ω2. The boundary of the domain is reflecting (Neumann) and
only the end of the cylinder ∂Ωa is absorbing (Dirichlet). The left half of Figure 8 shows the
composite domain and the absorbing boundary is the interval AB. In the three-dimensional
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case the Dirichlet boundary ∂Ωa is a small absorbing disk at the end of the cylinder. The
domain Ω1 is the one shown in Figure 2 and it is connected to the cylinder at an interface
∂Ωi, which in this case is the interval AB in Figure 2. It was shown in [14] that the MFPT
from x ∈ Ω1 to ∂Ωa is given by

τ̄x→∂Ωa
= τ̄x→∂Ωi

+
L2

2D
+

|Ω1|L
|∂Ωa|D

. (87)

The principal eigenvalue of the mixed two- and three-dimensional Neumann-Dirichlet prob-
lems in domains with small Dirichlet and large Neumann parts of a smooth boundary is
asymptotically the reciprocal of the MFPT given in (87). Thus the principal eigenvalue λ1
in a domain with a single bottleneck is given by

λ1 ∼
1

τ̄x→∂Ωi
+

L2

2D
+

|Ω1|L
|∂Ωa|D

, (88)

where τ̄x→∂Ωi
is any one of the MFPTs given in (1)-(8), depending on the geometry of Ω1.

If a composite domain consists of a single head and N well-separated bottlenecks of
different radii and neck lengths, the derivation of (73) shows that the reciprocal of the
MFPT is the sum of the reciprocals of the NETs from a domain with a single bottleneck.
That is, the principal eigenvalue λP is given by

λP ∼
N
∑

j=1

λj. (89)

This can be interpreted as the fact that the total efflux is the sum of N independent effluxes
through the bottlenecks.

5.2 The principal eigenvalue in dumbbell-shaped domains

We consider now the principal eigenvalue of the Neumann problem in a dumbbell-shaped
domain that consists of two compartments Ω1 and Ω3 and a connecting neck Ω2 that is
effectively one-dimensional, such as shown in Figure 8, or in a similar domain with a long
neck. We assume, as we may, that the stochastic separatrix (SS) in the neck is the cross
section at its center. In the planar case it is the segment AB in Figure 8. This means that
a Brownian trajectory that hits the SS is equally likely to reach either compartment before
the other. Thus the mean time to traverse the neck from compartment Ω1 to compartment
Ω3 is asymptotically twice the MFPT τ̄x→SS from x ∈ Ω1 to the SS [18]. This MFPT is to
leading order independent of x ∈ Ω1 and can be denoted τ̄Ω1→SS.

First, we note that the mean residence time of a Brownian trajectory in Ω1 or in Ω3 is
much larger than that in Ω2 when the neck is narrow. Second, we note that the first passage
time τx→SS for x ∈ Ω1 is exponentially distributed for long times and so is τx→SS for x ∈ Ω3

[22]. We can therefore coarse-grain the Brownian motion to a two-state Markov process (a
telegraph process), which is in State I when the Brownian trajectory is in Ω1 and is State
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II when it is in Ω3. The state Ω2 and the residence time there can be neglected relative to
those in Ω1 and Ω3. The transition rates from I to II and from II to I are, respectively,

λI→II =
1

2τ̄Ω1→SS
, λII→I =

1

2τ̄Ω3→SS
. (90)

These rates can be found from (88), with L half the length of the neck and SS = ∂Ωa. The
radii of curvature Rc,1 and Rc,3 at the two funnels may be different, and the domain is either
Ω1 or Ω3, as the case may be. The smallest positive eigenvalue λ of the Neumann problem
for the Laplace equation in the dumbbell is to leading order that of the two-state Markov
process, which is λ = −(λI→II + λII→I) (see Appendix below). For example, if the solid
dumbbell consists of two general heads connected smoothly to the neck by funnels (see (4)),
the two rates are given by

1

λI→II
=
√
2

[

(

Rc,1

a

)3/2 |Ω1|
Rc,1D

]

(1 + o(1)) +
L2

4D
+

|Ω1|L
πa2D

(91)

1

λII→I
=
√
2

[

(

Rc,3

a

)3/2 |Ω3|
Rc,3D

]

(1 + o(1)) +
L2

4D
+

|Ω3|L
πa2D

. (92)

Next, we consider the Neumann problem for the Laplace equation in a domain that consists
of any number of heads interconnected by narrow necks. The Brownian motion can be
coarse-grained into a Markovian random walk that jumps between the connected domains
at exponentially distributed times with rates determined by the first passage times and exit
probabilities, as described in Section 5.1. This random walk can in turn be approximated by
an effective coarse-grained anisotropic diffusion, as done, for example, for atomic migration
in crystals [38, Ch.8, Sect. 2] and for effective diffusion on a surface with obstacles [15].

6 A Brownian needle in dire straits

As an application of the methodology described above, we study the planar diffusion of a
stiff thin rod (needle) of length l in an infinite horizontal strip of width l0 > l. We assume
that the rod is a long thin right circular cylinder with radius ǫ≪ l0 (Figure 9). The planar
motion of the rod is described by two coordinates of the centroid and the rotational angle
θ between the axes of the strip and the rod. The y-coordinate of the center of the rod is
measured from the axis of the strip. The motion of the rod is confined to the domain Ω
shown in Figure 9b. The rod turns across the vertical position if it goes from the green to
the blue domains or in the reverse direction. If

ε =
l0 − l

l0
≪ 1, (93)

the black window becomes narrow and the mean first passage times (MFPT) τGreen→Black and
τBlue→Black, from the green or blue to the black segment, become much longer than those in
the other directions. The former also become independent of the starting position outside a
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boundary layer near the black segment. Thus the definition of the time to turn is independent
of the choice of the green and blue domains, as long as they are well separated from the black
segment. The neck near the black domain is the boundary layer region near θ = π/2. We
neglect henceforward the short times relative to the long ones.

To turn across the vertical position the rod has to reach the black domain from the green
one for the first time and then to reach the blue domain for the first time, having returned to
the green domain any number of times prior to reaching the blue domain. Due to symmetry,
a simple renewal argument shows that the mean time to turn, τBlue→Green, is asymptotically
given by

τBlue→Green ∼ 2τBlue→Black for
l0 − l

l0
≪ 1. (94)

The time to turn is invariant to translations along the strip (the x-axis), therefore it suffices
to describe the rod movement by its angle θ and the y coordinate of its center. The position
of the rod is defined for θ mod π. Therefore the motion of the rod in the invariant strip can
be mapped into that in the (θ, y) planar domain Ω (see Fig.9b):

Ω =

{

(θ, y) : |y| < l0 − l sin θ

2
, 0 < θ < π

}

. (95)

6.1 The diffusion law of a Brownian needle in a planar strip

In a rotating system of coordinates (X, Y, θ), where the instantaneous X-axis is parallel to
the long axis of the rod and the Y -axis is perpendicular to it, the diffusive motion of the rod
is an anisotropic Brownian motion, and can be described by the stochastic equations

Ẋ =
√

2DXẇ1

Ẏ =
√

2DY ẇ2

θ̇ =
√

2Drẇ3,

where DX is the longitudinal diffusion coefficient along the axis, DY the transversal diffusion
constant and Dr, the rotational diffusion coefficient. Due to the anisotropy, the rod makes in
general larger excursions in the X-direction than in the Y -direction and this usually charac-

terized by the ratio
DY

DX
. In a fixed system of Cartesian coordinates (x, y), the translational

and rotational motion of the centroid (x(t), y(t)) and the angle of rotation θ(t) of the rod is
governed by the Itô equations

ẋ = cos(θ)
√

2DX ẇ1 − sin(θ)
√

2DY ẇ2

ẏ = sin(θ)
√

2DX ẇ1 + cos(θ)
√

2DY ẇ2

θ̇ =
√

2Drẇ3,
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Figure 9: Top: Rod in strip . The strip width is l0 and the rod length is l < l0. The position of
the rod is characterized by the angle θ and the fixed coordinates x and y and the rotating system
of coordinates (X,Y, θ). Bottom: The motion of the rod is confined to the domain Ω in the y, θ

plane.

which can be put in the matrix form

ẋ(t) = B(θ) ẇ,

where

x =





x
y
θ



 , w =





w1

w2

w3





and

B(θ) =
√
2





cos θ − sin θ 0
sin θ cos θ 0

0 0 1









√
DX 0 0
0

√
DY 0

0 0
√
Dr



 .

The probability density function of the rod in the product space Ω× R,

p(t, x, y, θ) dx = Pr{(x(t), y(t), θ(t)) ∈ x+ dx}, (96)
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satisfies the Fokker-Planck equation

∂p(t,x)

∂t
= −∇ · J(t,x),

where the flux is given by

J(t,x) = −























[

DX cos2 θ +DY sin2 θ
] ∂p

∂x
+

1

2
[(DX −DY ) sin 2θ]

∂p

∂y

[

DX sin2 θ +DY cos2 θ
] ∂p

∂y
+

1

2
[(DX −DY ) sin 2θ]

∂p

∂x

Dr
∂p

∂θ























. (97)

The boundary conditions are π-periodic in θ, because the position of the rod is defined
modulo π (note that J(t,x) is π-periodic in θ). This means that the density p(t, x, y, θ) is
π-periodic and the normal flux −Dr∂p(t, x, y, θ)/∂θ is π-antiperiodic in θ.

The MFPT τBlue→Black is translation-invariant with respect to x and is, therefore, the
solution u(θ, y) of the boundary value problem

Dr
∂2u(θ, y)

∂θ2
+Dy(θ)

∂2u(θ, y)

∂y2
= −1 for (θ, y) ∈ Ω1, (98)

where Dy(θ) = DX sin2 θ+DY cos2 θ and Ω1 = Ω∩
{

θ <
π

2

}

, with the boundary conditions

∂u

∂ñ
= 0 for (θ, y) on the red boundary and at θ = 0 (99)

u
(π

2
, y
)

= 0 for |y| < l0 − l, (100)

where the co-normal derivative of u(θ, y) on the red boundary is given by

∂u

∂ñ
= ∇u(θ, y) · ñ(θ) for (θ, y) on the red boundary (101)

and the co-normal vector ñ(θ) is given by

ñ(θ) =

(

Dr 0
0 Dy(θ)

)

n(θ) (102)

with n(θ) – the unit normal vector to the red boundary.

Introducing the dimensionless variables

X ′ =
X

l0
, Y ′ =

Y

l0
, ξ(t) =

x(t)

l0
, η(t) =

y(t)

l0
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and the normalized diffusion coefficients

D′
X =

DX

l20
, D′

Y =
DY

l20
, Dη(θ) =

Dy(θ)

l20
,

we find that the domain Ω in (95) is mapped into

Ω′ =

{

(θ, η) : |η| < 1− (1− ε) sin θ

2
, 0 < θ < π

}

. (103)

To convert (98) to canonical form, we introduce the variable

ϕ(θ) =

θ
∫

0

√

Dη(θ′)

Dr
dθ′, (104)

which defines the inverse function θ = θ(ϕ), and set u(θ, y) = U(ϕ, η) to obtain

Uϕϕ(ϕ, η) + Uηη(ϕ, η) = Uϕ(ϕ, η)
√

Dr
dD

−1/2
η (θ)

dθ
− 1

Dη(θ)
. (105)

The domain Ω′, defined in (103), is mapped into the similar domain

Ω′′ =

{

(ϕ, η) : |η| < 1− (1− ε) sin θ(ϕ)

2
, 0 < ϕ < ϕ(π)

}

(106)

in the (ϕ, η) plane. Because the the co-normal direction at the boundary becomes normal,
so does the co-normal derivative. It follows that the no-flux boundary condition (99) and
the absorbing condition (100) become

∂U(ϕ, η)

∂n
= 0 for (θ(ϕ), η) on ∂Ω′′ (the red boundary in the scaled Figure 9b)

∂U(0, η)

∂ϕ
= 0 for |η| < 1

2

U
(

ϕ
(π

2

)

, η
)

= 0 for |η| < ε

2
, (107)

respectively. The gap at θ = π/2 is preserved and the (dimensionless) radius of curvature of
the boundary at the gap is

R′ =
2Dη

(π

2

)

(1− ε)Dr
=

2DX

(1− ε)l20Dr
. (108)

First, we simplify (105) by setting

g(ϕ) =
√

Dr
dD

−1/2
η (θ)

dθ
, U(ϕ, η) = f(ϕ)V (ϕ, η) (109)
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and choosing f(ϕ) such that f ′(ϕ) = 1

2
f(ϕ)g(ϕ). Note that

dD
−1/2
η (θ)

dθ

∣

∣

∣

∣

∣

θ=0,π/2,π

= 0. (110)

Equation (105) becomes

Vϕϕ + Vηη =
1

f(ϕ)

{

[g(ϕ)f ′(ϕ)− f ′′(ϕ)]V − 1

Dη(θ(ϕ))

}

. (111)

Next, we move the origin to the center of curvature of the lower boundary by setting

ζ = −
(

η − R′ − ε

2

)

+ i
[

ϕ− ϕ
(π

2

)]

and use the conformal mapping (16),

ω =
ζ −R′α

R′ − αζ
, (112)

with ω = ρeiψ. We also have

w′(ζ) =
1

R′
(1 + αw)2

1− α2
(113)

|w′(ζ)|2 = 1

R′2

∣

∣

∣

∣

(1 + wα)2

1− α2

∣

∣

∣

∣

2

=
|1− w +

√
εw|4

4εR′2 (1 +O(
√
ε)), (114)

The image Ωω of the domain Ω is given in Figure 10 and is similar to Ωw in Figure 5, except

Figure 10: The image Ωω of the domain Ω under the mapping (112). The values of the parameters
are ε = 0.01 with the approximation DY ≪ DX . The domain is enclosed by the real segment AB
and by the brown, black, and blue curves. The green and red curves are the images of arcs of the
osculating circles at the narrow neck, as in Figure 5.

for a small distortion near ψ = c
√
ε, which we neglect, as we may. Setting V (ϕ, η) =W (ρ, ψ),
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fixing ρ = 1 in Ωω, as in Section 2, and abbreviating W =W (ψ, 1), equation (111) becomes
to leading order

Wψψ +
h(ψ)

|ω′(ζ |2W = − 1

|ω′(ζ)|2k(ψ) , (115)

where

h(ψ) =
f ′′(ϕ)− g(ϕ)f ′(ϕ)

f(ϕ)

∣

∣

∣

∣

ρ=1

, k(ψ) = f(ϕ)Dη(θ(ϕ))|ρ=1. (116)

Using (18) and neglecting terms of order O(ε), we rewrite (115) as

Wψψ +
4εR′2h(ψ)

|eiψ(1−√
ε)− 1|4W = − 4εR′2

|eiψ(1−√
ε)− 1|4k(ψ) . (117)

In view of (110), the boundary conditions (107) become

Wψ(c
√
ε) = 0, W (π) = 0. (118)

6.2 The asymptotic solution

The construction of the asymptotic expansion of the solution of the boundary layer equa-
tion (117) is similar to that in Section 3.1. The outer solution of (117) is a linear function
Wouter(ψ) = aψ+ b, where a and b are yet undetermined constants. The uniform approxima-
tion is constructed as Wuniform(ψ) = Wouter(ψ) +Wbl(ψ), where the boundary layer Wbl(ψ)
is a function Y (ξ) of the boundary layer variable ξ = ψ/

√
ε. The boundary layer equation is

Y ′′(ξ) +
4R′2h(0)

(1 + ξ2)2
Y (ξ) = − 4R′2

(1 + ξ2)2k(0)
, (119)

which is simplified by the substitution Y (ξ) = Ỹ (ξ) + 1/h(0)k(0) to

Ỹ ′′(ξ) +
4R′2h(0)

(1 + ξ2)2
Ỹ (ξ) = 0. (120)

The boundary conditions (118) become Ỹ ′(c) = 0 and Ỹ (∞) = 1/h(0)k(0). The boundary
layer equation (120) has two linearly independent solutions, Ỹ1(ξ) and Ỹ2(ξ), which are
linear for sufficiently large ξ. Initial conditions for Ỹ1(ξ) and Ỹ2(ξ) can be chosen so that
Ỹ2(ξ) → const as ξ → ∞ (e.g., Ỹ2(0) = −4.7, Ỹ ′

2(0) = −1, see Figure 6). Thus the boundary
layer function is given by

Wbl(ψ) = AỸ1

(

ψ√
ε

)

+BỸ2

(

ψ√
ε

)

+ C, (121)

where A and B are constants to be determined and C is related to the constant 1/h(0)k(0)
and is also determined below from the boundary and matching conditions.
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The matching condition is thatWbl(ψ) = AỸ1 (ψ/
√
ε)+BỸ2 (ψ/

√
ε)+C remains bounded

as ξ → ∞, which implies A = 0. It follows that at the absorbing boundary ψ = π we have

Wunif(π) = aπ + b′ = 0 (122)

W ′
unif(π) = a.

where the constant b′ incorporates all remaining constants. At the reflecting boundary we
have to leading order

W ′
unif(c

√
ε) =W ′

outer(c
√
ε) +W ′

bl(c
√
ε) = a+B

Ỹ ′
2(c)√
ε

= 0, (123)

which gives

B = − a
√
ε

Ỹ ′
2(c)

, b′ = −aπ. (124)

The uniform approximation to W (ω) is given by

Wunif(ρe
iψ) = a

(

ψ − π −
√
ε

Ỹ ′
2(c)

)

, (125)

so that using (109), (110), and (113), we obtain from (125)

∂u

∂n

∣

∣

∣

∣

ζ∈∂Ωa

= f
(

ϕ
(π

2

)) ∂W (ρeiψ)

∂ψ

∣

∣

∣

∣

ψ=π

ω′(ζ)
∣

∣

∣

ζ=−1

∂ϕ

∂θ

∣

∣

∣

∣

θ=π/2

= a

√

2

εR′ (1 +O(
√
ε)). (126)

BecauseW (ω) scales with 1/f(ϕ) relative to V (ϕ, η), we may choose at the outset f(ϕ(π/2)) =
1.

Finally, to determine the value of a, we integrate (98) over Ω, use (126), and the fact
that

∫

∂Ωa

dy = l0ε,

to obtain a = −|Ω|
√
R′/l0Dr

√
2ε. Now (125) gives the MFPT at any point x in the head as

E[τ |x] = u(x) ∼ W
(

ρeic
√
ε
)

∼ −aπ =
π|Ω|

√
R′

l0Dr

√
2ε

(1 +O(
√
ε) for ε≪ 1. (127)

Reverting to the original dimensional variables, we get

E[τ |x] =
π
(π

2
− 1
)

Dr

√

l0(l0 − l)

√

DX

Dr

(

1 +O

(

√

l0 − l

l0

))

, (128)

which is (10).
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7 Discussion and conclusion

This paper develops a boundary layer theory for the solution of the mixed Neumann-Dirichlet
problem for the Poisson equation in geometries in which the methodologies of [1]-[12] fail.
These methodologies were used for the narrow escape problem. In the geometries considered
here the small Dirichlet part is located at the end of narrow straits connected smoothly to
the Neumann boundary of the domain. Additional problems related to Brownian motion in
composite domains that contain a cylindrical narrow neck connected smoothly or sharply
to the head are considered in [14]. These include the asymptotic evaluation of the NET, of
the leading eigenvalue in dumbbell-shaped domains and domains with many heads intercon-
nected by narrow necks, the escape probability through any one of several narrow necks, and
more.

Our results have applications in several areas. The first application is in neuroscience and
concerns dendritic spines, which are believed to be the locus of postsynaptic transmission.
Recognized more than 100 years ago by Ramón y Cajal, dendritic spines are small terminal
protrusions on neuronal dendrites, and are the postsynaptic parts of excitatory synaptic
connections. The spine consists of a relatively narrow cylindrical neck connected to a bulky
head. The geometrical shape of a spine correlates with its physiological function [29]-[33].
Several physiological phenomena are regulated by diffusion in dendritic spines. For example,
synaptic plasticity is induced by the transient increase of calcium concentration in the spine,
which is regulated by spine geometry, by endogenous buffers, and by the number and rates
of exchangers [31, 34, 35, 23, 24]. Another significant function of the spine is the regulation
of the number and type of receptors that contribute to the shaping of the synaptic current
[25]-[28]. Indeed, the neurotransmitter receptors, such as AMPA and NMDA, whose motion
on the spine surface is diffusion, mediate the glutamatergic-induced synaptic current. Thus
dendritic spines regulate both two-dimensional motion of neurotransmitter receptors on its
surface, and the three-dimensional diffusive motion of ions (e.g., calcium), molecules, proteins
(e.g., mRNA), or small vesicles in the bulk. Our results give a quantitative measure of the
effect of geometry on regulation of flux.

In a biochemical context, the NET (eq. 69) accounts for the local geometry near an
active binding site occluded by the molecular structure of the protein. This is the case of
proton binding sites located on spike proteins, located on the viral envelope of the influenza
virus and involved in membrane fusion [39]. Another application is that of the turnaround
time of Brownian needle. Our result in Section 6 provides the precise time scale of the
unraveling of a double strand DNA break confined between two-dimensional membranes
[40]. The common feature of the geometries studied in this paper is the cusp-shaped narrow
passage leading to the absorbing boundary. The main biological conclusion of our results is
that this geometry is the main controller of the flux through biological narrow passages, an
effect that is ubiquitous in biological systems. More specific applications of the NET from
composite domains to dendritic spines are given in [14].
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8 Appendix

The asymmetric random telegraph process jumps between two states, a and b, at inde-
pendent exponentially distributed waiting times with rates λa→b and λb→a, respectively.
The transition probability distribution function satisfies the linear differential equations (see
http://en.wikipedia.org/wiki/Telegraph process, [22])

∂P{a, t | x, t0}
∂t

= − λa→bP{a, t | x, t0}+ λb→aP{b, t | x, t0}
(129)

∂P{b, t | x, t0}
∂t

=λa→bP{a, t | x, t0} − λb→aP{b, t | x, t0},

which can be written in the obvious matrix notation as ṗ = Ap with

A =

(

−λa→b λb→a

λa→b −λb→a

)

.

The eigenvalues of A are 0 with the normalized eigenvector (1
2
, 1
2
)T , and −(λa→b + λb→a)

with the eigenvector (1,−1)T . It follows that the nonzero eigenvalue of the system (129) is
λ = λa→b + λb→a.

Acknowledgment: The authors wish to thank F. Marchesoni for pointing out the factor
1/2 in eq.(3).
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