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Abstract

We use a modification of the parameterization method to study invariant manifolds for difference

equations. We establish existence, regularity, smooth dependence on parameters and study several

singular limits, even if the difference equations do not define a dynamical system. This method also

leads to efficient algorithms that we present with their implementations. The manifolds we consider

include not only the classical strong stable and unstable manifolds but also manifolds associated to

non-resonant spaces.

When the difference equations are the Euler-Lagrange equations of a discrete variational we

present sharper results. Note that, if the Legendre condition fails, the Euler-Lagrange equations can

not be treated as a dynamical system. If the Legendre condition becomes singular, the dynamical

system may be singular while the difference equation remains regular. We present numerical appli-

cations to several examples in the physics literature: the Frenkel-Kontorova model with long-range

interactions and the Heisenberg model of spin chains with a perturbation. We also present extensions

to finite differentiable difference equations.

1 Introduction

1.1 Difference equations

In this paper we generalize some notions that have played an important role in dynamics, namely

invariant manifolds, to the more general context of implicit difference equations. We also present

algorithms to compute this object and apply them to several problems in the physics literature.
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Consider a smooth manifold M of dimension d. Let Z : MN+1 → Rd be an analytic function. The

function Z represents the following difference equation of order N

Z (θk, θk+1, . . . , θk+N ) = 0. (1)

The solutions of the difference equation (1) are sequences (θk)k≥0 which satisfy (1), for all values of

k ≥ 0. A recurrence

θk+N = F (θk, . . . , θk+N−1) (2)

is a particular case of (1) taking Z (θk, θk+1, . . . , θk+N ) = F (θk, . . . , θk+N−1)−θk+N . In some situations,

we can consider (1) as defining θk+N in terms of the other variables, so that one can transform (1) into a

recurrence of the form (2). However, there are instances in which it is impossible to do so and therefore

problem (1) is more general than (2). Recurrences have been studied mainly as dynamical systems and

they have a rich geometric study.

The goal of this paper is to show that some familiar constructions in the theory of dynamical systems

have rather satisfactory generalizations in the context of implicit difference equations. We will use the

so-called parameterization method [CFdlL03a, CFdlL03b, CFdlL05] to show existence, regularity and

smooth dependence on parameters of these invariant manifolds. Note that other methods such as the

graph transform, which depend very much on the dynamical formulation do not seem to generalize to

the context of implicit difference equations.

The Legendre transform –if it exists– makes a difference equation into a dynamical system. In

some situations, a family of Legendre transforms exist but becomes singular. We study some of these

singular limits, in which some invariant manifolds continue to exist through the singularity of this

Legendre transformation and the implicit equation remains smooth, even if the dynamical system does

not.

We will also describe and implement some rather efficient numerical algorithms to compute these

objects with high accuracy. We point out that some of the algorithms are novel, even in the dynamical

system case since we study not only the classical stable (and strong stable) manifolds but also the weak

stable manifolds as well as singular limits. We believe that this is interesting because it shows a new

way of approximating stable and unstable manifolds. In order to show that the method is robust we

perform some explicit calculations that can be found in the code that supplements this paper.

Remark 1.1. We note that the relation between difference equations in implicit form (1) and the

explicit recurrence is similar to the relation of Differential-Algebraic Equations (DAE) of the form

Z
(
y, y′, . . . , y(n)

)
= 0 and explicit Differential equations y(n) = F

(
y, . . . , y(n−1)

)
. It seems that the

methods presented here can be extended to DAE, but one needs extra technicalities. We hope to come

back to this question. For more information on DAE, see [KM06].
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1.2 Some examples and applications

1.2.1 Variational principles

One important source of the problems of the form (1), to which we pay special attention, is discrete vari-

ational problems (which appear in physics, economics, dynamic programming, etc.). A mathematical

review of these discrete variational problems can be found in [Ves91, Gol01].

Let S : MN+1 → R be analytic. When studying variational problems one is interested –among

other things– in solutions to Euler-Lagrange equations Z (θk, . . . , θk+2N ) = 0, with

Z(θ0, . . . , θ2N ) ≡
N∑
j=0

∂jS (θN−j , θN−j+1, . . . , θ2N−j) = 0, (3)

which are of the form (1) and of order 2N . The Euler-Lagrange equations appear when one finds

critical points of the formal variational principle based on J (θ) ≡ ∑k S (θk, θk+1, . . . , θk+N ). Indeed,

(3) is formally just ∂
∂θk
J (θ) = 0, for all k.

As we mentioned, there are well known conditions (Legendre conditions) which allow to transform

the Euler-Lagrange equations into recurrences, often called discrete Hamilton equations or twist maps.

In situations where Legendre conditions fail –or become singular– the Euler-Lagrange equations cannot

be transformed into Hamiltonian equations. See the examples below and those treated in more detail

in Section 6.

Even if we will not explore it in detail, we note that the invariant manifolds considered here have

applications to dynamic programming. We plan to come back to these issues in future investigations.

1.2.2 The Heisenberg XY model of magnetism

There are many examples of Lagrangian systems that can not be transformed in dynamical systems.

Consider, for instance, the Heisenberg XY model. In this model, one is interested in solutions of

sin(θk+1 − θk) + sin(θk−1 − θk)− ε sin θk = 0, (4)

where each θk is an angle that represents the spin state of a particle in position k ∈ Z. The parameter

ε corresponds to the strength of an external magnetic field. The equation (4) appears as the Euler-

Lagrange equation of an energy functional J (θ) =
∑

k cos(θk+1 − θk) + ε cos(θk) and has Lagrangian

function S(θ0, θ1) = cos(θ1 − θ0) + ε cos(θ0).

The dynamical interpretation of (4) is problematic because in order to get θk+1 in terms of θk and

θk−1, we need to have

|sin(θk − θk−1) + ε sin θk| < 1.

This condition is not invariant under the dynamics and having it for one value of k does not guarantee

to have it for others. However, θk ≡ 0 is a solution of (4). In fact, there could exist many solutions,

defined for k ≥ 0, that converge to the fixed point. So, it is interesting and useful to identify these

solutions and understand their geometry. We will present algorithms illustrating our general results in

this model in Section 6.4.
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1.2.3 The Frenkel-Kontorova model with non-nearest interaction

The Frenkel-Kontorova model was introduced to describe dislocations [FK39], but it has also found

interest in the description of deposition [AL83, BK04]. One simplified version of the model (more general

versions will be discussed in Section 6.3) leads to the study of solutions of non-nearest interactions. For

instance, we have

ε (θk+2 + θk−2 − 2θk) + (θk+1 + θk−1 − 2θk) + V ′(θk) = 0. (5)

Note that for ε = 0, equation (5) can be transformed into a second order recurrence; i.e. a dynamical

system in 2 dimensions. Indeed, this 2-D map is the famous standard map, [Mat93, Gol01], whereas for

ε 6= 0 – no matter how small – one is lead to a dynamical system in 4 dimensions.

It turns out that some terms in this 4−dimensional system blow up as ε→ 0. Hence, the perturba-

tion introduced by the ε term is singular in the Hamiltonian formalism. Nevertheless, we observe that

the singularity appears only when we try to get θk+2 as a function of θk+1, θk, θk−1, θk−2. The equations

(5) themselves depend smoothly on parameters.

Indeed, in section 5.1, we will show that the invariant manifolds of (5) that we construct, are

smooth across ε = 0. We note that in the applications to solid state physics, the regime of small ε is

the physically relevant, one expects that there are interactions with even longer range which become

smaller with the distance [CDFM07, Suz71].

1.2.4 Dependence of parameters of invariant manifolds and Melnikov theory

In many situations, the solutions of a difference equation change dramatically when parameters are

introduced. In the case of dynamical systems the transverse intersection of the stable and unstable

manifolds is associated with chaos, and gave rise to the famous horseshoe construction of Smale. The

Poincaré-Melnikov method is a widely used technique for detecting such intersections starting from a

situation when the manifolds agree. One can assume that a system has pair of saddles and a degenerate

heteroclinic or saddle connection between them. The classical Melnikov theory computes the rate at

which the distance between the manifolds changes with a perturbation. In this context, it is important

to understand dependence of parameters in invariant objects that appear in a Lagrangian setting.

In particular, in the XY and XY Z models, dynamics is not longer useful and a purely variational

formalism is needed. In this paper, we show that the variational theory is robust and there is smooth

dependence on parameters, so our theory could lead to a variational formulation of Melnikov’s theory.

Previous work in this direction was done in [Tab95, Lom97] in the context of twist maps.

1.3 Organization of the paper

The method of analysis is inspired by the study in [CFdlL03a, CFdlL03b, CFdlL05] and is organized

as follows. First, in Section 3 we will study the linearized problem and generalize the notion of charac-

teristic polynomial, spectrum and spectral subspaces. They give necessary conditions so that one can

even consider solving (8).
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The Main Theorem 4.1 is stated in Subsection 4.1. After we make the choices of invariant spaces

in the linear approximation, we will show that, provided that these spaces satisfy some non-resonance

conditions –automatically satisfied by the (strong) stable spaces considered in the classical literature–

the solutions of the linear problem lead to solutions of the full problem.

The main tool is some appropriate implicit function theorems in Banach spaces. These implicit

function theorems some times require that we consider approximate solutions of order higher than the

first. In Appendix A we review the theory of Banach spaces of analytic functions and describe how

it fits in our problem. In Subsection 4.4 we prove the Main Theorem and in 4.5, we consider the

systematic computation of higher order approximations. Besides being useful in the proof of theorems,

the higher order approximations are the basis of efficient numerical algorithms presented in Section 6.

In particular, in Example 6.2, we show that the method can be used to approximate slow manifolds,

even in the presence of a singular limit.

Some more refined analysis also leads to the study of singular limits in Section 5.1. Since the

main tool is the implicit function theorem, we can obtain easily smooth dependence on parameters (see

Subsection 5.2).

2 General Setup

2.1 Parameterized solutions

We are interested in extending the theory of invariant manifolds associated to a hyperbolic fixed point

to the more general context of difference equations. The extension of fixed point is clear.

Definition 2.1. If θ∗ ∈ M satisfies Z(θ∗, . . . , θ∗) = 0, then we will say that θk ≡ θ∗ is a fixed point

solution.

The key to the generalization of the invariant manifolds from dynamical systems to difference

equations is to observe that the invariant manifolds of a dynamical systems are just manifolds of orbits.

This formulation makes sense in the context of difference equations. Note also that the dynamics

restricted to the invariant manifold is semi-conjugate to the dynamics in the whole manifold (in the

language of ergodic theory, it is a factor). Hence, we define:

Definition 2.2 (Parameterized stable solution). Let θ∗ be a fixed point solution to the difference equa-

tion (1). Let D be an open disk of Rm around the origin. We will say that a smooth function P : D →M

is a stable parameterization of dimension m with internal dynamics h : D → h (D) when:

a) P (0) = θ∗.

b) 0 is an attracting fixed point of h.

c) If z ∈ D then

Z
(
P
(
hk(z)

)
, P
(
hk+1(z)

)
, . . . , P

(
hk+N (z)

))
= 0, (6)

for all k ≥ 0.
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Remark 2.1. Notice that, in the definition above, if we let z0 ∈ D and θk = P (hk(z0)), then the sequence

(θk)k≥0 satisfies the difference equation (1) and also θk → θ∗, as k →∞.

In some situations it might be useful to consider a geometric object associated to the parameteri-

zation. As a consequence of definition 2.2, we have the following result.

Proposition 2.3. Let θ∗ be a fixed point solution and P : D ⊂ Rm → M a parameterization of

dimension m with internal dynamics h : D → h (D). If P ′(0) has rank equal to the dimension of D,

then there exists an open disk D̂ ⊂ D around the origin such that

W = {
(
P (z) , P (h(z)) , . . . , P

(
hN−1(z)

))
: z ∈ D̂} (7)

is an embedded submanifold W ↪→ MN of dimension m. In such case, we will say that a manifold W
as in (7) is a local stable manifold with parameterization P .

We note that the parameterization P and the internal dynamics h satisfy

[Φ(P )] (z) := Z
(
P (z), P (h(z)), . . . , P (hN (z))

)
= 0, (8)

together with the normalizations obtained by a change of origin

P (0) = θ∗, h(0) = 0. (9)

The equation (8) is the centerpiece of our analysis. Using methods of functional analysis we can

show that, under appropriate conditions, (8) has solutions. In order to do this, we will find it convenient

to think of (8) as the equation Φ(P ) = 0, defined on a suitable function space.

The solutions of (8) thus produced generalize the familiar stable and strong stable manifolds but

also include some other invariant manifolds associated to non-resonant spaces including, in some cases,

the slow manifolds.

2.2 An important simplification

If L : D̃ → D is a diffeomorphism and we define P̃ = P ◦ L and h̃ = L−1 ◦ h ◦ L, then (P̃ , h̃) solves (8)

on the domain D̃. In other words, the P and h solving (8) is not unique. Nevertheless, the range of P

and P̃ is unique.

One can take advantage of this lack of uniqueness of (8) to impose extra normalization on the maps

h. Recall that, by the theorem of Sternberg [Ste55, Ste58, Ste59], under non-resonance conditions on

the spectrum,1 any analytic one dimensional invariant curve tangent to a contracting eigenvector has

dynamics which is analytically conjugate to the linear one. So that, we can take h to be linear if we

assume non-resonance or if we deal with 1-dimensional manifolds.

1This is automatically satisfied for the strong stable and strong unstable manifolds and includes the classical stable

and unstable manifolds.
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In this paper, we will not consider the resonant case. This justifies that in (8) we do not consider h

as part of the unknowns, since it will be linear. In the cases considered here, it will suffice to consider

h to be linear, we will write h(z) = Λz. Hence, instead of (8), we will consider

[Φ(P )] (z) := Z
(
P (z), P (Λz), . . . , P (ΛNz)

)
= 0, (10)

where Λ is a matrix that will be determined from a linearized equation near the fixed point. In fact,

Λ is a matrix that depends on the roots of a polynomial. The determination of Λ and P ′(0) will be

studied in Section 3. We will call Φ the parameterization operator. The domain of the operator Φ is a

function space that depends on the analytic properties of Z and will be studied in detail in Section 4.

In summary, the basic ansatz that we propose is that there are solutions to the difference equation

that are of the form

θk = P
(

Λkz
)
,

where Λ is determined by the linearization at the fixed point. In addition, Λ and P are chosen so that

θk → θ∗ as k →∞. The smoothness of P depends on the smoothness of Z.

2.3 Unstable manifolds

With the parameterization method we can also study unstable manifolds.

Definition 2.4 (Parameterized unstable solution). Let θ∗ be a fixed point solution to the difference

equation (1). Let D be an open disk of Rm around the origin. We will say that a smooth function

P : D → M is a unstable parameterization of dimension m with internal dynamics h : D → h (D)

when:

a) P (0) = θ∗.

b) 0 is an attracting fixed point of h.

c) If z ∈ D then

Z
(
P
(
hk+N (z)

)
, P
(
hk+N−1(z)

)
, . . . , P

(
hk(z)

))
= 0, (11)

for all k ≥ 0.

Remark 2.2. As in the stable case, each parameterization produces sequences that satisfy the original

difference equation. In this case, if we let z0 ∈ D and θ−k = P (hk(z0)), then the sequence (θk)k≤0

satisfies the difference equation (1) and also θk → θ∗, as k → −∞.

This corresponds to an extension of the original difference Z (θk, . . . , θk+N ) = 0, to negative values

k ≤ 0. Alternatively, we can write the difference equation for negative values in terms of a dual problem

Z̃
(
θ̃k, θ̃k+1, . . . , θ̃k+N

)
= Z

(
θ̃k+N , θ̃k+N−1, . . . , θ̃k

)
= 0.

We interpret the new variable as θ̃k = θN−k. In this way, the unstable case is reduced to the stable

case.
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2.4 Explicit examples

Example 2.1. Let η > 0. Consider the function Z : R2 → R given by

Z(θ0, θ1, θ2) = θ2 + θ0 −
2 cosh(η)θ1

θ2
1 + 1

.

The resulting difference equation Z(θk, θk+1, θk+2) = 0 [McM71] is an explicit recurrence called the

McMillan map. It is integrable in the sense that J(x, y) = x2y2 + x2 + y2 − 2 cosh(η)xy satisfies

J(θk, θk+1) = J(θk+1, θk+2). In [DRR98], it was shown that P (z) = 2 sinh(η)z/(z2 + 1) satisfies

Z(P (z), P (λz), P (λ2z)) = P (λ2z) + P (z)− 2 cosh(η)P (λz)

[P (λz)]2 + 1
≡ 0,

provided λ = e−η. Therefore P is a parameterized solution with internal dynamics h(z) = λz. Notice

that, in the case of explicit recurrences, the parameterization can follow the manifold even if it folds

and ceases to be a graph.

Example 2.2. Let M = (−∞, 1). On M ×M , we define the following the Lagrangian S(θ0, θ1) =
1
2 (θ0 − f(θ1))2, where f(θ) = 2θ/(1 − θ). The corresponding Euler-Lagrange difference equation can

be written as Z(θk, θk+1, θk+2) = 0 where Z : M3 → R is the function given by

Z(θ0, θ1, θ2) = (f(θ1)− θ0) f ′(θ1) + (θ1 − f(θ2)) . (12)

Clearly, θ∗ = 0 is a fixed point solution.

Let P (z) = z/(1 − z). Since P (z) ∈ M , the maximal disk in which P can be defined is D =

(−1/2, 1/2). If we let λ = 1
2 , then one can check that P satisfies f(P (λz)) = P (z), for all z ∈ D.

After substitution, we verify that Z(P (z), P (λz), P (λ2z)) ≡ 0. Therefore, P is a stable parameterized

solution for θ∗ = 0.

However, the difference equation (12) is not a dynamical system because it can not be inverted,

unless f is a diffeomorphism of M . In other words, we can find a parameterization solution even if the

system is not dynamic.

Example 2.3. Suppose that G : Rd → Rd is a map, possible non-invertible, with G(0) = 0. We would

like to parameterize the stable and unstable manifolds of 0, if they exist. For instance, we can solve the

following pair of one-dimensional problems.

• Stable manifold problem: if 0 < λ < 1 is an eigenvalue of DG(0), find a function P such that

P (λz) = G(P (z)).

• Unstable manifold problem: if µ > 1 is an eigenvalue of DG(0), find a function P such that

P (µz) = G(P (z)).

Both problems can be solved using the parameterization method for difference equations. The same

ideas can be used for higher dimensional objects. For examples, for d = 3, two-dimensional stable and

unstable manifolds were found in [MJL10]. As we will see, our analysis covers not only one-dimensional

stable and unstable manifolds, but also other non-resonant manifolds.
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3 Linear analysis

Since we are interested in solutions of (10) it is natural to study the behavior of the linearization. As

it happens in other situations, this will lead to certain choices. In subsequent sections, we will show

that the once these choices are made (satisfying some mild conditions), then there is indeed a manifold

which agrees with these constraints.

Suppose that there exist differentiable P , and a matrix Λ solving (10). Taking derivatives of (8)

with respect to z, and evaluating at z = 0, we get that

N∑
i=0

BiV Λi = 0, (13)

where Bi = ∂iZ (θ∗, . . . , θ∗) and V = P ′(0). Our first goal is to understand conditions that allow to

solve equation (13) which is a necessary condition for the existence of differentiable solutions for (10).

Remark 3.1. The dimensions of the matrices are determined by the type of parametrization that we

have. Notice that each Bi is d× d, Λ is m×m and V is d×m.

Definition 3.1 (Characteristic polynomial). Let θ∗ a fixed point solution. If we let

Bi = ∂iZ (θ∗, . . . , θ∗) ,

then the characteristic polynomial of the fixed point is defined to be:

F(λ) := det

(
N∑
i=0

λiBi

)
.

If λ is a root of F , then we will say that is it is an eigenvalue. The set of eigenvalues is the spectrum,

denoted by σ (θ∗), of the fixed point. If λ ∈ σ (θ∗), then any vector v ∈ Cd \ {0} that satisfies

N∑
i=0

λiBiv = 0

will be called an eigenvector of λ. In addition, if V is a d × m matrix with non-zero columns and

Λ is a m ×m matrix that satisfy the linear relation (13), then we will say that the pair (V,Λ) is an

eigensolution of dimension m.

Remark 3.2. If the difference equation is of the form (3) and is the Euler-Lagrange of a variational

principle then the characteristic polynomial is of the form F(λ) = λNdL(λ) where L is given by

L(λ) := det

 N∑
i,j=0

λj−iAij

 , (14)

and Aij = ∂ijS (θ∗, . . . , θ∗). Now, since ATij = Aji, we have that if λ is in the spectrum, then 1/λ is also

in the spectrum. This is a well known symmetry for the spectrum of symplectic matrices. In [Ves91]

one can find a proof that, when the Euler-Lagrange equation (3) defines a dynamical system, it becomes

symplectic.
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Remark 3.3. Let (V,Λ) be an eigensolution as above. Suppose that w is an eigenvector of Λ with

eigenvalue λ. Then v = Λw is an eigenvalue with eigenvalue λ in the sense of definition 3.1.

Proposition 3.2. Let {v1, . . . , vm} be a linearly independent set of eigenvectors with distinct eigen-

values λ1, . . . , λm. Let V be the d × m matrix V = (v1 v2 · · · vm) and Λ be the m × m matrix

Λ = diag(λ1, . . . , λm). Then (V,Λ) is an eigensolution and satisfies equation (13). In addition, if

Q is an invertible matrix, Ṽ = V Q and Λ̃ = Q−1ΛQ then (Ṽ , Λ̃) is also an eigensolution.

Remark 3.4. Suppose that λ = µ+ i ν is a root of the characteristic polynomial F of a fixed point θ∗.

Let v = r + i s be an eigenvector of λ. If we want to avoid the use of complex numbers, we can use λ

and v in order to find a solution with dimension m = 2. Let V be the d× 2 matrix given by V = (r s)

and

Λ =

(
µ −ν
ν µ

)
.

It is easy to see that (V,Λ) is an eigensolution of dimension 2.

Remark 3.5. We notice that F(λ) is always a polynomial of degree at most 2Nd. If the matrix B0 is

non-singular then the degree of F(λ) is exactly Nd. If λ is an eigenvalue, then there is only a finite

number of values of n for which F(λn) = 0. These considerations motivate the following.

Definition 3.3 (Non-singularity condition). We will say that a fixed point θ∗ is non-singular if the

corresponding characteristic polynomial satisfies: F(0) 6= 0.

Definition 3.4 (Non-resonance condition). We will say that an eigenvalue λ ∈ σ (θ∗) is non-resonant

if F(λn) 6= 0, for all n ≥ 2.

More generally, we will consider non-resonant sets of eigenvalues. In what follows, we will be using

the multi-index notation where, as usual, if z = (z1, . . . , zm) ∈ Cm and α = (α1, . . . , αm) ∈ Zm+ is a

multi-index then zα = zα1
1 zα2

2 · · · zαmm .

Definition 3.5. We will say that λ = (λ1, . . . , λm) is a non-resonant vector of eigenvalues if, for all

multi-indices α ∈ Zm+ ,

a) F(λα) = 0 if |α| = 1,

b) F(λα) 6= 0 if |α| > 1.

If λ = (λ1, . . . , λm) is a non-resonant vector of eigenvalues then we will also say that the set {λ1, . . . , λm}
is non-resonant.

Definition 3.6 (Hyperbolicity). Let θ∗ be a non-singular fixed point solution of an analytic difference

equation Z and suppose that F is its characteristic polynomial. We will say that θ∗ is hyperbolic if

none of the eigenvalues of F are on the unit circle. Similarly, we will say that a vector of eigenvalues

λ = (λ1, . . . , λm) is stable if |λi| < 1, for all i = 1, . . . ,m.

10



Remark 3.6. Let θ∗ be a non-singular fixed point solution and σ(θ∗) its spectrum. In other words, all

elements of σ(θ∗) are non-zero. Notice that, even if the condition of non-resonance involves infinitely

many conditions, for stable sets all except a finite number of them are automatic. Suppose that

λ = (λ1, . . . , λm) is a stable vector of eigenvalues. If n ∈ N is such that(
max
λi∈λ
|λi|
)n
≤ min

λ∈σ(θ∗)
|λ|,

then we have that λα cannot be in the spectrum if |α| ≥ n. So that there are only a finite number of

conditions to check and the set of non-resonant λ is an open-dense, full measure set among the stable

ones.

All this analysis shows that there are obstructions to the computation of invariant manifolds that

appear using just the linear approximation. These obstructions are a generalization of the observation,

in the dynamical systems case, that the only invariant manifolds have to have tangent spaces that are

invariant under the linearization.

The goal of the rest of the paper is to show that if we choose a subset of the spectrum and an

invariant subspace, which also satisfies the non-resonance conditions, then there is a solution to the

parameterization problem. The analysis will also show that the non-resonance conditions are needed

to obtain a general result.

4 Existence and analyticity of solutions

As indicated before, we will first obtain a formal approximation and then use an implicit function

theorem. The proof of Theorem 4.1 is an application of the implicit function theorem in a Banach space

of analytic functions (see Subsection 4.4). This will lead rather quickly to the analytic dependence on

parameters, and the possibility of getting approximate solutions (see Subsection 4.5).

4.1 Statement of the Main Theorem

Theorem 4.1. Let Z be an analytic difference equation function with a fixed point at 0 and such

that B0 = ∂0Z(0) is a non-singular matrix. Let λ = (λ1, . . . , λm) be a stable non-resonant vector of

eigenvalues, with corresponding eigenvectors v1, . . . , vm. Let (V,Λ) be the corresponding eigensolution

of the linearized problem (13) with Λ = diag(λ1, · · · , λm) and V = (v1 · · · vm).

Then, there exist an analytic function P such that its derivative at z = 0 is P ′(0) = V and satisfies

(9) and (10). The solution is unique among the solutions of the equation.

Remark 4.1. The radius of convergence of the resulting analytic function is not specified. In the proof

of 4.1, we will consider an equivalent result, in which the radius of convergence is 1, but the lengths of

the vectors v1, . . . , vm are modified.

Remark 4.2. If Z is the Euler-Lagrange equation (3) that corresponds to a generating function S, then

B0 = ∂0,NS(0) and hence the non-singularity condition is det(∂0,NS(0)) 6= 0.
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In Section 5.1, we will weaken the assumption det(B0) 6= 0, which is tantamount to a local version

of the Legendre condition. This includes, in particular, the extended Frenkel Kontorova models with

singularities.

4.2 Analyticity of the parameterization operator

In appendix A, we give a general definition of analyticity and introduce spaces of analytic functions.

In particular, given ρ > 0 we define

Aρ(C`,Cd) =

f : C`(ρ)→ Cd
∣∣∣∣∣∣f(z) =

∞∑
k=0

∑
|α|=k

zαηα, ‖f‖ρ <∞

 ,

where

‖f‖ρ =

∞∑
k=0

∑
|α|=k

‖ηα‖∞

 ρk,

‖ · ‖∞ is the uniform norm (45), and C`(ρ) = {z ∈ C` : ‖z‖∞ ≤ ρ}.
Let d,N ∈ N and ` = d(N + 1). We will consider C` '

(
Cd
)N+1

. As an standing assumption,

the function that defines the difference equation satisfies Z ∈ Aρ
(
C`,Cd

)
for some ρ > 0; this is, Z is

analytic near the origin.

In this section we will show that the operator Φ, defined in (10), is an analytic operator defined on

spaces of analytic functions in Cm. Let Λ be an m×m matrix such that, if ‖z‖∞ < 1 then ‖Λz‖∞ < 1.

We define the linear function G : A1

(
Cm,Cd

)
→ A1

(
Cm,C`

)
by

G(P ) =
(
P, P ◦ Λ, . . . , P ◦ ΛN

)
.

Besides being linear, the functional G has the property that G
(
Aρ1
(
Cm,Cd

))
⊂ Aρ1

(
Cm,C`

)
, for all

ρ > 0. Let

X = A1(Cm,Cd) (15)

and define the open set

U = {f ∈ X : ‖f‖1 < ρ}. (16)

For a correct application of the implicit function theorem, it suffices Φ to be C1. However, we next

show if Φ is analytic. This will give analytic dependence on parameters of the invariant manifolds.

Notice that G (U) ⊂ Aρ1
(
Cm,C`

)
. Since Z ∈ Aρ

(
C`,Cd

)
, we can write the parameterization operator

as a composition of analytic functions: Φ = CZ ◦G, where CZ is the composition operator CZ(g) = Z ◦g.

Consequently, using Lemma A.4, we get the following:

Proposition 4.2. Let U ⊂ X as in (15) and (16). Then the operator Φ : U → X is analytic.
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4.3 Fréchet derivative of the parameterization operator

Consider the parameterization operator Φ defined in (10), in which Λ is a diagonal matrix. As we have

seen, this operator is a function Φ : U → X, where X and U are defined in (15) and (16) respectively.

We have the following.

Lemma 4.3. Let λ = (λ1, . . . , λm) be a vector such that ‖λ‖∞ < 1. Let Φ : U → X be the parameteri-

zation operator defined in (10) where Λ = diag(λ1, . . . , λm) and define

T (λ) :=
N∑
i=0

λiBi, (17)

where Bi = ∂iZ(0, . . . , 0). Let ϕ ∈ X be of the form ϕ(z) =
∞∑
k=0

∑
|α|=k

zαϕα. Then DΦ(0)ϕ ∈ X and

[DΦ(0)ϕ](z) =
∞∑
k=0

∑
|α|=k

zαT (λα)ϕα. (18)

Proof. We notice the conditions on λ imply that ϕ ◦Λi ∈ X for all i = 0, . . . , N . We also have that the

Fréchet derivative of Φ satisfies

[DΦ(0)ϕ](z) =
N∑
i=0

Bi ϕ
(
Λiz
)
, (19)

for all ‖z‖∞ ≤ 1. This implies that DΦ(0)ϕ ∈ X. Clearly,
(
Λiz
)α

= zα (λα)i and therefore

ϕ
(
Λiz
)

=
∞∑
k=0

∑
|α|=k

zα (λα)i ηα.

Combining the last equation with (17) and (19), we get (18).

Let H be the Banach subspace of analytic functions in the unit disk, that vanish at the origin along

with their first derivatives.

H =

P> ∈ X
∣∣∣∣∣∣P>(z) =

∞∑
k=2

∑
|α|=k

zαPα; ‖P>‖1 =

∞∑
k=2

∑
|α|=k

‖Pα‖∞ <∞

 . (20)

Remark 4.3. In the notation of the appendix A, this subspace is just H = {P ∈ A1(Cm,Cd) : P (0) =

0, P ′(0) = 0}.
Clearly, (18) implies that H is invariant under DΦ(0). In addition, we get the following result.

Lemma 4.4. Let Λ = diag(λ1, . . . , λm), where λ = (λ1, . . . , λm) is a non-resonant stable vector of

eigenvalues. If B0 is a non-singular matrix, then

a) DΦ(0) is invertible in H, with bounded inverse.

b) If ϕ ∈ H is such that ϕ(z) =
∑∞

k=2

∑
|α|=k z

αϕα and η = DΦ(0)−1ϕ can be written as η(z) =∑∞
k=2

∑
|α|=k z

αηα, then ηα = T (λα)−1ϕα, for every multi-index α such that |α| ≥ 2.

13



Proof. Clearly, as k →∞ we get that T (λk)→ B0, a matrix that is invertible. This implies that there

exists a constant C0 > 0 and a radius 0 < δ < 1 such that, if |λ| < δ then ‖T (λ)−1‖ ≤ C0. In particular,

if |λα| < δ then ‖T (λα)−1‖ ≤ C0.

We know that, since λ is non-resonant, the matrices T (λα) are invertible, whenever |α| ≥ 2. Since

λ is stable there is only a finite number of elements in the set

{λα ∈ C : |α| ≥ 2, |λα| ≥ δ}.

Let C > 0 be a constant such that C ≥ C0 and

C ≥ max{‖T (λα)−1‖ : |α| ≥ 2, |λα| ≥ δ}.

This implies that ‖T (λα)−1‖ ≤ C, for all |α| ≥ 2.

From (18) we get that DΦ(0) is injective. Let ϕ ∈ H with ϕ(z) =
∑∞

k=2

∑
|α|=k z

αϕα. Define

η(z) =
∑∞

k=2

∑
|α|=k ηαz

α, with ηα = T (λα)−1ϕα, for every multi-index |α| ≥ 2. From (18), we have

that DΦ(0)η = ϕ and therefore DΦ(0) is invertible in H. In addition,

‖DΦ(0)−1ϕ‖1 = ‖η‖1 =
∞∑
k=2

∑
|α|=k

‖T (λα)−1ϕα‖∞ ≤ C
∞∑
k=2

∑
|α|=k

‖ϕα‖∞ = C‖ϕ‖1.

We conclude that DΦ(0) is invertible in H and
∥∥DΦ(0)−1

∥∥ ≤ C.

4.4 Proof of Theorem 4.1.

Let H as in (20). When we consider the linear part V of the parameterization P , it is convenient

to choose the scale sufficiently small. Choosing this scale is tantamount to choosing the radius of

convergence of the solution P . Let τ = (τ1, . . . , τm), where τ1, . . . , τm represent scaling factors for the

columns of the linear part. We will use the notation τ · V = V diag(τ1, . . . , τm).

Since any possible solution of (10) has to match the lower order terms found, it is natural to consider

a new decomposition P = τ · V + P> where P> is an analytic function which vanishes to order 2 and

depends on the size of the scale τ . Because of the change of variables, we can seek for P> among

analytic functions of radius 1 that vanish to first order, i.e. P> ∈ H.

Hence we write the equation (10) as

Ψ(τ, P>) ≡ Φ(τ · V + P>) = 0. (21)

It is important to note, since V is known, that we only need to find the appropriate scale τ , and the

function P>. Furthermore, since P> vanishes to order 1, Ψ(τ, P>) also vanishes to order 1. In other

words, we can choose H to be the codomain of Ψ. In addition, the coefficients of P> are small if τ is

small.

We notice that there exists an open subset V ⊂ Rm×H defined by the property that if (τ, P>) ∈ V
then τ · V + P> ∈ U , the domain of Φ. In this way, we can restrict the domain of Ψ and consider

Ψ : V → H. It is clear that this is a neighborhood of the origin (0, 0) in which the operator Ψ is defined

and is analytic.

14



Taking the derivative with respect to the second variable, it is clear that D2Ψ(0, 0) = DΦ(0) and

therefore, by Lemma 4.4, we have that the operator

D2Ψ(0, 0) : H → H

is invertible with bounded inverse. The implicit function theorem in Banach spaces [HS91] implies that

there exists δ > 0 and a function τ 7→ P<τ such that if |τ | < δ, then Ψ(τ, P>τ ) = 0 and the solution is

unique if we require ‖P>‖1 < δ.

Fix a solution of (21) of the form (τ, P>τ ) such that τ has positive entries and Ψ(τ, P>τ ) ≡ 0. Then

P̃ (z) = τ ·V z+P>τ (z) is a solution of the parameterization problem. By construction, P̃ is an analytic

function with radius of convergence 1. If we want to have V as the linear part of the solution, we modify

P̃ in the following way. Let P = P̃ ◦ diag(τ1, . . . , τm)−1 or

P (z) = V z + P>τ (diag(τ1, . . . , τm)−1z).

Using a linear change of variables as in Section 2.2, we conclude that P is also a solution of the

parameterization problem. However, the radius of convergence is not longer 1 but depends on the choice

of τ . If we let r = min{τ1, . . . , τm}, then r > 0, and ‖z‖∞ ≤ r implies that ‖diag(τ1, . . . , τm)−1z‖∞ ≤ 1.

We conclude that P ∈ Ar(Cm,Cd) and has radius of convergence equal to r.

4.5 Formal approximations to higher order

Once P ′(0) = V and Λ are chosen, the solution P of the parameterization problem can be approximated

with the first terms of the power series. Due to analyticity, we can write the solution P ∈ Aρ(Cm,Cd)
of the parameterization problem as a sum of homogeneous polynomials like in (50):

P (z) =
∞∑
`=1

∑
|α|=`

zαPα,

where Pα ∈ Cd, and has P radius of convergence ρ.

For each multi-index α ∈ Zm+ , we will use the notation [·]α for the coefficient vector of the term that

corresponds to zα. Clearly, if f is an analytic function at the origin, then this coefficient can be written

as [f ]α = ∂αf(0)/α!. In the case of P above, we get that [P ]α = Pα.

For each n ∈ N, let P≤n be the polynomial

P≤n(z) =

n∑
`=1

∑
|α|=`

zαPα.

It is clear that ‖P − P≤n‖ρ → 0 as n→∞. Notice also that, for any |α| ≤ n,[
Φ
(
P≤n

)]
α

= [Φ (P )]α = 0, (22)

We will describe how to construct the polynomials P≤n recursively, provided that the eigenvalues are

non-resonant.
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A simple computation shows that
[
Φ
(
P≤ 1

)]
α

= 0 for |α| = 1. Let N (P ) = DΦ(0)P − Φ(P ).

Then, it turns out that
[
N
(
P≤n

)]
α

=
[
N
(
P≤n+1

)]
α
, for all |α| = n + 1. Lemma 4.3 implies that

[DΦ(0)P ]α = T (λα)Pα, for all |α| > 1. Therefore, we conclude that

0 =
[
Φ
(
P≤n+1

)]
α

=
[
DΦ(0)P≤n+1 +N

(
P≤n+1

)]
α

=
[
DΦ(0)P≤n+1

]
α

+
[
N
(
P≤n

)]
α

= T (λα)Pα +
[
N
(
P≤n

)]
α
,

From this we find the expression

Pα = T (λα)−1
[
N
(
P≤n

)]
α

= T (λα)−1
[
Φ
(
P≤n

)]
α
, (23)

for all |α| = n+ 1. The polynomial P≤n+1 can be found from P≤n and recursion (23).

It is important to note that the choice of P ′(0) determines the tangent space to the manifold. Hence

V is determined once we choose this space. On the other hand, P ′(0) is determined only up to the size

of its columns. These multiples will not be too crucial for the mathematical analysis, but it will be

important in the numerical calculations in Section 6.

Lemma 4.5. With the notations above, assume that λ = (λ1, . . . , λm) is a stable non-resonant vector

of eigenvalues, and that (13) is satisfied with Λ = diag(λ1, . . . , λm) and for some V = P ′(0) of maximal

rank. Then, for every |α| ≥ 2, we can find a unique Pα such that (22) holds. Furthermore, we can

make all Pα arbitrarily small by making the columns of P ′(0) sufficiently small.

Remark 4.4. The assumption that the matrix Λ is diagonal can be eliminated. Following the discussion

in Section 2.2, it suffices that Λ is diagonalizable.

Remark 4.5. As we will see in Section 6 the proof in this section can be turned into an efficient algorithm

using the methods of “automatic differentiation” [JZ05, Nei10, BCH+06] which allow a fast evaluation

of the coefficients Pα, specially in the case that the manifolds are 1-dimensional. More details, including

an implementation in examples, are given int Section 6.

Remark 4.6. Notice that the main theorem is proved by a contraction mapping theorem. The formal

solutions are indeed an approximate solution. Indeed, in practical problems – see Section 6 – it is

possible to produce solutions that have an error comparable to round off. These bounds can be proved

rigorously using interval arithmetic.

Given some bounds on the contraction properties of the operator, one concludes bounds on the

distance between the approximate solution and the true solution. Hence, the proof presented here gives

a strategy to lead to computer assisted proofs.

5 Singular case and dependence on parameters

5.1 Singular case

In this section, we show how the results can be extended to the case in which B0 is singular. The key

will be to generalize Lemma 4.4. This can be done by estimating the singularity of the matrix T (λ)
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that was defined in (17).

Example 5.1. Consider the Lagrangian function S : R2 × R2 → R given by

S(θ0, θ1) = −θT0

(
0 0

0 1

)
θ1 +

1

2
θT0

(
1 1

1 6

)
θ0.

Let Z be the difference equation that arises from the Euler-Lagrange equation (3). The point θ∗ = (0, 0)

gives a fixed point solution. As before, we define T (λ) as in equation (17). Using definition (14) in

remark 3.2, it is possible to verify that the characteristic polynomial is of the form F(λ) = λ(−2λ +

1)(λ−2). Therefore, θ∗ is singular. We notice that the degree is strictly less than the maximum Nd = 4,

F(0) = 0 and λ divides F(λ).

In order to deal with the singular case, we have the following result, that will lead to a generalization

of Lemma 4.4.

Lemma 5.1. Let θ∗ be a singular fixed point solution with characteristic polynomial F . Let e be the

greatest integer e ∈ Z+ such that λe divides F(λ), i.e., the polynomial F is of the form F(λ) = λeg(λ),

where g is a polynomial such that g(0) 6= 0. Let T be as in (17) and λ = (λ1, . . . , λm) be a stable

non-resonant vector of eigenvalues none of which is zero. Then there exists a constant C > 0 such that∥∥T (λα)−1
∥∥ ≤ C (λα)−e , (24)

for all multi-indices |α| ≥ 2.

Proof. The inverse T (λ)−1 is a rational function of the form

T (λ)−1 =
1

λeg(λ)
Q(λ),

where Q is a polynomial matrix and g(0) 6= 0. Then λeT (λ)−1 is also a rational function, but the limit

limλ→0 λ
eT (λ)−1 exists.

As in the proof of Lemma 4.4, we can argue that since λ is non-resonant and stable, the matrices

T (λα) are invertible and (λα)e T (λα)−1 are uniformly bounded for all multi-indices |α| ≥ 2. Therefore,

there exists a constant C > 0 such that
∥∥(λα)e T (λα)−1

∥∥ ≤ C.

Lemma 5.1 tells us that the derivative DΦ(0)−1 is an operator, but it might not be well defined for

all the elements of H. We will introduce a new Banach space. For each µ > 0, let D(µ) = Cm(µ) =

{z ∈ Cm : ‖z‖∞ ≤ µ} be the complex disk around the origin of complex radius µ. Using D(µ), we

define

H(µ) :=

P> : D(µ)→ Cd
∣∣∣∣∣∣P>(z) =

∞∑
k=2

∑
|α|=k

zαPα; ‖P>‖µ =

∞∑
k=2

∑
|α|=k

µn‖Pα‖∞ <∞

 .

Remark 5.1. Notice that, in the notation of the appendix,

H(µ) = {P ∈ Aµ(Cm,Cd) : P (0) = 0, P ′(0) = 0}.
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If µ1 < µ2 then D(µ1) ⊂ D(µ2) and H(µ2) can be regarded as a subspace of H(µ1) through the

standard inclusion H(µ2) ↪→ H(µ1) given by

f 7→ f |D(µ1) .

In particular, we have that H = H(1) and if 0 < µ < 1 then we have the inclusion H ↪→ H(µ). In that

case, we define an operator ∆µ : H(µ)→ H by

∆µ[ϕ](z) = ϕ(µz).

Clearly, ∆µ is always bounded. Functions in H(µ) gain analyticity through ∆µ, and the inverse ∆−1
µ is

also bounded but destroys analyticity. Following the proof of Lemma 4.4, as a corollary of Lemma 5.1

we have the following result.

Corollary 5.2. Let θ∗ be a fixed point solution and λ = (λ1, . . . , λm) be a stable non-resonant vector

of eigenvalues. Let e be the greatest integer e ∈ Z+ such that λe divides F(λ).

Suppose that 0 < µ ≤ min{|λ1|e, . . . , |λm|e}. Then DΦ(0)−1 is a bounded linear operator DΦ(0)−1 :

H → H(µ). In addition, the composition ∆µDΦ(0)−1 : H → H is bounded and∥∥∆µDΦ(0)−1
∥∥ < C, (25)

where C is any constant that satisfies (24) in Lemma 5.1.

5.2 Dependence on parameters

Suppose that the difference equation depends smoothly on q parameters that, for simplicity belong to

an open set E ⊂ Rq around the origin. A special difficulty arises when there is a parameter in which

the equation becomes singular. We would like to regularize the singular limit.

Example 5.2. Consider the Lagrangian S defined on R3 and given by

S(θ0, θ1, θ2) =
ε

2
(θ2 − θ0)2 +

1

2
(θ1 − θ0)2 +W (θ0),

where ε is a small parameter. From this, we get the Euler-Lagrange equation expressed as (3). If

W ′(0) = 0, then the point θ∗ = (0, 0) is a fixed point solution. The characteristic polynomial for this

point is

F(λ) = ελ4 + λ3 −
(
2ε+ 2 +W ′′(0)

)
λ2 + λ+ ε.

According to Definition 3.3, the fixed point θ∗ = (0, 0) is non-singular if F(0) 6= 0 and this happens if

and only if ε 6= 0.

As before, let X = A1(Cm,Cd). As an assumption, suppose that there is an open set U ⊂ X such

that the equation Φ : E × U → Cd is analytically defined. Suppose that θ∗ = 0 ∈ U is a fixed point

solution for all parameters. On E × U , we define the nonlinearity at θ∗ as

N (ε, P ) = Φ(ε, P )−D2Φ(ε, θ∗)P,

for all (ε, P ) ∈ E × U .
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Remark 5.2. In general, for each value of ε ∈ E , the corresponding characteristic polynomial Fε(λ) is

of the form Fε(λ) = λe(ε)gε(λ), where e(ε) is an integer that depends on ε and gε(0) 6= 0. The function

e(ε) does not need to be continuous and this constitutes a potential difficulty. However, the theorem

below only requires that one can find a constant µ for which the matrices µ|α|T (λ(0)α)−1 are uniformly

bounded and the nonlinearity N vanishes at higher order.

The solution of the stable manifold problem is a local issue, so we can consider U and E as small

neighborhoods that not necessarily cover the largest possible domain for Φ. Now we can prove a more

general theorem that includes parameters.

Theorem 5.3. Let Φ, θ∗, N , E and U as above. Suppose that there exists analytic functions λi : E → C,

vi : E → Cd, for i = 1, . . . ,m and constants C, µ > 0 such that the following conditions are satisfied,

for all ε ∈ E.

a) Each λi(ε) is a non-resonant eigenvalue with eigenvector vi(ε).

b) λ(ε) = (λ1(ε), . . . , λm(ε)) is a stable non-resonant vector of eigenvalues.

c)
∥∥T (λ(0)α)−1

∥∥ < Cµ−|α|, for all multi-indices such that |α| ≥ 2.

d) There exists an open neighborhood of the origin U0 ⊂ U such that the operator R(ε, P ) =

N
(
ε,∆−1

µ P
)

can be defined as a function R : E × U0 → X.

For each ε ∈ E, let V (ε) = (v1(ε) · · · vm(ε)) and Λ(ε) = diag(λ1(ε), · · · , λm(ε)). Then, there exist a

function Pε(z), analytic in z and ε such that Pε(0) = 0, its derivative at z = 0 is ∂zP
′
ε(0) = V (ε) and

Zε
(
Pε(z), Pε(Λ(ε)z), . . . , Pε(Λ(ε)Nz)

)
≡ 0,

for all z in a neighborhood of the origin. The solution is unique among the solutions of the equation.

Proof. For simplicity, let the fixed point solution be θ∗ = 0. We will use the notation Φε = Φ(ε, ·).
Let H as in (20). The main step of the proof is to show that there exists δ > 0 and an analytic

function (τ, ε) 7→ Q>τ,ε defined for all ‖τ‖∞ + ‖ε‖∞ < δ such that

Φ
(
ε, τ · V (ε) +Q>τ,ε

)
≡ 0,

with Q>τ,ε ∈ H and the solution is unique provided ‖Q>τ,ε‖1 < δ.

Now, since 0 ∈ U0, there exists an open set V ⊂ Rm × E × H that contains (0, 0, 0) such that if

(τ, ε,Q>) ∈ V then τ · (µV (ε)) + Q> ∈ U0. From equation (25), we get that DΦ(0)−1 is a bounded

linear operator DΦ(0)−1 : H → H(µ) and ∆µDΦ0(0)−1 : H → H is uniformly bounded.

Let R(ε, P ) = N
(
ε,∆−1

µ P
)
. Notice that, if (τ, ε,Q>) ∈ V then R(ε, τ · (µV (ε)) + Q>) ∈ H. Let

Ψ : V → H be the operator defined by

Ψ(τ, ε,Q>) = DΦ0(0)∆−1
µ Q> +R(ε, τ · (µV (ε)) +Q>).
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We notice that Ψ(0, 0, 0) = 0 and D3Ψ(0, 0, 0) = DΦ0(0)∆−1
µ , that by construction is invertible with

bounded inverse. Using the implicit function theorem of Banach spaces, we can find δ > 0 and a

function (τ, ε) 7→ Q>τ,ε ∈ H defined for ‖τ‖∞ + ‖ε‖∞ < δ such that Ψ(τ, ε,Q>τ,ε) = 0 and the solution is

unique if ‖Q>τ,ε‖ < δ. For each such (τ, ε), define P>τ,ε = ∆−1
µ Q>τ,ε. This implies that

DΦε(0)P>τ,ε +N (ε, τ · V (ε) + P>τ,ε) ≡ 0.

Since DΦε(0)V (ε) ≡ 0, we have that Pτ,ε = τ · V (ε) + P>τ,ε is a solution and satisfies

Φε(Pτ,ε) = Φε(τ · V (ε) + P>τ,ε) ≡ 0.

The proof is finished as in the proof of Theorem 4.1, with a change of variables. Suppose that P>τ,ε is a

solution such that the vector τ = (τ1, . . . , τm) satisfies ‖τ‖∞ < r and its entries are positive. Let

Pε = V (ε) + P>τ,ε ◦ diag(τ1, . . . , τm)−1.

Then Pε(0) = 0, ∂zP
′
ε(0) = V (ε), and has a radius of convergence r, where r is given by

r = min{τ1, . . . , τm}.

6 Examples of numerical algorithms

In this section we describe efficient numerical methods to compute the parameterizations P described

in the previous sections. We will present algorithms for

A. Standard map model with several harmonics.

B. Frenkel-Kontorova models with long range interactions.2

C. Heisenberg XY models.

D. Invariant manifolds in Froeschlé maps

For simplicity, the invariant manifolds are 1−dimensional. System A is a twist map, B contains a

singular limit, C does not define a map. In D is a 4−dimensional and we study both strong stable and

slow invariant manifolds.

6.1 Standard map model with K−harmonics

Let C1, . . . , CK be given numbers. Consider the Lagrangian S : R2 → R given by S(θ0, θ1) = 1
2(θ0 −

θ1)2 +W (θ0), with

W (θ) = −
K∑
j=0

Cj
j

cos(jθ).

2We will have the C code available in the web.
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The the corresponding Euler-Lagrange difference equation can be written as Z(θ0, θ1, θ2) ≡ 0, where

Z : R3 → R is the function given by Z(θ0, θ1, θ2) = θ2 − 2θ1 + θ0 −W ′(θ1).

Many authors have treated the original (K = 1) standard map, also known as Chirikov model. The

bi-harmonic model (K = 2) was studied by [BM94, LC06]. The parameterization problem to solve is

P (λ2z)− 2P (λz) + P (z)−
K∑
j=0

Cj sin(jP (λz)) = 0, (26)

where λ solves F(λ) = λ2 +
(
−2 +

∑K
j=0 jCj

)
λ+ 1 = 0, and |λ| < 1. Sometimes, it is more convenient

to write (26) as

P (λz)− 2P (z) + P (λ−1z)−
K∑
j=0

Cj sin(jP (z)) = 0. (27)

We solve (27) by equating coefficients of like terms. The orders 0 and 1 are special. Clearly, we can

take P0 = 0. This corresponds to choosing the fixed point θ∗ = 0. Equating terms of first order in (27),

we obtain: λ+ λ−1 − 2 +
K∑
j=0

j Cj

P1 = 0. (28)

Since we choose λ so that the term in parenthesis vanishes, we obtain that P1 is arbitrary. Once we

have chosen λ so that it solves the quadratic equation, any P1 will lead to a solution of (28).

Any choice of P1 is equivalent from the mathematical point of view as they correspond to the choice

of scale of the parameterization. However, from the numerical point of view it is convenient to choose

P1 in such a way that the subsequent coefficients have comparable sizes so that the round of error is

minimized. In practice, to find a good choice of P1 we perform a trial run of low order which gives an

idea of the exponential growth or (decay) of the coefficients Pn and then fix P1 so that the coefficients

Pn neither grow nor decay too much.

The equation for λ is quadratic. The product of its roots is 1 so, when∣∣∣∣∣∣−2 +

K∑
j=1

j Cj

∣∣∣∣∣∣ > 2,

we get two roots λ1 and λ2 of the characteristic polynomial F such that |λ1| < 1, |λ2| > 1. We choose

the stable eigenvalue λ1.

Since λn + λ−n − 2 +
∑K

j=1 j Cj 6= 0 (λn is not a root of F), we get

Pn =

λn + λ−n − 2 +

K∑
j=1

j Cj

−1  K∑
j=1

Cj sin
(
jP≤ (n−1)

)
n

. (29)

Note that the right hand side can be evaluated if we know P≤ (n−1) and hence we can recursively

compute Pn. In each step, the coefficients can be found using algorithms explained below which will be

also used in other sections.
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6.2 Efficient evaluation of trigonometric functions

Given a series, P (z) =
∑∞

n=0 Pnz
n, we often want to compute the power series expansions of sin(P (z))

and cos(P (z)). The following algorithm is taken from [Knu97]. Denote S(z) = sin(P (z)) and C(z) =

cos(P (z)). Then, we have

S′(z) = C(z)P ′(z), C ′(z) = −S(z)P ′(z). (30)

Suppose that we can write these functions as S(z) =
∑∞

n=0 Snz
n and C(z) =

∑∞
n=0Cnz

n. For each

n ∈ N, we will denote S≤n(z) =
∑n

k=0 Skz
k, C≤n(z) =

∑n
k=0Ckz

k and P≤n(z) =
∑n

k=0 Pkz
k. Also,

[·]n will represent the coefficient of order n of an analytic function.

Equating terms of order n in (30), we obtain

(n+ 1)Sn+1 =
n∑
j=0

Cn−j(j + 1)Pj+1, (31)

(n+ 1)Cn+1 =−
n∑
j=0

Sn−j(j + 1)Pj+1.

The recursion (31) allows to compute the pair of coefficients Sn+1, Cn+1 provided that we know the

coefficients S0, . . . , Sn and C0, . . . , Cn. We note that, obviously S0, C0 are straightforward to compute.

From this, we also make the obvious observation that

Sn+1 = C0Pn+1 +
1

n+ 1

[
cos
(
P≤n

)
Q≤n

]
n+1

, (32)

Cn+1 = −S0Pn+1 −
1

n+ 1

[
sin
(
P≤n

)
Q≤n

]
n+1

,

where Q≤n(z) =
∑n

k=0(k + 1)Pk+1z
k. In particular, if P0 = 0, then we conclude that

[S]n+1 = Pn+1 +
[
sin
(
P≤n

)]
n+1

,

[C]n+1 =
[
cos
(
P≤n

)]
n+1

.

This recursion allows us to get the expansion to order n of sin(P (z)) and cos(P (z)), given the

expansion of P to order n. Furthermore, we observe that if we change Pn –the coefficient of order n of

P– this only affects the coefficients of sin(P (z)) and cos(P (z)) of order n or higher.

The practical arrangement of the calculation of the coefficients in the standard map with K harmon-

ics is to keep different polynomials S≤n` and C≤n` that correspond to the series expansions of sin(`P )

and cos(`P ) up to order n. If the polynomial P is computed to order n − 1 and the S≤n` and C≤n`

corresponding to P≤ (n−1) are computed up to order n, we can compute the coefficient Pn using (29).

Then, we can compute the corresponding S
≤ (n+1)
` and C

≤ (n+1)
` up to order n+ 1 using (31). We note

that similar algorithms can be deduced for eP (z), logP (z), P (z)γ or indeed the composition of P with

any function that solves a simple differential equation.
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6.3 Frenkel-Kontorova model with extended interactions

6.3.1 Set up

Consider the Frenkel-Kontorova model with long range interactions. A particle interacts not only

with its nearest neighbors, but with other neighbors that are far away. Let N ≥ 2. We consider the

Lagrangian function S : RN+1 → R given by

S(θ0, . . . , θN ) =
1

2

N∑
L=1

γL (θL − θ0)2 +W (θ0).

The corresponding Euler-Lagrange equilibrium equations are expressions of 2N + 1 variables, that

in this case have the form:

N∑
L=1

γL (θk+L − 2 θk + θk−L)−W ′(θk) = 0.

These equations represent a difference equation of order 2N .

Suppose that W ′(0) = 0. Then the system has a fixed point solution at 0 and the corresponding

characteristic polynomial is of the form F(λ) = λNL(λ), where

L(λ) =

N∑
L=1

γL
(
λL − 2 + λ−L

)
−W ′′(0).

In addition, the one-dimensional parameterization equations of the point can be written as

N∑
L=1

γL
(
P (λN+Lz)− 2P (λNz) + P (λN−Lz)

)
−W ′(P (λNz)) = 0,

where λ is a non-resonant stable root of the characteristic function L.

Remark 6.1. We can simplify the characteristic polynomial above. Notice that, if we let ω = (λ+λ−1)/2,

then
λL + λ−L

2
= TL(ω),

where TL is the L−th Tchebychev polynomial. Let r(ω) be the polynomial of degree N given by

r(ω) =

N∑
L=1

γL(TL(ω)− 1)− 1

2
W ′′(0). (33)

Then, characteristic polynomial F(λ), can be written as F(λ) = 2λN r
(
(λ+ λ−1)/2

)
. In addition,

F(λ) has no zeroes on the unit circle if and only if r(ω) has no roots on the segment [−1, 1] ⊂ C. For

each root ω of r, we get a pair of eigenvalues. If ω is real and |ω| > 1, then these eigenvalues are a pair

of real numbers

λs,u = ω ±
√
ω2 − 1

that satisfy 0 < |λs| < 1 < |λu|.
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6.3.2 Singular limit and slow manifolds

In many situations the long-range interactions of the particles in the model are small. We could ask

the question of what happens in the limit. It turns out that the system becomes singular and the

usual dynamical systems approach fails to be useful. However, certain stable manifolds persist, as in

Theorem 5.3. We illustrate this difficulty with an example.

Example 6.1. Consider a Frenkel-Kontorova equation with γ1 = 1 and γ2 = ε. In this case, the

auxiliary polynomial in (33) is

r(ω) = ε(2ω2 − 2) + ω − β,

where β = 1 + 1
2W

′′(0).

Solving for ω(ε) , we get that

ω±(ε) =
2(β + 2ε)

1±
√

1 + 8ε(β + 2ε)
.

If ε → 0 then we have a singular limit. We notice that, as ε → 0, the two roots of the polynomial

have two different limits ω+(ε) → β and ω−(ε) → ∞. In terms of the stability of the fixed point, the

limit ω−(ε)→∞ corresponds to a pair of eigenvalues λs, λu that are very hyperbolic in the sense that

λsλu = 1 and λs → 0 and λu →∞ as ε→ 0.

Fortunately, the other pair of eigenvalues can be continued through the singularity ε = 0. This family

is smooth and will be denoted by λs(ε), λu(ε). They satisfy 0 < λs(ε) < 1 < λu(ε), λs(ε)λu(ε) = 1 and

λs(0) + λu(0) = 2β.

Remark 6.2. In general, if we let β = 1 + W ′′(0)/(2γ1), then there is a family of roots ω of r(ω) such

that ω → β as (γ2, . . . , γN ) → 0. It follows that, if |β| > 1 and the coefficients γ2, . . . , γN are small

enough, then the fixed point θ∗ = 0 is hyperbolic. This occurs, for instance, when 0 is a minimum of

the potential W , γ1 > 0, and the long range interactions are weak.

We are interested in the persistence of slow manifolds in the Frenkel-Kontorova model with long-

range interactions. We can consider that the interactions are small. Suppose that we have N long-range

interactions represented by small coefficients γ2(ε), . . . , γN (ε) that depend analytically on the parameter

ε. Assume that γ2(0) = · · · = γN (0) = 0, γ′N (0) 6= 0 and, without loss of generality, that γ1(ε) ≡ 1.

For each ε, the characteristic polynomial Fε of the fixed point θ∗ = 0 is of degree at most Nd. From

the implicit function theorem, we can argue that there exists a number ε0¿0 and a smooth function

ω(ε) such that, if |ε| ≤ ε0 then rε(ω(ε)) ≡ 0, where ω(0) = β and

rε(ω) =
N∑
L=1

γL(ε)(TL(ω)− 1)− 1

2
W ′′(0).

All the other roots of rε(ω) diverge as ε → ∞. For each non-singular root ω(ε) of rε, we get the

following stable eigenvalue

λs(ε) = ω(ε)−
√
ω(ε)2 − 1.
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The family λs(ε) can be continued through the singularity ε = 0 and, for all |ε| ≤ ε0, it corresponds to

a slow manifold, i.e. the invariant manifold with the largest stable eigenvalue. In fact, λs(ε) is analytic

near ε = 0.

For each |ε| ≤ ε0, there exists a non-negative integer e(ε) such that Fε(λ) = λe(ε)gε(λ). By con-

struction, e(ε) = 0 if ε 6= 0 and e(ε) = N − 2 if ε = 0. Using the notation of Theorem 5.3, we have that

the nonlinearity of the parameterization operator at θ∗ is precisely

[N (ε, P )](z) = W ′′(0)P
(
λs(ε)Nz

)
−W ′

(
P (λs(ε)Nz)

)
.

Let µ be a number such that

λs(0)N < µ < λs(0)N−2.

Restricting ε0 further, it is possible to assume that µ also satisfies λs(ε)N < µ < λs(ε)N−2, for all

|ε| ≤ ε0. Using Lemma 5.1, we conclude that there exists a constant C such that the matrix norm

satisfies

‖λs(0)(N−2)kT (λs(0)k)−1‖ ≤ C,

for all k ≥ 2. Furthermore, we have that

‖µkT (λs(0))−1‖ ≤ Cµkλs(0)−(N−2)k < C,

for all k ≥ 2. Now, the condition on the nonlinearity is that R (ε, P ) = N
(
ε,∆−1

µ P
)
∈ X, for all P ∈ X

in a neighborhood of the origin. However, the nonlinearity satisfies

[R (ε, P )] (z) =
[
N
(
ε,∆−1

µ P
)]

(z) = W ′′(0)P
(
µ−1λs(ε)Nz

)
−W ′

(
P (µ−1λs(ε)Nz)

)
.

Since |µ−1λs(ε)N | < 1, we conclude that there exists an open neighborhood U0 of 0 in which the

nonlinearity can be defined as an operator. From these considerations we conclude that the Theorem

5.3 applies. Therefore, there exists a family of analytic solutions Pε of the parameterization problem.

This is illustrated in the numerical example that follows.

6.3.3 Some numerics

If we consider the K−harmonic potential W (θ) = −δ ∑K
j=1

Cj
j cos(jθ), then the equilibrium equations

are
N∑
L=1

γL(θk+L − 2θk + θk−L) + δ
K∑
j=1

Cj sin(jθk) = 0. (34)

The parameterization equations of a 1−dimensional stable manifold can be written as

[Φ(P )] (z) =
N∑
L=1

γL(P (λLz)− 2P (z) + P (λ−Lz)) + δ
K∑
j=1

Cj sin(jP (z)) = 0, (35)

where λ is a non-resonant stable eigenvalue. By symmetry, if P parameterizes a stable manifold it also

parameterizes an unstable one. The characteristic polynomial is F(λ) = λNL(λ), where

L(λ) =
N∑
L=1

γL(λL + λ−L − 2) + δ
K∑
j=1

j Cj .
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We will find a stable parameterization P corresponding to the fixed point solution 0. Suppose that P

is of the form P (z) =
∑∞

k=0 z
kPk. We set, therefore, P0 = 0. Also, we chose a solution λ of L(λ) = 0,

which amounts to choosing the stable manifold we want to study, and set P1 so that the numerical error

is minimized. When n ≥ 2, matching coefficients of zn in (35), we obtain

L(λn+1)Pn+1 + δ

 K∑
j=1

Cj sin
(
jP≤n

)
n+1

= 0. (36)

For a generic set of values of γ1, . . . , γN and C1, . . . , CK , we have that L(λn+1) 6= 0, for all n ∈ N.

Therefore, we can solve the equation (36) and get a non-resonant eigenvalue.

We keep the polynomials P , Sj , Cj as in Section 6.2 and assume that we know P≤ (n−1) and the

Sj , Cj corresponding to P≤ (n−1) up to order n. We use (36) to compute Pn and then (31) to compute

the Sj , Cj corresponding to n up to order n− 1. The only difference with the short range case is that,

when solving the recursion, we need to divide by a slightly different factor.
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Figure 1: Four parameterizations for the Frenkel-Kontorova model of example 6.2 with parameters

given in table 1.

Example 6.2. Consider an specific singular limit. Let the Frenkel-Kontorova model with N = 3,

K = 1, δ = 0.4, and C1 = 1. We fix the values of γ1, γ2, γ3 in four examples.

Using the algorithm proposed of this section, we find the first 100 coefficients of the Taylor series

expansion of the parameterizations corresponding to the following values. In each case, the computed

eigenvalue λ corresponds to the slow manifold.

The solution of the parameterization problem (35) is, in fact, a family of functions that depend on

the size of the derivative. We find uniqueness only when the derivative P ′(0) is fixed. This value is

26



−4× 10−14

−3× 10−14

−2× 10−14

−1× 10−14

0

10−14

2× 10−14

3× 10−14

4× 10−14

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

[Φ
(P

)]
(z
)

z

Φa(Pa)
Φb(Pb)
Φc(Pc)
Φd(Pd)

Figure 2: Error function Φ(P ) for the approximation to the parameterization solution of the Frenkel-

Kontorova model of example 6.2 with the parameters given in table 1.
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Figure 3: These graphs illustrate the absolute value |Φ(P )| of the error function for the Frenkel-

Kontorova model of example 6.2 with parameters given in table 1. Logarithmic scale is used in the

vertical axis.
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Parameterization γ1 γ2 γ3 δ P ′(0) λ

Pa 1 0.1 0.00 0.4 10.0 0.592583231399561

Pb 1 0.14 0.00 0.4 10.0 0.609158827181520

Pc 1 0.1 0.01 0.4 10.0 0.603202338024902

Pd 1 0.1 0.03 0.4 10.0 0.621569001269222

Table 1: Parameters for the Frenkel-Kontorova examples.

determined so that the coefficients are of order 1. As input we use the parameters given in table 1 and,

as output, we get the approximation P≤100.

In the example, parameterizations of the slow manifold are computed. The dimension of the problem

changes but the method allows the continuation of the solution through the singularity. In other words,

if we regard the difference equation as a dynamical system, then cases a and b would be maps in R4

and cases c and d would be maps in R6. This collapse in the dimension is problematic if one uses a

dynamical system point of view, but is manageable when the Lagrangian point of view is used.

We notice that the four parameterization functions Pa, Pb, Pc, and Pd are similar for small values

of z. However, the difference equation is singular for the parameters of the first and second examples.

The numerical results are illustrated in Figure 1. In Figures 2 and 3, we can see an approximation to

the value of Φ(P ) near z = 0. In each case, we provide a graph of Φ(P≤100). These graphs quantify

the error in the approximation.

6.4 The Heisenberg XY model

Consider the difference equation mentioned in the introduction and given by (4). The characteristic

polynomial of the fixed point θ∗ = 0 is F(λ) = λ2 − (2 + ε)λ+ 1. The corresponding parameterization

equations can be written as

sin(P (λz)− P (z)) + sin(P (λ−1z)− P (z))− ε sinP (z) = 0, (37)

where λ is a stable root of F .

Equating terms of order n in (37) we obtain that, for n = 0, the choice of P0 = 0 corresponds to

choosing the fixed point solution we are studying. The term of order n = 1 amounts to choosing the

manifold and setting the numerical scale at which we are working.

The equations obtained matching order n ≥ 2 are

F(λn+1)Pn+1 =
[
sin
(
P≤n(z)− P≤n(λz)

)]
n+1

(38)

+
[
sin
(
P≤n(z)− P≤n(λ−1z)

)]
n+1

+ ε
[
sin
(
P≤n(z)

)]
n+1

.

The only difference with the Chirikov model or standard map is that we also have to compute S̄(z) =

sin(P (z) − P (λz)) and C̄(z) = cos(P (z) − P (λz)). Of course, S̄(λ−1z) = sin(P (λ−1z) − P (z)) and

C̄(λ−1z) = cos(P (λ−1z) − P (z)). In the inductive step we assume that we know P≤ (n−1) and the

S,C, S̄, C̄ corresponding to P≤ (n−1) up to order n. Using (38), we can compute Pn and then use (31)

to compute S,C, S̄, C̄ corresponding to P≤n up to order n+ 1 and the induction can continue.
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6.5 Non resonant invariant manifolds in Froeschlé maps

The Froeschlé map is a popular model [Fro72, OV94] of higher dimensional twist maps. It is designed

to be a model of the behavior of a double resonance. In the Lagrangian formulation, the Lagrangian of

the model is a function S : R2 × R2 → R that is given by

S(θ0, θ1) =
1

2
(θ1 − θ1)2 +W (θ0),

where W : R2 → R is a potential functions such that W (θ + k) = W (θ), for all k ∈ Z2. The resulting

Euler-Lagrange equations are given by

θk+1 − 2θk + θk−1 +∇W (θk) = 0. (39)

If ∇W (0) = 0, then θ∗ = 0 is a fixed point solution and the characteristic function is

L(λ) = det
(
(λ+ λ−1 − 2)I +D2W (0)

)
.

The particular example used by Froeschlé is

W (x1, x2) = a cos(2πx1) + b cos(2πx2) + c cos(2π(x1 − x2)).

The matrix I− 1
2D

2W (0) is a 2×2 symmetric matrix. Typically, it has two real eigenvalues ω1 and ω2.

It turns out that there are four roots of L(λ), that constitute the spectrum of the fixed point. They

are given by the solutions of

λ+ λ−1 − 2ωi = 0.

It is easy to see that these four solutions are given by ωi±
√
ω2
i − 1, for i = 1, 2. From this, we conclude

that the solutions are of the form λ1, λ2, λ
−1
1 , λ−1

2 , where |λ1| ≤ |λ2| ≤ 1. We have to consider three

possibilities:

a) 0 < λ1 ≤ λ2 < 1. b) 0 < λ1 < 1, |λ2| = 1. c) |λ1| = |λ2| = 1.

The classical theory of invariant manifolds allows to associate an invariant one dimensional manifold

with λ1 in cases a) and b), and a two dimensional invariant manifold in case a). See also [dlL97] for

the case 0 < λ1 = λ2 < 1.

The parameterization method allows also to make sense of each manifold tangent to the space

corresponding to λ2 provided λk1 6= λ2 and λk2 6= λ1, for k ≥ 2, k ∈ N. The calculations are remarkably

similar to those of the stable manifolds for the Chirikov map studied before.

We now indicate the algorithm. Since we are considering the fixed point θ∗ = 0, we make P0 = 0.

As before, the first coefficient of the parameterization is an eigenvector associated with the eigenvalue

λ2. Again, we note that the size of P1 corresponds to different scales of the parameterization, and does

not affect the mathematical considerations. On the other hand, choosing an appropriate scale is crucial

in order to minimize round-off errors.

When W is a trigonometric polynomial, as in the original Froeschlé model, we can compute the

components of
[
∇W

(
P≤n−1

)]
n
. We conclude that n−th coefficient of the parameterization satisfies((

λn + λ−n − 2
)
I +D2W (0)

)
Pn = −

[
∇W

(
P≤n−1

)]
n
. (40)
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7 The continuously differentiable case

The approach to invariant manifolds of this paper, also applies when the map Z is finite differentiable.

Many of the techniques presented above can be adapted to the finite differentiable case. Here, we will

just present an analogue of Theorem 4.1, but we leave to the reader other issues such as singular limits

or dependence on parameters.

Theorem 7.1. Assume that Z is Cr+1. Let Λ = diag(λ1, . . . , λm), where λ = (λ1, . . . , λm) is a stable

non-resonant vector. Assume that B0 is invertible and that r is sufficiently large, depending only on

Λ. Then, we can find a Cr P solving. (10), P (0) = 0 and such that the range of P1 is the space

corresponding to the eigenvalues in Λ.

The conditions on r assumed in Theorem 7.1 will be made explicit in Lemma 7.3. It will be clear

from the proof of Theorem 7.1 that, if we assume more regularity in Z, we can obtain differentiability

with respect to parameters (keeping Λ fixed).

We still study the equation Φ(P ) = 0 by implicit function methods but now P ranges over a space of

finite differentiable functions. To apply the implicit function theorem, we just need the differentiability

of the functional Φ and to show that DΦ(0) is invertible with bounded inverse. One complication is

that we cannot show that DΦ(0) is boundedly invertible by matching powers. Nevertheless, we will

show that DΦ(0) is invertible for for functions that vanish at high order. Hence, we will use that we

can find power series solutions so that we can write P = P< + P≥ where P<, is a polynomial we will

assume known and P≥ are functions vanishing to high order.

The functional analysis properties of Φ will be taken care of in the following lemmas.

Lemma 7.2. If Z ∈ Cr+` r, ` ∈ N, then there exists an open subset U ⊂ Cr(D,Rd) such that the

operator Φ : U → Cr(D,Rd) is C`. Furthermore, if ` ≥ 1, we have

DΦ(P )ϕ =
N∑
j=0

∂jZ
(
P, P ◦ Λ, . . . , P ◦ ΛN

)
ϕ ◦ Λj . (41)

In particular,

DΦ(0)ϕ =
n∑
j=0

Bj
(
ϕ ◦ Λj

)
(42)

where, as before, Bi = ∂iZ(0, . . . , 0).

The Lemma 7.2 is a direct consequence of the results of [dlLO99] on the composition operator. Of

course, the formula (42) is easy to guess heuristically by noticing that it is the leading term in changes

in P . We emphasize that we are considering Λ fixed. The differentiability properties of the operator

with respect to Λ are much more subtle.

Let D = Rm(ρ), be the closed disk, in Rm, around the origin of radius ρ. As before, ‖ · ‖∞ is the

uniform norm defined in (45). To study Cr spaces, it is convenient to recall that higher-order derivatives

are multilinear maps. Given a Cr function g : Rm → Rd and k ≤ r, then the k−th derivative Dkg(a)
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is a k−linear map Dkg(a) : Rm × · · · × Rm → Rd, symmetric under permutation of the order of the

arguments. Recall also that there is a natural norm on the vector space of k−linear maps B given by

‖B‖ = sup{‖B(ξ1, . . . , ξk)‖∞ : ‖ξ1‖∞ = · · · = ‖ξk‖∞ = 1}.

Once we fix a system of coordinates, Dkg can be expressed in terms of the partial derivatives

1

k!
Dkg(a)(h, . . . , h) =

∑
|α|=k

1

α!
∂αg(a)hα.

The usual norm in Cr(D,Rd) spaces is ‖g‖Cr = maxi≤r supx∈D ‖Dig(x)‖.
To study our problem, we define the closed subspace of Cr(D,Rd).

Hr =
{
P ∈ Cr(D,Rd) : DiP (0) = 0 0 ≤ i ≤ r − 1

}
.

Clearly P ∈ Hr if and only if ∂αP (0) = 0, for all |α| ≤ r − 1. The space Hr is a Banach space if

endowed with the norm ‖P‖′r = sup {‖DrP (x)‖ : x ∈ D}. Because P vanishes with its derivatives at 0

and we are considering a bounded domain, this norm is equivalent to the standard Cr norm.

Assume that B0 is non-singular. Then, we can rewrite (42) as:

DΦ(0)ϕ = B0

ϕ+

N∑
j=1

B−1
0 Bj

(
ϕ ◦ Λj

) = B0 (Id + L)ϕ, (43)

where L is the operator defined by:

L(ϕ) =
N∑
i=1

B−1
0 Bj

(
ϕ ◦ Λj

)
.

Lemma 7.3. Let µ be a real number such that:

a) ‖Λ‖r ≤ µ < 1,

b)
N∑
i=1

µi
∥∥B−1

0 Bi
∥∥ < 1.

Then the linear operator DΦ(0) : Hr → Hr is invertible with bounded inverse.

We emphasize that if λ is a stable non-resonant vector of eigenvalues, the conditions of Lemma 7.3

are satisfied for sufficiently large r. This is the condition alluded to in Theorem 7.1.

Proof. Since DΦ(0) = B−1
0 (Id +L) it will suffice to prove that L is a contraction in the ‖ · ‖′r norm. We

note that if ϕ ∈ Hr, then ϕ ◦ Λj ∈ Hr and Lϕ ∈ Hr. In addition,[
Dr
(
ϕ ◦ Λj

)
(x)
]

(ξ1, . . . , ξr) =
[
(Drϕ) (Λjx)

]
(Λjξ1, . . . ,Λ

jξr).

Hence, if x ∈ D then∥∥Dr
(
ϕ ◦ Λj

)
(x)
∥∥ ≤ ∥∥(Drϕ) (Λjx)

∥∥∥∥Λj
∥∥r ≤ ∥∥(Drϕ) (Λjx)

∥∥µj ,
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and, since ΛD ⊂ D, we get that ‖ϕ ◦ Λj‖′r ≤ µj‖ϕ‖′r. From this we conclude

‖L(ϕ)‖′r ≤
N∑
j=1

∥∥B−1
0 Bi

∥∥ ‖ϕ ◦ Λj‖′r ≤
(

N∑
i=1

µi
∥∥B−1

0 Bi
∥∥) ‖ϕ‖′r.

This shows that L is a contraction.

To complete the proof of Theorem 7.1, we argue in a similar manner as in the applications of

the implicit function theorem before. Following the method in Section 4.5, and fixing P1 to be an

embedding on the space, we can find a unique polynomial P< of degree r − 1 in such a way that

P<(0) = 0, (P<)′(0) = P1 and DjΦ(P<)(0) = 0, for all 0 ≤ j ≤ r− 1. We recall that the coefficients of

P< are obtained by matching coefficients. In addition, if we choose P1 small, they will also be small.

Furthermore, we also note that if P≥ ∈ Hr, we have that

DjΦ
(
P< + P≥

)
(0) = 0; 0 ≤ j ≤ r − 1.

The above remarks can be formulated in terms of functional analysis as saying that the operator

Φ̃(P≥) = Φ(P< + P≥) maps an open subset of Hr into Hr.

If we take P1 small without changing its range (this is the same as the change of scale that we

considered before), we have that Φ̃(0) will be as small as desired, DΦ̃(0) = DΦ(P<) will approach

DΦ(0) and, in particular will be invertible. The differentiability properties of Φ̃ will remain uniformly

differentiable. Hence, we can deduce Theorem 7.1 from the implicit function theorem in Banach spaces.

More explicitly, consider the fixed point problem for P≥ given by:

−DΦ(0)−1Φ(P< + P≥) + P≥ = P≥,

as acting on Hr. When P< is chosen corresponding to a specific small P1, the left hand side will be a

contraction and map a ball in Hr near the origin into itself.

8 Final comments

We have studied invariant objects in the context of difference equations. The goal was to find the analog

of stable and unstable manifolds that are associated to fixed point solutions of hyperbolic type. We

generalized the method proposed in [CFdlL03a, CFdlL03b, CFdlL05] and used the implicit function

theorem in Banach spaces to perform this task.

The method is not only theoretical but can be implemented numerically as it was shown in example

6.2. The method is robust in the sense that it can deal with certain singular limits. In particular, slow

manifolds can be detected and approximated even in the presence of a singularity.

For future work we plan to consider the finite differentiable case. Also we can use the tools to

consider the case of conformally symplectic maps and applications to economics. In addition, we

showed that the variational theory has a smooth dependence on parameters and is robust. We plan to

explore variational formulations of Melnikov’s theory.
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A Banach spaces of analytic functions

In this appendix we study spaces of analytic functions (taking values and having range in Banach

spaces) and, in particular, the composition operator Cf (g) = f ◦g between analytic functions. We show

that the composition operator is itself analytic when defined in spaces of analytic functions.

We call attention to the paper [Mey75] which carried out a similar study and showed that the

operator Γ(f, g) = f ◦ g was C∞. The paper [Mey75] showed also that many problems in the theory

of dynamical systems –invariant manifolds, limit cycles, conjugacies– could be reduced to problems

involving the composition operator. Using the result of analyticity presented here, most of the regularity

results in [Mey75] can be improved from C∞ to analytic.

There are of course, specialized books which contain much more material than we need. For example

[Hof88, Nac69].

A.1 Analytic functions in general Banach spaces

Let E and F be Banach spaces. We define Sk(E,F ) as the linear space of bounded symmetric k−linear

functions from E to F . For each ak ∈ Sk(E,F ), the notation ak
(
x⊗k

)
denotes the k−homogeneous

function E → F given by

ak

(
x⊗k

)
= ak (x, . . . , x) .

On Sk(E,F ), we require to have a norm ‖ · ‖Sk(E,F ) such that

‖ak(x1, . . . , xk)‖F ≤ ‖ak‖Sk(E,F )‖x1‖E · · · ‖xk‖E , (44)

for all ak ∈ Sk(E,F ). In particular, this implies that∥∥∥ak (x⊗k)∥∥∥
F
≤ ‖ak‖Sk(E,F )‖x‖kE .

Remark A.1. Of course, a natural choice of norms is

‖ak‖ = sup{‖ak(x1, . . . , xk)‖δ : ‖x1‖E = · · · = ‖xk‖E = 1},

but there are others. In the specific case E = C` and F = Cd, we have a found that the norm defined

in (48) is useful and well adapted to analytic functions of complex variables.

Once the norms on the spaces Sk(E,F ) are fixed, we can define analytic functions from E to F .

Throughout the rest of the appendix, E(δ) = {‖x‖E ≤ δ} will denote the closed ball in E centered at

the origin with radius δ.

Definition A.1. Let δ > 0. The space of analytic functions from E to F with radius of convergence δ

is the set of functions Aδ(E,F ) given by

Aδ(E,F ) =

{
f : E(δ)→ F

∣∣∣∣∣f(x) =

∞∑
k=0

ak

(
x⊗k

)
, ak ∈ Sk(E,F ), ‖f‖δ <∞

}
,

where ‖f‖δ :=
∑∞

k=0 ‖ak‖Sk(E,F ) δ
k. The a norm ‖ · ‖δ makes Aδ(E,F ) into a Banach space. Given

ρ > 0, we will denote Aρδ(E,F ) the closed ball centered at the origin with radius ρ.
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It is possible to check that if g ∈ Aρδ(E,F ) and f ∈ Aρ(F,G), then f ◦ g ∈ Aδ(E,G). In fact, it is

proved in [Mey75] that the function Γ : Aρδ(E,F ) × Aρ(F,G) → Aδ(E,G) given by Γ(g, f) = f ◦ g is

C∞. In particular, this is true if we consider the Banach spaces of analytic functions that are used in

the text. Further details are given below for some specific situations that are relevant to our problem.

In subsection A.3, we will show that an operator similar to Γ is analytic.

A.2 Analytic functions of complex variables

We are interested in some concrete Banach spaces of analytic functions. We will define specific norms

for the following spaces of k−linear functions:

• Sk(C`,Cd),

• Sk(E,F ) where E = Aδ(Cm,C`) and F = Aδ(Cm,Cd).

First, consider the Euclidean spaces Cr with uniform norm

‖η‖∞ = ‖(η1, . . . , ηr)‖∞ = max{|η1|, . . . , |ηr|}, (45)

for each η = (η1, . . . , ηr) ∈ Cr. We notice that this norm satisfies

|zα| ≤ (‖z‖∞)|α| , (46)

for all multi-indices α ∈ Zr+, and z ∈ Cr.
Let Sk(C`,Cd) be the space of bounded symmetric k−linear functions from C` to Cd. Clearly, the

spaces Sk(C`,Cd) consist of polynomial functions in ` complex variables and d coordinates. It is well

known that Sk(C`,Cd) and the space Hk(C`,Cd) of homogeneous polynomials of degree k are linearly

isomorphic.

In particular, given q ∈ Sk(C`,Cd), the polynomial q
(
z⊗k
)

is an element of Hk(C`,Cd). Conversely,

for each homogeneous polynomial g ∈ Hk(C`,Cd), there exists an unique q ∈ Sk(C`,Cd) such that

q
(
z⊗k
)

= g(z). Below, in the proof of Lemma A.2, we will describe how such q can be found.

We need to provide each Sk(C`,Cd) with a norm that satisfies condition (44). Consider q ∈
Sk(C`,Cd). Clearly, the homogeneous function q

(
z⊗k
)

is of the form

q
(
z⊗k
)

=
∑
|α|=k

zαηα, (47)

where ηα are constant vectors of coefficients in Cd. Using these coefficients, we define the norm of as

‖q‖Sk(C`,Cd) :=
∑
|α|=k

‖ηα‖∞. (48)

If it is clear from the context, we will write the previous norm as simply ‖q‖.

Lemma A.2. The norm on Sk(C`,Cd) defined in (48) satisfies condition (44).

34



Proof. Fixing k > 0, we consider a multi-index α ∈ Z`+ with |α| = k. We will give an useful description

of the unique multi-linear symmetric polynomial function κα ∈ Sk(C`,C) that satisfies κα(z⊗k) = zα.

Let Πk be the permutation group of k elements. Let β1, . . . , βk ∈ Z`+ be multi-indices such that

β1 + · · ·+ βk = α and |βi| = 1. Using these vectors, we define the function κα ∈ Sk(C`,C) as

κα(z1, . . . , zk) :=
1

k!

∑
π∈Πk

zβ1π(1)z
β2
π(2) · · · z

βk
π(k), (49)

where z1, . . . , zk ∈ C`. It is clear that κα is a well-defined multi-linear function and κα
(
z⊗k
)

=

κα(z, z, . . . , z) = zα. In addition, using (46), we get that κα satisfies

|κα(z1, . . . , zk)| ≤
1

k!

∑
π∈Πk

|zβ1π(1)||z
β2
π(2)| · · · |z

βk
π(k)|

≤ 1

k!

∑
π∈Πk

‖zπ(1)‖∞‖zπ(2)‖∞ · · · ‖zπ(k)‖∞ = ‖z1‖∞ · · · ‖zk‖∞.

From this, we conclude that if q ∈ Sk(C`,Cd) and q satisfies (47) then

q (z1, . . . , zk) =
∑
|α|=k

κα(z1, . . . , zk)ηα,

and therefore

‖q (z1, . . . , zk) ‖∞ ≤
∑
|α|=k

|κα(z1, . . . , zk)|‖ηα‖∞ ≤ ‖q‖Sk(C`,Cd) ‖z1‖∞ · · · ‖zk‖∞.

The last inequality implies that the norm defined in (48) satisfies (44).

From the discussion above, we also conclude that if g ∈ Aρ(C`,Cd) then g is of the form

g(z) =

∞∑
k=0

∑
|α|=k

zαηα. (50)

Therefore, with the norms defined in (48) on the space of k−symmetric functions Sk(C`,Cd), we get

the following norm, for any g ∈ Aρ(C`,Cd):

‖g‖ρ =

∞∑
k=0

∑
|α|=k

‖ηα‖∞

 ρk. (51)

This norm has the following property. If g ∈ Aρ(C`,C) and η ∈ Cd then g · η ∈ Aρ(C`,Cd) and

‖g · η‖ρ = ‖g‖ρ‖η‖∞. (52)

We also have the following.

Lemma A.3. If g1, g2 ∈ Aρ(Cr,C), then g1 g2 ∈ Aρ(Cr,C) and

‖g1g2‖ρ ≤ ‖g1‖ρ‖g2‖ρ.
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Proof. Let g1, g2 ∈ Aρ(Cr,C). Then, they are of the form

gi(z) =

∞∑
k=0

∑
|α|=k

zαηiα,

for i = 1, 2. This implies that

g1(z)g2(z) =

∞∑
`1,`2=0

∑
|α|=`1

∑
|β|=`2

zα+βη1
αη

2
β

=
∞∑
`=0

∑
|α|+|β|=`

zα+βη1
αη

2
β =

∞∑
`=0

∑
|γ|=`

zγ

 ∑
α+β=γ

η1
αη

2
β

 ,

for all z ∈ Cr(ρ). Notice that the coefficients ηiα are complex numbers and therefore they satisfy∣∣∣η1
α η

2
β

∣∣∣ =
∣∣η1
α

∣∣ ∣∣∣η2
β

∣∣∣. Using (51), we get that

‖g1 g2‖ρ =

∞∑
`=0

∑
|γ|=`

∣∣∣∣∣∣
∑

α+β=γ

η1
αη

2
β

∣∣∣∣∣∣ ρ` ≤
∞∑
`=0

∑
|γ|=`

∑
α+β=γ

∣∣η1
α

∣∣ ∣∣η2
β

∣∣ ρ`
=

 ∞∑
`1=0

∑
|α|=`1

∣∣η1
α

∣∣ ρ`1
 ∞∑

`2=0

∑
|β|=`1

∣∣η2
β

∣∣ ρ`2
 = ‖g1‖ρ‖g2‖ρ.

This also shows that the series involved in ‖g1 g2‖ρ converges.

The previous result also shows that Aρ(Cr,C) is a Banach algebra. Furthermore, if g ∈ Aρ(Cr,Cs)
and α ∈ Zs+ is a multi-index, then gα ∈ Aρ(Cr,C) and

‖gα‖ρ ≤ ‖g‖|α|ρ . (53)

A.3 The composition operator

Let E = Aδ(Cm,C`) and F = Aδ(Cm,Cd) be two Banach spaces of analytic functions. We will

define norms on the corresponding spaces of k−symmetric linear and bounded functions. For each

bk ∈ Sk (E,F ) we define the norm

‖bk‖Sk(E,F ) := sup{‖bk(g1, . . . , gk)‖δ : ‖g1‖δ = · · · = ‖gk‖δ = 1}. (54)

Notice that this norm satisfies condition (44). With these norms, we can show that each analytic

function in Aρ(C`,Cd) can be extended to an analytic operator in Aρ(E,F ), acting on spaces of analytic

functions.

Lemma A.4. Let f ∈ Aρ(C`,Cd) and δ > 0. Let E = Aδ(Cm,C`) and F = Aδ(Cm,Cd) be two Banach

spaces of analytic functions. If Cf : E(ρ) → F is the operator given by Cf (g) = f ◦ g, then Cf is well

defined and analytic.3 In addition, with the norms on the spaces Sk(E,F ) defined in (54), we have that

‖Cf‖Aρ(E,F ) ≤ ‖f‖ρ.
3This means that Cf ∈ Aρ(E,F ).
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Proof. We know that f is of the form

f(z) =
∞∑
k=0

ak

(
z⊗k
)
,

with ak ∈ Sk(C`,Cd), and

‖f‖ρ =
∞∑
k=0

‖ak‖Sk(C`,Cd) ρ
k <∞.

Each multi-linear function ak ∈ Sk(C`,Cd) can be extended to a function ãk ∈ Sk (E,F ) by

[ãk(g1, . . . , gk)] (z) := ak(g1(z), . . . , gk(z)),

for each z ∈ Cm such that ‖z‖∞ ≤ δ, and all g1, . . . , gk ∈ E.

As in the proof of Lemma A.2, we can assume that each ak is of the form

ak (z1, . . . , zk) =
∑
|α|=k

κα(z1, . . . , zk)ηα.

In particular, each polynomial κα can be extended to a function κ̃α ∈ Sk (E,F ). This implies that

ãk (g1, . . . , gk) =
∑
|α|=k

κ̃α(g1, . . . , gk)ηα.

In addition, using (49) and inequality (53), we get that

‖κ̃α(g1, . . . , gk)‖δ ≤ ‖g1‖δ · · · ‖gk‖δ.

Using (52),

‖ãk (g1, . . . , gk) ‖δ ≤

∑
|α|=k

‖ηα‖∞

 ‖g1‖δ · · · ‖gk‖δ.

Therefore, for all k ≥ 0, the norm (54) on Sk(E,F ) is such that

‖ãk‖Sk(E,F ) ≤ ‖ak‖Sk(C`,Cd).

Finally, we notice that the operator Cf can be written as

Cf (g) =

∞∑
k=0

∑
|α|=k

ãk

(
g⊗k

)
,

and conclude that

‖Cf‖Aρ(E,F ) =
∞∑
k=0

‖ãk‖Sk(E,F ) ρ
k ≤

∞∑
k=0

‖ak‖Sk(C`,Cd) ρ
k = ‖f‖ρ <∞.
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[JZ05] Àngel Jorba and Maorong Zou. A software package for the numerical integration of ODEs

by means of high-order Taylor methods. Experiment. Math., 14(1):99–117, 2005.

[KM06] Peter Kunkel and Volker Mehrmann. Differential-algebraic equations. EMS Textbooks in

Mathematics. European Mathematical Society (EMS), Zürich, 2006. Analysis and numer-
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[MJL10] J. D. Mireles-James and H. E. Lomeĺı. Computation of heteroclinic arcs with application
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