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Abstract

In this paper, we study optimal control problems associated with a scalar hyperbolic

conservation law modeling the development of ovarian follicles. Changes in the age and

maturity of follicular cells are described by a 2D conservation law, where the control

terms act on the velocities. The control problem consists in optimizing the follicular

cell resources so that the follicular maturity reaches a maximal value in fixed time. For-

mulating the optimal control problem within a hybrid framework, we prove necessary

optimality conditions in the form of Hybrid Maximum Principle. Then we derive the

optimal strategy and show that there exists at least one optimal bang-bang control with

one single switching time.
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1 Introduction

This work is motivated by natural control problems arising in reproductive physiology.

The development of ovarian follicles is a crucial process for reproduction in mammals, as

its biological meaning is to free fertilizable oocyte(s) at the time of ovulation. During each

ovarian cycle, numerous follicles are in competition for their survival. Few follicles reach an

ovulatory size, since most of them undergo a degeneration process, known as atresia (see

for instance [29]). The follicular cell population consists of proliferating, differentiated and

apoptotic cells, and the fate of a follicle is determined by the changes occurring in its cell

population in response to an hormonal control originating from the pituitary gland.
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†Institut universitaire de France and Université Pierre et Marie Curie-Paris 6, UMR 7598 Laboratoire

Jacques-Louis Lions, 75005 Paris, France. E-mail: coron@ann.jussieu.fr. JMC was partially supported by

the ERC advanced grant 266907 (CPDENL) of the 7th Research Framework Programme (FP7).
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A mathematical model, using both multiscale modeling and control theory concepts, has

been designed to describe the follicle selection process on a cellular basis (see [14]). The

cell population dynamics is ruled by a conservation law, which describes the changes in the

distribution of cell age and maturity.

Cells are characterized by their position within or outside the cell cycle and by their

sensitivity to the follicle stimulating hormone (FSH). This leads one to distinguish 3 cellular

phases. Phase 1 and 2 correspond to the proliferation phases and Phase 3 corresponds to the

differentiation phase, after the cells have exited the cell cycle.

The cell population in a follicle f is represented by cell density functions ρfj,k(t, x, y)

defined on each cellular phase Qfj,k, where j = 1, 2, 3 denotes Phase 1, Phase 2 and Phase 3,

k = 1, 2, · · · denotes the number of the successive cell cycles (see figure 1). The cell density

functions satisfy the following conservation laws:

∂ρfj,k
∂t

+
∂(gf (uf )ρfj,k)

∂x
+
∂(hf (y, uf )ρfj,k)

∂y
= −λ(y, U)ρfj,k in Qfj,k, (1)

where Qfj,k = Ωf
j,k × [0, T ], with

Ωf
1,k = [(k − 1)a2, (k − 1)a2 + a1]× [0, ys],

Ωf
2,k = [(k − 1)a2 + a1, ka2]× [0, ys],

Ωf
3,k = [(k − 1)a2, ka2]× [ys, ym].

-
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Figure 1: Cellular phases on the age-maturity plane for each follicle f . The domain consists

of the sequence of k = 1, 2, · · · cell cycles. Variable x denotes the age of the cell and variable

y denotes its maturity. Number ys is the threshold value at which cell cycle exit occurs and

ym is the maximal maturity. The top of the domain corresponds to the differentiation phase

and the bottom to the proliferation phase.

Let us define

Mf (t) :=

3∑
j=1

N∑
k=1

∫ +∞

0

∫ +∞

0
y ρfj,k(t, x, y) dx dy (2)
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as the maturity on the follicle scale, and

M(t) :=
∑
f

Mf (t) (3)

as the maturity on the ovarian scale.

The velocities of aging gf and maturation hf as well as the loss term λ depends on

the mean maturity of the follicle f through a local control uf (t,Mf ,M) which represents

intrafollicular bioavailable FSH level and the mean maturity of all the follicles through a

global control U(t,M) which can be interpreted as the FSH plasma level. One can refer to

[13, 14, 33] for more details on the model.

The aging velocity controls the duration of the cell division cycle. Once the cell age

has reached a critical age, the mitosis event is triggered and a mother cell gives birth to two

daughter cells. The two daughter cells enter a new cell cycle, which results in a local doubling

of the flux. Hence, there are local singularities in the subpart of the domain where y 6 ys,

that correspond to the flux doubling due to the successive mitosis events. The maturation

velocity controls the time needed to reach a threshold maturity ys, when the cell exits the

division cycle definitively. After the exit time, the cell is no more able to contribute to the

increase in the follicular cell mass.

Ovulation is triggered when the ovarian maturity reaches a threshold value Ms. The

stopping time Ts is defined as

Ts := min {T |M(T ) = Ms} , (4)

and corresponds on the biological ground to the triggering of a massive secretion of the

hypothalamic gonadotropin releasing hormone (GnRH).

As a whole, system (1)-(3) combined with stopping condition (4) defines a multiscale

reachability problem. It can be associated to an optimal control problem that consists in

minimizing Ts for a given target maturity Ms.

Some related control problems have already been investigated on a mathematical ground.

In [13], the authors studied the characteristics associated with a follicle as an open-loop

control problem. They described the sets of microscopic initial conditions compatible with

either ovulation or atresia in the framework of backwards reachable set theory. Since these

sets were largely overlapping, their results illustrate the prominent impact of cell dynamics

control in the model. In [30], the author focused on the issue of the selection process in a

game theory approach, where one follicle plays against all the other ones. Whether the follicle

becomes atretic (doomed) or ovulatory (saved) depends on the follicular cell mass reached at

the time when all cells stop proliferating.

The aim of this paper is to investigate whether there exists an optimal way for a follicle

to reach ovulation. On the one hand, the follicle can benefit from a strong and quick en-

largement of its cell population. On the other hand, this enlargement occurs at the expense
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of the maturation of individual cells. This compromise was instanced here as a problem of

composition of velocities. A concept central to the understanding of these entangled processes

is that of the management of follicular cell resources. There is indeed a finely tuned balance

between the production of new cells through proliferation, that increases the whole cell mass,

and the maturation of cells, that increases their contribution to hormone secretion.

The controllability of nonlinear hyperbolic equations (or systems) have been widely stud-

ied for a long time; for the 1D case, see, for instance [7, 9, 11, 17, 21, 26, 27, 28, 38] for

smooth solutions and [1, 3, 16, 23] for bounded variation entropic solutions. In particular, [8]

provides a comprehensive survey of controllability of partial differential equations including

nonlinear hyperbolic systems. As far as optimal control problems for hyperbolic systems

are concerned, one can refer to [18, 19, 20, 34]. However, most of these monographs study

the case where the controls are either applied inside the domain or on the boundary. Our

control problem is quite different from the problems already studied in the literature, since

the control terms appear in the flux. To solve the problem, we make use both of analytical

methods based on Hybrid Maximum Principle (HMP) and numerical computations.

The paper is organized as follows. In section 2, we set the optimal control problem,

together with our assumptions, and we enunciate the main result. In section 3, we give

necessary optimality conditions from HMP in the case where Dirac masses are used as a rough

approximation of the density. An alternative sketch of the proof based on an approximation

method is given in appendix. Using the optimality conditions, we show that for finite Dirac

masses, every measurable optimal control is a bang-bang control with one single switching

time. In addition to the theoretical results, we give some numerical illustrations. In section

4, we go back to the original PDE formulation of the model, and we show that there exists

at least one optimal bang-bang control with one single switching time.

2 Problem statement and introductory results

2.1 Simplifications with respect to the original model

To make the initial problem tractable, we have made several simplifications on the model

dynamics.

S1. We consider only one developing follicle, i.e. f = 1;

S2. There is no loss term anymore, i.e. λ = 0;

S3. The age velocity is uncontrolled, i.e. gf ≡ 1;

S4. The cell division is represented by a new gain term, i.e. c(y) defined by (7);

S5. The target maturity Ms can always be reached in finite time.

(S1) means that, in this problem, we are specially interested in the control of the follicular

cell resources for each follicle, in the sense that we ignore the influence of the other growing
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follicles. The goal is to find the optimal balance between the production of new cells and the

maturation of cells.

In (S2), we neglect the cell death, which is quite natural when considering only ovulatory

trajectories, while, in (S3), we consider that the cell age evolves as time. Moreover, the cell

division process is distributed over ages with (S4), so that there is a new gain term in the

model instead of the former mitosis transfer condition.

Even if it is simplified, the problem studied here still captures the essential question of

the compromise between proliferation and differentiation that characterizes terminal follicular

development. A relatively high aging velocity tends to favor cell mass production, while a

relatively high maturation velocity tends to favor an increase in the average cell maturity.

As shown in section 2.4, assumptions (S2) and (S5) allow us to replace a minimal time

criterion by a criterion that consists in maximizing the final maturity. Hence, from the initial,

minimal time criterion, we have shifted, for sake of technical simplicity, to an equivalent

problem where the final time is fixed and the optimality criterion is the follicular maturity

at final time. On the biological ground, this means that for any chosen final time t1, the

resulting maturity at final time Mf (t1) can be chosen in turn as a maturity target which

would be reached in minimal time at time t1. It can be noticed that in the initial problem

(4), there might be no optimal solution without assumption (S5), if the target maturity is

higher than the maximal asymptotic maturity.

2.2 Optimal control problem

Under these assumptions, we arrived to consider the following conservation law on a fixed

time horizon:
ρt + ρx + ((a(y) + b(y)u)ρ)y = c(y)ρ, t ∈ (t0, t1), x > 0, y > 0,

ρ(t, 0, y) = ρ(t, x, 0) = 0, t ∈ (t0, t1), x > 0, y > 0,

ρ(0, x, y) = ρ0(x, y), x > 0, y > 0,

(5)

where

a(y) := −y2, b(y) := c1y + c2, (6)

and

c(y) :=

 cs, if y ∈ [0, ys),

0, if y ∈ [ys,∞),
(7)

with ys, cs, c1 and c2 being given strictly positive constants. We assume that

y2
s

c1ys + c2
< 1. (8)

Let us denote by w a positive constant such that

w ∈ (
y2
s

c1ys + c2
, 1). (9)
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From (6) and (9), we have

a(y) + b(y)u > 0, ∀y ∈ [0, ys], ∀u ∈ [w, 1]. (10)

Throughout this paper the control u is assumed to satisfy the constraint

u ∈ [w, 1]. (11)

The left constraint w in (11) ensures that the maturation velocity is always positive in the

proliferation phase. The right constraint in (11) is natural since FSH plasma levels are

bounded. The maximal bound can be scaled to 1 for sake of restricting the number of

parameters in the model.

By (11), there is a maximal asymptotic maturity ȳ on the cell scale, i.e. the positive root

y of a(y) + b(y)u = 0 with control u = 1. From (6), we have

ȳ =
c1 +

√
c2

1 + 4c2

2
. (12)

Let u ∈ L∞((t0, t1); [w, 1]). Let us define the map

Ψ : [t0, t1]× [0, ys]× L∞((t0, t1); [w, 1]) → [0, ȳ]

(t, y0, u) 7→ Ψ(t, y0, u)

by requiring 
∂Ψ

∂t
(t, y0, u) = a(Ψ(t, y0, u)) + b(Ψ(t, y0, u))u(t),

Ψ(t0, y0, u) = y0.
(13)

Let us now define the exit time t̂0 as

Ψ(t̂0, 0, w) = ys. (14)

Let us point out that, by (10), there exists one and only one t̂0 satisfying (14). Note that

it is not guaranteed that the exit time t̂0 occurs before the final time t1, so that we may

have t̂0 > t1. When t > t̂0, all the cells are in Phase 3, i.e. their maturity is larger than the

threshold ys. After time t̂0 the mass will not increase any more due to (7). The maximal cell

mass that can be reached at t̂0 is obtained when applying u = w from the initial time.

For any admissible control u ∈ L∞((t0, t1); [w, 1]), we define the cost function

J(u) := −
∫ +∞

0

∫ +∞

0
y dρ(t1, x, y), (15)

and we want to study the following optimal control problem:

minimize J(u) for u ∈ L∞((t0, t1); [w, 1]). (16)

A similar minimal time problem was investigated in another ODE framework [6], where

the proliferating and differentiated cells were respectively pooled in a proliferating and a

6



differentiated compartment. The author proved by Pontryagin Maximum Principle (PMP)

that the optimal strategy is a bang-bang control, which consists in applying permanently the

minimal apoptosis rate and in switching once the cell cycle exit rate from its minimal bound

to its maximal one. In contrast, due to the fact that c is discontinuous, we cannot apply

PMP directly here. The idea is to first consider optimal control problems for Dirac masses

(see section 3), and then to pass to the limit to get optimal control results for the PDE case

(see section 4).

For “discontinuous” optimal control problems of finite dimension, one cannot derive nec-

essary optimality conditions by applying directly the standard apparatus of the theory of

extremal problems [4, 24, 32]. The first problem where the cost function was an integral

functional with discontinuous integrand was dealt in [2]. Later, in [35], the author stud-

ied the case of a more general functional that includes both the discontinuous characteristic

function and continuous terms. There, the author used approximation methods to prove

necessary optimality conditions in the form of PMP. One of the difficulties of our problem is

that both the integrand of the cost function and the dynamics are discontinuous.

However, our problem can be classified as a hybrid optimal control problem, since the

problem has a discontinuous dynamics ruled by a partition of the state space. One of the

most important results in the study of such problems is the HMP proved in [15, 31, 36, 37].

There, the authors followed the standard line of the full procedure for the direct proof of

PMP, based on the introduction of a special class of control variations, and the computation

of the increments of the cost and all constraints. In [12], the authors formulated the hybrid

problem as a classical optimal control problem. They then proved the HMP using the classical

PMP. Later, in [22], the authors regularized the hybrid problems to standard smooth optimal

control problems, to which they can apply the usual PMP. They also derived jump conditions

appropriate to our problem.

The main result of this paper is the following theorem.

Theorem 2.1. Let us assume that

t1 > t̂0, (17)

2ys − c1 > 0 and cs >
a(ys) + b(ys)

ys
. (18)

Then, among all admissible controls u ∈ L∞((t0, t1); [w, 1]), there exists an optimal control

u∗ for the minimization problem (16) such that

∃ t∗ ∈ [t0, t1] such that u∗ = w in (t0, t∗) and u∗ = 1 in (t∗, t1). (19)

Remark 2.1. From the mathematical viewpoint, assumptions (17) and (18) arise naturally

from the computations (see section 3.2.1). Condition (17) means that we consider a target

time large enough so that all the cells have gone to the differentiation phase. Condition (18)

gives specific relations between the proliferation rate and the parameters of the maturation
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velocity. Together, these relations are related to the transit time within the proliferation

phase.

Remark 2.2. In our case, the dynamics of ρ is essentially one-dimensional, since there is

a transport with constant velocity along variable x and we have just to deal with variable y.

Hence our results can be generalized to n-spatial dimensional problem like

ρt +m · ∇xρ+ (h(y, u)ρ)y = c(y)ρ, (20)

where m is a constant vector. Generalization to n-spatial dimensional dynamics with both

velocities controlled should also be feasible.

2.3 Solution to Cauchy problem (5)

In this section, we give the definition of a (weak) solution to Cauchy problem (5).

Let ρ0 be a Borel measure on R× R such that

ρ0 > 0, (21)

and the support of ρ0 is included in [0, 1]× [0, ys]. (22)

Let K := [0, t1 − t0 + 1] × [0, ȳ]. Let M(K) be the set of Borel measures on K, i.e. the set

of continuous linear maps from C0(K) into R. The solution to Cauchy problem (5) is the

function ρ : [t0, t1]→M(K) such that, for every ϕ ∈ C0(K),∫∫
K
ϕ(α, β)dρ(t, α, β) =

∫∫
K
ϕ(x0 + t− t0,Ψ(t, y0, u)) e

∫ t
t0
c(Ψ(s,y0,u))ds

dρ0(x0, y0). (23)

We take expression (23) as a definition. This expression is also justified by the fact that if

ρ0 is a L∞ function, one recovers the usual notion of weak solutions to Cauchy problem (5)

studied in [8, 10, 33, 34], as well as by the characteristics method used to solve hyperbolic

equations (see figure 2).

Remark 2.3. From (23), if ρ0 is a positive Borel measure, then solution ρ is also a positive

Borel measure. If ρ0 ∈ C0 or if ρ0 is Lipschitz continuous, then ρ ∈ C0 or ρ is Lipschitz

continuous, but if ρ0 ∈ C1, it may happen that ρ is not in C1 due to the fact that c(y) is

discontinuous.

2.4 Minimal time versus maximal maturity

In this section, we show that the two optimal control problems enunciate either as: “min-

imize the time to achieve a given maturity” or “achieve a maximal maturity at a given time”

are equivalent when S2 and S5 hold. The threshold target maturity M̄s in S5 can be computed
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Figure 2: Construction of a weak solution by backward tracking of the characteristics. Vari-

ables x and y respectively denote the age and maturity, ys is the threshold maturity and

ȳ is the maximal asymptotic maturity. The initial mass concentrates in the shaded area

[0, 1] × [0, ys]. The curve ξ = (x, y) is the characteristic curve passing through (t, α, β) that

intersects the initial plane t = t0 at (t0, x0, y0).

from the maximal cell mass combined with the maximal asymptotic maturity ȳ when apply-

ing u = w from the initial time until t̂0 and u = 1 thereafter, so that S5 can be formulated

as:

Ms < M̄s := ȳ

∫ ∞
0

∫ ∞
0

dρ(t̂0, x, y). (24)

Let ρ0 be a nonzero Borel measure on R × R satisfying (21) and (22). Let us denote by

Mu(t) the maturity at time t for the control u ∈ L∞((t0, t1); [w, 1]) (and the initial data ρ0).

A. For fixed target time t1, suppose that the maximum of the maturity M is achieved

with an optimal control u ∈ L∞((t0, t1); [w, 1])

Mu(t1) = M. (25)

Then we conclude that for this fixed M , the minimal time needed to reach M is t1 with the

same control u. We prove it by contradiction. We assume that there exists another control

ũ ∈ L∞((t0, t̃1); [w, 1]) such that

M ũ(t̃1) = M, t̃1 < t1. (26)

We extend ũ to [t0, t1] by requiring ũ = 1 in (t̃1, t1]. Let us prove that

t ∈ [t̃1, t1]→M ũ(t) is strictly increasing. (27)

Let ρ̃ : [t0, t1] → M(K) be the solution to Cauchy problem (5) (see section 2.3). Note that

a(y) + b(y) > 0 for every y ∈ [0, ȳ) and that, for every t ∈ [t0, t1], the support of ρ̃(t) is

included in [0, t1− t0 + 1]× [0, ys). Together with (23) for ρ = ρ̃ and ϕ(α, β) = β, this proves

(27). From (27) it follows that

M ũ(t1) > M ũ(t̃1) = M, (28)

9



which is a contradiction with the optimality of u.

B. For any fixed target maturity M , suppose that the minimal time needed to reach M

is t1 with control u ∈ L∞((t0, t1); [w, 1]). Then we conclude that for this fixed target time

t1, the maximal maturity at time t1 is M with the same control u. We prove it again by

contradiction. We assume that there exists another control ũ ∈ L∞((t0, t1); [w, 1]) such that

M ũ(t1) > M. (29)

Then by the continuity of M ũ(t) with respect to time t, there exists a time t̃1 < t1 such that

M ũ(t̃1) = M, (30)

which is a contradiction with the minimal property of t1. This concludes the proof of the

equivalence between the two optimal control problems.

3 Results on optimal control for finite Dirac masses

In this section, we give results on the optimal control problem (16) when the initial data

ρ0 > 0 is a linear combination of a finite number of Dirac masses. For (α, β)tr ∈ R2, we

denote by δα,β the Dirac mass at (α, β)tr. We assume that, for some positive integer N , there

exist N elements ((xk0
1 , x

k0
2 ))k∈{1,...,N} of [0, 1] × [0, ys] and N strictly positive real numbers

(xk0
3 )k∈{1,...,N} such that

ρ0 :=
N∑
k=1

xk0
3 δxk01 ,xk02

. (31)

First, we formulate our problem within a hybrid framework. Let us denote by Xα and

Xβ two disjoint and open subsets of R3, where

Xα :=
{

(x1, x2, x3) ∈ R3 |x2 < ys

}
,

Xβ :=
{

(x1, x2, x3) ∈ R3 |x2 > ys

}
.

The boundary between the two domains Xα(t) and Xβ(t) can be written as{
(x1, x2, x3) ∈ R3 |F (x) = 0

}
,

where

F (x) := x2 − ys. (32)

We consider the following Cauchy problem:ẋk = f(xk, u), u ∈ L∞((t0, t1); [w, 1]), t ∈ [t0, t1],

xk(t0) = xk0,
(33)
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where

f(xk, u) :=

fα(xk, u), xk ∈ Xα,

fβ(xk, u), xk ∈ Xβ,
xk =


xk1

xk2

xk3

 , xk0 =


xk0

1

xk0
2

xk0
3

 , (34)

with

fα(xk, u) :=


1

a(xk2) + b(xk2)u

csx
k
3

 , fβ(xk, u) :=


1

a(xk2) + b(xk2)u

0

 .

It is easy to check that the maximal solution to Cauchy problem (33) is defined on [t0, t1].

One can also easily check that the solution to Cauchy problem (5), as defined in section 2.3,

is

ρ(t) =

N∑
k=1

xk3(t)δxk1(t),xk2(t). (35)

The cost function J defined in (15) now becomes

J(u) =

N∑
k=1

−xk2(t1)xk3(t1). (36)

We define

f0(xk, u) :=

f0
α(xk, u), xk ∈ Xα,

f0
β(xk, u), xk ∈ Xβ,

where

f0
α(xk, u) = −

(
a(xk2) + b(xk2)u+ csx

k
2

)
xk3,

f0
β(xk, u) = −

(
a(xk2) + b(xk2)u)xk3.

Hence, to minimize (36) is equivalent to minimize

J(u) =

N∑
k=1

∫ t1

t0

f0(xk, u) dt−
N∑
k=1

xk0
2 x

k0
3 . (37)

One of the goals of this section is to prove that there exists an optimal control for this

optimal control problem and that, if (17) and (18) hold, every optimal control is bang-

bang with only one switching time. More precisely, we prove the following Theorem 3.1 and

Theorem 3.2.

Using (10), we can easily check the continuity of the exit time with respect to the weak-∗

L∞ topology for the control. From the standard Arzelà-Ascoli theorem, we then get the

following theorem (see also [31, Theorem 1])

Theorem 3.1. The optimal control problem (16) has a solution, i.e., there exists u∗ ∈
L∞((t0, t1); [w, 1]) such that

J(u∗) = inf
u∈L∞((t0,t1);[w,1])

J(u).

11



Theorem 3.2. Let us assume that (17) and (18) hold. Then, for every optimal control u∗

for the optimal control problem (16), there exists t∗ ∈ (t0, t1) such that

u∗ = w in (t0, t∗) and u∗ = 1 in (t∗, t1). (38)

This section is organized as follows. In subsection 3.1 we prove a HMP (Theorem 3.3) for

our optimal control problem. In subsection 3.2 we show how to deduce Theorem 3.2 from

Theorem 3.3.

3.1 Hybrid Maximum Principle

Let us define the Hamiltonian

H : (R3)N × R× (R3)N → R
(x, u, ψ) = ((x1, x2, . . . , xN ), u, (ψ1, ψ2, . . . , ψN )) 7→ H(x, u, ψ)

by

H(x, u, ψ) :=

N∑
k=1

〈f(xk, u), ψk〉 −
N∑
k=1

f0(xk, u). (39)

In (39) and in the following, 〈a, b〉 denotes the usual scalar product of a ∈ R3 and b ∈ R3.

Let us also define the Hamilton-Pontryagin function H : (R3)N × (R3)N → R by

H(x, ψ) := max
u∈[w,1]

H(x, u, ψ). (40)

It follows from [12, 15, 22, 31, 36, 37] that we have the following theorem:

Theorem 3.3. Let u∗ ∈ L∞((t0, t1); [w, 1]) be an optimal control for the optimal control prob-

lem (16). Let xk∗ = (xk∗1, x
k
∗2, x

k
∗3)tr, k = 1, · · · , N , be the corresponding optimal trajectory,

i.e. xk∗ ∈
(
W 1,∞(t0, t1)

)3
are solutions to the following Cauchy problems

ẋk∗1 = 1, xk∗1(t0) = xk0
1 , (41)

ẋk∗2 = a(xk∗2) + b(xk∗2)u∗, xk∗2(t0) = xk0
2 , (42)

ẋk∗3 = c(xk∗2)xk∗3, xk∗3(t0) = xk0
3 . (43)

If ys ∈
{
xk∗2(t); t ∈ [t0, t1]

}
, let t̂k ∈ [t0, t1] be the exit time for the k-th Dirac mass, i.e.

the unique time t̂k ∈ [t0, t1] such that xk∗2(t̂k) = ys.

If ys /∈
{
xk∗2(t); t ∈ (t0, t1]

}
, let t̂k = t1 + 1. Then, there exists N vector functions

ψk = (ψk1 , ψ
k
2 , ψ

k
3 )tr ∈

(
W 1,∞(((t0, t̂k) ∪ (t̂k, t1)) ∩ (t0, t1))

)3
, such that

ψ̇k1 = 0, (44)

ψ̇k2 = −(a′(xk∗2) + b′(xk∗2)u∗)ψ
k
2 − (a′(xk∗2) + b′(xk∗2)u∗)x

k
∗3

− c(xk∗2)xk∗3 in ((t0, t̂k) ∪ (t̂k, t1)) ∩ (t0, t1), (45)

ψ̇k3 = −c(xk∗2)ψk3 − (a(xk∗2) + b(xk∗2)u∗)− c(xk∗2)xk∗2, (46)

ψk1 (t1) = ψk3 (t1) = 0, (47)
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and

ψk1 (t̂k − 0) = ψk1 (t̂k + 0), (48)

ψk3 (t̂k − 0) = ψk3 (t̂k + 0), (49)

• if t̂k < t1,

ψk2 (t̂k + 0)− ψk2 (t̂k − 0) ∈
[cs xk∗3(t̂k)(ys + ψk3 (t̂k))

a(ys) + b(ys)
,
cs x

k
∗3(t̂k)(ys + ψk3 (t̂k))

a(ys) + b(ys)w

]
, (50)

ψk2 (t1) = 0, (51)

• if t̂k = t1,

−ψk2 (t1) ∈
[
0,

cs x
k
∗3(t1)ys

a(ys) + b(ys)w

]
. (52)

Moreover, there exists a constant h such that the following condition holds

H(xk∗(t), u∗(t), ψ
k(t)) = H(xk∗(t), ψ

k(t)) = h, a.e. t ∈ (t0, t1). (53)

Proof of Theorem 3.3. For sake of simplicity, we give the proof only for one Dirac

mass (N = 1). To simplify the notations we also delete the k = 1 index. For more than one

Dirac mass, the proof is similar.

Applying the HMPs given in [12, 15, 22, 31, 36, 37], we get the existence of ψ =

(ψ1, ψ2, ψ3)tr ∈
(
W 1,∞(((t0, t̂) ∪ (t̂, t1)) ∩ (t0, t1))

)3
such that (44) to (49) and, if t̂ < t1,

(51) hold, together with the existence of h ∈ R such that (53) is satisfied. Let us finally deal

with (50) and (52). Let us treat only the case where t̂ < t1 (the case t̂ = t1 being similar).

We follow [22]. From (53), there exist v1 ∈ [w, 1] and v2 ∈ [w, 1] such that

H(t̂− 0) = max
v∈[w,1]

H(x(t̂− 0), v, ψ(t̂− 0) = H(x(t̂− 0), v1, ψ(t̂− 0))

=< f(x(t̂− 0), v1), ψ(t̂− 0) > −f0(x(t̂− 0), v1), (54)

H(t̂+ 0) = max
v∈[w,1]

H(x(t̂+ 0), v, ψ(t̂+ 0)) = H(x(t̂+ 0), v2, ψ(t̂+ 0))

=< f(x(t̂+ 0), v2), ψ(t̂+ 0) > −f0(x(t̂+ 0), v2). (55)

From (53), (54) and (55), we obtain

ψ2(t̂+ 0)− ψ2(t̂− 0) =
csx3(t̂ )(ys + ψ3(t̂ )) + b(ys)(x3(t̂ ) + ψ2(t̂− 0))(v1 − v2)

a(ys) + b(ys)v2
, (56)

and

ψ2(t̂+ 0)− ψ2(t̂− 0) =
csx3(t̂ )(ys + ψ3(t̂ )) + b(ys)(x3(t̂ ) + ψ2(t̂+ 0))(v1 − v2)

a(ys) + b(ys)v1
. (57)

The Hamiltonian (39) becomes

H(x, u, ψ) =(a(x2) + c(x2)x2)x3 + ψ1 + a(x2)ψ2 + c(x2)x3 ψ3

+ b(x2)(x3 + ψ2)u, t ∈ [t0, t1]. (58)
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Let us denote

Φ := x3 + ψ2. (59)

When t 6= t̂, from (7), (43) and (45), we obtain

dΦ

dt
= −(a′(x2) + b′(x2)u) Φ. (60)

Noting that

Φ(t1) > 0. (61)

Combining (60) and (61), we get

Φ(t) > 0, ∀t ∈ (t̂, t1]. (62)

Next, we analyze different cases:

1. When Φ(t̂− 0) > 0 and Φ(t̂+ 0) > 0, we have v1 = v2 = 1. From (56) or (57), we get

ψ2(t̂+ 0)− ψ2(t̂− 0) =
csx3(t̂)(ys + ψ3(t̂))

a(ys) + b(ys)
. (63)

2. When Φ(t̂− 0) < 0 and Φ(t̂+ 0) > 0, we have v1 = w and v2 = 1. From (56), we get

ψ2(t̂+ 0)− ψ2(t̂− 0) =
csx3(t̂)(ys + ψ3(t̂)) + b(ys)Φ(t̂− 0)(w − 1)

a(ys) + b(ys)
. (64)

Since Φ(t̂− 0) < 0, from (64), we obtain

ψ2(t̂+ 0)− ψ2(t̂− 0) >
csx3(t̂)(ys + ψ3(t̂))

a(ys) + b(ys)
. (65)

From (57), we have

ψ2(t̂+ 0)− ψ2(t̂− 0) =
csx3(t̂)(ys + ψ3(t̂)) + b(ys)Φ(t̂+ 0)(w − 1)

a(ys) + b(ys)w
. (66)

Since Φ(t̂+ 0) > 0, from (66), we obtain

ψ2(t̂+ 0)− ψ2(t̂− 0) <
csx3(t̂)(ys + ψ3(t̂))

a(ys) + b(ys)w
. (67)

3. When Φ(t̂− 0) = 0 and Φ(t̂+ 0) > 0, from (56), we obtain

ψ2(t̂+ 0)− ψ2(t̂− 0) =
csx3(t̂)(ys + ψ3(t̂))

a(ys) + b(ys)
. (68)

In the three cases, we have proved that jump condition (50) holds. This concludes the proof

of Theorem 3.3.

14



3.2 Proof of Theorem 3.2

In this section, we use the necessary optimality conditions given in Theorem 3.3 to prove

Theorem 3.2. From now on, we assume that the target time t1 satisfies t1 > t̂0 so that all

the cells will exit from Phase 1 into Phase 3 before time t1. We give a proof of Theorem 3.2

in the case where N = 1 in section 3.2.1. In section 3.2.3, we study the case where N > 1;

in this case we need additionally to analyze the dynamics between different exit times t̂k,

k = 1, 2, · · · , N , to obtain that there exists one and only one switching time and that the

optimal switching direction is from u = w to u = 1. In both cases N = 1 or N > 1, we give

some numerical illustrations, respectively in section 3.2.2 and section 3.2.4.

3.2.1 Proof of Theorem 3.2 in the case N = 1

Let u be an optimal control for the optimal control problem (16) and let x = (x1, x2, x3)tr

be the corresponding trajectory. Note that, by (6), b(x2) > 0. Then, by (40), (53), (58) and

(59), one has, for almost every t ∈ (t0, t1),

u(t) = 1 if Φ(t) > 0, (69)

u(t) = w if Φ(t) < 0. (70)

Let us recall that, under assumption (17) of Theorem 3.2, there exists one and only one

t̂ ∈ [t0, t1) such that

x2(t̂ ) = ys. (71)

Then

x2(t) > ys, ∀t ∈ (t̂, t1]. (72)

We study the case where t̂ > t0, the case t̂ = t0 being obvious. Thanks to (50), we get

Φ(t̂+ 0)− Φ(t̂− 0) > cs x3(t̂ )
ys + ψ3(t̂ )

a(ys) + b(ys)
. (73)

By (42) and (46), we get
d(x2 + ψ3)

dt
= −(x2 + ψ3) c(x2), (74)

and then, using also (7), (47), (71), (72) and (74), we obtain

ys + ψ3(t̂ ) = (x2 + ψ3)(t̂ ) = (x2 + ψ3)(t1) > ys. (75)

Combining (73) with (75), we get

Φ(t̂− 0) 6 Φ(t̂+ 0)− cs x3(t̂ )
ys

a(ys) + b(ys)
. (76)

By (6) and (60), we obtain

Φ(t̂+ 0) = Φ(t1) e−
∫ t1
t̂

(2x2(s)−c1u(s)) ds. (77)
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Using the first inequality of (18), (51), (72) and (77), we get

Φ(t̂+ 0) 6 x3(t1). (78)

Noticing that x3(t̂+ 0) = x3(t1) and using (76) and (78), we get

Φ(t̂− 0) 6 x3(t1)(1− cs
ys

a(ys) + b(ys)
). (79)

From the second inequality of (18) and (79), we get

Φ(t̂− 0) < 0. (80)

which, together with (60), gives us

Φ(t) < 0, t ∈ [t0, t̂ ). (81)

Moreover, by (51), we have

Φ(t) = (x3 + ψ2)(t1) = x3(t1) > 0,

which together with (60), gives

Φ(t) > 0, t ∈ (t̂, t1]. (82)

Taking t∗ = t̂ and combining (81) and (82), with (69) and (70), we conclude the proof of

Theorem 3.2 in the case where N = 1.

3.2.2 Numerical illustration in the case N = 1

For one Dirac mass, the optimal switching time is unique. Assumption (18) is not nec-

essary to guarantee that the optimal control is a bang-bang control with only one switching

time. It is just used to guarantee that the optimal switching time coincides with the exit

time. We give a numerical example to show that when cs is “small”, there is no switch at

all and the optimal control is constant (u = 1), while when cs is “large”, there is a switch

occuring at the exit time (see figure 3).

The default parameter values are specified in Table 1 for the numerical studies.

3.2.3 Proof of Theorem 3.2 in the case N > 1

Now, the Hamiltonian (39) becomes

H(x, u, ψ) =
N∑
k=1

(
(a(xk2) + c(xk2)xk2)xk3 + ψk1 + a(xk2)ψk2 + c(xk2)xk3ψ

k
3

+ b(xk2)(xk3 + ψk2 )u
)
, t ∈ [t0, t1]. (83)
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t0 initial time 0.0

t1 final time 17.0

c1 slope in the b(y) function 11.892

c2 origin ordinate in the b(y) function 2.288

ys threshold maturity 6.0

w minimal bound of the control 0.5

Table 1: Default parameter values
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Figure 3: Value of the cost function J with respect to the switching time (t) and cs parameter

in the case of one Dirac mass. When cs is “small”, there is no switching time (t = 0) and the

optimal control is constant (u = 1), while, when cs is “large”, the optimal control strategy

consists in switching from u = w to u = 1 at a time coinciding with the exit time. The initial

values are specified in the insert.

Reordering if necessary the xk’s, we may assume, without loss of generality, that

x10
2 < x20

2 < . . . < xk0
2 < . . . < xN0

2 . (84)

Let u be an optimal control for the optimal control problem (16) and let x = (x1, . . . , xk, . . . xN ),

with xk = (xk1, x
k
2, x

k
3)tr, be the corresponding trajectory. From (84), we have

t̂N < t̂N−1 < . . . t̂k < . . . < t̂1. (85)

Let ΦN : [t0, t1]→ R be defined by

ΦN (t) :=

N∑
k=1

b(xk2(t))(xk3(t) + ψk2 (t)). (86)
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Noticing that b(xk2) > 0, by (40), (53), (83) and (86), one has, for almost every t ∈ (t0, t1),

u = w, if ΦN (t) < 0, (87)

u = 1, if ΦN (t) > 0. (88)

We take the time-derivative of (86) when t 6= t̂k, k = 1, · · · , N . From (6), we obtain

Φ̇N (t) =

N∑
k=1

(c1(xk2)2 + 2c2x
k
2)(xk3 + ψk2 ). (89)

Similarly to the above proof for one Dirac mass, we can prove that, under assumption (18),

we have, for each k = 1, · · · , N ,

(xk3 + ψk2 )(t) < 0, when t ∈ (t0, t̂k), (90)

(xk3 + ψk2 )(t) > 0, when t ∈ (t̂k, t1). (91)

By (85), (86), (90) and (91), and note that b(xk2) > 0, we get

ΦN (t) < 0, when t ∈ (t0, t̂N ), (92)

ΦN (t) > 0, when t ∈ (t̂1, t1). (93)

The key point now is to study the dynamics of ΦN between different exit times t̂k. Let

k ∈ {1, · · · , N − 1} and let us assume that

ΦN (t) = 0, for some t ∈ (t̂k+1, t̂k). (94)

From (86) and (94), we get

xk3(t) + ψk2 (t) = −
∑
i 6=k

b(xi2(t))

b(xk2(t))
(xi3(t) + ψi2(t)). (95)

From (90) and (91), for every t ∈ (t̂k+1, t̂k),

xi3(t) + ψi2(t) < 0, when i 6 k − 1, (96)

xi3(t) + ψi2(t) > 0, when i > k + 1. (97)

From (6), (89) and (95), we get

Φ̇N (t) =
∑
i6k−1

xi3 + ψi2
b(xk2)

(
c2

1x
i
2x
k
2 + 2c2

2 + c1c2(xi2 + xk2)
)
(xi2 − xk2)

+
∑
i>k+1

xi3 + ψi2
b(xk2)

(
c2

1x
i
2x
k
2 + 2c2

2 + c1c2(xi2 + xk2)
)
(xi2 − xk2). (98)

From (84), we get

xi2(t)− xk2(t) < 0, when i 6 k − 1, (99)

xi2(t)− xk2(t) > 0, when i > k + 1. (100)
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Using (96) to (100), we get

Φ̇N (t) > 0 whenever ΦN (t) = 0, ∀t ∈ (t̂k+1, t̂k). (101)

Combining (87), (88), (92), (93) and (101) together, we get the existence of t∗ ∈ (t0, t1) such

that

u∗ = w in (t0, t∗) and u∗ = 1 in (t∗, t1).

This concludes the proof of Theorem 3.2.

3.2.4 Numerical illustration in the case N > 1

The optimal control can in some cases be not unique for more than one Dirac mass. Let

us consider the case of two Dirac masses as an example. The optimal switching time may

happen either at the first exit time or at the second exit time (see figure 4), or between the

two exit times (see figure 5).

0 5 10 15 20
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−0.5

0x 10
6

t

J

c
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=1, x10
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=0.5, x20

2
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3

=s, x20
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=1−s, s=0.01006

11.5 12 12.5 13 13.5
−1.94

−1.9395

−1.939

−1.9385

−1.938x 10
6

t

J

Figure 4: Value of the cost function J with respect to the switching time (t) in the case of

two Dirac masses and a “large” value of cs (cs = 1.0). In the left panel, the three-part curve

represents the value of the cost function obtained after switching from u = w to u = 1 at

time t. Blue dashed curve: switching time occurring before the first exit time; green solid

curve: switching time occurring in between the two exit times; red dashed curve: switching

time occurring after the second exit time. The initial values are specified in the insert. The

right panel is a zoom on the green solid curve displayed on the left panel. There are two

optimal switching times which coincide with the two exit times.

Remark 3.1. The values of the cost function J in Fig 3 and Fig 4, Fig 5 have different

orders. This is due to differences in the value of the proliferation rate cs. There is a great

contribution of the cell mass to the criterion when cs is “large” in Fig 4 and Fig 5.
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Figure 5: Value of the cost function J with respect to the switching time (t) in the case of

two Dirac masses and a “large” value of cs (cs = 0.8). In the left panel, the three-part curve

represents the value of the cost function obtained after switching from u = w to u = 1 at

time t. Blue dashed curve: switching time occurring before the first exit time; green solid

curve: switching time occurring in between the two exit times; red dashed curve: switching

time occurring after the second exit time. The initial values are specified in the insert. The

right panel is a zoom on the green solid curve displayed on the left panel. There is one single

optimal switching time, which occurs in between the two exit times.

4 Optimal control in the PDE case

In this section, we study the optimal control in the PDE case. We give the proof of

Theorem 2.1. We first give an explicit expression for the cost function J defined in (15).

Let us define a new map

e : [0, ys]× L∞((t0, t1); [w, 1]) → [t0, t1]

(y0, u) 7→ e(y0, u)

by requiring Ψ(e(y0, u), y0, u) = ys, where Ψ is defined by (13). Note that, under assumption

(17), one has, for every y0 ∈ [0, ys], the existence of t ∈ [t0, t1] such that

Ψ(t, y0, u) = ys. (102)

Again, (10) implies that there exists at most one t ∈ [t0, t1] such that (102) holds. This shows

that e is well defined. Moreover, we have the following lemma

Lemma 4.1. Let (yn0 )n∈N be a sequence of elements in [0, ys] and (un)n∈N be a sequence

of elements in L∞((t0, t1); [w, 1]). Let us assume that, for some y0 ∈ [0, ys] and for some

u ∈ L∞((t0, t1); [w, 1]),

yn0 → y0 as n→ +∞,

un
∗
⇀ u in L∞(t0, t1) as n→ +∞.
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Then

e(yn0 , u
n)→ e(y0, u) as n→ +∞.

Let now ρ0 be a Borel measure on R× R such that (21) and (22) hold. Using (23), (15)

becomes

J(u) = −
∫∫

[0,1]×[0,ys]
Ψ(t1, y0, u) ecse(y0,u) dρ0(x0, y0). (103)

In order to emphasize the dependence of J on the initial data ρ0, from now on we write

J(ρ0, u) for J(u).

It is well known that there exists a sequence ((xi,n0 , yi,n0 , λi,n0 ))16i6n, n∈N of elements in

[0, 1]× [0, ys]× (0,+∞) such that, if

ρn0 :=
n∑
i=1

λi,n0 δ
xi,n0 ,yi,n0

, (104)

then

lim
n→+∞

∫∫
[0,1]×[0,ys]

ϕ(x0, y0) dρn0 (x0, y0) =∫∫
[0,1]×[0,ys]

ϕ(x0, y0)dρ0(x0, y0), ∀ϕ ∈ C0([0, 1]× [0, ys]). (105)

From Theorem 3.1 and Theorem 3.2, there exists tn∗ ∈ [t0, t1] such that, if un∗ : [t0, t1]→ [w, 1]

is defined by

un∗ = w in [t0, t
n
∗ ) and un∗ = 1 in (tn∗ , t1], (106)

then

J(ρn0 , u
n
∗ ) 6 J(ρn0 , u), ∀u ∈ L∞((t0, t1); [w, 1]). (107)

Extracting a subsequence if necessary, we may assume without loss of generality the existence

of t∗ ∈ [t0, t1] such that

lim
n→+∞

tn∗ = t∗. (108)

Let us define u∗ : [t0, t1]→ [w, 1] by

u∗ = w in [t0, t∗) and u∗ = 1 in (t∗, t1]. (109)

Then, using (106), (108) and (109), one gets

Ψ(t1, ·, un∗ )→ Ψ(t1, ·, u∗) in C0([0, ys]) as n→ +∞. (110)

Moreover, from (106), (108) and (109), one has

un∗
∗
⇀ u∗ in L∞(t0, t1) as n→ +∞. (111)
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From Lemma 4.1 and (111), one gets

e(·, un∗ )→ e(·, u∗) in C0([0, ys]) as n→ +∞. (112)

From (103), (105), (110) and (112) and a classical theorem on the weak topology (see, e.g.,

[5, (iv) of Proposition 3.13, p. 63]), one has

J(ρn0 , u
n
∗ )→ J(ρ0, u∗) as n→ +∞. (113)

Let now u ∈ L∞((t0, t1); [w, 1]). From Lemma 4.1, (103) and (105), one gets

J(ρn0 , u)→ J(ρ0, u) as n→ +∞. (114)

Finally, letting n→ +∞ in (107) and using (113) together with (114), one has

J(ρ0, u∗) 6 J(ρ0, u),

which concludes the proof of Theorem 2.1.

Appendix

Sketch of another proof of Theorem 3.3

In this section, we sketch another proof of Theorem 3.3, using approximation arguments

inspired from [35]. The interest of this approach is that it might be more suitable to prove a

maximal principle also in the PDE case. For sake of simplicity, we show the proof only for

one Dirac mass. The idea is first to construct a smooth optimal control problem. For the

smooth optimal control problem, we can apply PMP. By passing to the limit, we then derive

necessary optimality conditions for our discontinuous problem.

Step 1. Let us denote by χ : R→ R the characteristic function of (−∞, ys), i.e.

χ(x2) =

1, ∀x2 ∈ (−∞, ys),

0, ∀x2 ∈ [ys,+∞).
(115)

Let (wi)i∈N∗ be a sequence of elements in C∞(R) such that

0 6 wi,

∫
R
wi(x) dx = 1, supportwi ⊂ [−1/i, 0], ∀i ∈ N∗, (116)

and, for some C > 0,

|w′i(x)| 6 Ci2, ∀x ∈ R, ∀i ∈ N∗, (117)

(clearly such a sequence does exist). Then, we define a sequence of functions (χi)i∈N∗ from

R into R as follows:

χi(x) :=

∫
R
χ(y)wi(x− y) dy =

∫ ys

−∞
wi(x− y) dy =

∫ +∞

x−ys
wi(z) dz, ∀i ∈ N∗, ∀x ∈ R. (118)
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Let fi : R3 × R→ R3 be defined by

fi(x, u) :=


1

a(x2) + b(x2)u

csχi(x2)x3

 , ∀x = (x1, x2, x3)tr ∈ R3, ∀u ∈ R. (119)

Let u∗ be an optimal control for the optimal control problem (16) and let x∗ be the

associated trajectory. Let (zi)i∈N∗ be a sequence of uniformly bounded elements of C1([t0, t1])

such that

zi → u∗ in L2(t0, t1) as i→ +∞. (120)

Let us then define Ji : L∞((t0, t1); [w, 1])→ R by

Ji(u) := −
∫ t1

t0

(
a(x2) + b(x2)u+ csχi(x2)x2

)
x3 dt+

1√
i

∫ t1

t0

|u(t)− zi(t)|2 dt− x0
2x

0
3,

where x : [t0, t1]→ R3 is the solution to the Cauchy problem

ẋ = fi(x, u), x(t0) = x0. (121)

We consider the following optimal control problem

minimize Ji(u) for u ∈ L∞((t0, t1); [w, 1]). (Pi)

For any i = 1, 2, · · · , problem (Pi) is a “smooth” optimal control problem. By a classical

result in optimal control theory (see, e.g., [25, Corollary 2, p. 262]), there exists an optimal

control ui for problem (Pi). Let xi be the optimal trajectory corresponding to the control ui

for dynamics (121). We have the following lemma (compare to [35, Lemma 4]):

Lemma 4.2. The following holds as i→ +∞

ui → u∗ in L2(t0, t1), (122)

xi → x∗ in C0([t0, t1];R3), (123)

χi(xi2)→ χ(x∗2) in L1(t0, t1). (124)

Step 2. We now deduce necessary optimality conditions for the optimal control problem

(16) in the form of PMP. The Hamiltonian and the Hamilton-Pontryagin function for problem

(Pi) are respectively

Hi(x, u, ψ) = 〈fi(x, u), ψ〉+ (a(x2) + b(x2)u+ csχi(x2)x2)x3 −
1√
i
|u− zi(t)|2, (125)

Hi(x, ψ) = max
u∈[w,1]

Hi(x, u, ψ). (126)

By the PMP -see, e.g., [25, Theorem 2, p. 319] or [4, Section 6.5]-, there exists an absolutely

continuous function ψi : [t0, t1]→ R3 such that

ψ̇i
a.e.
= −

[∂fi
∂x

(xi, ui)
]tr
ψi −

∂

∂x

(
(a(xi2) + b(xi2)ui + csχi(xi2)xi2)xi3

)
, (127)

ψi(t1) = 0, (128)
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and there exist constants hi such that

Hi(xi(t), ui(t), ψi(t)) = Hi(xi(t), ψi(t)) = hi, a.e. t ∈ (t0, t1). (129)

Let us denote ψi = (ψi1, ψi2, ψi3)tr. From (119), (127) and (128), we have

ψ̇i1 = 0, (130)

ψ̇i2 = −(a′(xi2) + b′(xi2)ui)ψi2 − cs χ′i(xi2)xi3 ψi3 − (a′(xi2) + b′(xi2)ui)xi3

− cs χi(xi2)xi3 − cs xi2χ′i(xi2)xi3, (131)

ψ̇i3 = −cs χi(xi2)ψi3 − (a(xi2) + b(xi2)ui)− cs xi2 χi(xi2), (132)

ψi1(t1) = ψi2(t1) = ψi3(t1) = 0. (133)

We can prove that

ψi1(t) = ψ1(t) = 0, ∀t ∈ [t0, t1], (134)

and

ψi3 → ψ3 in C0([t0, t1]) as i→ +∞. (135)

As far as ψi2 is concerned, Theorem 3.3 in the case where x∗2(t0) = x0
2 = ys or x∗2(t1) < ys

follows directly from the standard PMP. Hence, we may assume that

x∗2(t0) < ys 6 x∗2(t1). (136)

Let us treat the case where

x∗2(t0) < ys < x∗2(t1), (137)

(the case x∗2(t1) = ys being similar). By (10), there exists one and only one t̂ ∈ (t0, t1) such

that

x∗2(t̂ ) = ys. (138)

Using (123) and (138), one also gets that, at least if i is large enough, which, from now on,

will always be assumed, there exists one and only one t̂i ∈ (t0, t1) and one and only one

t̄i ∈ (t0, t1) such that

xi2(t̂i) = ys, xi2(t̄i) = ys − (1/i). (139)

Using (122) and (123), we can prove

t̂i → t̂ and t̄i → t̂ as i→ +∞. (140)

It is easy to check that

ψi2 → ψ2 in C0([t0, t̂− ε] ∪ [t̂+ ε, t1]), ∀ε > 0. (141)

We now prove jump condition (50) when t̂ < t1, the proof of (52) when t̂ = t1 being similar.

Let us integrate (131) from t̄i to t̂i, we get

ψi2(t̂i)− ψi2(t̄i) = A(i) +B(i), (142)
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with

A(i) := −
∫ t̂i

t̄i

((a′(xi2) + b′(xi2)ui) (ψi2 + xi3) + cs χi(xi2)xi3) dt, (143)

B(i) := −
∫ t̂i

t̄i

cs xi3 (xi2 + ψi3)χ′i(xi2) dt. (144)

It is easy to obtain that

A(i)→ 0 as i→ +∞. (145)

For B(i), we perform the change of variable τ = xi2(t). By (139) and (144), we get

B(i) = −
∫ ys

ys−(1/i)

cs xi3(x−1
i2 (τ)) (τ + ψi3(x−1

i2 (τ)))

a(τ) + b(τ)u(x−1
i2 (τ))

χ′i(τ) dτ. (146)

Let us point out that, from (116) and (118), one has∫ ys

ys−(1/i)
χ′i(τ) dτ = −1, χ′i 6 0. (147)

From (10), (123), (135), (146), (147), one gets that

cs x∗3(t̂ )(ys + ψ3(t̂ ))

a(ys) + b(ys)
6 lim inf

i→+∞
B(i) 6 lim sup

i→+∞
B(i) 6

cs x∗3(t̂ )(ys + ψ3(t̂ ))

a(ys) + b(ys)w
,

which, together with (140), (141), (142) and (145), gives (50).

Letting i→ +∞ in (129), we get the existence of h such that (53) holds. This concludes

the proof of Theorem 3.3.
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