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Abstract

We give a uniform bound from below on the temperature for a variant
of the compressible Navier-Stokes-Fourier system, under suitable hypothe-
ses. This system of equations forms a mathematical model of the motion
of a compressible fluid subject to heat conduction. Building upon the
work of [16], we identify a class of weak solutions satisfying a localized
form of the entropy inequality (adapted to measure the set where the
temperature becomes small) and use a form of the De Giorgi argument
for L∞ bounds of solutions to elliptic equations with bounded measurable
coefficients.

1 Introduction

Let Ω ⊂ R3 be a bounded domain with smooth boundary. We consider weak
solutions to a variant of the Navier-Stokes-Fourier system, in the presence of no
external forces and subject to heat conduction driven by Fourier’s law:







∂tρ+ div(ρu) = 0
∂t(ρu) + div(ρu ⊗ u) +∇p = div S

∂t(ρs) + div(ρsu) + div(−κ∇θ
θ ) = σ

(1)

in (0, T )× Ω, with the initial and boundary conditions

{

ρ(0, ·) = ρ0, (ρu)(0, ·) = (ρu)0, θ(0, ·) = θ0,
u(t, ·)|∂Ω = 0, ∇θ(t, ·) · n(·)|∂Ω = 0.

This system of equations models the motion of a viscous, compressible, and
heat-conducting fluid, where ρ = ρ(t, x) denotes the density of the fluid, u =
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u(t, x) denotes the velocity of the fluid, and θ = θ(t, x) denotes the temperature
of the fluid. The quantity p determines the internal pressure of the system, while
S, κ, s and σ denote the stress tensor, heat conduction coefficient, entropy, and
entropy production rate, respectively – our assumptions on the behavior of these
quantities are determined by the particular constitutive relations of our model;
for more details, see the discussion after the statement of Theorem 1.1, as well
as the complete specification in Section 2.

Recently, Mellet et al. [16] studied bounds from below on the temperature
for a suitable class of weak solutions of a variant of (1) when the pressure p(ρ, θ)
is affine in the temperature variable, i.e.

p = pe(ρ) +Rρθ,

in which case the entropy equation (that is, the third equation in (1)) is replaced
by

∂t(ρθ) + div(ρθu)− div(κ∇θ) = 2µ|D(u)|2 + λ| div u|2 −Rρθ div u.

In [16], the authors use an instance of the De Giorgi argument [6] for bound-
edness and regularity of solutions to elliptic equations with bounded measurable
coefficients to establish uniform (in space) bounds on the logarithm of the tem-
perature, which in turn give uniform bounds on the temperature itself.

The goal of the present work is to adapt the methods of [16] to treat the
system (1), in the case that the pressure is no longer strictly affine in the tem-
perature variable. This change in assumption on the pressure corresponds to
a somewhat more physically accurate model; in particular, the constitutive as-
sumptions on the quantities driving heat conduction in the system can now be
related to basic thermodynamical principles (see [12, 14] for further discussion
on this point).

Our main result is then the following:

Theorem 1.1. Fix T > 0 and Ω a bounded open set. Suppose that S, κ,
σ and the state relations s and p (which respectively represent the entropy and
pressure relations of the system) satisfy the criteria established in Section 2, and
let (ρ, u, θ) be a weak solution to the Navier-Stokes-Fourier system (1) satisfying
u ∈ L2(0, T ;H1

0 (Ω)),
∫

Ω

ρ0 max

{

log

(

1

θ0

)

, 0

}

dx < ∞. (2)

and ρ ∈ L∞(0, T ;Lω(Ω)) for some ω > 3, along with the local entropy inequality
(14) for a.e. 0 < t < T and a.e. 0 < s < t, as well as for a.e. 0 < t < T with
s = 0.1

Then for all τ ∈ (0, T ], there exists ητ,T > 0 such that

θ(t, x) ≥ ητ,T .

for a.e. τ < t < T and a.e. x ∈ Ω.

1We shall describe the significance and relevance of these restrictions on the class of weak
solutions in the discussion below.
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Theorem 1.1 states that for a particular class of weak solutions, the tem-
perature is bounded away from zero uniformly in space.2 We remark that the
assumptions on the system appearing in Section 2 are all physically motivated
and are quite general. In particular, the quantities p = p(ρ, θ) and s = s(ρ, θ)
represent the internal pressure and entropy of the system, and their precise forms
along with those of the viscous stress tensor S, heat conduction coefficient κ and
entropy production rate σ are determined by the particular properties of the
fluid under study. We refer the reader to [14, Chapter 1] for a full discussion of
the derivation and physical relevance of the Navier-Stokes-Fourier system (1).

On the other hand, the assumptions on ρ, u and θ(0, ·) are more closely
connected with our tools and techniques. As we mentioned above, the authors
in [16] use a variant of the De Giorgi argument for L∞ bounds of solutions
to elliptic equations with measurable coefficients to establish the desired L∞

control over the logarithm of the temperature (which corresponds in our setting
to the entropy, i.e. the quantity s(ρ, θ)). Generally speaking, this technique is
based upon the balance of two key pieces of information:

(a) a localized form of an energy/entropy inequality (e.g. the local energy in-
equality satisfied by suitable weak solutions for the incompressible Navier-
Stokes equations; in our case, this takes the form of the local entropy
ineuqality (14)), and

(b) a nonlinear iteration argument driven by the Tchebyshev inequality.

As is often the case (see, e.g. the discussion in [2] for the case of incompress-
ible Navier-Stokes), in order to obtain an appropriate form of the local entropy
inequality we must restrict the class of weak solutions. In [16], the authors work
with the solutions constructed by Feireisl in [8], which arise as limits of a some-
what involved approximation procedure. This procedure in particular preserves
an appropriate form of the entropy inequality at the last level of the approxi-
mation, which enables the authors to obtain the desired L∞ bounds uniformly
in the approximation parameter.

In the present work, we base our notion of weak solution on the existence
theory developed by Feireisl, Novotný et al. (see [14, Chapter 3], as well as the
works [8, 9, 10, 11, 13]).3 In this setting, the identification of an appropriate form
of the local entropy inequality is somewhat more subtle, since the entropy s(ρ, θ)
may now depend on both the density ρ and the temperature θ in a nonlinear way.
In particular, recalling that these localized inequalities are typically obtained by

2The proof in fact gives a slightly stronger statement, since the argument does not require
that the triple (ρ, u, s) satisfy the full conditions of a weak solution for (1). In particular,
the only properties used in the argument are: (i) the bounds u ∈ L2(H1

0
), (2), ρ ∈ L∞(Lω)

with ω > 3, (ii) the local entropy inequality (14) and (iii) the conservation of total mass∫
Ω
ρ(t, x)dx =

∫
Ω
ρ0(x)dx (which follows from (3)). We use the present statement to emphasize

the connection with the system (1).
3Note that the model described in these works contains an additional radiative term when

compared to the system (1); at present, this additional term is a required component of the
known existence theory. We discuss this in more detail at the conclusion of this introduction.
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multiplying the equation by an appropriate cutoff function, one observes that the
(possibly nonlinear) interaction of ρ and θ inside s(ρ, θ) imposes some difficulty.
Moreover, the system possesses diffusion in θ but not in ρ. Nevertheless, when
the functions involved have sufficient regularity, we can use the product and
chain rules to obtain a suitable variant. We also remark that the De Giorgi
technique does not apply to general systems; indeed, counterexamples (due to
De Giorgi) to the corresponding regularity results exist.

Note that the regularity required to perform this procedure is only present
at the very beginning of the approximation procedure described in [14], where
the equation has a number of additional terms which would interfere with the
De Giorgi argument. Indeed, the existence of such smooth solutions for the
original system (1) is a major open question. In light of this, we first establish
the local entropy inequality for smooth solutions to the Navier-Stokes-Fourier
system (1). Our main result, Theorem 1.1, then imposes this inequality as an
assumption used to derive the desired temperature bounds. We refer to the
section below on the existence theory for weak solutions for further comments
on this issue.

Notion of weak solution

As mentioned above, we consider a weak formulation of the system (1), based
upon the existence theory developed by Feireisl, Novotný et al. for a related
system with a additional radiative terms. We now recall the relevant notion of
weak solution from [14, Section 2.1], written for the system (1).

Suppose that S, κ, σ, s and p satisfy the consitutive relations established
in Section 2 below. We say that a triple of measurable functions (ρ, u, θ) is
then a weak solution of the Navier-Stokes-Fourier system (1) if ρ ∈ L1((0, T )×
Ω), div u ∈ L1((0, T ) × Ω), and, for some q > 1, ∇u ∈ L1(0, T ;Lq(Ω;R3×3)),
(θ,∇θ) ∈ Lq((0, T )× Ω)2, with

(i) ρ ≥ 0, θ ≥ 0 a.e. on (0, T )× Ω,

(ii) u|∂Ω = 0, and

(iii) the continuity equation is satisfied in the renormalized sense of [7]; that
is,

∫ T

0

∫

Ω

ρB(ρ)(∂tφ
(1) + u · ∇φ(1))dxdt

=

∫ T

0

∫

Ω

b(ρ) div uφ(1)dxdt −

∫

Ω

ρ0B(ρ0)φ
(1)(0)dx, (3)
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for every b ∈ L∞ ∩ C0(0,∞), B : [0,∞) → R defined by

B(ρ) = B1 +

∫ ρ

1

b(z)

z2
dz,

and all test functions φ(1) ∈ C1
c ([0, T ) × Ω), while the momentum and

entropy production equations are satisfied in the distributional sense; that
is,

∫ T

0

∫

Ω

ρu · ∂tφ
(2) + ρ[u⊗ u] : ∇φ(2) + p div φ(2)dxdt

=

∫ T

0

∫

Ω

S : ∇φ(2)dxdt −

∫

Ω

(ρu)0 · φ
(2)(0)dx (4)

and

∫ T

0

∫

Ω

ρs(∂tφ
(3) + u · ∇φ(3))dxdt +

∫ T

0

∫

Ω

−κ∇θ

θ
· ∇φ(3)dxdt

= −〈σ, φ(3)〉 −

∫

Ω

ρ0s(0)φ
(3)(0)dx, (5)

for all test functions φ(2) ∈ C1
c ([0, T ) × Ω;R3), φ(3) ∈ C1

c ([0, T ) × Ω),
together with the integrability conditions required to make sense of each
quantity in (3), (4) and (5).

Comments on the existence theory for weak solutions

As remarked above, the existence of weak solutions (in the sense described
in the previous section) satisfying the hypotheses of Theorem 1.1 is not known
at present. In this context, two distinct issues arise: first, the existence of weak
solutions for (1) itself in the specific setting of the class of constitutive relations
described in Section 2 and second, existence of weak solutions satisfying the
additional hypotheses identified in the statement of Theorem 1.1.

Concerning the first issue, existence of weak solutions for (1), recent work of
Feireisl and Novotný [8, 9, 10, 11, 13, 14] have developed an existence theory for
weak solutions of (1) when the constitutive relations on the heat conduction,
entropy, internal energy and pressure adhere to the hypotheses described in
Section 2 and, moreover, admit an additional term describing the influence of
radiation at high temperatures. It should be noted that this radiative term is
currently required for the existence theory. However, at the present time, it is
not clear how to adapt the proof of Theorem 1.1 to allow for the presence of
radiation, and we therefore consider the non-radiative case (for which existence
of weak solutions is at present an open question).

Turning to the second issue, existence of weak solutions satisfying the full
hypotheses of Theorem 1.1, the additional assumptions beyond the notion of

5



weak solution amount to integrability for u and ρ, and the local entropy in-
equality (14). Note that the integrability condition u ∈ L2(0, T ;H1

0 (Ω)) can
be ensured by taking α = 1 in (11) and (12) (see [14, Theorem 3.2]), while
the bound ρ ∈ L∞(0, T ;Lω(Ω)) for some ω > 3 can be imposed by adding an
additional term to the pressure; the desired bounds then follow for this adjusted
equation via the energy inequality (see for instance the treatment in [8]).

Concerning the local entropy inequality, it is reasonable to expect that the
arguments we present can be further developed, adapting the proof of existence
to preserve the local entropy inequality in the limit (corresponding to existence
of suitable weak solutions obtained by Caffarelli, Kohn and Nirenberg in [2]);
such an approach is carried out for a compressible system without heat conduc-
tion in [15]. However, we choose not to pursue these issues further here.

Outline of the paper

We now give a brief outline of the rest of the paper. In Section 2, we establish
some notation, fix our assumptions on the constitutive relations, and give the
formal statement of the main results of our study. Sections 3 and 4 are then
devoted to the proofs of the local entropy inequality and the bounds from below
on the temperature, respectively. We conclude with a brief appendix giving
a basic distributional calculation that will be useful for our arguments, and
describing how an additional hypothesis of bounded density can lead to some
relaxation in the growth hypotheses imposed on the entropy.

2 Constitutive relations and general assumptions

on the system

We now introduce some hypotheses that further restrict the constitutive assump-
tions for the system (1). In particular, in the remainder of the paper we will
assume that p, e, s ∈ C1((0,∞)× (0,∞)), µ, η ∈ C1([0,∞)) and κ ∈ C1([0,∞)),
P ∈ C1([0,∞)) satisfy the hypotheses listed below.

We begin by stating some structural hypotheses concerning the influence of
viscosity and heat-conduction within the fluid. In particular, we will assume
that S and σ take the form

S = µ(2D(u)− 2
3I div u) + ηI div u

σ ≥
µ|2D(u)− 2

3I div u|
2 + 2η| div u|2

2θ
+

κ|∇θ|2

θ2
(6)

with D(u) = ∇u+ (∇u)⊤ and where σ is a Borel measure on [0, T ]× Ω.
Because we are working in a compressible model, the forces driving the fluids

evolution include the pressure that the fluid exerts upon itself, in addition to the
viscous interactions described by the stress tensor S above. The derivation of
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these forces arises from thermodynamical considerations, beginning with Gibbs’
equation,

θD(ρ,θ)s(ρ, θ) = D(ρ,θ)e(ρ, θ) + p(ρ, θ)D(ρ,θ)(
1

ρ
), for ρ, θ > 0, (7)

where D(ρ,θ) = (∂ρ, ∂θ). As mentioned above, the quantities s and p represent
the entropy and pressure of the system, while e represents the internal energy.
Regarding p and e, we require that for all ρ > 0, there exists e(ρ) > 0 such
that limθ→0+ e(ρ, θ) = e(ρ), and that for all ρ, θ > 0 one has ∂ρp(ρ, θ) > 0,
0 < ∂θe(ρ, θ) ≤ c and |ρ∂ρe(ρ, θ)| ≤ ce(ρ, θ). Moreover, for the purposes of our
study we restrict ourselves to the study of a monoatomic gas in the absence of
thermal radiation effects, in which we have the further relation

p(ρ, θ) = 2
3ρe(ρ, θ). (8)

As a consequence of (7) and (8), there exists P ∈ C1 such that P (0) = 0,
P ′(0) > 0, and

p(ρ, θ) = θ
5
2P (

ρ

θ
3
2

)

for all ρ, θ > 0. In accordance with (7) and the above hypotheses on p(ρ, θ) and
e(ρ, θ), we have

s(ρ, θ) = S(
ρ

θ3/2
) with S′(Z) = −

3

2

( 5
3P (Z)− ZP ′(Z)

Z2

)

. (9)

Moreover, these hypotheses on p(ρ, θ) and e(ρ, θ) ensure that

S′(Z) ≥ −c1Z
−1, Z > 0. (10)

Finally, concerning the shear viscosity and heat conduction coefficients µ
and κ, we shall assume that for some α ∈ (25 , 1], the conditions

(1 + θα)µ ≤ µ(θ) ≤ (1 + θα)µ, (11)

sup
θ

|µ′(θ)| ≤ m

and

κ ≤ κ(θ) ≤ κ(1 + θα) (12)

hold for some constants 0 < µ < µ < ∞, 0 < κ < κ < ∞ and m > 0.

We remark that all of the above assumptions are physical, internally consis-
tent, and also consistent with the work [14] (see also [8]), up to the exclusion of
the radiative term as discussed above. For technical reasons, we will also impose
two additional constraints:
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(i) the inequality θ ≤ η(θ) holds for θ sufficiently small, and

(ii) there exists C2 > 0 such that

S′(Z) ≤ −C2Z
−1 ∀Z > 0. (13)

The constraint (i) is a statement of non-degeneracy of the viscosity coefficient
which enables us to use the diffusion in θ to control the growth of a quantity like
log θ, while the constraint (ii) ensures that the entropy grows sufficiently fast as
θ tends to zero. Note that the case of affine pressure treated in [16] corresponds
to S′(Z) = −Z−1. We refer to Appendix B for a discussion of how (13) can be
relaxed when the density is known to remain bounded.

Having established these assumptions on the constitutive relations, we now
address the main results of our study.

3 The local entropy inequality for smooth solu-

tions

We now turn to the local entropy inequality (14) that we described in the
introduction. In particular, the statement of this inequality will make strong use
of the following truncation operator, which will be applied to the temperature
θ: for C > 0, we define fC : [0,∞) → [0, C) by

fC(z) = (z − C)− + C = min{z, C}.

Fixing 0 < s < t < T , the local entropy inequality is then

∫

Ω

ρs̃C(t, x)dx +

∫ t

s

∫

{θ≤C}

µ|2D(u)− 2
3I div u|

2 + 2η| div u|2

2θ
+

κ|∇θ|2

θ2
dxdt

≤

∫ t

s

∫

{θ≤C}

(

−ρ2∂ρs(ρ, C) div u
)

dxdt+

∫

Ω

ρs̃C(s, x)dx, (14)

where

s̃C = s(ρ, C)− s(ρ, fC(θ)).

In particular, smooth solutions to the Navier-Stokes-Fourier system (1) satisfy
(14):

Proposition 3.1. Fix m ∈ N. If (ρ, u, θ) is a smooth solution to the Navier-
Stokes-Fourier system (1) with ρ ∈ L∞(0, T ;Lω(Ω)) for some ω > 3 and u ∈
L2(0, T ;H1

0 (Ω)), then for every 0 ≤ s ≤ t < ∞ and C > 0 the solution satisfies
the local entropy inequality (14).

It should be noted that the existence of such smooth solutions is an ous-
tanding open question. Nevertheless, Proposition 3.1 indicates the plausability
of imposing (1) as an additional restriction on the class of weak solutions.
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Proof of Proposition 3.1. Let C > 0 be given and note that

∂t(ρs̃C) + div(ρs̃Cu) = (I)− (II), (15)

where we have set

(I) := ∂t(ρs(ρ, C)) + div(ρs(ρ, C)u)

and

(II) := ∂t(ρs(ρ, fC(θ))) + div(ρs(ρ, fC(θ))u),

Note that a straightforward calculation gives

(I) = (∂tρ)s(ρ, C) + ρ∂ts(ρ, C) +∇s(ρ, C) · (ρu) + s(ρ, C) div(ρu)

= ρ(∂ρs(ρ, C)∂tρ) + (∂ρs(ρ, C)∇ρ) · (ρu)

= −ρ2∂ρs(ρ, C) div u,

where we have used the continuity equation ∂tρ + div(ρu) = 0 to obtain both
the second and third equalities.

For (II), we will make use of the identity

∂tθ +∇θ · u =
1

α(ρ, θ)

[

∂t(ρs) + div(ρsu) + ρ2∂ρs(ρ, θ) div u

]

, (16)

where we have set α(ρ, θ) = ρ∂θs(ρ, θ). Indeed, using the definition of s and the
product rule, we obtain

∂t(ρs) + div(ρsu)

= ∂t(ρs(ρ, θ)) + div(ρs(ρ, θ)u)

= (∂tρ)s(ρ, θ) + ρ∂ts(ρ, θ) +∇s(ρ, θ) · (ρu) + s(ρ, θ) div(ρu).

This is then equal to

ρ

[

∂ρs(ρ, θ)∂tρ+ ∂θs(ρ, θ)∂tθ

]

+

[

∂ρs(ρ, θ)∇ρ+ ∂θs(ρ, θ)∇θ

]

· (ρu)

= ρ∂ρs(ρ, θ)(∂tρ+∇ρ · u) + (ρ∂θs(ρ, θ))(∂tθ +∇θ · u),

which gives the identity.
Returning to (II), we use the product rule to obtain,

(II) = (∂tρ)s(ρ, fC(θ)) + ρ∂ts(ρ, fC(θ)) +∇s(ρ, fC(θ)) · (ρu)

+ s(ρ, fC(θ)) div(ρu)

= ρ∂ρs(ρ, fC(θ))(∂tρ+ u · ∇ρ) + ρf ′
C(θ)∂θs(ρ, fC(θ))(∂tθ + u · ∇θ)

= −ρ2∂ρs(ρ, fC(θ)) div u+ ρf ′
C(θ)∂θs(ρ, fC(θ))(∂tθ + u · ∇θ)

9



so that

(II) = −ρ2∂ρs(ρ, θ) div u+ ρ∂θs(ρ, θ)(∂tθ + u · ∇θ)

when θ ≤ C and (II) = (I) when θ > C.
Combining these calculations, we obtain that (15) is equal to

ρ2(∂ρs(ρ, θ)− ∂ρs(ρ, C)) div u

− (ρ∂θs(ρ, θ))(∂tθ + u · ∇θ)

= (−ρ2∂ρs(ρ, C)) div u− [∂t(ρs) + div(ρsu)]

for (t, x) such that θ ≤ C, and equal to 0 when θ > C.
We then have

∂t(ρs̃C) + div(ρs̃Cu)

≤

[

− ρ2∂ρs(ρ, C) div u

−
µ|2D(u)− 2

3I div u|
2 + 2η| div u|2

2θ
−

κ|∇θ|2

θ2

]

1{θ≤C}(θ)

− div

(

κ∇θ

θ

)

1{θ≤C}(θ)

≤

[

− ρ2∂ρs(ρ, C) div u

−
µ|2D(u)− 2

3I div u|
2 + 2η| div u|2

2θ
−

κ|∇θ|2

θ2

]

1{θ≤C}(θ)

− div

(

κ∇fC(θ)

θ

)

in the sense of distributions, where we have used (1), (6) and Lemma A.1.4 The
desired result follows by integrating over [s, t]× Ω.

4 Temperature bounds: the proof of Theorem

1.1

We next turn to the proof of Theorem 1.1. Recall that the goal of this theorem is
to establish uniform bounds from below on the temperature θ for weak solutions
satisfying the local entropy inequality (14) (together with certain integrability
conditions on ρ and u).

The proof of this result follows the proof of [16, Theorem 1] and, as we men-
tioned above, is based on the use of Stampacchia trunactions and De Giorgi’s

4In fact, solutions of (1) satisfy (6) with equality. We retain the inequality in our calculation
to emphasize that (14) is consistent (at least formally) with (6) under weaker notions of
solution, provided that other steps in the argument can be given proper justification.
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regularity theory for elliptic partial differential equations. We remark that these
methods have seen much recent application in parabolic problems and the equa-
tions of fluid mechanics; see for instance [4] and the references cited there - we
also point out the works of Caffarelli et al. [3], Beiräo da Veiga [1] and Chan
[5], as well as a treatment of the partial regularity theory [18].

To facilitate the De Giorgi iteration argument, we recall a lemma showing
how superlinear bounds can lead to improved convergence properties.

Lemma 4.1. Let C > 1 and β > 1 be given and let (Wk)k∈N be a sequence in

[0, 1] such that for every k ∈ N, Wk+1 ≤ Ck+1W β
k . Then there exists C∗

0 such
that 0 < W1 < C∗

0 implies Wk → 0 as k → ∞.

The estimate contained in Lemma 4.1 is classical; for a proof, see for instance
[18]. With this lemma in hand, we now address the proof of the theorem:

Proof of Theorem 1.1. Let Ω ⊂ R3, T > 0, and (ρ, u, θ) be given as stated. Fix
a decreasing sequence (Ck)k≥0 ⊂ R+ and an increasing sequence (Tk)k≥0 ⊂ R+,
both to be chosen later in the argument, and define

Uk := U(Ck, Tk)

where for each C > 0, s > 0, we have set

U(C, s) := esssup
s≤t≤T

∫

Ω

ρ(t, x) log (C/fC(θ(t, x))) dx

+

∫ T

s

∫

Ω

η

θ
| div u|2χθ≤C(t, x)dxdt

+

∫ T

s

∫

Ω

κ|∇θ|2

θ2
χθ≤C(t, x)dxdt. (17)

and where χθ≤C = χ{(t,x)∈[0,T ]×Ω:θ(t,x)≤C}.

Step 1: Boundedness of Uk+1.

Note that s̃Ck+1
= 0 on {(t, x) : θ ≥ Ck+1}, while on the set {θ < Ck+1}, we

use (13) to estimate s̃Ck+1
, obtaining

s(ρ, Ck+1)− s(ρ, θ) =

∫ Ck+1

θ

(∂θs)(ρ, ω)dω =

∫ Ck+1

θ

−
3ρ

2ω5/2
S′(

ρ

ω3/2
)dω

≥ c

∫ Ck+1

θ

3

2ω
dω = c log (Ck+1/θ) .

Invoking the local entropy inequality (14) and recalling ρ0(x) = ρ(0, x),
θ0(x) = θ(0, x), we therefore get the inequality

Uk+1 ≤ C

(

∫ T

0

∫

Ω

χθ≤Ck+1
ρ2(−∂ρs(ρ, Ck+1))| div u|dxdt

11



+

∫

Ω

ρ0s̃Ck+1
(ρ0, θ0)dx

)

Now, making use of (9) and (10), we obtain

Uk+1 = C

∫ T

0

∫

Ω

χθ≤Ck+1

ρ2

C
3/2
k+1

S′(
ρ

C
3/2
k+1

)| div u|dxdt

−

∫

Ω

∫ Ck+1

fCk+1
(θ0)

3ρ20
2ω5/2

S′(
ρ0
ω3/2

)dωdx

≤ C

∫ T

0

∫

Ω

χθ≤Ck+1
ρ(t, x)| div u|dxdt

+
3

2

∫

Ω

ρ0 log(Ck+1/fCk+1
(θ0))dx (18)

Using Hölder in the first term followed by the hypotheses ρ ∈ L∞(0, T ;Lω(Ω)),
u ∈ L2(0, T ;H1

0 (Ω)) and (2), we therefore obtain

Uk+1 ≤ C∗ (19)

for some C∗ > 0.

Step 2: Local entropy estimate for Uk+1.

Arguing as above, we again invoke the local entropy inequality (14) and
expand the interval of integration to [Tk, Tk+1] (using −∂ρs ≥ 0), which gives
the estimate

Uk+1 ≤ C

(

∫ T

Tk

∫

Ω

χθ≤Ck+1
ρ2(−∂ρs(ρ, Ck+1))| div u|dxdt

+

∫

Ω

ρs̃Ck+1
(s, x)dx

)

for a.e. Tk ≤ s ≤ Tk+1. Integrating both sides of this inequality over s ∈
[Tk, Tk+1] and dividing by Tk+1 − Tk, we obtain

Uk+1 ≤ C

(

∫ T

Tk

∫

Ω

χθ≤Ck+1
ρ2(−∂ρs(ρ, Ck)| div u|)dxdt

+
1

Tk+1 − Tk

∫ Tk+1

Tk

∫

Ω

ρs̃Ck+1
(0, x)dxds

)

Arguing as in (18) and recalling that the sequence (Ck) is decreasing, the
Cauchy-Schwarz inequality gives the bound

∫ T

Tk

∫

Ω

χθ≤Ck+1
ρ2(−∂ρs(ρ, Ck+1))| div u|dxdt

12



≤ C

∥

∥

∥

∥

η1/2 div u

θ1/2
χθ≤Ck

∥

∥

∥

∥

L2([Tk,T ];L2(Ω))

∥

∥ρχθ≤Ck+1

∥

∥

L2([Tk,T ];L2(Ω))

≤ CU
1/2
k

(

∫ T

Tk

∫

Ω

ρ(t, x)2χθ≤Ck+1
(t, x)dxdt

)1/2

,

where we have used the constraint (i) appearing at the end of Section 2. This
in turn gives

Uk+1 ≤ C
[

U
1/2
k (I)1/2 + (II)

]

(20)

with

(I) :=

∫ T

Tk

∫

Ω

ρ(t, x)2χθ≤Ck+1
(t, x)dxdt,

(II) :=
1

Tk+1 − Tk

∫ Tk+1

Tk

∫

Ω

ρs̃Ck+1
(s, x)dxds.

The next two steps of the arugment consist of estimating the terms (I) and
(II).

Step 3: Tchebyshev estimates for (I).

Define

Fk(θ) := χθ≤Ck
log (Ck/θ) ,

Rk := log (Ck/Ck+1) ,

and observe that (Ck) decreasing implies that the inequality Rk ≤ Fk(θ(t, x))
holds on the set {θ < Ck+1}. Fix parameters α, β, p and q satisfying

α ∈ (0, 2), β > 0 and p, q ≥ 1 (21)

to be determined later in the argument, and let p′ and q′ be the conjugate
exponents to p and q.

Using Hölder, we obtain the estimate

(I) ≤
1

Rβ
k

∫ T

Tk

∫

Ω

ρ(t, x)2Fk(θ(t, x))
βdxdt

≤
1

Rβ
k

‖ρ‖2−α
L(2−α)p([Tk,T ];L(2−α)q(Ω))

‖ραFk(θ)
β‖Lp′([Tk,T ];Lq′ (Ω))

≤
C(T, |Ω|, α, p, q)

Rβ
k

‖ρ‖2−α
L∞(Lω(Ω))‖ρ

αFk(θ(t, x))
β‖Lp′([Tk,T ];Lq′ (Ω)) (22)

provided that α and q satisfy

(2− α)q < ω. (23)

13



We now turn to the task of estimating ‖ραF β
k ‖Lp′Lq′ . In particular, we

obtain

‖ραF β
k ‖Lp′Lq′ = ‖(ρFk)

α/βF
1−α

β

k ‖β
Lβp′Lβq′

≤ ‖(ρFk)
α/β‖β

L∞L
β/α
x

‖F
1−α

β

k ‖β

L

2
1−α

β L

6
1−α

β

= ‖ρFk‖
α
L∞L1‖Fk‖

β−α
L2L6

≤ CUα
k ‖Fk‖

β−α
L2L6 (24)

where we have set p′ = 2
β−α and q′ = 6

5α+β , i.e.

p =
2

2 + α− β
, q =

6

6− 5α− β
. (25)

The estimate of ‖Fk‖L2L6 is based the following inequality of Sobolev type
adapted to the norms appearing in Uk, which we recall from [16].

Lemma 4.2 (Sobolev-type inequality, [16]). Let Ω ⊂ R3 be a bounded domain
with smooth boundary. Given T > 0 and ρ ∈ L∞([0, T ];Lω(Ω)) for some ω > 3
such that

t 7→

∫

Ω

ρ(t, x)dx

is constant in t, there exists C = C(Ω, T, ρ, ω) > 0 such that the inequality

‖F‖L2([0,T ];L6(Ω)) ≤ C(‖ρF‖L∞([0,T ];L1(Ω)) + ‖∇F‖L2([0,T ];L2(Ω)))

holds for every measurable F : [0, T ]× Ω → [0,∞),

Note that
∫

ρ(t, x)dx =
∫

ρ0(x)dx for a.e. t ∈ [0, T ]. Recalling that ρ ∈
L∞([0, T ];Lω(Ω)) is satisfied by hypothesis, we may therefore invoke Lemma
4.2 in our setting to obtain

‖Fk‖
β−α
L2L6 ≤ C

(

Uk + ‖χθ≤Ck

∇θ

θ
‖L2L2

)β−α

≤ C
(

Uk + U
1/2
k

)β−α

. (26)

Combining (22) with (24) and (26) then gives

(I) ≤
C

Rβ
k

(

Uβ
k + U

(α+β)/2
k

)

. (27)

Step 4: Estimate for (II).

14



Arguing as in (18) and recalling that the sequence (Ck) is decreasing, we note
that (9) and (10) imply

s̃Ck+1
(ρ(s, x), θ(s, x)) ≤ cχθ≤Ck+1

(s, x)Fk(θ(s, x)). (28)

for a.e. s ∈ [Tk, Tk+1] and a.e. x ∈ Ω.
Invoking Hölder and arguing as in Steps 1 and 2 above, we obtain

(II) ≤
1

Tk+1 − Tk
‖Fk‖L2([Tk,Tk+1];L6(Ω))‖ρχθ≤Ck+1

‖L2([Tk,Tk+1];L6/5(Ω))

≤
1

Tk+1 − Tk
(Uk + U

1/2
k )‖ρχθ<Ck+1

‖L2([Tk,Tk+1];L6/5(Ω)).

On the other hand, proceeding as in Step 3, we fix β1 ∈ (0, 1) to be determined
later in the argument, and recall that Rk ≤ Fk(θ) on {θ < Ck+1}. This yields

‖ρχθ<Ck+1
‖L2([Tk,Tk+1];L6/5(Ω))

= ‖ρ6/5χθ<Ck+1
‖
5/6

L5/3([Tk,Tk+1];L1(Ω))

≤
C(T )

R
5β1
6

k

‖ρ6/5Fk(θ)
β1‖

5/6
L∞([Tk,T ];L1(Ω))

≤
C(T )

R
5β1
6

k

‖ρ
6
5−β1‖

5/6

L∞([Tk,T ];L1/(1−β1)(Ω))
‖(ρFk(θ))

β1‖
5/6

L∞([Tk,T ];L1/β1)

≤
C(T, |Ω|, α1, q1)

R
5β1
6

k

‖ρ‖
1−5β1/6
L∞(Lω(Ω))‖ρFk(θ)‖

5β1/6
L∞([Tk,T ];L1)

≤
C(T, |Ω|, α1, q1)

R
5β1/6
k

‖ρ‖
1−5β1/6
L∞(Lω(Ω))U

5β1/6
k ,

provided that (65 − β1)/(1− β1) < ω. This in turn gives

(II) ≤
C

(Tk+1 − Tk)R
5β1/6
k

(Uk + U
1/2
k )U

5β1/6
k (29)

Step 5: Conclusion of the argument.

Combining (20) with (27) and (29), we obtain

Uk+1 ≤
C

R
β/2
k

(U
1+β
2

k + U
2+β+α

4

k ) +
C

(Tk+1 − Tk)R
5β1/6
k

(U
1+

5β1
6

k + U
1
2+

5β1
6

k ) (30)

whenever α, β, p and q satisfy (21), (23), (25) and β1, q1 satisfy β1 > 0, q1 ≥ 1,
(65 − β1)/(1− β1) < ω.

To complete the proof, we will use (30) (with an appropriate choice of pa-
rameters) and Lemma 4.1 to conclude that Uk → 0 as k → ∞ for suitably

15



chosen sequences (Ck) and (Tk), with limits Ck → C∞ > 0 and Tk → τ > 0,
respectively.

Temporarily postponing the choice of (Ck) and (Tk), we remark that in order
to apply Lemma 4.1 the powers of Uk appearing on the right side of (30) must be
greater than 1. This is the primary motivation behind our choice of parameters;
combining this requirement with (21) and (25), it suffices to choose α and β
satisfying

|β − 2| < α <
6− β

5
, β > 1.

This condition is compatible with (23) for ω > 3; we therefore choose such a
pair (α, β).

To choose β1, we note that the condition 1
2 + 5β1

6 > 1 is satisfied for any
β1 > 3

5 . Moreover, the condition (65 − β1)/(1 − β1) < ω is satisfied for β1

sufficiently close to 3
5 ; choosing such a value of β1, we see that (30) holds.

We now turn to the choice of the sequences (Ck) and (Tk). Fix M > 1 to
be determined later in the argument and let τ ∈ [0, T ] be given. Now, setting

Ck = exp(−M(1− 2−k))

and

Tk = τ(1 − 2−k),

and using Step 1, we obtain

Uk+1

C∗
≤

C2(k+1)β/2

C∗Mβ/2
Uγ1

k +
C2(k+1)(1+5β1/6)

τC∗M5β1/6
Uγ2

k

=
C2(k+1)β/2(C∗)γ1−1

Mβ/2

(

Uk

C∗

)γ1

+
C2(k+1)(1+5β1/6)(C∗)γ2−1

τM5β1/6

(

Uk

C∗

)γ2

≤ Ck+1

(

Uk

C∗

)max{γ1,γ2}

for some γ1, γ2 > 1, where C∗ is as in (19). Invoking Lemma 4.1, we find C∗
0 > 0

such that U1 ≤ C∗
0 implies Uk → 0 as k → ∞. On the other hand, by Step 1,

we have

U1 ≤
C

Mβ/2
+

C

τM5β1/6
.

Choosing M sufficiently large, we obtain Uk → 0 as desired. We now conclude
the proof as in [16]. In particular, taking the limit (since all integrands involved
are nonnegative) we have

∫ T

τ

∫

Ω

κ|∇θ|2

θ2
χθ≤e−M (t, x)dxdt ≤ lim inf

k→∞

∫ T

τ

∫

Ω

κ|∇θ|2

θ2
χθ≤Ck

dxdt = 0
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so that after observing the identity |∇θ|2

θ2 χθ≤e−M = |∇ log(e−M/fe−M (θ))|2, we
obtain that x 7→ log(e−M/fe−M (θ)) is constant in x for a.e. t ∈ [τ, T ]; that is,
for a.e. t we can find A(t) ≥ 0 such that A(t) = log(e−M/fe−M (θ(t, x))) for a.e.
x ∈ Ω. Taking the limit once more and using the weak (renormalized) form of
the continuity equation ∂tρ+ div(ρu) = 0, we therefore have

0 =

∫

Ω

ρ(t, x) log(e−M/fe−M (θ(t, x)))dx

= A(t)

∫

Ω

ρ(t, x)dx

= A(t)

∫

Ω

ρ0dx, a.e. t ∈ [τ, T ].

We therefore obtain A(t) ≡ 0 for a.e. t ∈ [τ, T ], which establishes

θ(t, x) ≥ e−M

for a.e. t ∈ [τ, T ] and a.e. x ∈ Ω. This completes the proof of Theorem 1.1.

A A distributional calculation

In this brief appendix, we prove the following lemma, which is used in the proof
of Proposition 3.1.

Lemma A.1. Suppose that θ is smooth. Then for every C > 0, the inequality

− div

(

κ∇θ

θ

)

χθ≤C ≤ − div

(

κ∇θ

θ
χθ≤C

)

holds in the sense of distributions.

Proof. Let φ ∈ D be given such that φ ≥ 0, and let C > 0 be given. Then

〈− div

(

κ∇θ

θ

)

χ{θ≤C}, φ〉 = −

∫

{θ≤C}

div

(

κ∇θ

θ

)

φdx

=

∫

{θ≤C}

κ∇θ

θ
· ∇φdx −

∫

∂{θ≤C}

κ∇θ

θ
φ · νdS

where ν is the unit outer normal to {θ ≤ C} and dS is the appropriate surface
measure. The smoothness of θ gives θ = C and ∇θ · ν ≥ 0 on ∂{θ ≤ C}, so that
we have

∫

∂{θ≤C}

κ∇θ

θ
φ · νdS ≥ 0,

which gives the result.
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B Allowing slightly nonlinear growth: the case

of bounded density.

In this appendix, we show how an additional assumption of bounded density
can enable us to allow slightly nonlinear growth in the function S compared to
the condition (13). In particular, we shall replace (13) with the condition

S′(Z) ≤ −
C2

Z log(3 + Z)
, (31)

retaining the other constitutive assumptions established in Section 2. Such
expanded growth conditions are relevant in a variety of physical models; see for
instance [13] for a typical example. For technical reasons, it is necessary in this
case to assume that the initial temperature θ0 is bounded away from zero.

Proposition B.1. Let Ω be a bounded open set, and let T > 0 be given. Suppose
that S, κ, σ, and s, p satisfy the criteria established in Section 2 with (13)
replaced by (31) for some C2 > 0.

Let (ρ, u, θ) be weak solution of the Navier-Stokes-Fourier system (1) satis-
fying the local entropy inequality (14) for a.e. 0 < t < T with s = 0, together
with the bounds ρ ∈ L∞([0, T ]× Ω), u ∈ L2(0, T ;H1

0 (Ω)) and

∃ θ > 0 such that θ0 ≥ θ for a.e. x ∈ Ω. (32)

Then there exists ηT > 0 such that

θ(t, x) ≥ ηT .

for a.e. 0 ≤ t < T , and a.e. x ∈ Ω.

The proof is largely similar to the proof of Proposition 1.1 given above, with
some slight adjustment to account for the different assumption on the intial
temperature profile x 7→ θ(0, x).

Proof. In this setting, we again let (Ck) ⊂ R+ be a decreasing sequence, and
define

Vk := esssup
0≤t≤T

∫

Ω

ρW (θ, Ck, ‖ρ‖L∞)dx

+

∫ T

0

∫

Ω

η

θ
| div u|2χθ≤Ck

(t, x)dxdt

+

∫ T

0

∫

Ω

κ|∇θ|2

θ2
χθ≤Ck

(t, x)dxdt,

W (a, b, c) := χa<b(a, b)

∫ b

a

1

ω log(3 + c
ω3/2 )

dω.
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Accordingly, arguing as in Step 1 of the proof of Theorem 1.1, we use the
inequality

s(ρ, Ck+1)− s(ρ, θ) ≥ C

∫ Ck+1

θ

3

2ω log(3 + ρ
ω3/2 )

dω

≥ CW (θ, Ck+1, ‖ρ‖L∞)

along with (14) to obtain

Vk+1 ≤ C∗

for some C∗ > 0, as well as

Vk+1 ≤ C

∫ T

0

∫

Ω

χθ≤Ck+1
ρ2(−∂ρs(ρ, Ck+1))| div u|dxdt

≤

∥

∥

∥

∥

η1/2 div u

θ1/2
χθ≤Ck

∥

∥

∥

∥

L2([0,T ];L2(Ω))

‖ρχθ≤Ck+1
‖L2([0,T ];L2(Ω))

≤ CV
1/2
k (I(W ))1/2

provided that C0 is sufficiently small, where we have set

(I(W )) :=

∫ T

0

∫

Ω

ρ(t, x)2χθ≤Ck+1
(t, x)dxdt.

Note that in performing this calculation, we have used the hypothesis (32) to
eliminate the term corresponding to the initial condition. Now, setting

F
(W )
k (θ) := W (θ, Ck, ‖ρ‖L∞),

R
(W )
k := W (Ck+1, Ck, ‖ρ‖L∞),

a simple calculation shows that R
(W )
k ≤ F

(W )
k (θ(t, x)) holds on the set {θ <

Ck+1}. From here, we may proceed as in the proof of Theorem 1.1; we include
the full details for completeness. Fixing α, β, p and q satisfying

α ∈ (0, 2), β > 0 and p, q ≥ 1

we argue as in (22) to obtain the estimate

(I(W )) ≤
1

(R
(W )
k )β

∫ T

0

∫

Ω

ρ(t, x)2F
(W )
k (θ(t, x))βdxdt

≤
C

(R
(W )
k )β

‖ρ‖2−α
L∞([0,T ];Lω(Ω))‖ρ

αF
(W )
k (θ)β‖Lp′([0,T ];Lq′(Ω))

provided that (23) holds. Proceeding as in (24)-(27) (and in particular using
Lemma 4.2), we write

‖ρα(F
(W )
k )β‖Lp′Lq′ ≤ ‖ρF

(W )
k ‖αL∞L1‖F

(W )
k ‖β−α

L2L6
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≤ CV α
k (‖ρF

(W )
k ‖L∞L1 + ‖∇F

(W )
k ‖L2L2)β−α

≤ CV α
k

(

Vk +

∥

∥

∥

∥

χθ≤Ck

∇θ

θ

∥

∥

∥

∥

L2L2

)β−α

whenever (25) is satisfied, where we have observed that log(3 + ‖ρ‖L∞

θ3/2 ) ≥ 1 for
a.e. (t, x) ∈ (0, T )× Ω. We therefore obtain

(I(W )) ≤
C

(R
(W )
k )β

V α
k (Vk + V

1/2
k )β−α

≤
C

(R
(W )
k )β

(V β
k + V

(α+β)/2
k )

as before, so that

Vk+1 ≤
C

(R
(W )
k )β/2

(V
(1+β)/2
k + V

(2+α+β)/4
k ).

Now, fixing M > 0 and choosing α, β, Ck and Tk as in Step 5 of Theorem 1.1,
we obtain

Vk+1

C∗
≤

Ck+1

C∗Mβ/2
V γ1

k ≤ Ck+1

(

Vk

C∗

)γ1

for some γ1 > 1. By Lemma 4.1, we may therefore choose C∗
0 > 0 such that

V1 ≤ C∗
0 implies Vk → 0 as k → ∞. As before, we may choose M large

enough so that this smallness condition for V1 is satisfied. We then obtain
log(e−M/fe−M (θ)) constant in x for a.e. t ∈ [0, T ]; this implies that for a.e.
t ∈ [0, T ], either θ(t, x) ≥ e−M for a.e. x ∈ Ω (in which case the proof is
complete), or

x 7→ θ(t, x) is constant a.e. on Ω. (33)

Suppose now that (33) holds. Then, letting θ(t) = θ(t, 0), we obtain

0 =

∫

Ω

ρ(t, x)W (θ, e−M , ‖ρ‖L∞)dx

= W (θ(t), e−M , ‖ρ‖L∞)

∫

Ω

ρ(t, x)dx

= W (θ(t), e−M , ‖ρ‖L∞)

∫

Ω

ρ0dx

for a.e. t ∈ [0, T ], where we have again used the conservation of mass as in
the proof of Proposition 1.1. We therefore have W (θ(t, x), e−M , ‖ρ‖L∞) = 0,
and thus θ ≥ e−M for a.e. t and x as desired. This completes the proof of
Proposition B.1.
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