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PARALLELIZATION, PROCESSOR COMMUNICATION AND

ERROR ANALYSIS IN LATTICE KINETIC MONTE CARLO∗

GIORGOS ARAMPATZIS† , MARKOS A. KATSOULAKIS‡ , AND PETR PLECHÁČ§

Abstract. In this paper we study from a numerical analysis perspective the Fractional Step
Kinetic Monte Carlo (FS-KMC) algorithms proposed in [1] for the parallel simulation of spatially
distributed particle systems on a lattice. FS-KMC are fractional step algorithms with a time-stepping
window ∆t, and as such they are inherently partially asynchronous since there is no processor com-
munication during the period ∆t. In this contribution we primarily focus on the error analysis of
FS-KMC algorithms as approximations of conventional, serial kinetic Monte Carlo (KMC). A key as-
pect of our analysis relies on emphasizing a goal-oriented approach for suitably defined macroscopic
observables (e.g., density, energy, correlations, surface roughness), rather than focusing on strong
topology estimates for individual trajectories.

One of the key implications of our error analysis is that it allows us to address systematically the
processor communication of different parallelization strategies for KMC by comparing their (partial)
asynchrony, which in turn is measured by their respective fractional time step ∆t for a prescribed
error tolerance.
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splitting, partially asynchronous algorithms, Graphical Processing Unit (GPU)
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1. Introduction. The simulation of stochastic lattice systems using kinetic Monte
Carlo (KMC) methods relies on the direct numerical simulation of the underlying
Continuous Time Markov Chain (CTMC). In [1] we proposed a new mathematical
and computational framework for constructing parallel algorithms for KMC simula-
tions.The parallel algorithms in [1] are controlled approximations of Kinetic Monte
Carlo algorithms, and rely on first developing a spatio-temporal decomposition of the
Markov operator for the underlying CTMC into a hierarchy of operators correspond-
ing to the particular parallel architecture. Based on this operator decomposition, we
formulated Fractional Step Approximation schemes by employing the Trotter product
formula, which in turn determines the processor communication schedule. The frac-
tional step framework allows for a hierarchical structure to be easily formulated and
implemented, offering a key advantage for simulating on modern parallel architectures
with elaborate memory and processor hierarchies. The resulting parallel algorithms
are inherently partially asynchronous as processors do not communicate during the
fractional time step window ∆t.

Earlier, in [23] the authors also proposed an approximate algorithm, in order
to create a parallelization scheme for KMC. It was demonstrated in [19, 20], that
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boundary inconsistencies are resolved in a straightforward fashion, while there is an
absence of global communications. Finally, among the parallel algorithms tested in
[19], the one in [23] had the highest parallel efficiency. In [1], we demonstrated that the
approximate algorithm in [23] is a special case of the Fractional Step Approximation
schemes introduced in [1]. There we also demonstrated, using the Random Trotter
Theorem [13], that the algorithm in [23] is numerically consistent in the approximation
limit, i.e., as the time step in the fractional step scheme converges to zero, it converges
to a Markov Chain that has the same master equation and generator as the original
serial KMC. The open source SPPARKS parallel Kinetic Monte Carlo simulator,
[20], can also be formulated as a Fractional Step approximation. In this article, the
convergence, reliability and efficiency of all such Fractional Step KMC parallelization
methods is systematically explored by rigorous numerical analysis which relies on
controlled-error approximations in transient regimes relevant to the simulation of
extended systems.

A key aspect of the presented analysis relies on emphasizing a goal-oriented error
approach for suitably defined macroscopic observables, e.g., density, energy, corre-
lations, surface roughness , giving rise to estimates which are independent of the
(very large) system size of the particle system. Besides the obtained numerical con-
sistency and reliability of the approximating CTMC obtained from FS-KMC there
is an additional key practical point: the bigger is the allowable ∆t, within a desired
error tolerance, the less processor communication is required. From a broader math-
ematical perspective, and driven from parallel computing challenges, the developed
mathematical and numerical analysis attempts to balance between controlled error
approximations and processor communication. The same methods could also prove
useful for developing and evaluating parallel numerical schemes for other molecular
and extended systems.

2. Background. Kinetic Monte Carlo (KMC) algorithms have proved to be
an important tool for the simulation of non-equilibrium, spatially distributed chemical
processes arising in applications ranging from materials science, catalysis and reaction
engineering, to complex biological processes. Typically the simulated models involve
chemistry and/or transport micro-mechanisms for atoms and molecules, e.g., reac-
tions, adsorption, desorption processes and diffusion on surfaces and through porous
media, [14, 2, 4]. Furthermore, mathematically similar mechanisms and correspond-
ing KMC simulations arise in agent-based models in epidemiology, ecology and traffic
networks, [24].

We consider an interacting particle system defined on a d-dimensional lattice ΛN .
Naturally, the simulations are performed on a finite lattice of the size N , however,
given the size of real molecular systems it is either necessary to treat the case N →
∞, e.g., Λ = Z

d, or alternatively any numerical estimates we obtain need to be
independent of the system size N . We restrict our discussion to lattice gas models
where the order parameter or the spin variable takes values in a compact set, in most
cases the set is finite Σ = {0, 1, . . . ,K}. At each lattice site x ∈ ΛN an order parameter
(a spin variable) σ(x) ∈ Σ is defined. The states in Σ correspond to occupation of
the site x ∈ ΛN by different species. For example, if Σ = {0, 1} the order parameter
models the classical lattice gas with a single species occupying the site x when σ(x) = 1
and with the site being vacant if σ(x) = 0. We denote {σt}t≥0 the stochastic process
with values in the countable configuration space S = ΣΛN . Microscopic dynamics
is described by transitions (changes) of spin variables at different sites. We study
systems in which the transitions are localized and involve only finite number of sites at
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each transition step. First, the local dynamics is described by an updating mechanism
and corresponding transition rates c(x, ω;σ) in (2.1), such that the configuration at
time t, σt = σ changes into a new configuration σx,ω by an update in a neighborhood
of the site x ∈ ΛN . Here ω ∈ Sx, where Sx is the set of all possible configurations
that correspond to an update at a neighborhood Ωx of the site x. For example, if the
modeled process is a diffusion of the classical lattice gas a particle at x, i.e., σ(x) can
move to any unoccupied nearest neighbor y of x, i.e., Ωx = {y ∈ ΛN | |x− y| = 1} and
Sx is the set of all possible configurations Sx = ΣΩx . Computationally the sample
paths {σt}t≥0 are constructed via KMC, that is through the procedure described in
(2.2) and (2.3) below.

The studied stochastic processes are set on a lattice (square, hexagonal, etc.)
ΛN with N sites, they have a discrete, albeit high-dimensional, configuration space
S and necessarily have to be of jump type describing transitions between different
configurations σ ∈ S. Mathematically, a CTMC is a stochastic process {σt} defined
completely in terms of the local transition rates c(σ, σ′) which determine the updates
(jumps) from any current state σt = σ to a (random) new state σ′. In the context
of the spatially distributed applications in which we are interested here, the local
transition rates will be denoted as

c(σ, σ′) = c(x, ω;σ) , (2.1)

which correspond to an updating micro-mechanism from a current configuration σt =
σ of the system to a new configuration σx,ω by performing an update in a neighborhood
of each site x ∈ ΛN . Here ω is an index for all possible configurations Sx that
correspond to an update at a neighborhood Ωx of the site x; we refer to the end of
the section for specific examples.

The probability of a transition over an infinitesimal time interval δt is

P (σt+δt = σx,ω |σt = σ) = c(x, ω;σ)δt+ o(δt) .

Realizations of the process are constructed from the embedded discrete time Markov
chain Sn = σtn (see [11]), corresponding to jump times tn. The local transition rates
(2.1) define the total rate

λ(σ) =
∑

x∈ΛN

∑

ω∈Sx

c(x, ω;σ) , (2.2)

which is the intensity of the exponential waiting time for a jump from the state σ.
The transition probabilities for the embedded Markov chain {Sn}n≥0 are

p(σ, σx,ω) =
c(x, ω;σ)

λ(σ)
. (2.3)

In other words once the exponential “clock” signals a jump, the system transitions
from the state σ to a new configuration σx,ω with the probability p(σ, σx,ω). On
the other hand, the evolution of the entire system at any time t is described by the
transition probabilities P (σ, t; ζ) := P (σt = σ |σ0 = ζ) where ζ ∈ S is an initial con-
figuration. The transition probabilities corresponding to the local rates (2.1) satisfy
the Forward Kolmogorov Equation (Master Equation), [15, 6],

∂tP (σ, t; ζ) :=
∑

σ′,σ′ 6=σ

c(σ′, σ)P (σ′, t; ζ)− λ(σ)P (σ, t; ζ) , (2.4)
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where P (σ, 0; ζ) = δ(σ − ζ) and δ(σ − ζ) = 1 if σ = ζ and zero otherwise.
In [1] we developed a general mathematical framework for parallelizable approxi-

mations of the KMC algorithm. Rather than focusing on exactly constructing stochas-
tic trajectories in (2.2) and (2.3), we proposed to approximate the evolution of ob-
servables f = f(σ) ∈ Cb(S), i.e., of bounded continous functions on the configuration
space S. The space of bounded continuous functions, Cb(S), is regarded as a Banach
space with the norm

‖ f ‖∞ = sup
σ∈S

|f(σ)| .

Here we consider observables/functions f(σ) depending on large number of variables
σ(x), x ∈ ΛN , such as coverage, surface roughness, correlations, etc., see for instance
the examples in Section 5. Alternatively, we may consider observables depending on
infinitely many variables σ(x), x ∈ Λ = Z

d, to stress the necessity of working with
the infinite volume limit.

Typically in KMC we need to compute expected values of such observables, that
is quantities such as

u(ζ, t) := E
ζ [f(σt)] =

∑

σ

f(σ)P (σ, t; ζ) , (2.5)

conditioned on the initial data σ0 = ζ. By a straightforward calculation using (2.4)
we obtain that the observable (2.5) satisfies the initial value problem

∂tu(ζ, t) = Lu(ζ, t) , u(ζ, 0) = f(ζ) , (2.6)

where the operator L : Cb(S) → Cb(S) is known as the generator of the continous
time Markov chain, [15], and in the case of (2.1) it is

Lf(σ) =
∑

σ′

c(σ, σ′)[f(σ′)− f(σ)] =
∑

x∈ΛN

∑

ω∈Sx

c(x, ω;σ)[f(σx,ω)− f(σ)] . (2.7)

We then write (2.5), as the the action of the Markov semi-group etL associated with
the generator L and the process {σt}t≥0, [15], on the observable f

u(ζ, t) = E
ζ [f(σt)] = etLf(ζ) , (2.8)

where E
ζ denotes the expected value with respect to the law of the process {σt}t≥0

conditioned on the initial configuration ζ.
We define a difference operator δxf as an analogue of a derivative. Higher-order

derivative analogues are defined in Section 5 when needed in the error analysis. We
define a corresponding function space, which is necessary in order to set up the semi-
group P = etL when we consider the infinite lattice Λ = Z

d or to obtain estimates
which are independent of the system size N when considering the lattice ΛN in Sec-
tion 5.

Definition 2.1. Let f ∈ Cb(S) then for any x ∈ ΛN we define

δx,ωf(σ) = f(σx,ω)− f(σ) .

We define the norm

‖f‖1 ≡
∑

x,ω

‖ δx,ωf ‖∞
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and the space of functions on S = ΣΛN

C1(S) = {f ∈ Cb(S) | ‖f‖1 ≤ Cf where Cf is independent of N } .

Similarly we define the space of functions on S = ΣΛ associated with the infinite
lattice Λ = Z

d

C1(S) = {f ∈ Cb(S) | ‖f‖1 < ∞} .

Because of the estimates in Section 5, see (5.8) and (5.10) in Theorem 5.6, we will
employ spaces with higher discrete derivatives that will be defined in Section 5. On
the infinite lattice Λ macroscopic observables are all f ∈ C1(S). In the case of ΛN ,
macroscopic observables are all f = f(σ) such that ‖f‖1 is independent of the system
size N ; such typical examples are discussed in Section 5.

Typically, the evolution of the particle system on the infinite lattice Λ = Z
d is

well-defined, as demonstrated in the next propositions.
Proposition 2.2. For any f ∈ C1(S) we have that the series

Lf(σ) =
∑

x∈Λ

∑

ω∈Sx

c(x, ω;σ)[f(σx,ω)− f(σ)] ,

converges uniformly and defines a function in Cb(S), provided supx,ω,σ c(x, ω;σ) < ∞.
Furthermore,

‖Lf ‖∞ ≤ sup
x,ω,σ

c(x, ω;σ)‖f‖1 .

Proof. Follows directly from (2.7) and the definition of C1(S).
Proposition 2.3. Under the boundedness assumptions on the rates, the closure

of the operator L defines a Markov generator for a Markov semigroup P ≡ etL, such
that for f ∈ C1(S), Pf ∈ C1(S) and

‖etLf‖1 ≤ eΓt‖f‖1 ,

where Γ is a constant depending on the rates c(x, ω;σ).
Proof. See [15, Theorem 3.9, pp 27].
Clearly the same results hold for the finite lattice ΛN and the corresponding

high-dimensional configuration space S, where all constants are independent of the
size N .

Examples.
Adsorption/Desorption for single species particles. In this case spins take values in
σ(x) ∈ Σ = {0, 1}, Ωx = {x}, Sx = {0, 1} and the update represents a spin flip at the
site x, i.e., for z ∈ ΛN

σx,ω(z) ≡ σx(z) =

{

σ(z) if z 6= x,

1− σ(x) if z = x.

Diffusion for single species particles. The state space for spins is σ(x) ∈ Σ = {0, 1},
Ωx = {y ∈ ΛN | |x − y| = 1} includes all nearest neighbors of the site x to which a
particle can move. Thus the new configuration σx,ω = σ(x,y) is obtained by updating
the configuration σt = σ from the set of possible local configuration changes {0, 1}Ωx
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using the specific rule, also known as spin exchange, which involves changes at two
sites x and y ∈ Ωx

σx,ω(z) ≡ σ(x,y)(z) =











σ(z) if z 6= x, y,

σ(x) if z = y,

σ(y) if z = x.

The transition rate is then written as c(x, ω;σ) = c(x, y;σ). The resulting process
{σt}t≥0 defines dynamics with the total number of particles (

∑

x∈ΛN
σ(x)) conserved,

sometimes referred to as Kawasaki dynamics, [4].

Multicomponent reactions. Reactions that involve K species of particles are easily
described by enlarging the spin space to Σ = {0, 1, . . . ,K}. If the reactions occur
only at a single site x, the local configuration space Sx = Σ and the update is indexed
by k ∈ Σ with the rule

σx,ω(z) ≡ σ(x,k)(z) =

{

σ(z) if z 6= x, y,

k if z = x.

The rates c(x, ω;σ) ≡ c(x, k;σ) define probability of a transition σ(x) to species
k = 1, . . . ,K or vacating a site, i.e., k = 0, over δt.

Reactions involving particles with internal degrees of freedom. Typically a reaction
involves particles with internal degrees of freedom, and in this case several neighboring
lattice sites may be updated at the same time, corresponding to the degrees of freedom
of the particles involved in the reaction. For example, in a case such as CO oxidation
on a catalytic surface, [16], when only particles at a nearest-neighbor distance can
react we set σ(x) ∈ Σ = {0, 1, . . . ,K}, Ωx = {y ∈ ΛN | |x − y| = 1} and the set of
local updates Sx = ΣΩx . Such Sx contains all possible reactions in a neighborhood
of x. When reactions involve only pairs of species, the rates can be indexed by k,
l ∈ Σ, or equivalently Sx = Σ × Σ. Then the reaction rate c(x, ω;σ) = c(x, y, k, l;σ)
describes the probability per unit time of σ(x) → k at the site x and σ(y) → l at y,
i.e., the updating mechanism

σx,ω(z) ≡ σ(x,y,k,l)(z) =











σ(z) if z 6= x, y,

k if z = x,

l if z = y,

where |x− y| = 1.

3. Towards parallel kinetic Monte Carlo algorithms. In practice, the sam-
ple paths {σt}t≥0 are constructed by the kinetic Monte Carlo algorithm, that is by
simulating the embedded Markov chain defined by (2.2) and (2.3) and advancing the
tine by random time-steps from the exponential distribution. Implementations are
based on the efficient calculation of transition probabilities, e.g., [3] for Ising models,
known as a BKL Algorithm, and in [7] known as Stochastic Simulation Algorithm
(SSA) for reaction systems.

It is evident from formulas (2.2) and (2.3), that KMC algorithms are inherently
serial as updates are done at one site x ∈ ΛN at a time, while on the other hand
(2.2) depends on information from the entire spatial domain ΛN . For these reasons
it appears that KMC cannot be parallelized easily. However, Lubachevsky, in [17],
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proposed an asynchronous approach for parallel KMC simulation in the context of
Ising systems, in the sense that different processors simulate independently parts of
the physical domain, while inconsistencies at the boundaries are corrected with a
series of suitable rollbacks. This method relies on the uniformization of (2.2); thus
the approach yields a null-event algorithm, [14], which includes rejected moves over
the entire spatial sub-domain that corresponds to each processor, see also [9]. A
modification in order to incorporate the BKL Algorithm was proposed in [17], which
was implemented and tested in [12]. This is a still asynchronous algorithm, where
BKL-type rejection-free simulations are carried out in the interior of each sub-domain
(processor), while uniform rates are used at the boundaries, reducing rejections to
just the boundary set. However, these asynchronous algorithms may still have a high
number of rejections for boundary events and rollbacks, which considerably reduce
the parallel efficiency, [22]. Advancing processors in time in a synchronous manner
over a fixed time-window can provide a way to mitigate the excessive number of
boundary inconsistencies between processors and ensuing rejections and rollbacks in
earlier methods. Such synchronous parallel KMC algorithms were proposed in [5],
[22], [18], [19]. However, several costly global communications are required at each
cycle between all processors whenever a boundary event occurs in any one of them,
in order to avoid errors in processor communication, [19]. As we will discuss in the
sequel, many of these issues with parallel KMC can be addressed by abandoning the
earlier perspective on creating a parallel KMC algorithm with exactly the same rates
c(x, ω;σ) in (2.7) as the serial algorithm.

Indeed, in [1], we adopted the approach of creating a parallel KMC algorithm
which approximates the underlying continuous time Markov chain of the serial al-
gorithm instead of reproducing its master equation exactly. We proposed a spatio-
temporal decomposition for the Markov operator underlying the KMC algorithm into
a hierarchy of operators corresponding to the processor architecture. Based on this op-
erator decomposition we can formulate Fractional Step KMC Approximation schemes
by employing the Trotter product formula. In turn these approximating schemes
determine the Communication Schedule between processors through the sequential
application of the operators in the decomposition, as well as the time step employed
in the particular fractional step scheme. Earlier, in [23] the authors also proposed an
approximate algorithm, in order to create a parallelization scheme for KMC. It was
demonstrated in [19, 20], that boundary inconsistencies are resolved in a straightfor-
ward fashion, while there is an absence of global communications. Finally, among the
parallel algorithms tested in [19], the one in [23] had the highest parallel efficiency.
In [1], we demonstrated that the approximate algorithm in [23] is a special case of
the Fractional Step Approximation schemes introduced in [1]. We also demonstrated,
using the Random Trotter Theorem, [13], that the algorithm in [23] is numerically
consistent in the approximation limit, i.e., as the time step in the fractional step
scheme converges to zero, it converges to a Markov Chain that has the same master
equation and generator as the original serial KMC. Finally, the open source SPPARKS
parallel Kinetic Monte Carlo simulator, [20], also relies on such Fractional Step ap-
proximations.

In this article, the convergence, reliability and efficiency of parallel algorithms,
that fit the Fractional Step KMC approximation framework, are systematically ex-
plored by rigorous numerical analysis which relies on controlled-error approximations
in transient regimes relevant to the simulation of extended systems.
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3.1. Fractional time step kinetic Monte Carlo algorithms. In [1] we pro-
posed a class of parallel KMC algorithms that are based on operator splitting of the
Markov generator L which is based on a geometric decomposition of the lattice ΛN .

Definition 3.1. The lattice ΛN is decomposed into non-overlapping coarse cells
Cm, m = 1, . . . ,M such that, |Cm| = Q = qd, where d is the dimension,

ΛN =
M
⋃

m=1

Cm , Cm ∩Cn = ∅ , m 6= n , N = MQ . (3.1)

The range of interactions is defined as L = maxx∈Cm
{diamΩx}. For a coarse cell

Cm the closure of this set is

C̄m = {z ∈ ΛN | |z − x| ≤ L , x ∈ Cm} .

The boundary of Cm is then defined as ∂Cm = C̄m \ Cm.
The closure C̄m thus includes all sites of Cm and all “boundary” lattice sites ∂Cm

which are connected with sites in Cm through particle interactions in the updating
mechanism, see Figure 3.1. In many models the value of the interaction range L is
independent of x due to the translational invariance of the model. This geometric
partitioning induces a decomposition of (2.7)

Lf(σ) =
M
∑

m=1

Lmf(σ) , Lmf(σ) =
∑

x∈Cm

∑

x,ω∈Sx

c(ω;σ)[f(σx,ω)− f(σ)] . (3.2)

The generators Lm define a new Markov process {σm
t }t≥0 on the entire lattice ΛN .

Remark 3.1. In many models such as in catalysis the interactions between
particles are short-range, [21, 16], and therefore the transition rates c(x, ω;σ) depend
on the configuration σ only through σ(x) and σ(y) with |x − y| ≤ L, where L is
small (typically one). Similarly the new configuration σx,ω involves changes only at
the sites in this neighborhood. Thus the generator Lm updates the lattice sites at
most in the set C̄m = {z | |x− z| ≤ L , x ∈ Cm}. Consequently the processes {σm

t }t≥0

and {σm′

t }t≥0 corresponding to Lm and Lm′ are independent provided C̄m ∩ C̄m′ = ∅.
The operator decomposition yields an algorithm suitable for parallel implementation,
in particular, in the case of short-range interactions when the communication overhead
can be handled efficiently: if the lattice ΛN is partitioned into subsets Cm such that
diamCm > L, we can group the sets {Cm}Mm=1 so that there is no interaction between
sites in Cm that belong to the same group. For the sake of simplicity we assume
that the lattice is divided into two sub-lattices described by the index sets I1 and I2

(black/red in each block in Fig. 3.1), which in turn induce a corresponding splitting
of the generator:

ΛN = Λ1
N ∪ Λ2

N :=
⋃

m∈I1

Cm ∪
⋃

m∈I2

Cm and

L = L1 + L2 :=
∑

m∈I1

L1,m +
∑

m∈I2

L2,m . (3.3)

The decomposition (3.3) has key consequences for simulating the process {σt}t≥0

in parallel, as well as formulating different related algorithms. The processes {σm
t }t≥0

corresponding to the generators L1,m are mutually independent for different m ∈
I1, and thus can be simulated in parallel. Similarly we can handle the processes
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∂Ci

∂Ci

∂Ci

∂Ci

Ci

L

Fig. 3.1. Lattice partitioning in (3.3). Note that later we use the notation C∂
i

to denote the
interior boundary of Ci, see Figure 5.1

belonging to the group indexed by I2. However, there is still local communica-
tion/synchronization between these two groups as there is non-empty overlap between
the groups due to interactions and updates in the sets C̄m ∩ C̄m′ when m ∈ I1 and
m′ ∈ I2 and the cells are within the interaction range L. Mathematically, we can
describe all that through a fractional step approximation of the Markov semigroup
P ≡ etL of the process {σt}t≥0. The operator splitting or equivalently the fractional
step approximation can be also viewed as an alternating dimension approximation
since we solve the evolution of u(σ, t) given as solution of (2.6) by alternating between
evolution of σ’s in the dimensions corresponding to I1 and I2.

Indeed, the key tool for our analysis are different versions of the Trotter formula,
[25, 13],

eTL = lim
n→∞

[

e
T
n
L1e

T
n
L2

]n

(3.4)

when applied to the operator L = L1 +L2 in (3.3). Thus to reach a time T we define
a time step ∆t = h = T

n for a fixed value of n and alternate the evolution by L1 and
L2, giving rise to the Lie splitting approximation for n ≫ 1:

eTL ≈ PL :=
[

e∆tL1e∆tL2
]n

, where ∆t = T
n . (3.5)

To develop a parallelizable scheme we use the fact that the action of the operator L1

(and similarly of L2) can be distributed onto independent processing units, indexed
by m in (3.3),

e∆tL1 =
∏

m∈I1

e∆tL1,m , e∆tL2 =
∏

m∈I2

e∆tL2,m .

Analogously we have the Strang splitting scheme

eTL ≈ PS :=
[

e
∆t
2 L1e∆tL2e

∆t
2 L1

]n

, where ∆t = T
n . (3.6)
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From now on, for the notational convenience, we shall also use h to symbolize ∆t.

While operator splitting has been exploited in many classical numerical methods,
e.g.,[8], in our context it offers a rigorous framework for extending simple (determin-
istic) alternating strategies associated with, for example, traditional Lie or Strang
splittings to more elaborate and randomized Processor Communication Schedules, we
refer to Section 6 for a complete discussion.

We characterize the FS-KMC (Fractional Step KMC) algorithm (3.5) as partially
asynchronous since there is no processor communication during the period h. Further-
more, at every h we have only local synchronization between processors, i.e., between
the sets C̄m ∩ C̄m′ when m ∈ I1 and m′ ∈ I2. Hence, the bigger the allowable h
in (3.5) or in (3.6) the less processor communication we have, in which case the er-
ror in the approximation (3.5) or (3.6) worsens. This balance between accuracy and
processor communication in algorithms is one of the themes of this article.

4. Local and global error analysis. The FS-KMC algorithm approximates
the evolution of observables u(σ, t) given by the original semigroup P . We present
an error analysis which focuses on classes of observables such as (2.5) instead on
estimating an approximation of the probability distribution of the process solving
(2.4). This perspective is also relevant to practical simulations, where the estimated
quantity is linked to specific observables, and is simulated by the FS-KMC algorithm.

To understand the error of this approximation we first analyze the error for the
two cases of deterministic PCS: the Lie splitting defines a new semigroup (3.5) that
we denote PL and similarly PS denotes the semigroup (3.6) obtained by the Strang
splitting. The local error analysis can be treated in a similar way as it is done for
the finite dimensional case when working on the lattice ΛN by using the property
proved in [10]. The estimates for local and global error follow standard steps and
are presented next for completeness. However, for macroscopic observables that typi-
cally arise in the simulation of extended KMC systems, we prove estimates which are
system-size independent in Section 5. Finally, in Section 7 we present, as a comple-
menting theoretical perspective, the same estimates on the infinite lattice Λ = Z

d, in
which case the involved generators are necessarily unbounded.

Lemma 4.1. Let L be the generator of a strongly continuous contraction semi-
group {etL}t≥0 on the Banach space Cb. Then the operators

Dm(tL) = etL −
m−1
∑

k=0

tk

k!
Lk , m ∈ N

+ (4.1)

satisfy the bound

‖Dm(tL)v ‖∞ ≤
tk

k!
‖Lkv ‖∞, ∀v ∈ Cb (4.2)

Proof. see Jahnke, [10].

Lemma 4.2 (Local Error). Let PL(t) and PS(t) be the schemes (3.5) and (3.6)
associated with the Lie and Strang splittings respectively, and let u(h) = P (h)f be the
solution of (2.6). Then the local error for the Lie splitting is

‖PL(h)f − u(h) ‖∞ ≤ c1‖ [L1,L2]f ‖∞h2 + c2
∑

|m|=3

‖Lm1
1 Lm2

2 f ‖∞h3 , (4.3)
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and for the Strang splitting scheme

‖PS(h)f − u(h) ‖∞ ≤ c3‖ [L1, [L1,L2]]f − 2[L2, [L2,L1]]f ‖∞h3

+ c4
∑

|m|=4

‖Lm1
1 Lm2

2 Lm3
1 f ‖∞h4 (4.4)

where [L1,L2] = L1L2−L2L1 denotes the commutator of L1 and L2 and ci, i = 1, ..., 4
are positive constants with ci < 1.

Proof. Using Lemma 4.1 the proof follows the standard finite dimensional ap-
proach based on the expansion of the operator exponential. We present the calcula-
tions here for the sake of completeness. In order to simplify the notation, we introduce

ak,N (h) =











hk

k! L
k
1 if k < N ,

Dk(hL1) if k = N > 0 ,

ehL1 if k = N = 0 ,

bk,N (h) =











hk

k! L
k
2 if k < N ,

Dk(hL2) if k = N > 0 ,

ehL2 if k = N = 0 .

(4.5)

Now the semigroup for the Lie splitting, at t = h, can be written as

ehL1ehL2f =
∑

i+j≤3

ai,3−j(h)bj,3(h)f

=
(

I + h(L1 + L2) +
h2

2
(L1 + L2)

2
)

f

+ h2[L1,L2]f +
∑

i+j=3

ai,3−j(h)bj,3(h)f .

Comparing with

eh(L1+L2)f =
(

I + h(L1 + L2) +
h2

2
(L1 + L2)

2
)

f +D3(h(L1 + L2))f ,

we get the estimate for the local error

‖ ehL1ehL2f − eh(L1+L2)f ‖∞ ≤ h2‖ [L1,L2]f ‖∞

+ ‖D3(h(L1 + L2))f ‖∞ + ‖
∑

i+j=3

ai,3−j(h)bj,3(h)f ‖∞ .

The second term in the above inequality is bounded by Lemma 4.1 and the third term
is bounded by

‖
∑

i+j=3

ai,3−j(h)bj,3(h)f ‖∞ ≤ ch3
(

‖L3
1f ‖∞+‖L2

1L2f ‖∞+‖L1L
2
2f ‖∞+‖L3

2f ‖∞
)

,

which follows from the definitions of ak and bk. The last step completes the proof for
the local error in the Lie case. For the Strang scheme the proof follows the same idea,
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we only have to take one more term in the expansion,

e
h
2 L1ehL2e

h
2 L1f =

∑

i+j+k≤4

ak,4−i−j(
h

2
)bj,4−i(h)ai,4(

h

2
)f

=
(

I + h(L1 + L2) +
h2

2
(L1 + L2)

2 +
h3

6
(L1 + L2)

3
)

f

+
h3

24

(

[L1, [L1,L2]]− 2[L2, [L2,L1]]
)

f

+
∑

i+j+k=4

ak,4−i−j(
h

2
)bj,4−i(h)ai,4(

h

2
)f .

Comparing with

eh(L1+L2)f =
(

I + h(L1 + L2) +
h2

2
(L1 + L2)

2

+
h3

6
(L1 + L2)

3
)

f +D4(h(L1 + L2))f ,

the estimate for the local error follows

‖ e
h
2 L1ehL2e

h
2 L1f − eh(L1+L2)f ‖∞ ≤ ch3‖ [L1, [L1,L2]]f − 2[L2, [L2,L1]]f ‖∞

+ ‖
∑

i+j+k=4

ak,4−i−j(
h

2
)bj,4−i(h)ai,4(

h

2
)f ‖∞ + ‖D4(h(L1 + L2))f ‖∞ .

The second term is bounded by Lemma 4.1 and the third term is bounded by

‖
∑

i+j+k=4

ak,4−i−j(
h

2
)bj,4−i(h)ai,4(

h

2
)f ‖∞ ≤ c4h

4
∑

|m|=4

‖Lm1
1 Lm2

2 Lm3
1 f ‖∞ ,

which again follows from (4.5).
After establishing the local truncation error it is straightforward to obtain the

global error estimate.
Theorem 4.3 (Global error). Let PL(t) and PS(t) be the the schemes (3.5) and

(3.6) associated with the Lie and Strang splittings respectively and let u(tn) = P (tn)f
be the exact solution of (2.6). Then the global error at the time T = tn = nh, for the
Lie splitting is bounded by

‖PL(tn)u(0)− u(tn) ‖∞ ≤ C1 max
k=0,...,n

‖ [L1,L2]u(tk) ‖∞h+RL(u)h
2 , (4.6)

where the remainder is given by

RL(u) ≡ RL(u;n, h) = C2 max
k=0,...,n

∑

|m|=3

‖Lm1
1 Lm2

2 u(tk) ‖∞ . (4.7)

and for the Strang scheme

‖PS(tn)u(0)− u(tn) ‖∞ ≤C3 max
k=0,...,n

‖
(

[L1, [L1,L2]]− 2[L2, [L2,L1]]
)

u(tk) ‖∞h2

(4.8)

+RS(u)h
3 ,
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where

RS(u) = RS(u;n, h) = C4 max
k=0,...,n

∑

|m|=4

‖Lm1
1 Lm2

2 Lm3
1 u(tk) ‖∞ , (4.9)

and C1, C2, C3 and C4 are constants, depending only on T .
Proof. It can be shown by induction that

en = P̃n(h)u(0)− u(tn) =

n−1
∑

k=0

P̃ k(h)
(

P̃ (h)− P (h)
)

P (n−k−1)(h)u(0) .

where P̃ denotes either PL or PS . By the assumptions, the operators L1 and L2

generate strongly continuous contraction semigroups and thus ‖ P̃ k ‖∞ ≤ 1, the global
error is bounded by

‖ en ‖∞ ≤
n−1
∑

k=0

‖
(

P̃ (h)− P (h)
)

u(tn−k−1) ‖∞

≤ n max
k=0,...,n

‖
(

P̃ (h)− P (h)
)

u(tk) ‖∞ .

Using Lemma 4.2, for P̃ = PL and P̃ = PS , to estimate the local error and the fact
that nh = T we obtain the estimates (4.6) and (4.8) for the Lie and the Strang scheme
respectively.

5. Estimates for macroscopic observables. In Theorem 4.3 we have shown
that the proposed splitting schemes are convergent as the time step h tends to zero.
The main idea of the proposed scheme is to control an error for observables, in other
words we estimate the weak error by analyzing solutions of (2.6). If we restrict the
initial data of the problem (2.6) to a special class of functions, then it is possible
to show that the error terms are independent of the size of the lattice, N . It turns
out that this is a wide class of function containing some of the most common observ-
ables in KMC simulations, such as mean coverage or spatial correlations, we refer to
Section 5.1.

In order to simplify the notation we suppress the dependence of the discrete
derivative operator δx,ω on ω in Definition 2.1.

Definition 5.1. For x = (x1, . . . , xm) ∈ Λm
N we introduce the notation

δxf(σ) = δx1 . . . δxm
f(σ) = δx1...xm

f(σ) ,

and we refer to it as the discrete derivative of f with respect to x. For example if
x = (x, y) then

δxyf(σ) = δxδyf(σ) = f(σxy)− f(σx)− f(σy) + f(σ) .

Definition 5.2. Let x = (x1, . . . , xm) ∈ Λm
N and f ∈ Cb(S). Then we define the

norm

‖f‖m =
∑

x1∈ΛN

. . .
∑

xm∈ΛN

‖δxf‖∞ ,
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and the function space

Cm(S) = {f ∈ Cb(S) |
m
∑

k=1

‖f‖k ≤ Cf where Cf is independent of N} , ∀m ∈ N .

We refer to elements of Cm(S) as macroscopic observables and we will discuss ex-
amples in Section 5.1. We now present the main theorem of this paper, showing that
for such macroscopic observables, or equivalently under smoothness conditions on the
initial data, the global error estimates for the Lie and the Strang schemes are inde-
pendent of the dimension of the system. The proof of this theorem is contained in
the next two subsections.

Theorem 5.3. (a) Let u(t) be the solution of (2.6) with u(0) = f ∈ C3(S).Then
for the global error estimate of Theorem 4.3 on the Lie scheme (3.5) we have

‖PL(tn)u(0)− u(tn) ‖∞ ≤ C1 max
k=0,...,n

‖ [L1,L2]u(tk) ‖∞h+RL(u)h
2 ,

where

‖ [L1,L2]u(tk) ‖∞ < C

and

RL(u) < C̃ ,

where both constants C and C̃ are independent of the system size N . Moreover, if
u(0) ∈ C4(S) then for the global error of the Strang scheme

‖
(

[L1, [L1,L2]]− 2[L2, [L2,L1]]
)

u(tk) ‖∞ < C ,

and

RS(u) < C̃ ,

where the constants C and C̃ are independent of the system size N .
(b) Many macroscopic observables u(0) = f are not just in C3(S) but also satisfy a
local bound such as

max
z∈ΛN

‖δzu(0, · )‖∞ + max
x,y∈ΛN

‖ δxyu(0, ·) ‖∞ + max
x,y,z∈ΛN

‖ δxyzu(0, ·) ‖∞ ≤
C

N
. (5.1)

Then the bounds for the commutators become

‖[L1,L2]u(t, · )‖∞ ≤ C
Ld+1

q
, (5.2)

and

‖
(

[L1, [L1,L2]]− 2[L2, [L2,L1]]
)

u(tk) ‖∞ ≤ C
L2d+1

q
, (5.3)

where N
M = Q = qd and the constant C is independent of N . The parameters L, M ,

N , q are defined in Definition 3.1, and d is the dimension of the lattice ΛN ⊂ Λ = Z
d.

The proof of this theorem is given in Section 5.4, while the supporting results
are proved earlier in Sections 5.2 and 5.3. Next, we discuss typical examples of
macroscopic observables f which are used in KMC simulations and also satisfy the
assumptions of Theorem 5.3.
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5.1. Examples of observables. There is a wide class of macroscopic observable
functions in Cm(S), that satisfy

δxf(σ) :=
1

N
φ
(

σ(x + k1), · · · , σ(x+ kℓ)
)

.ki ∈ ΛN , ∀x ∈ ΛN , (5.4)

A class of functions that satisfies (5.4), or more generally (5.1), includes the coverage,
spatial correlations, Hamiltonians and more generally observables of the type

f(σ) =
1

N

∑

y∈ΛN

U
(

σ(y + k1), . . . , σ(y + kℓ)
)

, ki ∈ ΛN .

These functions have the property that their discrete derivatives depend only on a
fixed number of points on the lattice that does not scale with N . In this section we
will show that this class of function belong in Cm(S), ∀m ∈ N

+.
Example 5.1 (Coverage). Let f(σ) = σ̄ = 1

N

∑

x∈ΛN
σ(x), the observable that

measures the mean coverage of the lattice ΛN . Then

δxf(σ) =
1

N
(σx(x)− σ(x)) ,

and in the case σ(x) ∈ {0, 1} it takes the simple form

δxf(σ) =
1

N
(1− 2σ(x)) .

The local average over a percentage of the domain, defined as

f(σ) =
1

N

∑

x∈A⊂ΛN

σ(x) ,

is also in the same class.
Example 5.2 (Spatial correlations). Let f(σ; k) = 1

N

∑

x∈ΛN
σ(x)σ(x + k), the

mean spatial correlation of length k. Then, when σ(x) ∈ {0, 1} it takes the form

δxf(σ) =
1

N

(

1− 2σ(x)
)(

σ(x + k) + σ(x − k)
)

.

In these examples it is obvious that f ∈ C1(S). To such functions we can apply
Lemma 5.5 and easily conclude that they belong to Cm(S) for m ≤ m0, where m0

depends on the form of the observable.
Example 5.3. Let f be an observable of type (5.4) with ℓ = 1 and k1 = 0, then

δxδyf(σ) = δx
1

N
φ(σ(y)) =

1

N
φ(σx(y))−

1

N
φ(σ(y)) = 0 , |x− y| > 1 .

An analogous result holds when ℓ ≥ 1 and ki 6= 0 with |x − y| > c(ℓ), where the
constant depends on ℓ but not on N .

Finally, there are macroscopic observables that are not of the type (5.4) but still
satisfy (5.1)

Example 5.4 (Variance). Let f(σ) = 1
N

∑

x∈ΛN
(σ(x) − σ̄)2 = σ̄ − σ̄2. Then

δxf(σ) =
1

N

(

1− 2σ(x)
)

(

1− 2σ̄ +
2σ(x) − 1

N

)

.

It is easy to verify that variance is in C2(S) and satisfies (5.1).
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5.2. Bounds on the remainder. In order to establish that the remainders
RL(u), (4.7), or RS(u), (4.9), Theorem 4.3, are bounded by constants independent of
N we derive estimates for powers of the operators L1, L2 and their compositions such
as L2

1L2. The idea for such estimates is an easy extension of estimates on L2 acting
on the solution of (2.6), which we present next. First, we prove that L2u is bounded
by the sum of first and second derivatives of u.

Lemma 5.4. Let u be the solution of equation (2.6). Then for the operator L2

the following bound holds

‖L2u(t, · )‖∞ ≤ c1
∑

x∈ΛN

‖δxu(t, · )‖∞ + c2
∑

x,y∈ΛN

‖δxyu(t, · )‖∞

= c1‖u(t, · )‖1 + c2‖u(t, · )‖2 . (5.5)

Proof. By a straightforward calculation

L2u(t, σ) =
∑

x,y∈ΛN

c(x, σ)c(y, σx)δxyu(t, σ)−
∑

x,y∈ΛN

c(x, σ)δxc(y, σ)δyu(t, σ) ,

and by taking norms on both sides

‖u(t, · )‖∞ ≤ ‖
∑

x∈ΛN

∑

|x−y|≤L

c(x, · )δyu(t, · )‖∞ + c2
∑

x,y∈ΛN

‖δxyu(t, · )‖∞

≤ c1
∑

x∈ΛN

‖δyu(t, · )‖∞ + c2
∑

x,y∈ΛN

‖δxyu(t, · )‖∞ ,

where the first inequality follows from the fact that δxc(y, σ) = 0 when |x − y| > L,
see Lemma 5.5, where we show that the derivatives of the rate functions have compact
support that depends only on the length of the interaction L.

Lemma 5.5. Let c be a rate function with interactions of range L

c(a, σ) = c̃
(

σ(a− L), . . . , σ(a+ L)
)

, a ∈ ΛN ,

then

δxc(a, σ) = 0, ∀x ∈ ΛN with |x− a| > L ,

and

δxyc(a, σ) = 0, ∀x, y ∈ ΛN with |x− y| > 2L+ 1 .

Moreover, for all higher derivatives holds that

δx1δx2 . . . δxn
f(σ) ≡

n
∏

k=1

δxk
f(σ) = 0 , |xi − xj | > 2L+ 1 , i 6= j .

Proof. For the first discrete derivative it is sufficient to observe that if x 6= y then
σy(x) = σ(x). Thus when a has distance from x greater than L the rate function
c(a, σ) is equal to c(a, σx) and the first derivative is zero.

For the second derivative, based on the calculation for the first derivative, we
have

δx

(

δyc(a, σ)
)

= 0 , |y − a| > L ,
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or, if we interchange x and y,

δy

(

δxc(a, σ)
)

= 0 , |x− a| > L .

Finally, the second derivative is always zero when |x− y| > 2L+ 1.
For the general case, the proof follows from the fact that δxδyc(a, σ) = δyδxc(a, σ)

and from the following observation

n
∏

k=1
k 6=i,j

δxk

(

δxi
δxj

c(a, σ)
)

= 0 , |xi − xj | > 2L+ 1 , i 6= j ,

which is true by the result for the second derivative.
Proposition 5.6. Let u(t, σ) be the solution of the equation (2.6) with initial

data in C2(S). Then the operator L2 satisfies the bounds,

‖L2u(t, · )‖∞ ≤ C , (5.6)

and

‖u(t, · )‖1 + ‖u(t, · )‖2 ≤ C1‖u(0, · )‖1 + C2‖u(0, · )‖2 ,

where C,C1 and C2 are constants independent of N .
Proof. We will bound the right hand side of the equation (5.5) thus we need

estimates on the first and the second derivatives of u. For the sake of brevity we use a
vectorial notation Lf = c(σ) · ∇σf(σ) ≡

∑

x c(x, σ)δxf(σ). The governing equations
for u, v1 ≡ δxu, v2 ≡ δxu and w ≡ δxδyu are

∂tu = c(σ) · ∇σu

∂tv1 = c(σ) · ∇σv1 + δxc(σ) · ∇σu(σ
x)

∂tv2 = c(σ) · ∇σv2 + δyc(σ) · ∇σu(σ
y)

∂tw = c(σ) · ∇σw + δyc(σ) · ∇σv1(σ
y) + δxc(σ) · ∇σv2(σ

x) + δxyc(σ) · ∇σu(σ
xy) .

First we bound the first derivative writing the solution for v(t, σ)

δxu(t, σ) = eLtu(0, σ) +

∫ t

0

e(t−s)L
∑

|y−x|≤N

δxc(y, σ)δyu(s, σ
x) ds . (5.7)

By taking the norms and summing over all x ∈ ΛN

∑

x∈ΛN

‖ δxu(t, · ) ‖∞ ≤
∑

x∈ΛN

‖ δxu(0, · ) ‖∞ + c1

∫ t

0

∑

x∈ΛN

∑

|y−x|≤L

‖ δyu(s, · ) ‖∞ ds .

By setting

ϕ(t) = ‖u(t, · )‖1 =
∑

x∈ΛN

‖ δxu(t, · ) ‖∞ , (5.8)

we obtain

ϕ(t) ≤ ϕ(0) + c̄1

∫ t

0

ϕ(s) ds .
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Similarly, for the second derivatives we have, by using Lemma 5.5,

∂tδxyu(t, σ) = Lδxyu(t, σ) +
∑

|z−y|≤L

δyc(z, σ)δxzu(t, σ
y) +

∑

|z−x|≤L

δxc(z, σ)∂yzu(t, σ
x)

+
∑

|z−x|≤L
|z−y|≤L

δxyc(z, σ)δzu(t, σ
xy)χC2L(x, y) ,

where χC2L is the characteristic function and C2L = {(x, y) ∈ Λ2
N | |x−y| < 2L}. The

solution of the above equation is expressed as

δxyu(t, σ) = etLδxyu(0, σ) +

∫ t

0

e(t−s)L

[

∑

|z−x|≤L

δyc(z, σ)δxzu(s, σ
y) +

∑

|z−y|≤L

δxc(z, σ)∂yzu(s, σ
x)

+
∑

|z−x|≤L
|z−y|≤L

δxyc(z, σ)∂zu(s, σ
xy)χC2L(x, y)

]

ds .

Thus, by using the contraction property of the semigroup and the fact that the discrete
derivatives of the rates are bounded functions, we have the estimate

‖ δxyu(t, ·) ‖∞ ≤ ‖ δxyu(0, ·) ‖∞ + c1

∫ t

0

∑

|z−x|≤L

‖ δxzu(s, ·) ‖∞ds

+ c2

∫ t

0

∑

|z−y|≤L

‖ δyzu(s, ·) ‖∞ ds

+ c3

∫ t

0

∑

|z−x|≤L
|z−y|≤L

‖ δzu(s, ·) ‖∞χC2L(x, y) ds .

(5.9)

By summing over all x, y ∈ ΛN and setting

ϑ(t) = ‖u(t, · )‖2 =
∑

x,y∈ΛN

‖ δxyu(t, ·) ‖∞ , (5.10)

we obtain

ϑ(t) ≤ ϑ(t) + c̄2

∫ t

0

ϑ(s)ds+ c̄3

∫ t

0

ϕ(s) ds ,

where both c̄2 and c̄3 depend on L but not on N . However, from Lemma A.1 (see
Appendix) we have

ϕ(t) ≤ c̃1ϕ(0) = c̃1‖u(0, · )‖1 < C ,

where the last inequality follows from the assumption that u(0, σ) ∈ C1(S). Further-
more, from Lemma A.1

ϑ(t) ≤ c̃2ϑ(0) + c̃3ϕ(0) ,

and the second term is bounded from the previous argument whereas the first term
is equal to

ϑ(0) = ‖u(0, · )‖2 < C ,
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which is true because the initial data are in C2(S). Finally, we obtain from Lemma 5.4,

‖L2u(t, · )‖∞ ≤ C1ϕ(t) + C2ϑ(t) ≤ C .

Remark 5.1. The same result can be obtained if we notice that the function
v(t, σ) = L2u(t, σ) satisfies the equation (2.6). Then the solution can be written as

v(t, σ) = etL
2

v(0, σ) and by taking the norm on both sides we get the estimate

‖L2u(t, · )‖∞ ≤ ‖ etL
2

u(0, · ) ‖∞ ≤ ‖ u(0, · ) ‖∞ ≤ C ,

where the second inequality follows from the fact that L2 generates a contraction
semigroup. However, in order to get bounds for quantities like L1L2u, it is sufficient
to observe from Lemma 5.4 that

‖L1L2u(t, · )‖∞ ≤ c1
∑

x∈Λ1
N

y∈Λ2
N

‖δxyu(t, · )‖∞ + c2
∑

x∈Λ1
N

‖δxu(t, · )‖∞

≤ ‖u(t, · )‖1 + ‖u(t, · )‖2

and the norms on the right hand side are bounded from Proposition 5.6.
Our last goal for this section is to prove that the remainders in the Lie and the

Strang scheme, (4.7) and (4.9) respectively, are independent of the size of the lattice.
To achieve this, we first have to bound third and fourth powers of combinations of
the operators L1 and L2 arising in (4.7) and (4.9). Then, as in Remark 5.1, using
a more general form of Lemma 5.4 it is easy to prove that all relevant combinations
of L1 and L2 are also bounded by constants independent of N . We will present the
general idea of the proof, rather than showing all the technical details that anyhow
follow the same idea as in Proposition 5.6. First we give a definition of the discrete
derivatives that generalizes Definition 5.1.

Definition 5.7. Let x = (x1, . . . , xm) ∈ Λm
N and ∀k ∈ N , k ≤ m define a ∈ Λk

N ,
the k-dimensional multi-index of k-tuples of x. As in Definition 2.1, the discrete
derivative with respect to a is

δaf(σ) = δa1...ak
f(σ) ,

and we define δ−af(σ) the derivative with respect to all variables in x = (x1, . . . , xm)
that are not contained in a.

Using this definition we are able to write a general form of the governing equation
for the m-th discrete derivative,

∂tδxu(t, σ) =
∑′

0≤|α|≤m

δαc(σ) · ∇σδ−αu(t, σ
α)

= Lδxu(t, σ) +
∑′

1≤|α|≤m

δαc(σ) · ∇σδ−αu(t, σ
α) , (5.11)

where the prime in the summation symbol means that we sum over tuples without
distinguishing the order of the variables, e.g., δxy = δyx. Using this representation
and the Remark A.1 we can apply the same idea as in Proposition 5.6 and prove
bounds for the operator Lk, k ∈ N

+, with initial data in Ck(S).
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5.3. Bounds on the commutators. The constants in the local error estimate
derived in Lemma 4.2 involve bounds on the commutators of the splitting operators
L1 and L2. We prove that these commutators are bounded operators on the spaces
Cm(S), independently of the system size N .

The error analysis quantifies the intuitive link of the approximation error to the
commutator [L1,L2] of the operators L1 and L2. The commutator is directly re-
lated to the geometric decomposition and the range of particle interactions. In order
to demonstrate this relation more specifically we discuss an example of Ising-type
interacting system in which the events (updates) occur only at a single site x ∈ ΛN .

The error estimates in Lemma 4.2 link the local error to the commutator of the
operators L1 and L2. In principle the commutator can be computed explicitly in
terms of the rates c(x, ω;σ) although general formulae become too complicated and
impractical. Therefore we give an example for a specific example of single site events,
i.e., ω = {x}. The example also demonstrates a procedure that is used for more
involved cases. First we evaluate the commutators associated with the decomposition
of the lattice into disjoint sub-lattices (Definition 3.1).

Lemma 5.8. Let L1,L2 be two operators defined by

L1f(σ) =
∑

x∈C1

c(x, σ)[f(σx)− f(σ)] , and L2f(σ) =
∑

x∈C2

c(x, σ)[f(σx)− f(σ)] ,

and C1, C2 ⊂ ΛN with dist(C1, C2) > L. Then L1 and L2 commute, i.e.,

[L1,L2] = 0 .

Proof. The proof follows from the straightforward calculation based on the fact
that c(x, σy) = c(x, σ) when x ∈ C1 and y ∈ C2 or vice versa and f(σxy) = f(σyx).
By a direct calculation we get

L1L2f(σ) =
∑

x∈C1

c(x, σ)
[

L2f(σ
x)− L2f(σ)

]

=
∑

x∈C1

∑

y∈C2

c(x, σ)c(y, σ)
(

f(σxy)− f(σx)− f(σy) + f(σ)
)

=
∑

y∈C2

c(y, σ)
∑

x∈C1

c(x, σ)
(

f(σxy)− f(σx)− f(σy) + f(σ)
)

=
∑

y∈C2

c(y, σ)
(

∑

x∈C1

c(x, σy)[f(σyx)− f(σy)]−
∑

x∈C1

c(x, σ)[f(σx)− f(σ)]
)

=
∑

y∈C2

c(y, σ)
[

L1f(σ
y)− L1f(σ)

]

= L2L1f(σ) .

Lemma 5.9. Let C1 and C2 be such that Ci = Co
i ∪ C∂

i , where Co
i := {x ∈

Ci | dist (x, (Ci)
c) > L}, where Ac is the complement of set A. With further decompo-

sition Co
i = Coo

i + Co∂
i where Coo

i := {x ∈ Ci | dist (x, (Ci)
c) > 2L} (see Figure 5.1).

Let Li = Lo
i +L∂

i and Lo
i = Loo

i +Lo∂
i , i = 1, 2 be the corresponding decomposition of

the generator L, then

[L1,L2] = [L∂
1 ,L

∂
2 ]
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and

[L1, [L1,L2]] = [[Lo∂
1 ,L∂

1 ],L
∂
2 ] + [L∂

1 , [L
∂
1 ,L

∂
2 ]] .

Proof. The proof of the first statement follows directly from Lemma 5.8 by ob-
serving that dist (Co

1 , C
o
2 ) = 2L and

dist (Co
1 , C

∂
2 ) = dist(C∂

1 , C
o
2 ) = L .

For the second statement, using the same lemma, we compute

[L1, [L1,L2]] = [Lo
1,L

∂
1L

∂
2 ]− [Lo

1,L
∂
2L

∂
1 ] + [L∂

1 , [L
∂
1 ,L

∂
2 ]] .

The first term on the right hand side can be further simplified

[Lo
1,L

∂
1L

∂
2 ] = Lo

1L
∂
1L

∂
2 − L∂

1L
∂
2L

o
1 = Lo

1L
∂
1L

∂
2 − L∂

1L
o
1L

∂
2

= [Lo
1,L

∂
1 ]L

∂
2 = [Loo

1 + Lo∂
1 ,L∂

1 ]L
∂
2

= [Lo∂
1 ,L∂

1 ]L
∂
2 ,

where in the second equation we used the fact that L∂
2L

o
1 = Lo

1L
∂
2 and in the last

equation [Loo
1 ,L∂

1 ] = 0. The same procedure leads to simplifying the second term but
the third cannot be simplified further. Combining all these steps we obtain the result
of the proposition.

C∂
i

Co∂
i

Coo
i

Ci

L L

Fig. 5.1. Sub-lattice partitioning. Note that we use the notation ∂Ci to denote C̄ \C, see also
Figure 3.1.

The estimation of the commutator in Theorem 5.3 requires local estimates on
the first and second discrete derivatives of the solution to the backward Kolmogorov
equation by the discrete derivatives of the initial data

Lemma 5.10. The solution of the equation

∂tu = Lu , t ∈ (0, T ] , u(0, σ) = f(σ) , (5.12)

satisfies the bounds

max
x∈ΛN

‖δxu(t, · )‖∞ ≤ C max
x∈ΛN

‖δxu(0, · )‖∞ (5.13)
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and

max
x,y∈ΛN

‖ δxyu(t, ·) ‖∞ ≤ C
[

max
x∈ΛN

‖δxu(0, · )‖∞ + max
x,y∈ΛN

‖ δxyu(0, ·) ‖∞
]

, (5.14)

where C is a constant independent of N , however, it may depend exponentially on t.
Proof. Using (5.7) and Lemma 5.5, we have

‖δxu(t, · )‖∞ ≤ ‖δxu(0, · )‖∞ +O(1)

∫ t

0

‖δxu(s, · )‖∞ ds

+O(
1

L
)

∫ t

0

∑

|x−y|≤L

‖δyu(s, · )‖∞ ds . (5.15)

Here the symbol O is asymptotic in the size of the system N → ∞. Setting γ(t) =
maxx∈ΛN

‖δxu(t, · )‖∞ we have

‖δxu(t, · )‖∞ ≤ γ(0) +O(1)

∫ t

0

γ(s)ds+O(
1

L
)L

∫ t

0

γ(s) ds ,

or

γ(t) ≤ γ(0) +O(1)

∫ t

0

γ(s) ds .

Applying Gronwall’s inequality we conclude the proof and obtain the bound

γ(t) ≤ ectγ(0) .

The inequality (5.14) follows similarly from (5.9) and from Lemma A.1.
The commutator, as shown in Lemma 5.9, is a localized quantity that depends

only on the boundary sites of the decomposed sub-lattices. Thus the localized estimate
in Lemma 5.10 gives us a tool in order to reveal the scaling of the commutator when
acting on macroscopic observables.

5.4. Proof of Theorem 5.3. By Lemma 5.9, the commutator can be written
as [L∂

1 ,L
∂
2 ], which due to Lemma 5.8 is expanded to

[L∂
1 ,L

∂
2 ]u(t, σ) =

∑

x∈Λ∂
1 ,y∈Λ∂

2

|x−y|≤L

c1(x, σ)c2(y, σ
x)δyu(σ

x, t)− c1(x, σ)c2(y, σ)δyu(σ, t)

− c1(x, σ
y)c2(y, σ)δxu(σ

x, t) + c1(x, σ)c2(y, σ)δxu(σ, t) .

On the other hand, by a straightforward calculation, we have

L∂
1L

∂
2u(t, σ) =

∑

x∈Λ∂
1 ,y∈Λ∂

2

|x−y|≤L

c1(x, σ)c2(y, σ
x)δxyu(t, σ)

−
∑

x∈Λ∂
1 ,y∈Λ∂

2

|x−y|≤L

c1(x, σ)δxc2(y, σ)δyu(t, σ) .

Taking norms on both sides similarly to Lemma 5.4 and using the fact that the rates
are bounded functions on ΛN × Σ,

‖[L1,L2]u(t, · )‖∞ ≤ C
∑

x∈Λ∂
1 ,y∈Λ∂

2

|x−y|≤L

‖δxyu(t, · )‖∞ + ‖δyu(t, · )‖∞ ≤ C , (5.16)
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where the second inequality follows from Proposition 5.6, using the fact that the
initial data are macroscopic observables, i.e., belong to C2(S). Similarly, we obtain
the commutator estimate for the Strang scheme.

Next, we turn our attention to (5.2). Many observables are in C2(S), but also
satisfy the local bound (5.1) as one can see in Section 5.1. Under this assumption, we
obtain from (5.16) the bound for the commutator

‖[L1,L2]u(t, · )‖∞ ≤ C
∑

x∈Λ∂
1 ,y∈Λ∂

2

|x−y|≤L

‖δxyu(t, · )‖∞ + ‖δyu(t, · )‖∞

≤ C
[

max
x,y∈ΛN

‖δxyu(0, · )‖∞ + max
y∈ΛN

‖δyu(0, · )‖∞
]

∑

x∈Λ∂
1 ,y∈Λ∂

2

|x−y|≤L

1 , (5.17)

where the second inequality follows from Lemma 5.10. Using the fact that the initial
data belong to C2(S) and satisfy (5.1), as well as that |C∂

m| = c(d)Lqd−1, where d is
the dimension, we deduce that

‖[L1,L2]u(t, · )‖∞ ≤
C̃

N

∑

x∈Λ∂
1 ,y∈Λ∂

2

|x−y|≤L

1 ≤
C̃

N
×M × c(d)Lqd−1 × Ld = C

Ld+1

q
, (5.18)

where we used the fact that N
M = Q = qd. We note that for more general, non-square

lattices, the estimate is modified accordingly as the structure of neighbors in the
calculation of |C∂

m| will evidently change. Finally, the proof of (5.3) follows along the
same lines, noting that the the summation in (5.18) is now replaced by summations
such as

∑

x∈Λ∂
1 ,y∈Λ∂

2 ,z∈Λ∂
1

|x−y|≤L,|x−z|≤L

1 ≤ M × c(d)Lqd−1 × Ld × Ld .

6. Processor communication and error analysis. In this Section we ex-
amine the balance between accuracy and processor communication in the parallel
Fractional Step KMC algorithms. Our analysis is based on the local and global error
analysis tools we have developed in this article.

A key feature of the fractional step methods is what we define as the Processor
Communication Schedule (PCS), which dictates the order with which the hierarchy
of operators in (3.3) are applied and for how long. For instance, for the Lie scheme
(3.5) the processors corresponding to L1 (resp. L2) do not communicate, hence the
processor communication within the algorithm occurs only each time we have to apply
e∆tL1 or e∆tL2 . For this reason, we characterize the FS-KMC algorithms (3.5), (3.6)
as partially asynchronous since there is no processor communication during the period
∆t. Furthermore, at every ∆t we have only local synchronization between processors,
i.e., between the sets C̄m ∩ C̄m′ when m ∈ I1 and m′ ∈ I2. Hence, the bigger the
allowable ∆t in (3.5) or in (3.6) the less processor communication we have, in which
case the error in the approximation (3.5) or (3.6) worsens.

In both schemes (3.5), and (3.6), the communication schedule is fully determin-
istic, relying on the Trotter Theorem. On the other hand, we can construct general
randomized PCS based on the Random Trotter Product Theorem, [13]. Indeed, the
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sub-lattice parallelization algorithm for KMC, introduced in [23], is a particular ex-
ample of a fractional step algorithm with stochastic PCS. In [23, 20] each sub-lattice is
selected at random, independently and advanced by KMC over a fixed time window
∆t, subsequently a new random selection is made and again the sub-lattice is ad-
vanced by ∆t, etc. This algorithm is easily recast as a fractional step approximation,
[1].

Here we compare the deterministic and randomized PCS from the point of view
of processor communication and error analysis: we specify the same error tolerance
TOL for all PCS, which by means of our error analysis selects in each case a possibly
different time windows ∆t. Larger time windows ∆t give rise to algorithms that have
less processor communication for the same error tolerance.

6.1. Randomized processor communication schedules. A generalization
by Kurtz, [13], of the Trotter Theorem suggests numerically consistent schemes in
which evolutions are applied not in a deterministic, prescribed, order but as a ran-
dom composition of individual propagators resulting in a random evolution. Given a
pure jump process X(t), with stationary measure µ(dξ), and given the infinitesimal
generators Lk we define a random evolution by

Tn(t)f = eτ0/nLξ0 eτ1/nLξ1 . . . e
τN(nt)/nLξN(nt) f ,

where N(t) is the number of jumps up to time t and τk are the sojourn (waiting) times
at the visited states (ξ0, . . . , ξN(t)). The random Trotter product theorem yields the
expectation semigroup

lim
n→∞

Tn(t)f = etL̄f , a.s. (6.1)

with the generator L̄ characterized explicitly

L̄f =

∫

Lξf µ(dξ) . (6.2)

While the random Trotter formula serves as a motivation for constructing schemes
in which the evolution of the system, i.e., the process {σt}t≥0, is approximated by a
process obtained from a random composition of propagators e∆tLk , the error analysis
in the spirit of Theorem 5.3 requires more careful inspection of the approximating
process {γkh}nk=0 on the interval [0, T ] with T = n∆t.

We present the construction in a simpler case of the independent identically dis-
tributed random variables that index the individual generators Lξ. We analyze the
randomized Lie scheme for the operator splitting given by L = L1+L2. In the context
of the parallel FS-KMC the random process X(t) can be interpreted as a stochastic
PCS. In [1] we demonstrated that the sub-lattice parallelization algorithm for KMC,
introduced in [23], is a particular example of a fractional step algorithm with stochas-
tic PCS. In [23] each sub-lattice is selected at random, independently and advanced
by KMC over a fixed time window ∆t = h, subsequently a new random selection is
made and again the sub-lattice is advanced by h, etc. This algorithm is easily recast
as a fractional step approximation, where we can show that L̄ = 1

2 (L1 + L2) which
is a time-rescaling of the original operator L. From the numerical analysis viewpoint,
our re-interpretation of the algorithm in [23] as (6.1) allows us to provide a rigorous
justification that it is a consistent estimator of the serial KMC algorithm. Next we
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present the local error analysis of randomized PCS and in analogy to Lemma 4.2, we
estimate the mean (weak) local error of the approximating γ-process.

Definition 6.1 (Random Lie splitting). Let Pi(t), i = 1, 2, be two Markov
semigroups with the infinitesimal generators Li and the transition probability kernels
pi(t; γ, γ

′). Assume {ξ1, ξ2, . . . } be a sequence of i.i.d. Bernoulli random variables
with values ξ ∈ {1, 2}. We define the random evolution as the process {γkh}nk=0 by
setting for h > 0, k = 0, 1, 2, . . . , n, and ξ2k, ξ2k−1 independent of γ0, γh, . . . , γ(k−1)h

E[f(γkh) | γ(k−1)h] := Pξ2k−1
(h)Pξ2k (h)f(γ(2k−1)h) , (6.3)

where the transition probability kernel is

[Pξ1 (h)Pξ2(h)f ](η) =
∑

γ′

∑

γ′′

pξ1(h; η, γ
′)pξ2(h; γ

′, γ′′)f(γ′′) .

For a given f ∈ Cb(S) we estimate the quantity E
σ[f(σkh)] and E

γ [f(γkh)] where
the expected values are computed on the corresponding probability spaces associated
with each process and conditioned on the initial states σ0 = σ and γ0 = γ respectively.
We denote the initial states by different letters in order to distinguish between these
two different probability path measures, however, the initial state is assumed to be
same for both {σt}t≥0 and {γkh}nk=0.

Theorem 6.2 (Local Error). Assume P (ξk = 1) = P (ξk = 2) = 1
2 , for the

approximating process {γkh}nk=0 of Definition 6.1. Then for any f ∈ Cb(S) and given
∆t = h > 0, the exact process {σt}t≥0 with σ0 = γ0 = γ corresponding to the generator
1
2L satisfies

E
γ [f(γh)]− E

σ[f(σh)] = E
ξ [(Pξ1(h)Pξ2(h)f(γ)− u(γ, h))]

=
h2

2
E
ξ

[

L2
ξ1 + L2

ξ2 + 2Lξ1Lξ2 −
1

4
L2

]

f(γ) +O(h3) .

where u(γ, h) = P (h)f(γ) is the solution of the rescaled, by 1/2, equation (2.6)

∂tu(ζ, t) =
1

2
Lu(ζ, t) , u(ζ, 0) = f(ζ) . (6.4)

Proof. We estimate the local truncation error following similar steps as in the
deterministic case. From the definition of the γ-process we have

E
γ [f(γh)] = E

ξ[Pξ1(h)Pξ2 (h)f(γ)] ,

and similarly, using the fact that the initial states are same, σ0 = γ0 = γ,

E
σ[f(σh)] = P (h)f(γ) = u(γ, h) .

Hence we obtain a representation of the mean local error

E
γ [f(γh)]− E

σ[f(σh)] = E
ξ [(Pξ1(h)Pξ2(h)− P (h)) f(γ)] . (6.5)

Now for given realizations of ξ1, ξ2 we have the expansion of Pξ1(h)Pξ2 (h)− P (h) as
in the deterministic case, thus obtaining

[Pξ1(h)Pξ2(h)− P (h)]f =

h[Lξ1 + Lξ2 −
1

2
L]f +

h2

2
[L2

ξ1 + L2
ξ2 + 2Lξ1Lξ2 −

1

4
L2]f +O(h3) .

(6.6)
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Note that 1
2L = 1

2L1 +
1
2L2 is associated with the process {σt}t≥0. We have that the

leading term of the local truncation error is E
ξ[Lξ1 + Lξ2 − 1

2L] and thus this term
vanishes whenever 1

2L = E
ξ[Lξ1 + Lξ2 ], which holds true when P (ξk = 1) = P (ξk =

2) = 1
2 .

Remark 6.1. For Bernoulli variables ξi with probabilities p this means that
the γ-process approximates a process with the generator pL1 + (1 − p)L2 instead of
1
2L = 1

2L1+
1
2L2. This indicates that the usual order of the Lie splitting is achieved by

properly weighing the time steps, i.e., applying P1(h1) and P2(h2) with different time
steps h1 and h2 respectively. This calculation also shows that if we want to obtain
the generator L instead of 1

2L in Lemma 6.2, then in order to evolve the process σ
by the time step h, each semigroup Pξ1 , Pξ2 needs to be applied with the time step
2h, giving rise to the approximating process γh. In this case we have the local error
representation

E
γ [f(γh)]− E

σ[f(σh)] : = E
ξ [(Pξ1(2h)Pξ2(2h)f(γ)− u(γ, h))]

=
h2

2
E
ξ
[

4L2
ξ1 + 4L2

ξ2 + 8Lξ1Lξ2 − L2
]

f(γ) (6.7)

+O(h3) ,

where u(γ, h) = P (h)f(γ) is the solution of (2.6).

6.2. Comparison of deterministic and random schedules. The presented
error analysis allows us to evaluate and compare deterministic (Lie and Strang) PCS
introduced in [1], as well as randomized PCS such as the one in Lemma 6.4, introduced
earlier in [23]. We compare the deterministic and randomized PCS from the point
of view of processor communication and error analysis by specifying the same error
tolerance TOL for all PCS which, by means of our error analysis, selects in each case
a possibly different time window ∆t. Larger time windows give rise to algorithms
that have less processor communication for the same error tolerance. We start with
the Lie and Strang schemes.

We fix the same error tolerance level TOL in the Lie and Strang global errors (4.6)
and (4.8) respectively. We also fix the same time window T = nL∆tL and T = nS∆S

where ∆tL and ∆tS are the respective time steps of the Lie and the Strang schemes
that will ensure the same tolerance level TOL up to time T . Based on Theorems 4.3
and 5.3 we have that the leading errors are governed by the commutators

TOL ∼ CLie(T )∆tLie , CLie(T ) = max
k=0,...,n

‖ [L1,L2]u(tk) ‖∞ , (6.8)

and

TOL ∼ CStrang(T )∆t2Strang , (6.9)

CStrang(T ) = max
k=0,...,n

‖
(

[L1, [L1,L2]]− 2[L2, [L2,L1]]
)

u(tk) ‖∞ ,

where u = u(t) solves (2.6). Furthermore, due to (5.2) and (5.3) we have that

TOL ∼ O
(Ld+1

q

)

∆tLie , TOL ∼ O(
L2d+1

q

)

∆t2Strang . (6.10)

In the case of the randomized PCS the same reasoning as in Theorem 4.3 allows us
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to iterate the mean local error (6.7) to obtain

TOL ∼ CRandom(T )∆tRandom ,

CRandom(T ) = max
k=0,...,n

E
ξ
[

4L2
ξ1 + 4L2

ξ2 + 8Lξ1Lξ2 − L2
]

u(tk) , (6.11)

where u = u(t) solves (2.6). We now easily obtain that

E
ξ
[

4L2
ξ1 + 4L2

ξ2 + 8Lξ1Lξ2 − L2
]

u(t) =
[

4L2
1 + 4L2

2 + L2
]

u(t) .

Thus, due to the rigorous remainder bounds in Section 5 on the solution of (2.6) such
as Lemma 5.6, we have that the term ‖

[

4L2
1 + 4L2

2 + L2
]

u ‖∞ is of order O(1) in the
system size N , and we have

TOL ∼ O(1)∆tRandom . (6.12)

In order to achieve the same error tolerance TOL, (6.10) and (6.12) imply the
following relation between the respective time steps

δtSSA ≪ ∆tRandom ∼
Ld+1

q
∆tLie < ∆tLie ∼ Ld∆t2Strang < ∆tStrang . (6.13)

Here q is the diameter of each of the cells Ck in Figure 3.1, and δtSSA = O(1/N) is the
stochastic time step (the waiting time) of the SSA algorithm [7], which is exponentially
distributed according to (2.2).

The relation (6.13) has several practical implications.
(i) The selection of the time window ∆t in each PCS is intrinsically goal-oriented in

the sense that it depends directly on the macroscopic observable f(σ) through
the commutator estimates of the solution to (2.6).

(ii) The random and deterministic PCS studied here are rigorously partially asyn-
chronous as their respective time windows are much larger than the SSA time
step δtSSA for a given error tolerance.

(iii) The Lie scheme (3.5) is expected to parallelize better than the randomized PCS
in [23] when Ld+1 ≪ q, since it allows a q-times larger time step ∆t for the same
accuracy. This outcome is also demonstrated in Figure 6.1.

(iv) Finally, among the PCS we studied, the Strang PCS yields parallel schemes with
the least processor communication, at least when L ∼ O(1), due to its higher
order accuracy and the commutator estimate (5.3).

Example 6.1. We demonstrate this comparison in a computational example in
which a jump process defined by Arrhenius spin-flip dynamics on a one-dimensional
lattice was simulated. The simulated system corresponds to the Ising model with
nearest-neighbor interactions and spins taking values in {0, 1}. The rate of the process
is give by

c(x, σ) = cd(1− σ(x)) + caσ(x)e
−βU(x) ,

where U(x) = J(σ(x − 1) + σ(x + 1)) + h̄, and cd, ca, β, J , h are the parameters of
the model.

We verified the theoretical order of convergence by computing the error

∫ T

0

|E[C(t)] − E[C̃(t)]| dt
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where C(t) and C̃(t) are the reference KMC and the FS-KMC solution, respectively,
obtained by averaging the spatial mean coverage process C(t) =

∑

x∈ΛN
σt(x) of

the system over K independent realizations. For the reference solution, the classical
stochastic simulation algorithm (SSA) was used. In order to eliminate the impact of
the statistical averaging error K = 105 independent samples were used. The error
bars are below resolution of the graph depicted in Figure 6.1. In Figure 6.1 the
error behavior is compared for different values of the splitting time step h ≡ ∆t for
the randomized PCS and the Lie splitting. The lattice size is N = 800 and the
parameters of the system are β = 15, J = 0.37, h = 0.5 and ca = cd = 1. For the
fractional step algorithm four processors were used, thus the size of the sub-lattice is
q = 100. The final time is chosen to be T = 4.
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E
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Fig. 6.1. Convergence of the weak error for deterministic and randomized Lie splitting.

Example 6.2. In this example we investigate the dependence of the weak error,
as defined in the previous example, on the sub-lattice parameter q. The model we used
to run the simulation is Ising model, as described in Example 6.1. The parameters
for the model are β = 5, J = 1, h = 0.5, and ca = cd = 1. The final time is
chosen to be T = 5 and the dimension of the lattice N = 480. For the FS-KMC
algorithm a constant, and rather large, time step parameter ∆t = 5 was used. For
the FS-KMC algorithm we used K = 104 samples to compute the mean value of the
solution on the interval [0, T ] and for the reference solution, which was obtained with
the SSA algorithm, K = 105 samples were used. In Figure 6.2 we can observe that the
deterministic schedules of Lie and Strang give better results than those of the random
PCS. Also the Strang scheme has lower error than the Lie scheme as expected from
the theoretical analysis. Finally, the dependence of the error on 1

q is also revealed,
which in logarithmic scale is shown as a straight line.

7. The infinite volume limit. In this paper we considered interacting particle
systems defined on a d-dimensional lattice ΛN , as the numerical analysis and simu-
lations for the parallel fractional step Kinetic Monte Carlo are performed on a finite
lattice of size N . However, given the size of real molecular systems it is necessary that
numerical estimates are independent of the system size N as we showed in Section 5.
Alternatively we can consider the case N → ∞, e.g., by setting up our analysis on the
infinite lattice Λ = Z

d. We outline the latter approach here for completeness of our
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Fig. 6.2. Dependence of the weak error on the sub-lattice size parameter q, see also (6.13).

analysis. We refer to [15] for a comprehensive study of interacting particle systems
set on infinite lattices.

First, we consider the configuration space S = ΣΛ, where Λ = Z
d and the space

of bounded continuous functions Cb(S). Then the generator (2.7) is defined on a
suitable domain D(L),

L : D(L) ⊂ Cb(S) 7→ Cb(S) .

In this case, Theorem 4.3 is restated similarly to Theorem 3 in [10], provided the
solution u = u(t) of (2.6) satisfies u(tk) ∈ D(Lm1

1 Lm2
2 ) for |m| ≤ 3 and k = 0, . . . , n.

As it was also pointed out in [10] this is in principle an uncheckable hypothesis.
However, this is not the case here: due to the results of Section 5 we have that if
f ∈ C2(S) is a macroscopic observable, where

Cm(S) := {f ∈ Cb(S) |
m
∑

k=1

‖f‖k < ∞} , ∀m ∈ N ,

then u(t) ∈ D(Lm1
1 Lm2

2 ) due to Theorem 5.3 and Remark 5.1. Therefore, all estimates
of Section 5 hold also true in the infinite lattice Λ, which is certainly not unexpected
since all previous results in ΛN were independent of the system size N .

8. Conclusions. In this paper, we derived numerical error estimates for the
Fractional Step Kinetic Monte Carlo (FS-KMC) algorithms proposed in [1] for the
parallel simulation of interacting particle systems on a lattice. These algorithms
have the capacity to simulate a wide range of spatio-temporal scales of spatially
distributed, non-equilibrium physiochemical processes with complex chemistry and
transport micro-mechanisms, while they can be tailored to specific hierarchical paral-
lel architectures such as clusters of Graphical Processing Units. A key aspect of our
approach relies on emphasizing a goal-oriented error analysis for macroscopic observ-
ables (e.g., density, energy, correlations, surface roughness), rather than focusing on
strong topology estimates for individual trajectories or estimating probability distri-
butions solving the Master Equation (Forward Kolmogorov Equation). Our analysis
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also addresses earlier work on parallel KMC algorithms [23, 20] that fit into the FS-
KMC framework. Furthermore, moving beyond the parallelization problems discussed
here, it appears that these methodologies, introduced in Section 5, can be generally
useful in the development and study of numerical approximations of molecular and
other extended systems. Our error analysis allows us to address systematically the
processor communication of different parallelization strategies for KMC by comparing
their (partial) asynchrony, which in turn is measured by their respective fractional
step time-step for a prescribed error tolerance.
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APPENDIX

Appendix A. A general form of Gronwall’s inequality.

For the sake of completeness we prove a variant of Gronwall’s lemma for a partic-
ular case that appears in the proof of Proposition 5.10. We prove it in the presence
of two equations, but the result can be easily generalized for a system of equations.

Lemma A.1 (Gronwall’s inequality). Let ϑ and ϕ satisfy the following inequalities

ϕ(t) ≤ ϕ(0) +

∫ t

0

ϕ(s) ds

ϑ(t) ≤ ϑ(0) +

∫ t

0

ϑ(s) ds+

∫ t

0

ϕ(s) ds

then

ϕ(t) ≤ etϕ(0) (A.1)

ϑ(t) ≤ etϑ(0) + (et + tet − 1)ϕ(0) (A.2)

Proof. The first estimate follows directly from Gronwall’s inequality. By integrat-
ing this inequality on [0, t]

∫ t

0

ϕ(s) ≤ (et − 1)ϕ(0) ,

and by substituting this to the second inequality we obtain

ϑ(t) ≤ ϑ(0) + (et − 1)ϕ(0) +

∫ t

0

ϑ(s) ds .

If we multiply by e−t and integrate on [0, t] we have

∫ t

0

[

e−r

∫ r

0

ϑ(r)
]′

dr ≤ (1 − e−t)ϑ(0) + (et + tet − 1)ϕ(0) ,

and after straightforward calculations

ϑ(t) ≤ etϑ(0) + (et + tet − 1)ϕ(0) .

Remark A.1. Let Φ(t) = (ϕ1(t), . . . , ϕn(t)) satisfying

Φ(t) ≤ Φ(0) +

∫ t

0

AΦ(s) ds
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where A is a constant lower triangular matrix and the inequality has the meaning
that it is true component-wise, then

Φ(t) ≤ B(t)Φ(0) ,

where B is a lower triangular matrix with elements exponentially depending on t.


