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Abstract

Let G be a graph, and H : V (G) → 2N a set function associated with G. A
spanning subgraph F of G is called an H-factor if the degree of any vertex v

in F belongs to the set H(v). This paper contains two results on the existence of
H-factors in regular graphs. First, we construct an r-regular graph without some
given H∗-factor. In particular, this gives a negative answer to a problem recently
posed by Akbari and Kano. Second, by using Lovász’s characterization theorem
on the existence of (g, f)-factors, we find a sharp condition for the existence of
general H-factors in {r, r + 1}-graphs, in terms of the maximum and minimum
of H. The result reduces to Thomassen’s theorem for the case that H(v) consists
of the same two consecutive integers for all vertices v, and to Tutte’s theorem if
the graph is regular in addition.
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1 Introduction

Let G = (V (G), E(G)) be a simple graph, where V (G) and E(G) denote the set of
vertices and edges of G respectively. For any vertex v, denote the degree of v by dG(v).
Let 2N denote the collection of sets of nonnegative integers. We call

H : V (G) → 2N

a set function associated with G if H(v) ⊆ {0, 1, . . . , dG(v)}. A spanning subgraph F
of G is called an H-factor if dF (v) ∈ H(v) for all v. It is often that H(v) coincides
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with some set H ′ for all v. In this case, we call H ′ a set associated with G, and call F
an H ′-factor without confusion. Let

g, f : V (G) → Z

be two functions such that g(v) ≤ f(v) for all v. An H-factor is called a (g, f)-factor
if H(v) is the interval [g(v), f(v)] for all v. A (g, f)-factor is called an [a, b]-factor if
g(v) = a and f(v) = b for all v. An [a, b]-factor F is called an (a, b)-parity-factor if

dF (v) ≡ a ≡ b (mod 2) for every vertex v.

In particular, F is called a k-factor if a = b = k.

A graph is said to be r-regular if every vertex has degree r. This paper is concerned
with the existence of H-factors in regular graphs. The study on the existence of factors
in regular graphs was started, to the best of our knowledge, from Petersen [9].

Theorem 1.1 (Petersen). Let r and k be even integers such that 1 ≤ k ≤ r. Then
any r-regular graph has a k-factor.

In contrast with even-factors in Theorem 1.1, Gallai [6] obtained the next result
for odd-factors. For any graph G, we call the number |V (G)| of vertices the order of G,
denoted alternatively by |G| as usual.

Theorem 1.2 (Gallai). Let r, k and m be integers such that r is even, k is odd and

r

m
≤ k ≤ r

(

1−
1

m

)

.

Then any m-edge-connected r-regular graph of even order has a k-factor.

It is clear that having an odd-factor implies that the order of the graph must be
even. So the “even order” condition in Theorem 1.2 is not a real restriction. Removing
the parity conditions for both r and k, Tutte [12] gave the following theorem.

Theorem 1.3 (Tutte). Let 1 ≤ k ≤ r− 1. Then any r-regular graph has a {k, k+1}-
factor.

A graph G is said to be an {r, r + 1}-graph if every vertex of G has degree r
or r + 1. Thomassen [11] generalized Theorem 1.3 by considering {r, r + 1}-graphs.

Theorem 1.4 (Thomassen). Let 1 ≤ k ≤ r − 1. Then any {r, r + 1}-graph has a
{k, k + 1}-factor.

For more results along this line, the reader is referred to Akiyama and Kano’s
book [3]. Recently, Akbari and Kano [2] considered the existence of {k, r− k}-factors
in r-regular graphs.
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Theorem 1.5 (Akbari-Kano). Let r and k be integers such that r is odd, k is even
and 1 ≤ k ≤ r. Then any r-regular graph has a {k, r − k}-factor.

By Theorems 1.1, 1.3 and 1.5, any r-regular graph has a {k, r − k}-factor as if k
is even. For odd k, Akbari and Kano [2] posed the next problem for the case r is even,
and a conjecture for the case that r is odd.

Problem 1.6 (Akbari-Kano). Let r and k be integers such that r is even, k is odd and
1 ≤ k ≤ r/2 − 1. Is it true that every connected r-regular simple graph of even order
has a {k, r − k}-factor?

Again, the “even order” condition is not a real restriction. On the other hand, any
r-regular graph of even order has an r/2-factor. This can be seen immediately from
Theorem 1.2 if one notices that any even-regular graph is 2-edge connected. Therefore,
the condition 1 ≤ k ≤ r/2− 1 is not a real restriction either.

The first aim of this paper is to give a negative answer to Problem 1.6. In Section 2,
we construct an r-regular graph G∗ without {k, r− k}-factors for all 1 ≤ k ≤ r/2− 2,
and deal with the case k = r/2− 1 by using the following Lovász’s characterization [8]
(see also [3, Theorem 6.1]) on parity-factors. For any two subsets S and T of V (G),
denote by EG(S, T ) the set of edges with one end in S and the other end in T . Denote

eG(S, T ) = |EG(S, T )|.

Theorem 1.7 (Lovász). Let G be a graph, and g, f : V (G) → Z be functions such that
g(v) ≤ f(v) and g(v) ≡ f(v) (mod 2) for all vertices v. Then G has a (g, f)-parity-
factor if and only if

η(S, T ) =
∑

s∈S

f(s) +
∑

t∈T

(

dG(t)− g(t)
)

− eG(S, T )− q(S, T ) ≥ 0 (1.1)

for all disjoint subsets S and T of V (G), where q(S, T ) denotes the number of compo-
nents C of the graph G− S − T such that

∑

c∈V (C)

f(c) + eG(V (C), T ) ≡ 1 (mod 2). (1.2)

In fact, Lovász [8] presented a structural description for the degree constrained
subgraph problem for the case that no two consecutive integers are missed in H(v) for
every v. He also showed that the problem without this restriction is NP-complete. In
particular, the next theorem, which is due to Lovász [7] (see also [3, Theorem 4.1]),
will be used in our deduction.

Theorem 1.8 (Lovász). Let G be a graph, and g, f : V (G) → Z be functions such that
g(v) ≤ f(v) for all vertices v. Then G has a (g, f)-factor if and only if

γ(S, T ) =
∑

s∈S

f(s) +
∑

t∈T

(

dG(t)− g(t)
)

− eG(S, T )− q∗(S, T ) ≥ 0
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for all disjoint subsets S and T of V (G), where q∗(S, T ) denotes the number of com-
ponents C of the graph G− S − T satisfying (1.2), and g(v) = f(v) for all v ∈ V (C).

By using Alon’s combinatorial nullstellensatz [4], Shirazi and Verstraëte [10] es-
tablished the following brief result for general H-factors, which was originally posed
by Addario-Berry et al. [1] as a conjecture.

Theorem 1.9 (Shirazi-Verstraëte). Let G be a graph with an associated set function H.
If

|H(v)| >

⌈

dG(v)

2

⌉

for all v ∈ V (G), (1.3)

then G has an H-factor.

Frank et al. [5] found an elementary proof for Theorem 1.9 by using the next result
on directed graphs. For any directed graph G, denote by d−G(v) the in-degree of v.

Theorem 1.10 (Frank et al.). Let G be a graph with an associated set function H. If
G has an orientation for which

d−G(v) ≥ |{0, 1, . . . , dG(v)}\H(v)| for all v ∈ V (G), (1.4)

then G has an H-factor.

It seems that the existence of H-factors in regular graphs has not been extensively
investigated yet. Let G be a graph, and H a set function associated with G. Denote

mH = min
v∈G

minH(v),

MH = max
v∈G

maxH(v).

Here is the second result of this paper.

Theorem 1.11. Let G be an {r, r + 1}-graph with an associated set function H. If
mH ≥ 1, MH ≤ r and

|H(v)| ≥
MH −mH + 3

2
for all v ∈ V (G), (1.5)

then G has an H-factor.

The proof of Theorem 1.11 will be given in Section 3. As will be seen, the condi-
tion (1.5) is sharp. For the case

H(v) = {k, k + 1} for all v ∈ V (G),

where 1 ≤ k ≤ r − 1, Theorem 1.11 reduces to Theorem 1.4. Moreover, as a result
restricting to {r, r + 1}-graphs, Theorem 1.11 is stronger than Theorem 1.9 because
the condition (1.3) implies (1.5) for {r, r + 1}-graphs.
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2 Answer to Akbari-Kano’s problem

This section is concerned with Problem 1.6. Note that 1 ≤ k ≤ r/2− 1. The following
theorem deal with the case k ≤ r/2− 2. For any integer n, denote by [n]odd the set of
positive odd integers less than or equal to n. For any vertex v in any graph G, denote
by NG(v) the neighborhood of v in G.

Theorem 2.1. For any even integer r, there exists an r-regular graph G∗ of even order
such that G∗ has no H∗-factors where

H∗ = [r]odd

∖{r

2
− 1,

r

2
,
r

2
+ 1

}

.

In particular, G∗ has no {k, r − k}-factors for any odd integer k such that 1 ≤ k ≤
r/2− 2.

Proof. Let J be the graph obtained by removing an edge from the complete graphKr+1.
Let J1, J2, . . ., Jr be pairwise disjoint copies of J . In each copy Ji, let ai and bi be the
ends of the edge that removed from Kr+1. Let G

∗ be the graph consisting of the copies
J1, J2, . . ., Jr, together with two new vertices u and v, such that

NG∗(u) =
{

a1, b1, a2, b2, . . . , a r

2
−1, b r

2
−1, ar−1, ar

}

, (2.1)

NG∗(v) =
{

a r

2
, b r

2
, a r

2
+1, b r

2
+1, . . . , ar−2, br−2, br−1, br

}

.

Then G∗ is an r-regular graph of the even order r(r + 1) + 2.

Now we shall show that G∗ has no H∗-factors. Suppose to the contrary that F is
an H∗-factor of G∗. Let 1 ≤ i ≤ r. Since dF (w) is odd for all w ∈ Ji, and the order |Ji|
is odd, we find

∑

w∈Ji

dF (w) ≡ 1 (mod 2). (2.2)

Let Fi be the subgraph of F induced by the vertices in Ji. By the Handshaking theorem,
we have

∑

w∈Ji

dFi
(w) ≡ 0 (mod 2). (2.3)

Taking the difference between (2.2) and (2.3), we obtain

eF (Ji, {u, v}) =
∑

w∈Ji

(

dF (w)− dFi
(w)

)

≡ 1 (mod 2).

Since eG∗(Ji, u) = 2 and eG∗(Ji, v) = 0 for 1 ≤ i ≤ r/2− 1, we derive

eF (Ji, u) = 1 for 1 ≤ i ≤
r

2
− 1.

By the definition (2.1) of NG∗(u), we get

dF (u) ∈
{r

2
− 1,

r

2
,
r

2
+ 1

}

,

contradicting the definition of H∗. This completes the proof.
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The graph G∗ constructed above will be used to explain the sharpness of the
condition (1.5) in the next section. Now we cope with the case k = r/2− 1.

Theorem 2.2. Let r be an even integer such that r/2 is even. Then any connected
r-regular graph of even order has an {r/2− 1, r/2 + 1}-factor.

Proof. We shall apply Theorem 1.7 by setting g(v) = r/2− 1 and f(v) = r/2 + 1 for
all vertices v. Let G be a connected r-regular graph of even order. Let S and T be
disjoint subsets of V (G). First, we claim that

eG(S ∪ T, V (G)\S\T ) ≥ 2 q(S, T ). (2.4)

In fact, if S ∪ T ∈ {∅, G}, then q(S, T ) = 0, and (2.4) follows immediately. Otherwise,
let C be a component of G−S−T . Then both S ∪T and C are nonempty. Note that
any even-regular graph is 2-edge-connected. So G is 2-edge-connected. In particular,
we have

eG(S ∪ T, C) ≥ 2.

Summing the above inequality over all components C, we get the desired inequal-
ity (2.4). Hence,

η(S, T ) =
(r

2
+ 1

)

(

|S|+ |T |
)

− eG(S, T )− q(S, T )

≥
r

2

(

|S|+ |T |
)

− eG(S, T )−
1

2
eG(S ∪ T, V (G)\S\T )

= eG(S, S) + eG(T, T ) ≥ 0.

By Theorem 1.7, G has an {r/2− 1, r/2 + 1}-factor.

Combining Theorems 2.1 and 2.2, we obtain a negative answer to Problem 1.6.

3 The existence of H-factors in regular graphs

This section is devoted to establish Theorem 1.11. A subset U of V (G) is called
independent if any two vertices in U are not adjacent in G. We need the following
lemma to prove Theorem 1.11.

Lemma 3.1. Let r and k be positive integers such that 1 ≤ k ≤ r − 1. Let G be an
{r, r + 1}-graph and

U = {v ∈ V (G) | dG(v) = r + 1}.

If U is independent, then G has a {k, k + 1}-factor F such that

dF (u) = k + 1 as if u ∈ U.
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Proof. Let f(v) = k + 1 for all vertices v, and

g(v) =

{

k + 1, if v ∈ U,

k, otherwise.

It suffices to show that G has a (g, f)-factor. Suppose to the contrary that G has no
(g, f)-factors. By Theorem 1.8, we have

γ(S, T ) < 0 for some S, T ⊆ V (G).

Let S and T be disjoint subsets of V (G) such that γ(S, T ) < 0 and the set S ∪ T is
maximal. We claim that q∗(S, T ) = 0.

Suppose to the contrary that q∗(S, T ) ≥ 1. Let C be a component of G − S − T
counted by q∗(S, T ). It follows that

eG(C, G− S − T ) = 0. (3.1)

By the definition of q∗(S, T ), we have

g(v) = f(v) = k + 1 for all v ∈ V (C). (3.2)

So V (C) ⊆ U . But U is independent, we deduce that C is a single vertex, say,
V (C) = {a}. Let S ′ = S ∪ {a} and T ′ = T ∪ {a}. Then (3.1) implies

q∗(S ′, T ) = q∗(S, T )− 1, (3.3)

q∗(S, T ′) = q∗(S, T )− 1. (3.4)

Note that the condition (1.2) implies eG(a, T ) 6= k + 1. If eG(a, T ) ≤ k, then (3.1)
and (3.2) yield

dG(a)− eG(a, S) = eG(a, T ) ≤ g(a)− 1.

Together with (3.4), we have

γ(S, T ′)− γ(S, T ) = dG(a)− g(a)− eG(S, a)− q∗(S, T ′) + q∗(S, T ) ≤ 0.

So γ(S, T ′) < 0, contradicting the maximality of S ∪ T . Otherwise eG(a, T ) ≥ k + 2.
By (3.3), we deduce

γ(S ′, T )− γ(S, T ) = f(a)− eG(a, T )− q∗(S ′, T ) + q∗(S, T ) ≤ 0.

So γ(S ′, T ) < 0, contradicting, again, the maximality of S ∪T . Thus the claim is true.
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Now we can deduce

γ(S, T ) =
∑

s∈S

dG(s)
f(s)

dG(s)
+
∑

t∈T

dG(t)

(

1−
g(t)

dG(t)

)

− eG(S, T )

≥
∑

s∈S, t∈T
st∈E(G)

(

f(s)

dG(s)
+
(

1−
g(t)

dG(t)

)

)

− eG(S, T )

=
∑

s∈S, t∈T
st∈E(G)

(

k + 1

dG(s)
−

g(t)

dG(t)

)

≥
∑

x∈S, y∈T
xy∈E(G)

(

k + 1

r + 1
−max

(

k

r
,
k + 1

r + 1

))

= 0,

contradicting the hypothesis γ(S, T ) < 0. This completes the proof.

We remark that Lemma 3.1 is a generalization of Theorem 1.3. Now we are in a
position to prove Theorem 1.11.

Proof. Write m = mH and M = MH for short. By Theorem 1.4, we can suppose that
F is an {M, M + 1}-factor of G with the minimum number of edges. It follows that
any two vertices of degree M + 1 in F , if they exist, are not adjacent. By Lemma 3.1,
F has an {m− 1, m}-factor, say, F ′, such that

dF ′(v) = m as if dF (v) = M + 1. (3.5)

Let F ′′ be the complemented graph of F ′ in F . In view of (3.5), we have

dF ′′(v) ∈ {M −m, M −m+ 1} for all v. (3.6)

We observe that F ′′ has an orientation such that

d−F ′′(v) ≥
⌊dF ′′(v)

2

⌋

for all v. (3.7)

This can be seen by orienting an eulerian tour of the graph that obtained from F ′′ by
adding a new vertex and joining it to all vertices of odd degree in F ′′. Let

H ′(v) = {h− dF ′(v) | h ∈ H(v)} for all v.

Then the condition (1.5) reads

|H ′(v)| = |H(v)| ≥
M −m+ 3

2
. (3.8)

By (3.6), (3.7) and (3.8), it is easy to verify that

|{0, 1, . . . , dF ′′(v)}\H ′(v)| ≤ d−F ′′(v) for all v.

By Theorem 1.10, the graph F ′′ has an H ′-factor, say, G′. Hence, the graph induced
by the edge set E(F ′) ∪ E(G′) is an H-factor of G. This completes the proof.
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In fact, the condition (1.5) is sharp. For instance, when r is even, let G∗ be the
graph constructed in the proof of Theorem 2.1. Consider a set H of the form

H = {m, m+ 2, m+ 4, . . . , M},

where both m and M are odd, and M ≤ r/2− 2. On one hand, G∗ has no H-factors
by Theorem 2.1. On the other hand, it is straightforward to compute

|H| =
M −m+ 2

2
.

Comparing it with the condition (1.5), we deduce the latter one is sharp. For other
possibilities of the associated set H , for example, mH +MH is odd, we mention that
it is also not hard to find r-regular graphs without H-factors such that

|H(v)| =

⌊

MH −mH + 2

2

⌋

for all v ∈ V (G).
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