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Abstract

In the Nonnegative Matrix Factorization (NMF) problem we are given an n×m nonnegative
matrix M and an integer r > 0. Our goal is to express M as AW where A and W are nonnegative
matrices of size n×r and r×m respectively. In some applications, it makes sense to ask instead
for the product AW to approximate M – i.e. (approximately) minimize ‖M −AW‖F where
‖‖F denotes the Frobenius norm; we refer to this as Approximate NMF.

This problem has a rich history spanning quantum mechanics, probability theory, data anal-
ysis, polyhedral combinatorics, communication complexity, demography, chemometrics, etc. In
the past decade NMF has become enormously popular in machine learning, where A and W are
computed using a variety of local search heuristics. Vavasis recently proved that this problem
is NP-complete. (Without the restriction that A and W be nonnegative, both the exact and
approximate problems can be solved optimally via the singular value decomposition.)

We initiate a study of when this problem is solvable in polynomial time. Our results are the
following:

1. We give a polynomial-time algorithm for exact and approximate NMF for every constant
r. Indeed NMF is most interesting in applications precisely when r is small.

2. We complement this with a hardness result, that if exact NMF can be solved in time
(nm)o(r), 3-SAT has a sub-exponential time algorithm. This rules out substantial im-
provements to the above algorithm.

3. We give an algorithm that runs in time polynomial in n, m and r under the separablity
condition identified by Donoho and Stodden in 2003. The algorithm may be practical
since it is simple and noise tolerant (under benign assumptions). Separability is believed
to hold in many practical settings.

To the best of our knowledge, this last result is the first example of a polynomial-time algorithm
that provably works under a non-trivial condition on the input and we believe that this will be
an interesting and important direction for future work.
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1 Introduction

In the Nonnegative Matrix Factorization (NMF) problem we are given an n ×m matrix M with
nonnegative real entries (such a matrix will be henceforth called “nonnegative”) and an integer
r > 0. Our goal is to express M as AW where A and W are nonnegative matrices of size n× r and
r×m respectively. We refer to r as the inner-dimension of the factorization and the smallest value
of r for which there is such a factorization as the nonnegative rank of M . An equivalent formulation
is that our goal is to write M as the sum of r nonnegative rank-one matrices.1 We note that r must
be at least the rank of M in order for such a factorization to exist. In some applications, it makes
sense to instead ask for AW to be a good approximation to M in some suitable matrix norm. We
refer to the problem of finding a nonnegative A and W of inner-dimension r that (approximately)
minimizes ‖M −AW‖F as Approximate NMF, where ‖‖F denotes the Frobenius norm. Without
the restriction that A and W be nonnegative, the problem can be solved exactly via singular value
decomposition [12].

NMF is a fundamental problem that has been independently introduced in a number of different
contexts and applications. Many interesting heuristics and local search algorithms (including the
familiar Expectation Maximization or EM) have been proposed to find such factorizations. One
compelling family of applications is data analysis, where a nonnegative factorization is computed
in order to extract certain latent relationships in the data and has been applied to image segmenta-
tion [24], [25] information retrieval [16] and document clustering [35]. NMF also has applications in
fields such as chemometrics [23] (where the problem has a long history of study under the name self
modeling curve resolution) and biology (e.g. in vision research [7]): in some cases, the underlying
physical model for a system has natural restrictions that force a corresponding matrix factorization
to be nonnegative. In demography (see e.g., [15]), NMF is used to model the dynamics of marriage
through a mechanism similar to the chemical laws of mass action. In combinatorial optimization,
Yannakakis [37] characterized the number of extra variables needed to succinctly describe a given
polytope as the nonnegative rank of an appropriate matrix (called the “slack matrix”). In commu-
nication complexity, Aho et al [1] showed that the log of the nonnegative rank of a Boolean matrix
is polynomially related to its deterministic communication complexity - and hence the famous Log-
Rank Conjecture of Lovasz and Saks [26] is equivalent to showing a quasi-polynomial relationship
between real rank and nonnegative rank for Boolean matrices. In complexity theory, Nisan used
nonnegative rank to prove lower bounds for non-commutative models of computation [28]. Addi-
tionally, the 1993 paper of Cohen and Rothblum [8] gives a long list of other applications in statistics
and quantum mechanics. That paper also gives an exact algorithm that runs in exponential time.

Question 1.1. Can a nonnegative matrix factorization be computed efficiently when the inner-
dimension, r, is small?

Vavasis recently proved that the NMF problem is NP -hard when r is large[36], but this only
rules out an algorithm whose running time is polynomial in n, m and r. Arguably, in most significant
applications, r is small. Usually the algorithm designer posits a two-level generative model for the
data and uses NMF to compute “hidden” variables that explain the data. This explanation is only
interesting when the number of hidden variables (r) is much smaller than the number of examples
(m) or the number of observations per example (n). In information retrieval, we often take M to
be a “term-by-document” matrix where the (i, j)th entry in M is the frequency of occurrence of

1It is a common misconception that since the real rank is the maximum number of linearly independent columns,
the nonnegative rank must be the size of the largest set of columns in which no column can be written as a nonnegative
combination of the rest. This is false, and has been the source of many incorrect proofs demonstrating a gap between
rank and nonnegative rank. A correct proof finally follows from the results of Fiorini et al [11].
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the ith term in the jth document in the database. In this context, a NMF computes r “topics”
which are each a distribution on words (corresponding to the r columns of A) and each document
(a column in M) can be expressed as a distribution on topics given by the corresponding column
of W [16]. This example will be a useful metaphor for thinking about nonnegative factorization.
In particular it justifies the assertion r should be small – the number of topics should be much
smaller than the total number of documents in order for this representation to be meaningful. See
Section A for more details.

Focusing on applications, and the overwhelming empirical evidence that heuristic algorithms
do find good-enough factorizations in practice, motivates our next question.

Question 1.2. Can we design very efficient algorithms for NMF if we make reasonable assumptions
about M?

1.1 Our Results

Here we largely resolve Question 1.1. We give both an algorithm for accomplishing this algorithmic
task that runs in polynomial time for any constant value of r and we complement this with an
intractability result which states that assuming the Exponential Time Hypothesis [20] no algorithm
can solve the exact NMF problem in time (nm)o(r).

Theorem 1.3. There is an algorithm for the Exact NMF problem (where r is the target inner-
dimension) that runs in time O((nm)r

22r).

This result is based on algorithms for deciding the first order theory of the reals - roughly the
goal is to express the decision question of whether or not the matrix M has nonnegative rank at
most r as a system of polynomial equations and then to apply algorithms in algebraic geometry to
determine if this semi-algebraic set is non-empty. The complexity of these procedures is dominated
by the number of distinct variables occurring in the system of polynomial equations. In fact, the
number of distinct variables plays an analogous role to VC-dimension, in a sense and the running
time of algorithms for determining if a semi-algebraic set is non-empty depend exponentially on
this quantity. Additionally these algorithms can compute successive approximations to a point in
the set at the cost of an additional factor in the run time that is polynomial in the number of bits
in the input and output. The naive formulation of the NMF decision problem as a non-emptiness
problem is to use nr+mr variables, one for each entry in A or W [8]. This would be unacceptable,
since even for constant values of r, the associated algorithm would run in time exponential in n
and m.

At the heart of our algorithm is a structure theorem – based on a novel method for reducing the
number of variables needed to define the associated semi-algebraic set. We are able to express the
decision problem for nonnegative matrix factorization using r22r distinct variables (and we make
use of tools in geometry, such as the notion of a separable partition, to accomplish this [14], [2],
[18]). Thus we obtain the algorithm quoted in the above theorem. All that was known prior to our
work (for constant values for r) was an exponential time algorithm, and local search heuristics akin
to the Expectation-Maximization (EM) Algorithm with unproved correctness or running time.

A natural requirement on A is that its columns be linearly independent. In most applications,
NMF is used to express a large number of observed variables using a small number of hidden
variables. If the columns of A are not linearly independent then Radon’s Lemma implies that this
expression can be far from unique. In the example from information retrieval, this translates to:
there are candidate documents that can be expressed as a convex combination of one set of topics,
or could alternatively be expressed as a convex combination of an entirely disjoint set of topics (see
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Section 2.1). When we add the requirement that the columns of A be linearly independent, we refer
to the associated problem as the Simplicial Factorization (SF) problem. In this case the doubly-
exponential dependence on r in the previous theorem can be improved to singly-exponential. Our
algorithm is again based on the first order theory of the reals, but here the system of equations is
much smaller so in practice one may be able to use heuristic approaches to solve this system (in
which case, the validity solution can be easily checked).

Theorem 1.4. There is an algorithm for the Exact SF problem (where r is the target inner-
dimension) that runs in time O((nm)r

2
).

We complement these algorithms with a fixed parameter intractability result. We make use of
a recent result of Patrascu and Williams [30] (and engineer low-dimensional gadgets inspired by
the gadgets of Vavasis [36]) to show that under the Exponential Time Hypothesis [20], there is no
exact algorithm for NMF that runs in time (nm)o(r). This intractability result holds also for the
SF problem.

Theorem 1.5. If there is an exact algorithm for the SF problem (or for the NMF problem) that
runs in time O((nm)o(r)) then 3-SAT can be solved in 2o(n) time on instances with n variables.

Now we turn to Question 1.2. We consider the nonnegative matrix factorization problem under
the ”separability” assumption introduced by Donoho and Stodden [10] in the context of image
segmentation. Roughly, this assumption asserts that there are r rows of A that can be permuted
to form the identity matrix. If we knew the names of these rows, then computing a nonnegative
factorization would be easy. The challenge in this context, is to avoid brute-force search (which
runs in time nr) and to find these rows in time polynomial in n, m and r. To the best of our
knowledge the following is the first example of a polynomial-time algorithm that provably works
under a non-trivial condition on the input.

Theorem 1.6. There is an exact algorithm that can compute a separable, nonnegative factorization
M = AW (where r is the inner-dimension) in time polynomial in n, m and r if such a factorization
exists.

Donoho and Stodden [10] argue that the separability condition is naturally met in the context
of image segmentation. Additionally, Donoho and Stodden prove that separability in conjunction
with some other conditions guarantees that the solution to the NMF problem is unique. Our
theorem above is an algorithmic counterpart to their results, but requires only separability. Our
algorithm can also be made noise tolerant, and hence works even when the separability condition
only holds in an approximate sense. Indeed, an approximate separability condition is regarded as
a fairly benign assumption and is believed to hold in many practical contexts in machine learning.
For instance it is usually satisfied by model parameters fitted to various generative models (e.g.
LDA [5] in information retrieval). (We thank David Blei for this information.)

Lastly, we consider the case in which the given matrix M does not have an exact low-rank NMF
but rather can be approximated by a nonnegative factorization with small inner-dimension.

Theorem 1.7. There is a 2poly(r log(1/ε))poly(n,m)-time algorithm that, given a M for which there
is a nonnegative factorization AW (of inner-dimension r) which is an ε-approximation to M in
Frobenius norm, computes A′ and W ′ satisfying∥∥M −A′W ′∥∥

F
≤ O(ε1/2r1/4) ‖M‖F .
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The rest of the paper is organized as follows: In Section 2 we give an exact algorithm for
the SF problem and in Section 3 we give an exact algorithm for the general NMF problem. In
Section 4 we prove a fixed parameter intractability result for the SF problem. And in Section 5 and
Section 6 we give algorithms for the separable and adversarial nonnegative fatorization problems.
Throughout this paper, we will use the notation that Mi and M j are the ith column and jth row
of M respectively.

2 Simplicial Factorization

Here we consider the simplicial factorization problem, in which the target inner-dimension is r
and the matrix M itself has rank r. Hence in any factorization M = AW (where r is the inner-
dimension), A must have full column rank and M must have full row rank.

2.1 Justification for Simplicial Factorization

We first argue that the extra restriction imposed in simplicial factorization is natural in many
contexts: Through a re-scaling (see Section ?? for more details), we can assume that the columns of
M , A and W all have unit `1 norm. The factorization M = AW can be interpreted probabilistically:
each column of M can be expressed as a convex combination (given by the corresponding column
of W ) of columns in A. In the example in the introduction, columns of M represent documents
and the columns of A represent “topics”. Hence a nonnegative factorization is an “explanation” :
each document can be expressed as a convex combination of the topics.

But if A does not have full column rank then this explanation is seriously deficient. This follows
from a restatement of Radon’s Lemma. Let conv(AU ) be the convex hull of the columns Ai for
i ∈ U .

Observation 1. If A is an n× r (with n ≥ r) matrix and rank(A) < r, then there are two disjoint
sets of columns U, V ⊂ [r] so that conv(AU ) ∩ conv(AV ) 6= ∅.

The observation implies that there is some candidate document x that can be expressed as
a convex combination of topics (in U), or instead can be expressed as a convex combination of
an entirely disjoint set (V ) of topics. The end goal of NMF is often to use the representation of
documents as distributions on topics to perform various tasks, such as clustering or information
retrieval. But if (even given the set of topics in a database) it is this ambiguous to determine
how we should represent a given document as a convex combination of topics, then the topics we
have extracted cannot be very useful for clustering! In fact, it seems unnatural to not require the
columns of A to be linearly independent!

Next, one should consider the process (probabilistic, presumably) that generates the datapoints,
namley, columns of M . Any reasonable process for generating columns of M from the columns of
A would almost surely result in a matrix M whose rank equals the rank of A. But then M has the
same rank as A.

2.2 Algorithm for Simplicial Factorization

In this Section we give an algorithm that solves the simplicial factorization problem in (nm)O(r)

time. Let L be the maximum bit complexity of any coefficient in the input.

Theorem 2.1. There is an O((nm)O(r2)) time algorithm for deciding if the simplicial factorization
problem has a solution of inner-dimension at most r. Furthermore, we can compute a rational
approximation to the solution up to accuracy δ in time poly(L, (nm)O(r2), log 1/δ).
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The above theorem is proved by using Lemma 2.3 below to reduce the problem of finding a
simplicial factorization to finding a point inside a semi-algebraic set with poly(n) constraints and 2r2

real-valued variables (or deciding that this set is empty). The decision problem can be solved using
the well-known algorithm of Basu et. al.[3] solves this problem in nO(r2) time. We can instead use
the algorithm of Renegar [32] (a bound of poly(L, (nm)O(r2)) on the bit complexity of the coefficients
in the solution due to Grigor’ev and Vorobjov [13]) to compute a rational approximation to the
solution up to accuracy δ in time poly(L, (nm)O(r2), log 1/δ).

This reduction uses the fact that since A,W have full rank they have “pseudo-inverses” A+,
W+ which are r × n and n × r matrices respectively such that A+A = WW+ = Ir×r. Thus
A+Mi = A+AWi = Wi and similarly M jW+ = Aj .

Definition 2.2. Let C = {u1, u2, ..ur} be a basis for the columns of M in <n, and let R =
{v1, v2, ...vr} be a basis for the rows of M in <m.

Then MC (a size r×m matrix) denotes the columns of M expressed in the basis C, and similarly
MR (a size n× r matrix) denotes the rows of M expressed in the basis R.

Lemma 2.3 (Structure Lemma for Simplicial Factorization). M has a simplicial factorization rank
r iff for every basis C for the columns and basis B for the rows of M , there are r × r matrices
TC , TR such that: (i) TCMC and MRTR are nonnegative matrices (ii) MRTRTCMC = M

Proof: (“if”) Suppose the conditions in the theorem are met. Then set A = MRTR and W =
TCMC . These matrices are nonnegative and have size n×r and r×m respectively, and furthermore
are a factorization for M . Since rank(M) = r, A and W are a simplicial factorization.

(“only if”) Conversely suppose that there is a simplicial factorization M = AW . Let C = {, , ..}
and R = {, , ...} be arbitrary bases for the columns and rows of M respectively. Let U and V be
the corresponding n× r and m× r matrices. Let MC and MR be r ×m and n× r representations
in this basis for the columns and rows of M - i.e. UMC = M and MRV

T = M .
Define r × r matrices TC = A+U and TR = V TW+ where A+ and W+ are the respective

pseudoinverses of A,W . Let us check that this choice of TC and TR satisfies the conditions in the
theorem.

We can re-write TCMC = A+UMC = A+M = W and hence the first condition in the theorem
is satisfied. Similarly MRTR = MRV

TW+ = MW+ = A and hence the second and third condition
are also satisfied. �

3 General NMF

Now we consider the NMF problem where the factor matrices A,W need not have full rank.

Theorem 3.1. There is a O((nm)cr
22r) time deterministic algorithm that given an n×m nonneg-

ative matrix M outputs a factorization AW of inner dimension r if such a factorization exists.

As in the Simplicial case the main idea will again be a reduction to an existence question for a
semi-algebraic set, but this reduction is significantly more complicated than Lemma 2.3.

3.1 General Structure Theorem: Minimality

Our goal is to re-cast nonnegative matrix factorization (for constant r) as a system of polynomial
inequalities where the number of variables is constant, the maximum degree is constant and the
number of constraints is polynomially bounded in n and m. The main obstacle is that A and W
are large - we cannot afford to introduce a new variable to represent each entry in these matrices.
We will demonstrate there is always a ”minimal” choice for A and W so that:
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1. there is a collection of linear transformations T1, T2, ...Tg(r) from the column-span of M to <r
and a choice function σW : [m]→ [g(r)]

2. and a collection of linear transformations S1, S2, ...Sg(r) from the row-span of M to <r and a
choice function σA : [n]→ [g(r)]

And these linear transformations and choice functions satisfy the conditions:

1. for each i ∈ [n], Wi = TσW (i)Mi and

2. for each j ∈ [m], Aj = M jSσA(j).

Furthermore, the number of possible choice functions σW is at most mcr2f(r) and the number of
possible choice functions for σA is at most ncr

2g(r). These choice functions are based on the notion
of a simplicial partition, which we introduce later. We then give an algorithm for enumerating all
simplicial partitions (this is the primary bottleneck in the algorithm). Fixing the choice functions
σW and σA, the question of finding linear transformations T1, T2, ...Tg(r) and S1, S2, ...Sg(r) that
satisfy the above constraints (and the constraint that M = AW , and A and W are nonnegative)
is exactly a system of polynomial inequalities with a O(r2g(r)) variables (each matrix Ti or Sj is
r × r), degree at most four and furthermore there are at most O(mn) polynomial constraints.

In this subsection, we will give a procedure (which given A and W ) generates a ”minimal”
choice for A and W (call this minimal choice A′ and W ′), and we will later establish that this
”minimal” choice satisfies the structural property stated informally above.

Definition 3.2. Let C(A) ⊂ 2[r] denote the subsets of [r] corresponding to maximal independent
sets of columns (of A). Similarly let R(W ) ⊂ 2[r] denote the subsets of [r] corresponding to maximal
independent sets of rows (of W ).

A basic fact from linear algebra is that all maximal independent sets of columns of A have
exactly rank(A) elements and all maximal independent sets of rows of W similarly have exactly
rank(W ) elements.

Definition 3.3. Let �s be the total ordering on subsets of [r] of size s so that if U and V are both
subsets of [r] of size s, U ≺s V iff U is lexicographically before V .

Definition 3.4. Given a column Mi, we will call a subset U ∈ C(A) a minimal basis for Mi (with
respect to A) if Mi ∈ cone(AU ) and for all V ∈ C(A) such that Mi ∈ cone(AV ) we must have
U ≺s V .

Claim 3.5. If Mi ∈ cone(A), then there is some U ∈ C(A) such that Mi ∈ cone(AU ).

Definition 3.6. A proper chain (A,W,A′,W ′) is a set of nonnegative matrices for which M =
AW , M = AW ′ and M = A′W ′ (the inner dimension of these factorizations is r) and functions
σW ′ : [m]→ C(A) and σA′ : [n]→ R(W ′) such that

1. for all i ∈ [m], AW ′i = Mi, supp(W
′
i ) ⊂ σW ′(i) and σW ′(i) is a minimal basis with respect to

A for Mi

2. for all j ∈ [n], A′jW
′ = M j , supp(Aj) ⊂ σA′(j) and σA′(j) is a minimal basis with respect to

W ′ for M j .
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Note that the extra conditions on W ′ (i.e. the minimal basis constraint) is with respect to A
and the extra conditions on A′ are with respect to W ′. This simplifies the proof that there is always
some proper chain, since we can compute a W ′ that satisfies the above conditions with respect to
A and then find an A′ that satisfies the conditions with respect to W ′.

Lemma 3.7. If there is a nonnegative factorization M = AW (of inner-dimension r), then
there is a choice of nonnegative A′,W ′ of inner-dimension r and functions σW ′ : [m] → C(A) and
σA′ : [n]→ R(W ′) such that (A,W,A′,W ′) and σW ′, σA′ form a proper chain.

Proof: The condition that there is some nonnegative W for which M = AW is just the condition
that for all i ∈ [m], Mi ∈ cone(A). Hence, for each vector Mi, we can choose a minimal basis
U ∈ C(A) using Claim 3.5. Then Mi ∈ cone(AU ) so there is some nonnegative vector W ′i supported
on U such AW ′i = Mi and we can set σW ′(i) = U . Repeating this procedure for each column Mi,
results in a nonnegative matrix W ′ that satisfies the condition M = AW ′ and for each i ∈ [m], by
design supp(W ′i ) ⊂ σW ′(i) and σW ′(i) is a minimal basis with respect to A for Mi.

We can re-use this argument above, setting MT = (W ′T )AT and this interchanges the role of A
and W . Hence we obtain a nonnegative matrix A′ which satisfies M = A′W ′ and for each j ∈ [n],
again by design we have that supp(Aj) ⊂ σA′(j) and σA′(j) is a minimal basis with respect to W
for M j . �

Definition 3.8. Let Π(A,U) (for U ∈ C(A)) denote the r×n linear transformation that is zero on
all rows not in U (i.e. Π(A,U)j = ~0 for j /∈ U) and restricted to U is Π(A,U)U = (AU )+ (where
the + operation denotes the Moore-Penrose pseudoinverse).

Lemma 3.9. Let (A,W,A′,W ′) and σW ′ and σA′ form a proper chain. For any index i ∈ [m],
let Ui = σW ′(i) and for any index j ∈ [n] let Vj = σA′(j). Then W ′i = Π(A,Ui)Mi and A′j =
M jΠ(W ′T , Vj)

T .

Notice that in the above lemma, the linear transformation that recovers the columns of W ′ is
based on column subsets of A, while the linear transformation to recover the rows of A′ is based
on the row subsets of W ′ (not W ).
Proof: Since (A,W,A′,W ′) and σW ′ and σA′ form a proper chain we have that AW ′ = M . Also
supp(W ′i ) ⊂ Ui = σW ′(i). Consider the quantity Π(A,Ui)Mi. For any j /∈ Ui, (Π(A,Ui)Mi)j = 0.
So consider

(Π(A,Ui)Mi)Ui = (AUi)
+AW ′i = (AUi)

+AUi(W
′
i )Ui

where the last equality follows from the condition supp(W ′i ) ⊂ Ui. Since Ui ∈ C(A) we have that
(AUi)

+AUi is the |Ui| × |Ui| identity matrix. Hence W ′i = Π(A,Ui)Mi. An identical argument with
W ′ replaced with A′ and with A replaced by W ′T (and i and Ui replaced with j and Vj) respectively
implies that A′j = M jΠ(W ′T , Vj)

T too. �

Note that there are at most |C(A)| ≤ 2r linear trasformations of the form Π(A,Ui) and hence
the columns of W ′ can be recovered by a constant number of linear transformations of the column
span of M , and similarly the rows of A′ can also be recovered.

The remaining technical issue is we need to demonstrate that there are not too many (only
polynomially many, for constant r) choice functions σW ′ and σA′ and that we can enumerate
over this set efficiently. In principle, even if say C(A) is just two sets, there are exponentially
many choices of which (of the two) linear transformation to use for each column of M . However,
when we use lexicographic ordering to tie break (as in the definition of a minimal basis), the
number of choice functions is polynomially bounded. We will demonstrate that the choice function
σW ′ : [m]→ C(A) arising in the definition of a proper chain can be embedded in a restricted type
of geometric partitioning of M which we call a simplicial partition.
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3.2 General Structure Theorem: Simplicial Partitions

Here, we establish that the choice functions σW ′ and σA′ in a proper chain are combinatorially
simple. The choice function σW ′ can be regarded as a partition of the columns of M into |C(A)|
sets, and similarly the choice function σA′ is a partition of the rows of M into R(W ′) sets. Here
we define a geometric type of partitioning scheme which we call a simplicial partition, which has
the property that there are not too many simplicial partitions (by virtue of this class having small
VC-dimension), and we show that the partition functions σW ′ and σA′ arising in the definition of
a proper chain are realizable as (small) simplicial partitions.

Definition 3.10. A (k, s)-simplicial partition of the columns of M is generated by a collection of
k sets of s hyperplanes

H1 = {h11, h12, ...h1s},H2 = {h21, h22, ...h2s}, ...Hk = {hk1, hk2, ...hks}.

Let Qi = {i′ s.t. for all j ∈ [s], hij ·Mi′ ≥ 0}. Then this collection of sets of hyperplanes results in
the partition

• P1 = Q1

• P2 = Q2 − P1

• Pk = Qk − P1 − P2...− Pk−1

• Pk+1 = [m]− P1 − P2...− Pk

If rank(A) = s, we will be interested in a (
(
r
s

)
, s)-simplicial partition.

Lemma 3.11. Let (A,W,A′,W ′) and σW ′ and σA′ form a proper chain. Then the partitions
corresponding to σW ′ and to σA′ (of columns and rows of M respectively) are a (

(
r
s

)
, s)-simplicial

partition and a (
(
r
t

)
, t)-simplicial partition respectively, where rank(A) = s and rank(W ′) = t.

Proof: Order the sets in C(A) according to the lexicographic ordering �s, so that V1 ≺s V2 ≺s ...Vk
for k = |C(A)|. Then for each j, let Hj be the rows of the matrix (AVj )

+. Note that there are
exactly rank(A) = s rows, hence this defines a (k, s)-simplicial partition.

Claim 3.12. σW ′(i) = j if and only if Mi ∈ Pj in the (k, s)-simplicial partition generated by
H1,H2, ...Hk.

Proof: Since (A,W,A′,W ′) and σW ′ and σA′ forms a proper chain, we have that M = AW ′.
Consider a column i and the corresponding set Vi = σW ′(i). Recall that Vj is the jth set in
C(A) according to the lexicographic ordering �s. Also from the definition of a proper chain Vi
is a minimal basis for Mi with respect to A. Consider any set Vj′ ∈ C(A) with j′ < j. Then
from the definition of a minimal basis we must have that Mi /∈ cone(AVj′ ). Since Vj′ ∈ C(A), we

have that the transformation (AVj′ )(AVj′ )
+ is a projection onto span(A) which contains span(M).

Hence (AVj′ )(AVj′ )
+Mi = Mi, but Mi /∈ cone(AVj′ ) so (AVj′ )

+Mi cannot be a nonnegative vector.
Hence Mi is not in Pj′ for any j′ < j. Furthermore, Mi is in Qj : using Lemma 3.9 we have
Π(A, Vj)Mi = Π(A, Vj)AW

′
i = W ′i ≥ ~0 and so (AVj )

+Mi = (Π(A, Vj)Mi)Vj ≥ ~0. �

We can repeat the above replacing A with W ′T and W ′ with A′, and this implies the lemma. �
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3.3 Enumerating Simplicial Partitions

Here we give an algorithm for enumerating all (k, s)-simplicial partitions (of, say, the columns of
M) that runs in time O(mks(r+1)). An important observation is that the problem of enumerating all
simplicial partitions can be reduced to enumerating all partitions that arise from a single hyperplane.
Indeed, we can over-specify a simplicial partition by specifying the partition (of the columns of M)
that results from each hyperplane in the set of ks total hyperplanes that generates the simplicial
partition. From this set of partitions, we can recover exactly the simplicial partition.

A number of results are known in this domain, but surprisingly we are not aware of any algorithm
that enumerates all partitions of the columns of M (by a single hyperplane) that runs in polynomial
time (for dim(M) ≤ r and r is constant) without some assumption on M . For example, the VC-
dimension of a hyperplane in r dimensions is r+ 1 and hence the Sauer-Shelah lemma implies that
there are at most O(mr+1) distinct partitions of the columns of M by a hyperplane. In fact, a
classic result of Harding (1967) gives a tight upper bound of O(mr). Yet these bounds do not
yield an algorithm for efficiently enumerating this structured set of partitions without checking all
partitions of the data.

A recent result of Hwang and Rothblum [18] comes close to our intended application. A sepa-
rable partition into p parts is a partition of the columns of M into p sets so that the convex hulls
of these sets are disjoint. Setting p = 2, the number of separable partitions is exactly the number
of distinct hyperplane partitions. Under the condition that M is in general position (i.e. there
are no t columns of M lying on a dimension t − 2 subspace where t = rank(M) − 1), Hwang and
Rothblum give an algorithm for efficiently enumerating all distinct hyperplane partitions [18].

Here we give an improvement on this line of work, by removing any conditions on M (although
our algorithm will be slightly slower). The idea is to encode each hyperplane partition by a choice
of not too many data points. To do this, we will define a slight generalization of a hyperplane
partition that we will call a hyperplane separation:

Definition 3.13. A hyperplane h defines a mapping (which we call a hyperplane separation) from
columns of M to {−1, 0, 1} depending on the sign of h ·Mi (where the sign function is 1 for positive
values, −1 for negative values and 0 for zero).

A hyperplane partition can be regarded as a mapping from columns of M to {−1, 1} where we
adopt the convention that Mi such that h ◦Mi is mapped to 1.

Definition 3.14. A hyperplane partition (defined by h) is an extension of a hyperplane separation
(defined by g) if for all i, g(Mi) 6= 0⇒ g(Mi) = h(Mi).

Lemma 3.15. Let rank(M) = s, then for any hyperplane partition (defined by h), there is a
hyperplane g that contains s affinely independent columns of M and for which h (as a partition) is
an extension of g (as a separation).

Proof: After an appropriate linear transformation (of the columns of M and the hyperplanes), we
can assume that M is full rank. If the h already contains s affinely independent columns of M ,
then we can choose g = h. If not we can perturb h in some direction so that for any column with
h(Mi) = 0, we maintain the invariant that Mi is contained on the perturbed hyperplane h′. Since
rank(M) = s this perturbation has non-zero inner product with some column in M and so this
hyperplane h′ will eventually contain a new column from M (without changing the sign of h(Mi)
for any other column). We can continue this argument until the hyperplane contains s affinely
independent columns of M and by design on all remaining columns agrees in sign with h. �
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Lemma 3.16. Let rank(M) = s. For any hyperplane h (which defines a partition), there is a
collection of k ≤ s sets of (at most s) columns of M , S1, S2, ..Sk so that any hyperplanes g1, g2, ..gk
which contain S1, S2, ...Sk respectively satisfy: For all i, h(Mi) (as a partition) is equal to the value
of gj(Mi), where j is the smallest index for which gj(Mi) 6= 0. Furthermore these subsets are
nested: S1 ⊃ S2 ⊃ ... ⊃ Sk.

Proof: We can apply Lemma 3.15 repeatedly. When we initially apply the lemma, we obtain a
hyperplane g1 that can be extended (as a separation) to the partition corresponding to h. In the
above function (defined implicitly in the lemma) this fixes the partition of the columns except those
contained in g1. So we can then choose M ′ to be the columns of M that are contained in g1, and
recurse. If S2 is the largest set of columns output from the recursive call, we can add columns of
M contained in g1 to this set until we obtain a set of s+ 1 affinely independent columns contained
in g1, and we can output this set (as S1). �

Theorem 3.17. Let rank(M) = s. There is an algorithm that runs in time O(ms(s + 2)s) time
to enumerate all hyperplane partitions of the columns of M .

Proof: We can apply Lemma 3.16 and instead enumerate the sets of points S1, S2, ...Ss. Since
these sets are nested, we can enumerate all choices as follows:

• choose at most s columns corresponding to the set S1

• initialize an active set T = S1

• until T is empty either

– choose a column to be removed from the active set

– or indicate that the current active set represents the next set Si and choose the sign of
the corresponding hyperplane

There are at most O(ms(s + 2)s) such choices, and for each choice we can then run a linear
program to determine if there is a corresponding hyperplane partition. (In fact, all partitions that
result from the above procedure will indeed correspond to a hyperplane partition). The correctness
of this algorithm follows from Lemma 3.16. �

This immediately implies:

Corollary 3.18. There is an algorithm that runs in time O(mks2)) that enumerates a set of par-
titions of the columns of M that contains the set of all (k, s)-simplicial partitions (of the columns
of M).

3.4 Solving Systems of Polynomial Inequalities

The results of Basu et al [3] give an algorithm for finding a point in a semi-algebraic set de-
fined by O(mn) constraints on polynomials of total degree at most d, and f(r) variables in time
O((mnd)cf(r)). Using our structure theorem for nonnegative matrix factorization, we will re-cast
the decision problem of whether a nonnegative matrix M has nonnegative rank r as an existence
question for a semi-algebraic set.

Theorem 3.19. There is an algorithm for deciding if a n×m nonnegative matrix M has nonneg-
ative rank r that runs in time O((nm)O(r22r)). Furthermore, we can compute a rational approxi-
mation to the solution up to accuracy δ in time poly(L, (nm)O(r22r), log 1/δ).
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We first prove the first part of this theorem using the algorithm of Basu et al [3], and we instead use
the algorithm of Renegar [32] to compute a rational approximation to the solution up to accuracy
δ in time poly(L, (nm)O(r22r), log 1/δ).

Proof: Suppose there is such a factorization. Using Lemma 3.7, there is also a proper chain. We
can apply Lemma 3.11 and using the algorithm in Theorem 3.17 we can enumerate over a superset
of simplicial partitions. Hence, at least one of those partitions will result in the choice functions
σW ′ and σA′ in the proper chain decomposition for M = AW .

Using Lemma 3.9 there is a set of at most 2r linear transformations T1, T2, ...T2r which recover
columns of W ′ given columns of M , and similarly there is a set of at most 2r linear transformations
S1, S2, ...S2r which recover the rows of A′ given rows of M . Note that these linear transformations
are from the column-span and row-span of M respectively, and hence are from subspaces of di-
mension at most r. So apply a linear transformation to columns of M and one to rows of M to to
recover matrices MC and MR respectively (which are no longer necessarily nonnegative) but which
are dimension r × m and n × r respectively. There will still be a collection of at most 2r linear
transformations from columns of MC to columns of W ′, and similarly for MR and A′.

We will choose r2 variables for each linear transformation, so there are 2 ∗ r2 ∗ 2r variables in
total. Then we can write a set of m linear constraints to enforce that for each column of (MC)i,
the transformation corresponding to σW ′(i) recovers a nonnegative vector. Similarly we can define
a set of n constraints based on rows in MR.

Lastly we can define a set of constraints that enforce that we do recover a factorization for
M : For all i ∈ [m], j ∈ [n], let i′ = σW ′(i) and j′ = σA′(j). Then we write the constraint
(MC)jSj′Ti′(MR)i = M j

i . This constraint has degree at two in the variables corresponding to the
linear transformations. Lemma 3.7 implies that there is some choice of these transformations that
will satisfy these constraints (when we formulate these constraints using the correct choice functions
in the proper chain decomposition). Furthermore, any set of transformations that satisfies these
constraints does define a nonnegative matrix factorization of inner dimension r for M .

And of course, if there is no inner dimension r nonnegative factorization, then all calls to the
algorithm of Basu et al [3] will fail and we can return that there is no such factorization. �

The result in Basu et. al. [3] is a quantifier elimination algorithm in the Blum, Shub and Smale
(BSS) model of computation [6]. The BSS model is a model for real number computation and it
is natural to ask what is the bit complexity of finding a rational approximation of the solutions.
There has been a long line of research on the decision problem for first order theory of reals: given
a quantified predicate over polynomial inequalities of reals, determine whether it is true or false.
What we need for our algorithm is actually a special case of this problem: given a set of polynomial
inequalities over real variables, determine whether there exists a set of values for the variables so that
all polynomial inequalities are satisfied. In particular, all variables in our problem are quantified by
existential quantifier and there are no alternations. For this kind of problem Grigor’ev and Vorobjov
[13] first gave a singly-exponential time algorithm that runs in (nd)O(f(r)2) where n is the number
of polynomial inequalities, d is the maximum degree of the polynomials and f(r) is the number
of variables. The bit complexity of the algorithm is poly(L, (nd)O(f(r)2)) where L is the maximum
length of the coefficients in the input. Moreover, their algorithm also gives an upperbound of
poly(L, (nd)O(f(r))) on the number of bits required to represent the solutions. Renegar[32] gave
a better algorithm that for the special case we are interested in takes time (nd)O(f(r)). Using
his algorithm with binary search (with search range bounded by Grigor’ev et.al.[13]), we can find
rational approximations to the solutions with accuracy up to δ in time poly(L, (nm)O(f(r)), log 1/δ).

We note that our results on the SF problem are actually a special case of the theorem above
(because our structural lemma for simplicial factorization is a special case of our general structure
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theorem):

Corollary 3.20. There is an algorithm for determining whether the positive rank of a nonnegative
n×m matrix M equals the rank and this algorithm runs in time O((nm)cr

2
).

Proof: If rank(M) = r, then we know that both A and W must be full rank. Hence C(A) and
R(W ) are both just the set {1, 2, ...r}. Hence we can circumvent the simplicial partition machinery,
and set up a system of polynomial constraints in at most 2r2 variables. �

4 Strong Intractability of Simplicial Factorization

Here we give evidence that finding a simplicial factorization of dimension r probably cannot be
solved in (nm)o(r) time, unless 3-SAT can be solved in 2o(n) time (in other words, if the Exponential
Time Hypothesis of [20] is true). Surprisingly, even the NP -hardness of the problem for general
r was only proved quite recently by Vavasis [36]. That reduction is the inspiration for our result,
though unfortunately we were unable to use it directly to get low-dimensional instances. Instead
we give a new reduction using the d-SUM Problem.

Definition 4.1 (d-SUM). In the d-SUM problem we are given a set of N values {s1, s2, ...sN}
each in the range [0, 1], and the goal is to determine if there is a set of d numbers (not necessarily
distinct) that sum to exactly d/2.

This definition for the d-SUM Problem is slightly unconventional in that here we allow repetition
(i.e. the choice of d numbers need not be distinct). Patrascu and Williams [30] recently proved
that if d-SUM can be solved in No(d) time then 3-SAT has a sub-exponential time algorithm. In
fact, in the instances constructed in [30] we can allow repetition of numbers without affecting
the reduction since in these instances choosing any number more than once will never result in a
sum that is exactly d/2. Hence we can re-state the results in [30] for our (slightly unconventional
definition for) d-SUM.

Theorem 4.2. If d < N0.99 and if d-SUM instances of N distinct numbers each of O(d logN) bits
can be solved in No(d) time then 3-SAT on n variables can be solved in time 2o(n).

Given an instance of the d-SUM, we will reduce to an instance of the Intermediate Simplex
problem defined in [36].

Definition 4.3 (Intermediate Simplex). Given a polyhedron P = {x ∈ <r−1 : Hx ≥ b} where H
is an n × (r − 1) size matrix and b ∈ <n such that the matrix [H, b] has rank r and a set S of m
points in <r−1, the goal of the Intermediate Simplex Problem is to find a set of points T that form
a simplex (i.e. T is a set of r affinely independent points) each in P such that the convex hull of T
contains the points in S.

Vavasis [36] proved that Intermediate Simplex is equivalent to the Simplicial Factorization
problem.

Theorem 4.4 (Vavasis, 2009 [36]). There is a polynomial time reduction from Intermediate Simplex
problem to Simplicial Factorization problem and vice versa and furthermore both reductions preserve
the value of r.

Interestingly, an immediate consequence of this theorem is that Simplicial Factorization is easy
in the case in which rank(M) = 2 because mapping these instances to instances of intermediate
simplex results in a one dimensional problem - i.e. the polyhedron P is an interval.
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Figure 1: The Gadget

4.1 The Gadget

Given the universe U = {s1, s2, . . . , sN} for the d-SUM problem, we construct a two dimensional
Intermediate Simplex instance as shown in Figure 1. We will show that the Intermediate Simplex
instance has exactly N solutions, each representing a choice of si. Later in the reduction we use d
such gadgets to represent the choice of d numbers in the set U .

Recall for a two dimensional Intermediate Simplex problem, the input consists of a polygon
P (which is the hexagon ABCDEF in Figure 1) and a set of points S = {I1, I2, . . . , I3N} inside
P (which are the dots, except for M). A solution to this two dimensional Intermediate Simplex
instance will be a triangle inside P such that all the points in S are contained in the triangle (in
Figure 1 ACE is a valid solution).

We first specify the polygon P for the Intermediate Simplex instance. The polygon P is just
the hexagon ABCDEF inscribed in a circle with center M . All angles in the hexagon are 2π/3,
the edges AB = CD = EF = ε where ε is a small constant depending on N , d that we determine
later. The other 3 edges also have equal lengths BC = DE = FA.

We use y(A) and z(A) to denote the y and z coordinates for the point A (and similarly for all
other points in the gadget). The hexagon is placed so that y(A) = y(B) = 0, y(D) = y(E) = 1.

Now we specify the set S of 3N points for the Intermediate Simplex instance. To get these
points first take N points in each of the 3 segements AB, CD, EF . On AB these N points are
called A1, A2, ..., AN , and |AAi| = εsi. Similarly we have points Ci’s on CD and Ei’s on EF ,
|CCi| = |EEi| = εsi. Now we have N triangles AiCiEi (the thin lines in Figure 1). We claim (see
Lemma 4.5 below) that the intersection of these triangles is a polygon with 3N vertices. The points
in S are just the vertices of this intersection.

Lemma 4.5. When ε < 1/50, the points {Ai}, {Ci}, {Ei} are on AB, CD, EF respectively and
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Figure 2: Proof of Lemma 4.5

AAi = CCi = EEi = εsi, the intersection of the N triangles {AiCiEi} is a polygon with 3N
vertices.

Proof: Since the intersection of N triangles AiCiEi is the intersection of 3N halfplanes, it has
at most 3N vertices. Therefore we only need to prove every edge in the triangles has a segment
remaining in the intersection. Notice that the gadget is symmetric with respect to rotations of
2π/3 around the center M . By symmetry we only need to look at edges AiCi. The situation here
is illustrated in Figure 2.

Since all the halfplanes that come from triangles AiCiEi contain the center M , later when
talking about halfplanes we will only specify the boundary line. For example, the halfplane with
boundary AiCi and contains Ei (as well as M) is called halfplane AiCi.

The two thick lines in Figure 2 are extensions of AB and CD, now they are rotated so that they
are z = ±

√
3y. The two thin lines are two possible lines AiCi and AjCj . The differences between

y coordinates of Ai and Ci are the same for all i (here normalized to 1) by the construction of
the points Ai’s and Ci’s. Assume the coordinates for Ai, Aj are (yi,−

√
3yi) and (yj ,−

√
3yj)

respectively. Then the coordinates for the intersection is (yi + yj + 1,
√

3(1 + yi + yj + 2yiyj)). This
means if we have N segments with y1 < y2 < . . . < yN , segment i will be the highest one when
y is in range (yi−1 + yi + 1, yi + yi+1 + 1) (indeed, the lines with j > i have higher slope and will
win when y > yi + yj + 1 ≥ yi + yi+1 + 1; the lines with j < i have lower slope and will win when
y < yi + yj + 1 ≤ yi + yi−1 + 1).

We also want to make sure that all these intersection points are inside the halfplanes CiEi’s and
EiAi’s. Since ε < 1/50, all the yi’s are within [−1/2− 1/20,−1/2 + 1/20]. Hence the intersection
point is always close to the point (0,

√
3/2), the distance is at most 1/5. At the same time, since

ε is small, the distances of this point (0,
√

3/2) to all the CiEi’s and EiAi’s are all larger than
1/4. Therefore all the intersection points are inside the other 2N halfplanes and the segments will
indeed remain in the intersection. The intersection has 3N edges and 3N vertices. �
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The Intermediate Simplex instance has N obvious solutions: the triangles AiCiEi, each one
corresponds to a value si for the d-SUM problem. In the following Lemma we show that these are
the only possible solutions.

Lemma 4.6. When ε < 1/1000, if the solution of the Intermediate Simplex problem is PQR, then
PQR must be one of the AiCiEi’s.

Proof: Suppose PQR is a solution of the Intermediate Simplex problem, since M is in the convex
hull of {I1, I2, . . . , I3N}, it must be in PQR. Thus one of the angles ∠PMQ, ∠QMR, ∠RMP must
be at least 2π/3 (their sum is 2π). Without loss of generality we assume this angle is ∠PMQ and
by symmetry assume P is either on AB or BC. We shall show in either of the two cases, when P
is not one of the Ai’s, there will be some Ik that is not in the halfplane PQ (recall the halfplanes
we are interested in always contain M so we don’t specify the direction).

When P is on AB, since ∠PMQ ≥ 2π/3, we have CQ ≥ AP (by symmetry when CQ = AP the
angle is exactly 2π/3). This means we can move Q to Q′ such that CQ′ = AP . The intersection of
halfplane PQ′ and the hexagon ABCDEF is at least as large as the intersection of halfplane PQ
and the hexagon. However, if P is not any of the points {Ai} (that is, |PQ′|/ε 6∈ {s1, s2, ..., sN}),
then PQ′ can be viewed as AN+1CN+1 if we add sN+1 = |AP |/ε to the set U . By Lemma 4.5
introducing PQ′ must increase the number of vertices. One of the original vertices Ik is not in the
hyperplane PQ′, and hence not in PQR. Therefore when P is on AB it must coincide with one of
the Ai’s, by symmetry PQR must be one of AiCiEi’s.

When P is on BC, there are two cases as shown in Figure 3.
First observe that if we take U ′ = U ∪ {1 − s1, 1 − s2, . . . , 1 − sN}, and generate the set

S = {I1, I2, . . . , I6N} according to U ′, then the gadget is further symmetric with respect to flipping
along the perpendicular bisector of BC. Now without loss of generality BP ≤ BC/2. Since every
Ik is now in the intersection of 2N triangles, in particular they are also in the intersection of the
original N triangles, it suffices to show one of Ik (k ∈ [6N ]) is outside halfplane PQ.

The first case (left part of Figure 3) is when BP < ε. In this case we extend PQ to get
intersection on AB (P ′) and intersection on CD (Q′). Again since ∠PMQ ≥ 2π/3, we have
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DQ ≥ BP . At the same time we know ∠DQQ′ ≥ ∠P ′PB, so DQ′ > BP ′. Similar to the
previous case, we take Q′′ so that CQ′′ = AP ′. The intersection of hyperplane P ′Q′′ and the
hexagon ABCDEF is at least as large as the intersection of halfplane PQ and the hexagon. When
ε < 1/1000, we can check AP ′ < 2ε� 1/50, therefore we can still view P ′Q′′ as some A2N+1C2N+1

for s2N+1 < 2. Now Lemma 4.5 shows there is some vertex Ik not in halfplane P ′Q′′ (and hence
not in halfplane PQ).

The final case (right part of Figure 3) is when BP ≥ ε. In this case we notice the triangle with
3 edges AD, BE, CF (the shaded triangle in the figure) is contained in every AiCiEi, thus it must
also be in PQR. However, since BC/2 ≥ BP ≥ ε, we know AR ≤ ε and DQ ≤ ε. In this case
PQR does not even contain the center M . �

4.2 The Reduction

Suppose we are given an instance of the d-SUM Problem with N values {s1, s2, ...sN}. We will give
a reduction to an instance of Intermediate Simplex in dimension r − 1 = 3d+ 1.

To encode the choice of d numbers in the set {s1, s2, ..., sN}, we use d gadgets defined in Sec-
tion 4.1. The final solution of the Intermediate Simplex instance we constructed will include solu-
tions to each gadget. As the solution of a gadget always corresponds to a number in {s1, s2, ..., sN}
(Lemma 4.6) we can decode the solution and get d numbers, and we use an extra dimension w that
“computes” the sum of these numbers and ensures the sum is equal to d/2.

We use three variables {xi, yi, zi} for the ith gadget.

Variables 1. We will use 3d+ 1 variables: sets {xi, yi, zi} for i ∈ [d] and w.

Constraints 1 (Box). For all i ∈ [d], xi, yi ∈ [0, 1], zi ∈ [0, 2] and also w ∈ [0, 1].

Definition 4.7. Let G ⊂ <2 be the hexagon ABCDEF in the two-dimensional gadget given in the
Section 4.1.Let H ⊂ <3 be the set conv({(xi, yi, zi) ∈ <3|(yi, zi) ∈ G, xi = 1},~0).

H is a tilted-cone that has a hexagonal base G and has an apex at the origin.

Definition 4.8. Let R be a 7× 3 matrix and b ∈ <7 so that {x|Rx ≥ b} = H.

We will use these gadgets to define (some of the) constraints on the polyhedron P in an instance
of intermediate simplex:

Constraints 2 (Gadget). For each i ∈ [d], R(xi, yi, zi) ≥ b.

Hence when restricted to dimensions xi, yi, zi the ith gadget G is on the plane xi = 1.
We hope that in a gadget, if we choose three points corresponding to the triangle for some value

si, that of these three points only the point on the AB line will have a non-zero value for w and
that this value will be si. The points on the lines CD or EF will hopefully have a value close to
zero. We add constraints to enforce these conditions:

Constraints 3 (CE). For all i ∈ [d], w ≤ 1− yi + (1− xi)

These constraints make sure that points on CD or EF cannot have large w value.
Recall that we use z(A) to denote the z coordinate of A in the gadget in Section 4.1.

Constraints 4 (AB). For all i ∈ [d]: w ∈
[
(zi−z(A)xi)

ε ± (10ε yi + (1− xi))
]
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Theses constraints make sure that points on AB have values in {s1, s2, ..., sN}.
The AB and CE constraints all have the property that when xi < 1 (i.e. the corresponding

point is off of the gadget on the plane xi = 1) then these constraints gradually become relaxed.
To make sure the gadget still works, we don’t want the extra constraints on w to rule out some

possible values for xi, yi, zi’s. Indeed we show the following claim.

Claim 4.9. For all points in (xi, yi, zi) ∈ H, there is some choice of w ∈ [0, 1] so that xi, yi, zi and
w satisfy the CE and AB Constraints.

The proof is by observing that Constraints AB have almost no effect when y > 0 and Constraints
CE have no effect when y = 0.

Constraints 1 to 4 define a polyhedron P in 3d+1-dimensional space and furthermore the set of
constraints that define P have full rank (in fact even the inequalities in the Box Constraints have
full rank). Thus this polyhedron is a valid polyhedron for the Intermediate Simplex problem.

Next we specify the points in S for the Intermediate Simplex problem(each of which will be
contained in the polyhedron P ). Let Ik (for k ∈ [3N ]) be the set S in the gadget in Section 4.1.
As before, let z(Ik) and y(Ik) be the z and y coordinates of Ik respectively.

Definition 4.10 (w-max(Ik)). Let w-max(Ik) be the maximum possible w-value of any point I
with xi = 1, yi = y(Ik), zi = z(Ik) and xj , yj , zj = 0 for all j 6= i so that I is still contained in P .

Definition 4.11 (O,W, Iik, Q). The set S of points for the Intermediate Simplex problem is

O point: For all i ∈ [d], xi, yi, zi = 0 and w = 0

W point: For all i ∈ [d], xi, yi, zi = 0 and w = 1

Iik points: For each i ∈ [d], for each k ∈ [3N ] set xi = 1/4, yi = 1/4y(Ik), zi = 1/4z(Ik) and for
j 6= i set xj , yj , zj = 0. Also set w to be the 1/4× w-max(Ik).

Q point: For each i ∈ [d], xi = 1/d, yi = y(M)/d, zi = z(M)/d and w = 1/6

This completes the reduction of 3-SUM to intermediate simplex, and next we establish the
COMPLETENESS and SOUNDNESS of this reduction.

4.3 Completeness and Soundness

The completeness part is straight forward: for ith gadget we just select the triangle that corresponds
to ski .

Lemma 4.12. If there is a set {sk1 , sk2 , ...skd} of d values (not necessarily distinct) such that∑
i∈[d] ski = d/2 then there is a solution to the corresponding Intermediate Simplex Problem.

Proof: We will choose a set of 3d+ 2 points T : We will include the O and W points, and for each
ski , we will choose the triangle corresponding to the value ski in the ith gadget. Recall the triangle
is AkiCkiEki in the gadget defined in Section 4.1. The points we choose have xi = 1 and yi, zi
equal to the corresponding point in the gadget. We will set w to be ski for the point on the line
AB and we will set w to be zero for the other two points not contained in the line AB. The rest
of the dimensions are all set to 0.

Next we prove that the convex hull of this set of points T contains all the points in S: The points
O and W are clearly contained in the convex hull of T (and are in fact in T !). Next consider some
point Iik in S corresponding to some intersection point Ik in the gadget G. Since Ik is in the convex
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hull of the triangle corresponding to ski in the gadget G, there is a convex combination of the these
three points Aki , Cki , Eki in T (which we call J) so that 1/4J matches Iik on all coordinates except
possibly the w-coordinate. Furthermore the point J has some value in the coordinate corresponding
to w and this must be at most the corresponding value in Iik (because we chose the w-value in Iik
to be 1/4 × w-max(Ik)). Hence we can distribute the remaining 3/4 weight among the O and W
points to recover Iik exactly on all coordinates.

Lastly, we observe that if we equally weight all points in T (except O and W ) we recover the
point Q. In particular, the w coordinate of Q should be 1

3d

∑d
i=1 ski = 1/6. �

Next we prove SOUNDNESS for our reduction. Suppose the solution is T , which is a set of
3d+ 2 points in the polyhedron P and the convex hull of points in T contains all the O, W , Iik, Q
points (in Definition 4.11).

Claim 4.13. The points O and W must be in the set T .

Proof: The points O and W are vertices of the polyhedron P and hence cannot be expressed as a
convex combination of any other set of points in P . �

Now we want to prove the rest of the 3d points in set T is partitioned into d triples, each triple
belongs to one gadget. Set T ′ = T − {O} − {W}.

Definition 4.14. For i ∈ [d], let

T ′i = {Z ∈ T ′|j 6= i⇒ xj(Z), yj(Z), zj(Z) = 0 and one of xi(Z), yi(Z), zi(Z) 6= 0}

Claim 4.15. The sets T ′i partition T ′ and each contain exactly 3 nodes.

Proof: The sets T ′i are disjoint, and additionally each set T ′i must contain at least 3 nodes (otherwise
the convex hull of T ′i even restricted to xi, yi, zi cannot contain the points Iik). This implies the
Claim. �

Recall the gadget in Section 4.1 is a two dimensional object, but it is represented as a three
dimensional cone in our construction. We would like to apply Lemma 4.6 to points on the plane
xi = 1 (in this plane the coordinates yi,zi act the same as y, z in the gadget).

Definition 4.16. For each point Z ∈ T ′i , let ext(Z) ∈ <3 be the intersection of the line connecting
the origin and (xi(Z), yi(Z), zi(Z)) with the xi = 1 base of the set {(xi, yi, zi)|R(xi, yi, zi) ≥ b}.
Let ext(T ′i ) be the point-wise ext operation applied to each point in T ′i .

Since the points Iik are in the affine hull of T ′i when restricted to xi, yi, zi , we know ext(Iik)
must be in the convex hull of ext(T ′i ). Using Lemma 4.6 in Section 4.1, we get:

Corollary 4.17. ext(T ′i ) must correspond to some triangle AkiCkiEki for some value ski.

Now we know how to decode the solution T and get the numbers ski . We will abuse notation
and call the 3 points in T ′i Aki , Cki , Eki (they were used to denote the corresponding points in the
2-d gadget in Section 4.1).We still want to make sure the w coordinate correctly “computes” the
sum of these numbers. As a first step we want to show that the xi of all points in T ′i must be 1
(we need this because the Constraints AB and CE are only strict when xi = 1).

Lemma 4.18. For each point Z ∈ T ′i , xi(Z) = 1
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Proof: Suppose, for the sake of contradiction, that xi(Z) < 1 (for Z ∈ T ′i ). Then consider the point
Q. Since

∑
i∈[d] xi(Q) = 1, and for any point in T

∑
i∈[d] xi ≤ 1, there is no convex combination of

points in T that places non-zero weight on Z and equals Q.
Let T ′′i be T ′i\{Z}, we observe that the points in T ′′i are the only points in T that have any

contribution to (xi, yi, zi) when we want to represent Q (using a convex combination). For now
we restrict our attention to these three dimensions.When trying to represent Q we must have 1/d
weight in the set T ′′i (because of the contribution in xi coordinate). The yi, zi coordinates of Q
are y(M)/d, z(M)/d respectively. This means if we take projection to yi, zi plane M must be in
the convex hull of T ′′i . However that is impossible because no two points in AkCkEk contain M in
their convex hull. This contradiction implies the Lemma. �

Lemma 4.19. Any convex combination of points in T that equals the point Q must place equal
weight on all points in T ′.

Proof: Using Lemma 4.18, we conclude that the total weight on points in T ′i is exactly 1/d, and
there is a unique convex combination of the points T ′i (restricted to yi, zi) that recover the point
M which is the 1/3, 1/3, 1/3 combination. This implies the Lemma. �

Now we are ready to compute the w value of the point Q and show the sum of ski is indeed
d/2.

Lemma 4.20 (Soundness). When ε < N−Cd for some large enough constant C, if there is a
solution to the Intermediate Simplex instance, then there is a choice of d values that sum up to
exactly d/2.

Proof: As we showed in previous Lemmas, the solution to the Intermediate Simplex problem must
contain O, W , and for each gadget i the solution has 3 points T ′i that correspond to one of the
solutions of the gadget. Suppose for gadget i the triangle we choose is AkiCkiEki . By Constraints
AB we know w(Aki) = ski , by Constraints CE we know w(Cki) ≤ ε and w(Eki) ≤ ε.

By Lemma 4.19 there is only one way to represent Q, and w(Q) = 1
3d

∑d
i=1[w(Aki) +w(Cki) +

w(Eki)] = 1/6.

d∑
i=1

ski =
d∑
i=1

w(Aki) =
d

2
−

d∑
i=1

[w(Cki) + w(Eki)]. (1)

Since w(Cki) and w(Eki)’s are small, we have
∑d

i=1 ski ∈ [d/2−2dε, d/2]. However the numbers
only have O(d logN) bits and ε is so small, the only valid value in the range is d/2. Hence the sum∑d

i=1 ski must be equal to d/2. �

5 Fully-Efficient Factorization under Separability

Earlier, we gave algorithms for NMF, and presented evidence that no (nm)o(r) time algorithm
exists for determining if a matrix M has nonnegative rank at most r. Here we consider conditions
on the input that allow the factorization to be found in time polynomial in n, m and r. (In
Section 5.1, we give a noise-tolerant version of this algorithm). To the best of our knowledge this
is the first example of an algorithm (that runs in time poly(n,m, r)) and provably works under
a non-trivial condition on the input. Donoho and Stodden [10] in a widely-cited paper identified
sufficient conditions for the factorization to be unique (motivated by applications of NMF to a
database of images) but gave no algorithm for this task. We give an algorithm that runs in time
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poly(n,m, r) and assumes only one of their conditions is met (separability). We note that this
separability condition is quite natural in its own right, since it is usually satisfied [4] by model
parameters fitted to various generative models (e.g. LDA [5] in information retrieval).

Definition 5.1 (Separability). A nonnegative factorization M = AW is called separable if for each
i there is some row f(i) of A that has a single nonzero entry and this entry is in the ith column.

Let us understand this condition at an intuitive level in context of clustering documents by
topic, which was discussed in the introduction. Recall that there a column of M corresponds to
a document. Each column of A represents a topic and its entries specify the probability that a
word occurs in that topic. The NMF thus “explains” the ith document as AWi where the column
vector Wi has (nonnegative) coordinates summing to one—in other words, Wi represents a convex
combination of topics. In practice, the total number of words n may number in the thousands
or tens of thousands, and the number of topics in the dozens. Thus it is not unusual to find
factorizations in which each topic is flagged by a word that appears only in that topic and not in
the other topics [4]. The separability condition asserts that this happens for every topic1.

For simplicity we assume without loss of generality that the rows of M are normalized to have
unit `1-norm. After normalizing M , we can still normalize W (while preserving the factorization)
by re-writing the factorization as M = AW = (AD)(D−1W ) for some r× r nonnegative matrix D.
By setting Di,i =

∥∥W i
∥∥
1

the rows of D−1W will all have l1 norm 1. When rows of M and W are
all normalized the rows of A must also have unit `1-norm because

1 =
∥∥M i

∥∥
1

=

∥∥∥∥∥∥
r∑
j=1

Ai,jW
j

∥∥∥∥∥∥
1

=
r∑
j=1

Ai,j
∥∥W j

∥∥
1

=
r∑
j=1

Ai,j .

The third equality uses the nonnegativity of W . Notice that after this normalization, if a row
of A has a unique nonzero entry (the rows in Separability), that particular entry must be one.

We also assume W is a simplicial matrix defined as below.

Definition 5.2 (simplicial matrix). A nonnegative matrix W is simplicial if no row in W can be
represented in the convex hull of the remaining rows in W .

The next lemma shows that without loss of generality we may assume W is simplicial.

Lemma 5.3. If a nonnegative matrix M has a separable factorization AW of inner-dimension at
most r then there is one in which W is simplicial.

Proof: Suppose W is not simplicial, and let the jth row W j be in the convex hull of the remaining
rows. Then we can represent W j = ~uTW where ~u is a nonnegative vector with |~u|1 = 1 and the
jth coordinate is 0.

Now modify A as follows. For each row Aj
′

in A that has a non-zero jth coordinate, we zero

out the jth coordinate and add Aj
′

j ~u to the row Aj
′
. At the end the matrix is still nonnegative but

whose jth column is all zeros. So delete the jth column and let the resulting n× (r − 1) matrix be
A′. Let W ′ be the matrix obtained by deleting the jth row of W . Then by construction we have
M = A′W ′. Now we claim A′ is separable.

Since A was originally separable, for each column index i there is some row, say the f(i)th row,
that has a non-zero entry in the ith column and zeros everywhere else. If i 6= j then by definition

1More realistically, the word may appear in other topics only with negligible property instead of zero probability.
This is allowed in our noise-tolerant algorithm later.
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the above operation does not change the f(i)th row of A. If i = j the jth index is deleted at the
end. In either case the final matrix A′ satisfies the separability condition.

Repeating the above operation for all violations of the simplicial condition we end with a
separable factorization of M (again with inner-dimension at most r) where W is simplicial. �

Theorem 5.4. There is an algorithm that runs in time polynomial in n, m and r and given a
matrix M outputs a separable factorization with inner-dimension at most r (if one exists).

Proof: We can apply Lemma 5.3 and assume without loss of generality that there is a factorization
M = AW where A is separable and W is simplicial. The separability condition implies that every
row of W appears among the rows of M . Thus W is hiding in plain sight in M ; we now show how
to find it.

Say a row M j is a loner if (ignoring other rows that are copies of M j) it is not in the convex
hull of the remaining rows. The simplicial condition implies that the rows of M that correspond to
rows of W are loners.

Claim 5.5. A row M j is a loner iff M j is equal to some row W i

Proof: Suppose (for contradiction) that a row in M j is not a loner and but it is equal to some
row W i. Then there is a set S of rows of M so that M j is in their convex hull and furthermore for
all j′ ∈ S, M j′ is not equal to M j . Thus there is a nonnegative vector u ∈ <n that is 0 at the jth

coordinate and positive on indices in S such that uTM = M j .
Hence uTAW = M j = W i, but uTA must have unit `1-norm (because ‖u‖1 = 1, all rows of A

have unit `1-norm and are all nonnegative), also uTA is non-zero at position j′. Consequently W i

is in the convex hull of the other rows of W , which yields a contradiction.
Conversely if a row M j is not equal to any row in W , we conclude that M j is in the convex

hull of the rows of W . Each row of W appears as a row of A (due to the separability condition).
Hence M j is not a loner because M j is in the convex hull of rows of M that are equivalent to M j

itself. �

Using linear programming, we can determine which rows M j are loners. Due to separability
there will be exactly r different loner rows, each corresponds to one of the W i. Thus we are able
to recover W ′ that is equal to W after permutation over rows.We can compute a nonnegative A′

such that A′W ′ = M , and such solution A′ is necessarily separable (since it is just equal to A after
permutation over columns). �

5.1 Adding Noise

In any practical setting the data matrix M will not have an exact NMF of low inner dimension
since its entries are invariably subject to noise. Here we consider how to extend our separability-
based algorithm to work in presence of noise. We assume that the input matrix M ′ is obtained
by perturbing each row of M by adding a vector of `1-norm at most ε, where M has a separable
factorization of inner-dimension r. Alternatively,

∥∥M ′i −M i
∥∥
1
≤ ε for all i. Notice that the case

in which the separability condition is only approximately satisfied is a subcase of this: If for each
column there is some row in which that column’s entry is at least 1 − ε and the sum of the other
row entries is less than ε then the matrix M ′ will satisfy the condition stated above. (Note that
M,A,W have been scaled as discussed above.)

Our algorithm will require one more condition – namely, we require the unknown matrix W to
be “robustly” simplicial instead of just simplicial.
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Definition 5.6 (α-robust simplicial). We call W α-robust simplicial if no row in W has `1 distance
smaller than α to the convex hull of the remaining rows in W . (Here all rows have unit `1-norm.)

Recall from Lemma 5.3 that the simplicial condition can be assumed without loss of general-
ity under separability. In general α-robust simplicial condition does not follow from separability.
However, any reasonable generative model would surely posit that the matrix W —whose columns
after all represents distributions—satisfies the condition above. For instance, if columns of W are
picked randomly from the unit `1 ball then after normalization α is more than 1/10. Regardless of
whether or not one self-identifies as a bayesian, it seems reasonable that any suitably generic way
of picking column vectors would tend to satisfy the α-robust-simplicial property.

Theorem 5.7. Suppose M = AW where A is separable and W is α-robust simplicial. Let ε satisfy
20ε/α + 13ε < α. Then there is a polynomial time algorithm that given M ′ such that for all rows∥∥M ′i −M i

∥∥
1
< ε, finds a nonnegative matrix factorization A′W ′ of the same inner dimension such

that the `1 norm of each row of M ′ −A′W ′ is at most 10ε/α+ 7ε.

Proof: Separability implies that for any column index i there is a row f(i) in A whose only nonzero
entry is in the ith column. Then Mf(i) = W i and consequently

∥∥M ′f(i) −W i
∥∥
1
< ε. Let us call

these rows M ′f(i) for all i the canonical rows. From the above description the following claim is
clear since the rows of M can be expressed as a convex combination of W i’s.

Claim 5.8. Every row M ′j has `1-distance at most 2ε to the convex hull of canonical rows.

Proof:∥∥∥∥∥M ′j −
r∑

k=1

Aj,kM
′f(k)

∥∥∥∥∥
1

≤
∥∥M ′j −M j

∥∥
1

+

∥∥∥∥∥M j −
r∑

k=1

Aj,kM
f(k)

∥∥∥∥∥
1

+

∥∥∥∥∥
r∑

k=1

Aj,k(M
f(k) −M ′f(k))

∥∥∥∥∥
1

and we can bound the right hand side by 2ε. �

Next, we show how to find the canonical rows. For a row M ′j , we call it a robust-loner if upon
ignoring rows whose `1 distance to M ′j is less than d = 5ε/α + 2ε, the `1-distance of M ′j to the
convex hull of the remaining rows is more than 2ε. Note that we can identify robust-loner rows
using linear programming.

The following two claims establish that a row of M ′j is a robust-loner if and only if it is close
to some row W i.

Claim 5.9. If M ′j has distance more than d+ ε to all of the W i’s, then it cannot be a robust loner.

Proof: Such an M ′j has distance at least d to each of the canonical rows. The previous claim
shows M ′j is close to the convex hull of the canonical rows and thus by definition it cannot be a
robust-loner. �

Claim 5.10. All canonical rows are robust-loners.

Proof: Since
∥∥M ′f(i) −W i

∥∥
1
≤ ε, when we check if M ′f(i) is a robust-loner (using linear program-

ming), we leave out of consideration all rows that have `1-distance at most 5ε/α + ε to W i. In
particular, this omits any row M ′j such that M j =

∑r
k=1Aj,kW

k and Aj,i ≥ 1− 5ε/α. All remain-
ing rows have Aj,i ≤ 1 − 5ε/α, and hence the `1 distance of W i to conv(W\W i) is at least α (by
the α-robust simplicial property), we conclude that the distance between W i and the convex hull
of remaining M j ’s must be at least 5ε/α ∗ α = 5ε. Since M ′ is close to M the `1-distance between
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M ′f(i) and the convex hull of remaining rows M ′j ’s must be at least 5ε− 2ε = 3ε. Therefore M ′f(i)

is a robust-loner. �

The previous claim implies that each robust-loner row is within `1-distance d + ε to some W i

and conversely, for every W i there is at least one robust-loner row that is close to it. Since the
`1-distances between W i’s are at least 4(d + ε), we can apply distance based clustering on the
robust-loner rows: place two robust-loner rows into the same cluster if and only if these rows
are within `1-distance at most 2(d + ε). Clearly we will obtain r clusters, one corresponding
to each of the W i’s. Choose one row from each of the cluster, and using similar argument as
Claim 5.8 we deduce that every row of M ′ is within 2(d + ε) + ε = 10ε/α + 7ε to the convex hull
of the rows we selected. Therefore these rows form a nonnegative W ′ and we can find A′ so that∥∥M ′j − (A′W ′)j

∥∥
1
≤ 10ε/α+ 7ε for all j. �

6 Approximate Nonnegative Matrix Factorization

Here we consider the case in which the given matrix does not have an exact low-rank NMF but
rather can be approximated by a nonnegative factorization with small inner-dimension. We refer
to this as Approximate NMF. Unlike the algorithm in Theorem 5.7, the algorithm here works with
general nonnegative matrix factorization: we do not make any assumptions on matrices A and W .
Throughout this section we will use ‖‖F to denote the Froebenius norm, ‖‖2 to denote the spectral
norm and ‖‖ applied to a vector will denote the standard Euclidean norm.

Theorem 6.1. Let M be an n × m nonnegative matrix such that there is a factorization AW
satisfying ‖M −AW‖F ≤ ε ‖M‖F , where A and W are nonnegative and have inner-dimension r.
There is an algorithm that computes A′ and W ′ satisfying∥∥M −A′W ′∥∥

F
≤ O(ε1/2r1/4) ‖M‖F

in time 2poly(r log(1/ε))poly(n,m).

Note that the matrix M need not have low rank, but we will be able to assume M has rank
at most r without loss of generality: Let M ′ be the best rank at most r approximation (in terms
of Frobenius norm) to M . This can be computed using a truncated singular value decomposition
(see e.g. [12]). Since A and W have inner-dimension r, we get:

Claim 6.2. ‖M ′ −M‖F ≤ ‖M −AW‖F
Throughout this section, we will assume that the input matrix M has rank at most r - since

otherwise we can compute M ′ and solve the problem for M ′. Then using the triangle inequality,
any good approximation to M ′ will also be a good approximation to M .

Throughout this section, we will use the notation At to denote the tth column of A and W t to
denote the tth row of W . Note that W t is a row vector so we will frequently use AtW

t to denote
an outer-product. Next, we apply a simple re-normalization that will allow us to state the main
steps in our algorithm in a more friendly notation.

Lemma 6.3. We can assume without loss of generality that for all t∥∥W t
∥∥ = 1 (2)

‖At‖ ≤ (1 + ε) ‖M‖F (3)

and furthermore ‖A‖F ≤ (1 + ε) ‖M‖F .
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Proof: We can write AW =
∑r

t=1AtW
t. So we may scale At,W

t to ensure that
∥∥W t

∥∥ = 1.
Next, since A and W are nonnegative we have ‖AW‖F ≥

∥∥AtW t
∥∥
F

= ‖At‖
∥∥W t

∥∥ and ‖AW‖F ≤
(1 + ε) ‖M‖F and this implies the first condition in the lemma.

Next we observe

‖AW‖2F =

n∑
i=1

m∑
j=1

[ r∑
t=1

(AtW
t)i,j

]2
≥

r∑
t=1

n∑
i=1

m∑
j=1

[AtW
t]2i,j = ‖A‖2F .

where the inequality follows because all entries in A and W are nonnegative, and the last equality
follows because

∥∥W t
∥∥ = 1. �

Note that this lemma immediately implies that ‖W‖F ≤
√
r.

The intuition behind our algorithm is to decompose the unknown matrix W as the sum of two
parts: W = W0 + W1. The first part W0 is responsible for how good AW is as an approximation
to M (i.e., ‖M −AW0‖F is small) but could be negative; the second part W1 has little effect on
the approximation but is important in ensuring the sum W0 + W1 is nonnegative. The algorithm
will find good approximations to W0,W1.

What are W0,W1? Since removing W1 has little effect on how good AW is as an approximation
to M , this matrix should be roughly the projection of W onto the “less significant” singular vectors
of A. Namely, let the singular value decomposition of A be

A =
r∑
t=1

σtutv
T
t . (4)

and suppose that σ1 ≥ σ2.... ≥ σr. Let t0 be the largest t for which |σt| ≥ δ ‖M‖F (where δ is a
constant that is polynomially related to r and ε and will be specified later). Then set

W0 =

t0∑
t=1

(vtv
T
t )W ; W1 =

r∑
t=t0+1

(vtv
T
t )W. (5)

Lemma 6.4. ‖M −AW0‖F ≤ ε ‖M‖F + δ
√
r ‖M‖F

Proof: By the triangle inequality ‖M −AW0‖F ≤ ‖M −AW‖F + ‖AW1‖F . Also AW1 =∑r
t=t0+1 σt(utv

T
t )W , so we have

‖AW1‖F =

∥∥∥∥∥
r∑

t=t0+1

σt(utv
T
t )W

∥∥∥∥∥
F

≤

∥∥∥∥∥
r∑

t=t0+1

σt(utv
T
t )

∥∥∥∥∥
2

‖W‖F ≤ δ ‖M‖F
√
r,

where the last inequality follows because ‖W‖F ≤
√
r and the spectral norm of

∑r
t=t0+1(utv

T
t ) is

one. �

Next, we establish a lemma that will be useful when searching for (an approximation to) W0:

Lemma 6.5. There is an r×m matrix W ′0 such that each row is in the span of the rows of M and
which satisfies ‖W ′0 −W0‖F ≤ 2ε/δ.

Proof: Consider the matrix A+ =
∑t0

t=1
1
σt
vtu

T
t . Thus A+ is a pseudo-inverse of the truncated

SVD of A. Note that W0 = A+AW and the spectral norm ‖A+‖2 is at most 1/(δ ‖M‖F ). Then
we can choose W ′0 = A+M . Clearly, each row of W ′0 is in the span of the rows of M . Furthermore,
we have∥∥W ′0 −W0

∥∥
F

=
∥∥A+(M −AW )

∥∥
F
≤
∥∥A+

∥∥
2
‖M −AW‖F ≤

1

δ ‖M‖F
· 2ε ‖M‖F ≤

2ε

δ
.

�
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Lemma 6.6. There is an algorithm that in time 2poly(r log(1/ε))poly(n,m) finds W ′′0 ,W
′
1 and A′

such that W ′′0 +W ′1 ≥ 0, A′ ≥ 0 and∥∥M −A′(W ′′0 +W ′1)
∥∥
F
≤ O(

ε

δ
‖A‖F + ε ‖M‖F + δ

√
r ‖M‖F ).

Proof: We use exhaustive enumeration to find a close approximation to the matrixW ′0 of Lemma 6.5,
and then we use convex programming to find W ′1, A

′:
The exhaustive enumeration is simple: try all vectors that lie in some ε1-net in the span of the

rows of M , where ε1 = ε/δ . Such an ε1-net is easily enumerated in the provided time since the
row vectors are smaller than ‖W‖F =

√
r and their span is r-dimensional. Contained in this net

there must an W ′′0 such that ‖A+M −W ′′0 ‖F ≤ ε1. Using Lemma 6.5, ‖W0 −W ′0‖2 ≤ 2ε/δ, so the
triangle inequality implies ‖W0 −W ′′0 ‖F ≤ 2ε/δ + ε1 ≤ 4ε/δ.

Next, we give a method to find suitable substitutes W ′1, A
′ for W1, A respectively so that W ′0 +

W ′1 ≥ 0 and A′(W ′0 +W ′1) is a good approximation to M .
Let us assume we know the vectors vi appearing in the SVD expression (4) and ‖A‖F . This

is easy to guarantee since we can enumerate over all choices of the vi’s (which are unit vectors in
<r) using a suitable ε2-net where ε2 = min{ εδr , 0.1}. Also, ‖A‖F is a scalar value that can be easily
guessed within multiplicative factor 1.01.

Let W ′1 = Z be the optimal solution to the following convex program:

min ‖A‖2F
t0∑
t=1

∥∥vTi Z∥∥2 + δ2 ‖M‖2F
r∑

t=t0+1

∥∥vTi Z∥∥2 (6)

s.t. W ′′0 + Z ≥ 0. (7)

This is optimization problem is convex since the constraints are linear and the objective function
is quadratic but convex. (In fact this optimization problem can be separated into m smaller convex
programs because the constraints between different columns of W ′1 are independent).

When the vectors we enumerated (denoted as {v′i}) are close enough to the true values {vi}, that

is, when
∑r

i=1 ‖v′i − vi‖
2 ≤ min{ ε2

δ2r
, 0.01}, the value of the objective function after substituting v

by v′ can only change by at most O( ε
2

δ2
‖A‖2F + rδ2 ‖M‖2F ). From now on we work with the true

values of {vi}. The Claim below and arguments after will still be true although the vectors are not
exact.

Claim 6.7. The optimal value of this convex program is at most O( ε
2

δ2
‖A‖2F + rδ2 ‖M‖2F ).

Proof: We prove that W ′1 = W − W ′′0 = (W0 − W ′′0 ) + W1 is a feasible solution and that the
objective value of this solution is the value claimed in the lemma.

Since W1 =
∑r

t=t0+1(vtv
T
t )W only contributes to the second term of the objective function in

(6), we can upper bound the objective as∥∥W0 −W ′′0
∥∥2
F
‖A‖2F + (

∥∥W0 −W ′′0
∥∥
F

+ ‖W1‖F )2δ2 ‖M‖2F .

The proof is completed because ‖W0 −W ′′0 ‖F = O( εδ ) and ‖W1‖F ≤ ‖W‖F =
√
r. �

After solving the convex program, we obtaine a candidate W ′1. Let W ′ = W ′′0 + W ′1. To get
the right A′ (since W ′ is fixed) we can find the A′ that minimizes ‖M −A′W ′‖2F by solving a
least-squares problem. Clearly such an A′ satisfies ‖M −A′(W ′′0 +W ′1)‖F ≤ ‖M −A(W ′′0 +W ′1)‖F
and the latter quantity is bounded by ‖M −AW0‖F + ‖A(W0 −W ′′0 )‖F + ‖AW ′1‖F .
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Lemma 6.4 bounds the first term and Lemma 6.5 bounds the second term. The square of the
last term is bounded by the objective function of the convex program. �

Finally, by choosing δ =
√
ε

r1/4
we getA′, W ′ = W ′′0 +W ′1 such that ‖M −A′W ′‖F ≤ O(ε1/2r1/4) ‖M‖F .

Concluding Remarks

Here, we initiated a rigorous study of nonnegative matrix factorization. Our hardness result rules
out significant improvements over our worst-case results for fixed inner-dimension r. We believe that
our poly(m,n, r)-time algorithm for finding separable factorizations may point the way for future
work. What other plausible conditions can one impose on the factors in real-life applications? We
also hope our work promotes further theoretical study of nonnegative rank.

This work is part of a broader agenda of bringing greater rigor to the analysis of algorithms used
in machine learning. Currently, heuristic approaches are popular because the solution concepts are
believed to be intractable. Our results, for example our algorithm for NMF under the separability
condition, raise hope that sometimes the solution concepts may not be intractable after all.
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A Extended Discussion

Here we explain an application of NMF in detail. Perhaps the best approach is to contrast the NMF
problem with a more well-known matrix factorization, the singular value decomposition (SVD): A
n × m matrix M can be written as M =

∑
i σiuiv

T
i where the set {ui}i and the set {vi}i are

orthonormal and σ1 ≥ σ2.... ≥ σr > 0 (see e.g. [12]). In a number of applications, we imagine
that the columns of M represent examples and the rows of M represent observed variables. In
the context of information retrieval one often forms M as a ”term-by-document” matrix where
the (i, j)th entry in M is the frequency of occurrence of the ith term in the jth document in the
database. The SVD of M (e.g. in Latent Semantic Indexing (LSI) [9]) is often interpreted as a
method to extract ”topics” in the database: The set of vectors {ui}i (in a truncated SVD) is the
subspace that contains the maximum variance of the documents, and projecting columns of M (i.e.
documents) onto this basis is interpreted as a decomposition of each document into constituent
topics. Documents can then be compared based on an inner-product in this space.

In some sense, the decomposition into ”topics” generated via SVD is inconsistent with our
intuitive notion of what a topic is. The vectors {ui}i have both positive and negative values – these
vectors are orthogonal. For example, imagine some documents are about cars and some others are
about the weather. These ”topics” would both be negatively correlated with mentioning the word
”elephant” – i.e. documents about either topic are unlikely to use this word. What this means is
that when we compute the similarity of a pair of documents, the documents will be judged to be
more similar if both omit the word ”elephant”. But this is not consistent with our intuitive model,
and would lead to spurious latent relationships. We would expect similarity to be based on positive
occurrences only.

Hofman introduced a related approach (Probabilistic Latent Semantic Indexing [16]) in which
each document is normalized to be a distribution on words, and the goal is to compute a small set
of r topics (which are each distributions on words) and represent each document as a distribution
on topics. This is equivalent (after an appropriate renormalization) to computing a nonnegative
factorization of the term-by-document matrix M into AW , where the columns of A represent a
set of r topics and each column of W expresses the corresponding document as a distribution on
topics. The advantage of requiring this factorization to be nonnegative is that in Hofman’s PLSI
documents are judged to be similar based on words that they both contain. In LSI, documents
can also be judged to be similar based on words they both omit. Arguably, Hofman’s model is
more consistent with our intuition and maybe this helps explain why (computational issues aside)
a nonnegative factorization is, in many cases, preferred over an unrestricted one.
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