
 
 

 
 
 
 
 
 
 

Inexact Interior-Point Method 

for Pde-Constrained 

Nonlinear Optimization 

 
Marcus J. Grote, Johannes Huber,  

Drosos Kourounis, Olaf Schenk 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Institute of Mathematics      Preprint No. 2013-15 

University of Basel May, 2013 

Rheinsprung 21 

CH - 4051 Basel 

Switzerland      www.math.unibas.ch 



INEXACT INTERIOR-POINT METHOD FOR PDE-CONSTRAINED
NONLINEAR OPTIMIZATION⇤
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Abstract. Starting from the inexact interior-point framework from Curtis et al. [Mathematical
Programming Series B, 32(6), pp. 3447-3475, 2012], we propose an e↵ective reduced-space precondi-
tioner for the full Lagrangian Hessian matrix needed at each Newton iteration. Together they yield
a scalable, robust and highly parallel method for the numerical solution of large-scale nonconvex
PDE-constrained optimization problems with inequality constraints. Because it uses the full Hessian
matrix, modifying it whenever needed, the method is not only globally convergent, but also con-
verges fast locally. Our preconditioner is not tailored to any particular class of PDEs or constraints,
but instead judiciously exploits the sparsity structure of the Hessian. Numerical examples from
PDE-constrained optimal control, parameter estimation and full waveform inversion demonstrate
the robustness and e�ciency of the method, even in the presence of active inequality constraints.
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1. Introduction. Throughout science and engineering, mathematical models of
physical systems are extensively expressed as partial di↵erential equations (PDEs).
As computational methods for the solution of PDEs reach a mature stage, much
interest in current research is shifting toward optimal design, optimal control, and
parameter estimation of systems governed by PDEs. Despite their seeming disparity,
all these problems fit the class of PDE-constrained optimization, where (unknown)
PDE parameters, u – initial or boundary data, source terms, material coe�cients,
or domain geometry – must be determined by minimizing an appropriate objective
functional

min
y,u

F(y, u)(1.1)

s.t. A
k

(y
k

, u) = 0, for k = 1, . . . , N
E

u�  u  u

+

.

Here y = (y
1

, y

2

, . . . , y

NE ) denotes a collection of state variables y
k

that satisfy (pos-
sibly nonlinear) PDEs, each involving u. In optimal control, for instance, u appears
as a source term in every PDE; hence when the di↵erential operators A

k

are linear
in y

k

, y will also depend linearly on u. In parameter estimation, however, the partial
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di↵erential operator A
k

itself also depends on the model parameters, u; hence even
when A

k

is linear in y

k

, y
k

usually depends nonlinearly on u yielding a nonconvex
optimization problem. As a consequence, this inverse problem is often significantly
more di�cult to solve than the forward problem that consists of the mere computa-
tion of y for a given u. It is often ill-posed, requires regularization, and yet can still
have multiple local solutions. The inequality constraints in (1.1) not only permit the
imposition of physical bounds on u, but also the inclusion of information available a
priori. Thus, inequality bounds exclude unphysical solutions and prevent algorithms
from becoming trapped too easily in a (false) local minimum.

Numerical methods for PDE-constrained nonlinear optimization with inequality
constraints usually fall into one of two categories: active-set strategies and interior-

point (IP) methods. Because of the combinatorial complexity of active-set algorithms,
we opt for interior-point methods instead [7, 18, 17], which we apply to an appropriate
finite-dimensional discrete version of (1.1).

Since the PDE constraints in (1.1) are only coupled through u, it may seem at
first attractive to eliminate the state variables y

1

, . . . y

NE via the PDE constraints.
Known as reduced-space optimization, that approach capitalizes on well-established
methods and software for solving the (nonlinear) PDEs [15, 16, 20, 27]. However,
the resulting Hessian matrices needed by Newton’s method are dense and cannot be
formed explicitly. It requires the repeated exact solution of the state (and adjoint)
equations, even during initial steps when the control variables are still far from their
optimum, which is computationally ine�cient. Moreover, the evaluation of the ob-
jective function during the line-search phase becomes as expensive as the solution of
the full forward problem. Given those di�culties it is not surprising that most nu-
merical methods for large-scale PDE-constrained optimization are based on gradients
alone, thereby avoiding Hessian matrices entirely. Unlike Newton methods, however,
gradient-based methods, such as nonlinear conjugate gradients or limited memory
quasi-Newton methods [24], do not scale well with increasing problem size, su↵ering a
reduction from quadratic to linear asymptotic convergence, and often fail to converge
for ill-conditioned problems.

In contrast, full-space optimization [4, 5, 13, 25] treats at once both state and
control as independent optimization variables that are coupled through equality or
inequality constraints. Then the Hessian matrix, though very large, is also very sparse
and therefore ideally suited for iterative solvers. For nonconvex problems, however,
the projection of the Hessian onto the nullspace of the constraint Jacobian may not
be positive definite; hence, the resulting search direction may point towards a saddle-
point or a maximizer, instead of a minimizer. To enforce a direction of descent,
the Hessian matrix must be appropriately modified. When a matrix factorization is
explicitly available, the number of positive, negative and zero eigenvalues is easily
obtained and can be used to modify the Hessian, if needed, and thus enforce a de-
scent direction. Iterative methods, however, do not provide such information. As a
consequence, most work on inexact Newton methods for large-scale PDE-constrained
optimization usually avoids the indefiniteness of the Hessian either by neglecting part
of it (Gauss-Newton approximation) and thus sacrificing speed of convergence [3], or
simply by assuming convexity of the objective function [2].

Recently, Curtis et al. [9, 11] proposed a full-space inexact interior-point method
that guarantees global convergence, while retaining the full Lagrangian Hessian in-
formation and thus the fast local convergence of Newton’s method. The method
was extended to inequality constraints in [12] and further enhanced for additional
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e�ciency in [10]. There, an algebraic multilevel preconditioner for general sparse
indefinite linear systems was used within the inexact Newton step [6], and it led to
significant speed-up over an algorithm based on direct factorization of the primal-
dual system. Though encouraging, that approach does not extend to truly large-scale
problems with multiple PDE constraints, because the preconditioner requires assem-
bly and global reordering of the entire Hessian matrix; hence, it is actually restricted
to shared-memory architectures.

Following [10], we present in Section 2 the inexact interior-point (IIP) framework
and recall the salient points of the algorithm. Next in Section 3, we describe our
reduced-space preconditioner (RSP) for the full Hessian matrix. Together they yield
the RSP-IIP method, which we apply to a series of numerical examples in Section 4
to demonstrate its e�ciency and robustness. Here we consider both PDE-constrained
control and inverse problems, either in two or three space dimensions: all but one are
nonconvex. Finally, we summarize our findings in Section 5.

2. Interior-Point Framework. Numerical approximation of (1.1) leads to its
discrete counterpart,

min
y,u

F (y,u) =
1

2

NE
X

k=1

kV y
k

� ŷ
k

k2 + ↵

2
R (u)(2.1)

s.t.A
k

(y
k

,u) = 0, for k = 1, . . . N
E

u�  u  u
+

,

where bold symbols denote finite-dimensional vector or matrix approximations of the
corresponding functions or operators from the continuous formulation. The objective
function now consists of two parts. The misfit term measures the deviation from some
desired state or measurements ŷ

k

, where V is a projection or evaluation matrix. The
Tikhonov regularization term R (u) with parameter ↵ is standard and removes ill-
posedness.

Following a classical interior-point (IP) strategy, we now introduce slack vari-
ables s 2 R2nu

, s � 0 and a barrier term with parameter, µ > 0, for the inequality
constraints. Then (2.1) is solved through a sequence of barrier subproblems

min
y,u,s

'(y,u, s;µ) :=
1

2

NE
X

k=1

kV y
k

� ŷ
k

k2 + ↵

2
R (u)� µ

2nu
X

i=1

log(s
i

)(2.2)

s.t.A
k

(y
k

,u) = 0, for k = 1, . . . N
E

,

s =

✓

u� u�
u
+

� u

◆

for a sequence of barrier parameters µ # 0. If the objective function and the constraints
are su�ciently smooth, the limit of the corresponding solutions of (2.2) satisfies first-
order optimality conditions for (2.1) when the constraint Jacobian has full rank [24].

Solutions of (2.2) are critical points of the Lagrangian function

L(y,u, s,�) =
1

2

NE
X

k=1

kV y
k

� ŷ
k

k2 + ↵

2
R (u)� µ

2nu
X

i=1

log(s
i

)

+
NE
X

k=1

�>
k

A
k

(y
k

,u) + �I
>
✓✓

u� u�
u
+

� u

◆

� s

◆

,
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and thus satisfy the Karush-Kuhn-Tucker (KKT) conditions

(2.3)

r
yk
L(y,u, s,�) = V > (V y

k

� ŷ
k

) + J>
yk
�
k

= 0 for k = 1, . . . , N
E

,

r
u

L(y,u, s,�) =
↵

2
r

u

R+
NE
X

k=1

J>
ku

�
k

+ Î>�I = 0,

Sr
s

L(y,u, s,�) = �µe� S�I = 0,

r
�kL(y,u, s,�) = A

k

(y
k

,u) = 0 for k = 1, . . . , N
E

,

r
�IL(y,u, s,�) =

✓

u� u�
u
+

� u

◆

� s = 0,

where pre-multiplication by S = diag (s) in the third equation leads to a primal-dual
IP method [24]. Moreover, J

yk
= r

ykAk

(y
k

,u) and J
ku

= r
u

A
k

(y
k

,u) denote
the Jacobians of the k-th PDE constraint with respect to y

k

and u, respectively,
Î> = [I � I]> denotes the Jacobians of the inequality constraints, and e is a vector
with all entries equal to one. The interior-point method terminates, once the current
iterate (y,u) satisfies (2.3) with µ = 0 within a prescribed tolerance "

tol

, that is

(2.4) krLk1  "

tol

with µ = 0.
At an iterate (y,u), we compute a primal-dual search direction (d

p

,d
d

), d
p

=
(d

y

,d
u

,d
s

) and d
d

= (d
�E ,d�I ), which satisfies appropriate conditions for guaran-

teeing global convergence [10]. The computation of the search direction is based on
Newton’s method applied to the KKT conditions (2.3) and hence involves the full
Lagrangian Hessian, H. To simplify notation, we now group the primal and dual
variables as z = (y,u, s) and � = (�E ,�I), where �E denotes the vector of Lagrange
multipliers �

1

, . . . ,�
NE associated with the PDE (equality) constraints. We further

let

r
p

L =

0

@

r
y

L
r

u

L
⌃r

s

L

1

A

, c =

✓

r
�EL

r
�IL

◆

, J =

✓

J
y

J
u

0
0 Î �⌃

◆

,

and ⌃ denote a positive definite diagonal scaling matrix for the slack variables.
For nonconvex problems, the projection of H onto the nullspace of the constraint

Jacobian may not be positive definite; hence, the search direction (d
p

,d
d

) may point
towards a saddle-point or a maximizer, instead of a minimizer. To enforce a direction
of descent, we regularize H and modify the first three diagonal blocks of the Hessian
by adding a multiple of the identity matrix �I. Thus at each Newton step we actually
solve the linear system
(2.5)
0

B

B

B

B

@

H
yy

+ �I H
yu

0 J
y

> 0
H

yu

> H
uu

+ �I 0 J
u

> Î>

0 0 ⌃(S�1⇤I + �I)⌃ 0 �⌃
J

y

J
u

0 0 0
0 Î �⌃ 0 0

1

C

C

C

C

A

0

B

B

B

B

@

d
y

d
u

d
s

d
�E

d
�I

1

C

C

C

C

A

= �

0

B

B

B

B

@

r
yk
L

r
u

L
⌃r

s

L
r

�EL
r

�IL

1

C

C

C

C

A

,

where ⇤I = diag (�I) are the Lagrange multipliers associated with the inequality
constraints. The linear system (2.5) is very large but also very sparse and thus well-
suited for iterative solvers. Clearly an e↵ective preconditioner is essential to keep the
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number of iterations low. In Section 3, we shall propose a general purpose e↵ective
and parallel preconditioner.

2.1. Termination criteria. When we replace the direct solution of (2.5) by an
iterative method, both error control and the handling of nonconvexity become non-
trivial. Indeed if (2.5) is no longer solved exactly, how large an error will nonetheless
guarantee global convergence? Moreover, when a matrix factorization is explicitly
available, the number of positive, negative and zero eigenvalues is easily obtained and
can be used to modify the Hessian, if needed, and thus enforce a descent direction.
Iterative methods, however, do not provide such information. Answers to these two
questions were given in [11, 9, 12], where a series of su�cient merit function approxi-
mation reduction termination tests (SMART tests, for short) where devised that allow
inexact solutions of (2.5) and yet guarantee global convergence.

Of central importance in those termination tests are the residual vectors

✓

r
d

r
p

◆

=

✓

H
pp

J>

J 0

◆ ✓

d
p

d
d

◆

+

✓

r
p

L
c

◆

,

where

H
pp

=

0

@

H
yy

+ �I H
yu

0
H

yu

> H
uu

+ �I 0
0 0 ⌃(S�1⇤I + �I)⌃

1

A

as well as the primal-dual relative residuals of (2.5),

 :=

�

�

�

�

✓

r
d

r
p

◆

�

�

�

�

/

�

�

�

�

✓

r
p

L

c

◆

�

�

�

�

.

For convex problems the algorithm can focus exclusively on  , terminating the calcu-
lation of (d

p

,d
d

) whenever this value is below a threshold. For nonconvex problems,
however, the priority is to find solutions to (2.3) that correspond to minimizers, not
saddle-points or maximizers. The methods developed in [11, 9, 12] therefore include
additional conditions and procedures that enforce convergence toward minimizers of
(2.1). These additional conditions involve a local model of the merit function �,
denoted as

m(d
p

;µ,⇡) := �(z;µ,⇡) +r
z

'(z)>d
p

+ ⇡ kc+ Jd
p

k

and the reduction in this model yielded by d
p

, which is defined as

(2.6)
�m(d

p

;µ,⇡) := m(0;µ,⇡)�m(d
p

;µ,⇡)

=�r
z

'(z)>d
p

+ ⇡ (kck � kc+ Jd
p

k) .

Once the primal-dual search direction (d
p

,d
d

) has been determined, we compute

the scaled direction ed
p

= (d
y

,d
u

,⌃d
s

) along which a line search is performed. The
line search involves two conditions. First, to maintain positivity of the slacks, a step
size ↵

max 2 (0, 1] satisfying

(2.7) s+ ↵

max⌃d
s

� (1� ⌘

1

)s

is determined for a constant ⌘
1

2 (0, 1); we use ⌘
1

= max(0.99, 1�µ), which converges
to one as µ # 0 and thus preserves fast local convergence. Second, the algorithm
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Algorithm 1 Interior-Point Framework

1: (Initialization) Choose line search parameters ⌘

1

, ⌘

2

2 (0, 1), "
tol

> 0, an initial
barrier parameter µ > 0, and an initial penalty parameter ⇡ > 0. Initialize (z,�)
so that the slack variables satisfy s > 0 and s � (u�u�

u+�u

).

2: (Tests for convergence) If (2.4) is satisfied with µ = 0 for tolerance "

tol

, then
terminate and return y and u as an optimal solution. Else if (y,u) is an infeasible
stationary point with c 6= 0, then terminate with a corresponding notification.

3: (Barrier parameter update) If (2.4) with "

tol

replaced by 

"

µ (we choose 
✏

= 10)
is satisfied, that is convergence for (2.2) is reached, then decrease the barrier
parameter µ > 0, reset ⇡ > 0, and go to step 2.

4: (Search direction computation) Compute (d
p

,d
d

) from (2.5) and update ⇡ ac-
cording to (Algorithm 2 or Algorithm 3, [10]). Set the search direction to
ed
p

:= (d
y

,d
u

,⌃d
s

).

5: (Line search) If ed
p

= 0, then ↵ := 1. Else, let ↵max be the largest value in (0, 1]
satisfying (2.7) and let l be the smallest value in N

0

such that ↵ := 2�l

↵

max

satisfies (2.8).

6: (Iterate update) Set z := z + ↵

ed
p

, s := max{s, (u�u�
u+�u

)}, � := � + �d
d

with �

according to (2.9), and go to step 3.

backtracks from this value to compute the step length ↵ 2 (0,↵max] yielding su�cient
decrease in the merit function

(2.8) �(z;µ,⇡) := '(z;µ) + ⇡ kck ,

where the merit parameter, ⇡ > 0, is set automatically according to (Algorithm 2 or
Algorithm 3, [10]). Here, the condition we enforce is

�(z + ↵

ed
p

;µ,⇡)  �(z;µ,⇡)� ⌘

2

↵�m

k

(d
p

;µ,⇡),

where ⌘

2

2 (0, 1) is a constant (we choose ⌘

2

= 10�8), and where �m

k

bounds the

negative directional derivative of � along ed
p

from below; see (2.6). Then we update
the primal variables as

z := z + ↵

ed
p

.

Finally for the dual variables, the step length � is set to the smallest value in [↵, 1]
that leads to a dual infeasibility reduction at least as large as a full Newton step, that
is

(2.9) � = min
n

�̃ 2 [↵, 1]|
�

�

�

c(z,�+ �̃d
d

�

)
�

� 
�

�

�

c(z,�+ d
d

�

)
�

�

o

.

The interior-point framework is summarized in Algorithm 1. Iz particular in
Step 2, we check whether the current iterate is an infeasible stationary point, that is,
whether it solves the problem

(2.10) min
x2Rn

1

2

NE
X

k=1

kA
k

(y
k

,u)k2 + 1

2
kmax{

✓

u� � u
u� u

+

◆

,0 }k2 ,

where the maximum is meant componentwise. For any feasible PDE parameter u,
the last term in (2.10) is zero. Thus, a stationary point of (2.10) satisfies

(J
yk
J

u

)>A
k

(y
k

,u) = 0.
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Since J
yk

originates from a (well-posed) discretized and linearized PDE, it ought to
be invertible; hence, A

k

(y
k

,u) = 0 and (y,u) is feasible. Therefore, the termination
in Step 2 will never occur, as confirmed by our numerical experiments in Section 4.

3. Reduced-space preconditioning. At each Newton iteration, we must solve
the very large but sparse linear system (2.5), where H

yy

and H
uu

are symmetric.
Moreover, since the PDE constraints in (2.1) are only coupled through the control
variable u and the objective function F is additive, the largest dominant block H

yy

is in fact block diagonal,
(3.1)

H
yy

=

0

B

@

V > V +
P

i

(�
1

)
i

r2

yy

(A
1

)
i

. . .
V > V +

P

i

(�
NE )ir2

yy

(A
NE )i

1

C

A

,

where (A
k

)
i

is the ith component of A
k

(y
k

,u). Similarly, the constraint Jacobian
J

y

only consists of diagonal blocks,

(3.2) J
y

=

0

B

@

J
y1

. . .
J

yNE

1

C

A

.

In fact if the partial di↵erential operators A
k

(y
k

, u) in (1.1) are linear in y

k

, that is
if A

k

(y
k

,u) = A
k

(u)y, then each J
yk

= A
k

(u). Moreover, when all the PDEs are
identical, all the diagonal blocks in H

yy

or J
y

coincide.
First, we permute the linear system (2.5) to swap the (2, 2) and (4, 4) blocks, and

denote by D the resulting matrix, which we rewrite as

D =

✓

Q V
V> P

◆

,

with � = 0 for simplicity, where

Q =

✓

H
yy

J
y

>

J
y

0

◆

, P =

0

@

⌃S�1⇤I⌃ 0 �⌃
0 H

uu

Î>

�⌃ Î 0

1

A

, V =

✓

0 H
yu

0
0 J

u

0

◆

.

Typically the size of P is much smaller than the size of Q. Indeed a very large
number of PDE parameters can lead to unphysical optimal solutions [28, 22]. Then it
is particularly attractive to pursue the solution of the original linear system by forming
and solving first the Schur-complement system with respect to the (2, 2) block P of
D, given by

G = P�V>Q�1V.

The particular structure of Q allows its inverse to be written explicitly as

Q�1 =

✓

0 J�1

y

J�>
y

�J�>
y

H
yy

J�1

y

◆

.(3.3)

Therefore the solution of linear systems with system matrixQ appears trivial provided
that a robust and e�cient solver for the inversion of J

y

is available.



8 M. J. GROTE, J. HUBER, D. KOUROUNIS, O. SCHENK

Hence, let the (permuted) linear system take the form
✓

Q V
V> P

◆✓

d
y�E

d
us

◆

=

✓

w
1

w
2

◆

,

where d
y�E

> stands for the (d
y

>d
�E

>) and d
us

> for (d
s

>
,d

u

>
,d

�I
>). First, we

transform it to
✓

Q V
0 P�V>Q�1V

◆✓

d
y�E

d
us

◆

=

✓

w
1

w
2

�V>Q�1w
1

◆

which we then solve by using the following algorithm. Clearly we never explicitly form
the dense Schur-complement G in the third step of Algorithm 2, but instead again
use GMRES preconditioned by the matrix P.

Algorithm 2 Reduced-Space Preconditioned GMRES Solver (RSP-GMRES)

1: Solve Qp
1

= w
1

2: Form p
2

:= w
2

�VTp
1

3: Solve Gd
us

= p
2

, where G = P�VTQ�1V
4: Form p

1

:= w
1

�Vd
us

5: Solve Qd
y�E = p

1

Since H
yy

and J
y

in (3.1)–(3.2) are both block-diagonal, the PDEs can be solved
independently of one another and in parallel. Hence if every diagonal block is assigned
to a separate processor, the total execution time becomes constant and independent
of N

E

. When the PDEs A

k

(y
k

, u) are linear in y

k

and the diagonal blocks J
yk
, k =

1, . . . , N
E

all the same, just a single block needs to be factorized yielding linear run-
time complexity with respect to N

E

, even on a single processor.

4. Numerical Results. To demonstrate the e↵ectiveness of our inexact interior-
point (IIP) method, we shall now apply it to four di↵erent PDE-constrained optimiza-
tion problems. In the first two examples from optimal control, the control variable
u appears on the right-hand side of the PDE constraint and attempts to steer the
system’s state, y, towards a desired state ŷ. In the last two examples from parameter

estimation, the spatially distributed model parameter u appears inside the di↵erential
operator itself, which typically leads to a nonconvex inverse problem. Here, additional
knowledge about the true model û, such as inequality constraints or multiple mea-
surements, not only reduce the number of false local minima, but also mitigates the
e↵ect of noise in the observations ŷ.

In all examples, we follow the “discretize-then-optimize” approach, where the
objective function and the PDE-constraints are first approximated numerically before
applying our IIP method to the resulting finite-dimensional nonlinear optimization
problem. To determine the new search direction at each Newton iteration, we apply
to the (linear) KKT system (2.5) the reduced-space preconditioned (RSP) GMRES
method, described in Section 3; in particular, prior to the GMRES iteration, the PDE
block matrix J

y

in (3.3) is factorized.
Once the GMRES iterate meets the desired tolerance, it is evaluated by the

SMART tests. If the termination tests (see Algorithms 2 and 3 in [10] for details) ac-
cept the new search direction, the optimization method proceeds with the step length
computation, see Step 5 of Algorithm 1. If a Hessian modification is required, the Hes-
sian block of the KKT system is modified as in (2.5) and the RSP-GMRES method is
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Fig. 1. Corner load problem: Optimal control u⇤, optimal state y

⇤ and desired state ŷ with
Nh = 64

restarted. If none of the previous cases apply, the desired relative residual is reduced
by a factor 10 while the RSP-GMRES iteration and SMART acceptance procedure
are repeated. Due to (Lemma 3.2, [12]) this process will eventually terminate.

Both the IIP algorithm and the exact IP method, later used for the sake of
comparison, have been implemented in the Ipopt open-source optimization package1

(rev. 2094). Unless noted otherwise, we always set the first desired relative residual
to 10�2 and use default parameter values elsewhere for the inexact algorithm. The
RSP-preconditioner is implemented in C++ and uses a linear solver based on an
LU -factorization from the Pardiso software package2 (version 4.1.2.); again we use
default settings unless noted otherwise. The IIP algorithm stops once the optimality
conditions (2.3) are satisfied within a tolerance of 10�8 in the maximum norm.

All comparisons were preformed on an Intel Xeon architecture with 128 GB main
memory using Intel’s compiler version 10.1 under CentOS 5.8.

4.1. 2D Distributed Control. To illustrate the e�ciency of our RSP-IIP
approach, in particular with respect to the mesh size h, we now consider a PDE-
constrained quadratic program, for which a multigrid based preconditioned projected
conjugate gradient (PPCG) method was developed in [26]. Note that the PPCG
algorithm requires a positive definite Hessian on the null-space of the Jacobian in
(2.5); therefore, it cannot be applied to more di�cult nonconvex problems, as we
shall discuss in Sections 4.2–4.4.

Hence, we consider the following convex optimal control problem, either with a
“corner load” or a “centered load” desired state ŷ:

min
y,u

F (y, u) =
1

2
||y � ŷ||2

L

2
(⌦)

+
↵

2
||u||2

L

2
(⌦)

,

s.t. ��y = u in ⌦ = (0, 1)2,

y = g on @⌦,

with ↵ = 0.02. For the corner load problem we set g = ŷ|
@⌦

, where

ŷ(x
1

, x

2

) =

(

(2x
1

� 1)2(2x
2

� 1)2 if (x
1

, x

2

) 2
⇥

0, 1

2

⇤

2

,

0 otherwise,

1http://www.coin-or.org/Ipopt/
2http://www.pardiso-project.org/
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Table 4.1
Corner load problem: Run-time [s] and iteration count (in parenthesis) for PPCG and RSP-

GMRES, with varying tolerance tol and mesh size Nh⇥Nh, leading to a KKT system of size n. All
optimization problems were solved within a single (inexact) optimization step.

N

h

n PPCG RSP-GMRES

tol = 10�6

tol = 10�12

tol = 10�6

tol = 10�12

8 98 0.05 (3) 0.05 (4) 0.01 (3) 0.01 (5)
16 450 0.05 (2) 0.06 (4) 0.02 (3) 0.02 (5)
32 1’922 0.07 (2) 0.10 (4) 0.05 (3) 0.05 (5)
64 7’938 0.17 (1) 0.27 (3) 0.24 (3) 0.24 (5)

128 32’258 0.73 (1) 1.30 (3) 1.30 (3) 1.37 (5)
256 130’050 4.41 (1) 7.89 (3) 6.33 (3) 6.68 (5)
512 522’242 23.0 (1) 40.7 (3) 30.2 (3) 31.9 (5)

Table 4.2
Centered load problem: Run-time [s] and iteration count (in parenthesis) for PPCG and RSP-

GMRES with varying tolerance tol and mesh size Nh ⇥Nh leading to a KKT system of size n. All
optimization problems were solved within a single inexact optimization step.

N

h

n PPCG RSP-GMRES

tol = 10�6

tol = 10�12

tol = 10�6

tol = 10�12

8 98 0.05 (2) 0.05 (3) 0.01 (3) 0.01 (5)
16 450 0.05 (2) 0.05 (3) 0.02 (3) 0.02 (5)
32 1’922 0.07 (2) 0.08 (3) 0.05 (3) 0.05 (5)
64 7’938 0.22 (2) 0.26 (3) 0.24 (3) 0.31 (5)
128 32’258 0.99 (2) 1.24 (3) 1.30 (3) 1.37 (5)
256 130’050 5.54 (2) 7.20 (3) 6.35 (3) 6.70 (5)
512 522’242 27.2 (2) 35.7 (3) 30.3 (3) 31.8 (5)

whereas for the centered load problem we let g = 0 and

ŷ(x
1

, x

2

) = exp

✓

� (x
1

� 0.5)2 + (x
2

� 0.5)2

0.1252

◆

.

The state and control variables y, u are discretized on a regular N

h

⇥ N

h

grid with
Q

1

finite elements. Next, we apply the RSP-IIP method with µ

init

= 10�11 to both
problems and compare run-times and iteration counts with those from the MATLAB

implementation of the PPCG algorithm in [26]. The KKT systems (2.5) are solved
iteratively either with PPCG or RSP-GMRES until the relative residual has reached
a desired tolerance tol = 10�6 or 10�12. Regardless of problem size, the IIP algo-
rithm, though inexact, always found a solution within a single optimization step, thus
demonstrating the remarkable accuracy of its search direction.

In Tables 4.1 and 4.2, we compare run-times and iteration counts (in parenthesis)
of the PPCG and the RSP-IIP method to solve the KKT system for varying mesh
size and tolerance. In all cases, the number of iterations remains independent of N

h

;
hence, our RS preconditioner also exhibits optimal h-independent behavior. The run-
times of both algorithms are comparable, while the iteration counts di↵er by at most
two. Recall, however, that the PPCG method cannot be applied to more general
nonconvex problems, possibly with inequality constraints, as we shall discuss in the
sequel.
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Fig. 2. 2D boundary control: Optimal state and control for NE = 1 PDE constraint discretized
on a Nh ⇥Nh mesh with Nh = 100.

4.2. 2D Boundary Control Problem. Next, to demonstrate the robustness
of the RSP-IIP method with respect to increasing mesh size and number of PDE
constraints, we consider a 2D boundary control problem (example 5.7, [23]) with
multiple nonlinear PDEs and inequality constraints. Since the PPCG algorithm no
longer applies here, we shall compare the RSP-IIP method to the exact IP method
from [33] instead, where the KKT systems are solved by the sparse direct solver
Pardiso [29]. By exploiting the sparsity structure of the KKT system, the RSP-IIP
method achieves a significant speed-up over the exact IP method, even more so as the
KKT system increases.

Hence, we consider the optimal boundary control problem:

min
y,u

F (y, u) =
1

2N
E

NE
X

k=1

||y
k

� ŷ

k

||2
L

2
(⌦)

+
↵

2
||u||2

L

2
(@⌦)

,

s.t. ��y

k

� y

k

+ y

3

k

= 0 in ⌦ = (0, 1)2,(4.1a)

@y

k

@n

= ku on @⌦ = (0, 1)2,

1.8  u  2.5,(4.1b)
where

ŷ

k

= k(2� x

1

(x
1

� 1) + x

2

(x
2

� 1)), k = 1, . . . , N
E

,

and ↵ = 0.01. Here (4.1a) describes the interaction of normalized quantum mechan-
ical wave functions of electrons y

k

in a superconductor on the basis of a simplified
Ginzburg-Landau model [32]. For each k = 1, . . . , N

E

the corresponding PDE con-
straint (4.1a) is discretized with standard second-order finite-di↵erences on a regular
N

h

⇥N

h

grid.
In Figure 2, the optimal control u⇤ and optimal state y

⇤ are shown for a single
PDE constraint, that is N

E

= 1 and N

h

= 100. Both are initialized as u ⌘ 2.15
and y = ŷ

k

, respectively. Note that the bounds (4.1b) on u are partially active and
the KKT system thus becomes increasingly ill-conditioned as µ ! 0 because of the
barrier term in (2.2).

Next, in Figure 3, we show the number of RSP-GMRES iterations (’⇥’) and the
relative residual of each iterate accepted by the SMART test (’⇧’) for varying N

E

and
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Fig. 3. 2D boundary control: number of RSP-GMRES iterations (⇥) and relative residual (⇧)
at SMART acceptance for varying number of PDE constraints, NE , and mesh sizes Nh ⇥Nh. Note
the di↵erent scales on the left and right axes.

N

h

. Independently of N
E

or the mesh size, N
h

⇥ N

h

, the RSP-IIP method always
converges within 20 optimization steps, while the RSP-GMRES iterates satisfy the
SMART test within only five iterations.

In Table 4.3 we list for varying N

h

and N

E

the size of the resulting KKT system
n, the total run-time, and the number of optimization steps for the RSP-IIP and
the exact IP method. The number of optimization steps needed by the RSP-IIP
method exceeds at most by four that of the exact IP method; it barely increases as
the KKT system grows one thousand fold. By taking advantage of the KKT system’s
sparsity structure, the RSP-IIP method achieves a speedup of 36, and even more so
with growing problem size. As the run-time per inexact interior-point iteration scales
linearly with respect to the number of PDE constraints, N

E

, while the number of
optimization steps barely increases, we obtain essentially linear run-time complexity.
Moreover, if the di↵erent diagonal blocks in J

y

and J>
y

in (3.2), all independent of
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Table 4.3
2D boundary control problem: size of the KKT system, n, number of optimization steps and

total run-time for our RSP-IIP method and an exact IP algorithm for varying numbers of PDE
constraints, NE , and mesh size Nh ⇥Nh.

Problem size RSP-IIP exact IP
N

h

N

E

n # IIP steps run-time [s] # IP steps run-time [s]
50 5 26’000 13 3 12 3
50 10 51’000 15 7 13 10
50 20 101’000 18 17 14 10
200 5 404’000 13 78 12 125
200 10 804’000 15 173 13 697
200 20 1’604’000 17 382 14 3’829
800 5 6’416’000 13 1’661 13 10’479
800 10 12’816’000 16 4’106 14 68’750
800 20 25’616’000 18 9’132 14 335’470

one another, were solved in parallel, the total execution time would essentially become
constant and thus independent of N

E

.

4.3. 2D and 3D Parameter Estimation. We now consider two problems from
groundwater modeling [14], the first in two and the second in three space dimensions,
where the log conductivity, u(x), needs to be estimated from noisy measurements
of the fluid pressure, y(x). Since the influence of noise can be further reduced by
including measurements from multiple sources, practical applications often lead to
multiple PDE constraints. Then, the (optimal) linear complexity achieved by the
RSP-IIP algorithm with respect to the number of PDE constraints, N

E

, becomes a
key ingredient for its e�ciency.

Thus, we let ⌦ = (0, 1)d, d = 2, 3, and consider the spatially distributed parame-
ter estimation problem:

min
y,u

F (y, u) =
1

2N
E

64

NE
X

k=1

||v(y
k

)� ŷ

k

||2
`

2 +
↵

2

⇣

V (u) + �||u||2
L

2
(⌦)

⌘

,

s. t. �r · (exp(u)ry

k

) = q

k

in ⌦, k = 1, . . . , N
E

(4.2)

y

k

= 0 on @⌦,

�2  u  2.

Here, the true log conductivity is

û(x) = exp

✓

� ||x̃
a

� x||2

0.05

◆

� exp

✓

� ||x̃
b

� x||2

0.05

◆

,

with x̃

a

= (0.25, 0.25)>, x̃
b

= (0.75, 0.75)> in two, or x̃

a

= (0.25, 0.25, 0.25)>,
x̃

b

= (0.75, 0.75, 0.75)> in three dimensions, respectively. To generate the synthetic
measurements ŷ

k

, k = 1, . . . , N
E

, we numerically solve the forward problem for a given
source, q

k

, and add 1% of white noise to its solution.
In 2D, the source terms are given by

q

4l+1

(x) = sin(⌫
1

(l) 2⇡x
1

) sin(⌫
2

(l) 2⇡x
2

),
q

4l+2

(x) = cos(⌫
1

(l) 2⇡x
1

) sin(⌫
2

(l) 2⇡x
2

),
q

4l+3

(x) = sin(⌫
1

(l) 2⇡x
1

) cos(⌫
2

(l) 2⇡x
2

),
q

4l+4

(x) = cos(⌫
1

(l) 2⇡x
1

) cos(⌫
2

(l) 2⇡x
2

),
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Fig. 4. 2D log conductivity estimation: true model and optimal solution with NE = 10 PDE
constraints on a Nh ⇥Nh mesh with Nh = 100

Table 4.4
2D log conductivity estimation: size of the KKT system, n, number of optimization steps and

total run-time for the RSP-IIP method for varying number of PDE constraints, NE , and mesh size
Nh ⇥Nh

N

h

N

E

n # IIP steps run-time [s]
100 5 151’005 9 25
100 10 251’005 9 38
100 20 451’005 9 60
200 5 602’005 9 109
200 10 1’002’005 9 155
200 20 1’802’005 9 256
400 5 2’404’005 11 579
400 10 4’004’005 9 649
400 20 7’204’005 9 1’073

with (⌫
1

(1), ⌫
2

(1)) = (1, 1), (⌫
1

(2), ⌫
2

(2)) = (1, 2), (⌫
1

(3), ⌫
2

(3)) = (2, 1), (⌫
1

(4), ⌫
2

(4)) =
(1, 3), (⌫

1

(5), ⌫
2

(5)) = (2, 2), . . . and similarly in 3D by triple products of trigonometric
functions. For each k, the corresponding pressure field y

k

(x) is measured at 64 fixed
locations irregularly distributed throughout ⌦; those measurements are then collected
in the vector v(y

k

).
In (4.2) each elliptic PDE is discretized on a regular grid using Q

0 finite elements
for the model variable, u, and Q

1 finite elements for the state variable y

k

. As a
measure of variation in the piecewise constant log conductivity coe�cient, we include
the penalty term

V (u) = h

2d

Z

Fh

JuK2ds,

where F
h

denotes all inter-element boundaries and JuK denotes jumps across interfaces.
First, we consider the 2D case and apply our RSP-IIP method to (4.2) with

↵ = 10�7 and � = 0. As initial guess, we always set u identically to zero and y

k

to
the corresponding forward solutions. Figure 4 shows the optimal solution for N

E

= 10
PDE constraints on an N

h

⇥ N

h

mesh with N

h

= 100. Indeed, the optimal model
approximately follows the true model, while the measurements’ misfits act as point
sources in the adjoint problem for the Lagrange multiplier �. In Table 4.4 we list the
number of optimization steps and total run-time for varying mesh size N

h

⇥N

h

and
number of PDE constraints, N

E

, thereby resulting in KKT systems up to n = 7.2 ·106
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Fig. 5. 3D log conductivity estimation: Optimal model u⇤ computed by the RSP-IIP method
applied to (4.2) with NE = 6 PDE constraints on a 25 ⇥ 25 ⇥ 25 grid (left) and corresponding
iso-surfaces at [-0.45 -0.2 0.2 0.45] (right).

Table 4.5
3D log conductivity estimation: size of KKT system, n, number of optimization steps and total

run-time for the RSP-IIP method for varying number of PDE constraints, NE , and mesh size N

3
h

N

h

N

E

n # IIP steps run-time [s]
20 4 110’305 11 59
20 8 174’305 11 80
20 16 302’305 11 129
20 32 558’305 9 202
40 4 856’605 15 1’452
40 8 1’368’605 12 1’345
40 16 2’392’605 12 1’913
40 32 4’440’605 12 3’102
60 4 2’862’905 15 10’180
60 8 4’590’905 14 11’491
60 16 8’046’905 14 14’331
60 32 14’958’905 13 18’595

in size. Remarkably, every problem was solved within merely 11 optimization steps,
independently of N

h

and N

E

, while the total run-time increases only linearly with
N

E

. Since the PDE in (4.2) is linear in the state variable y, as is often the case, the
sub-matrices J

yk in (3.2) are all identical; hence, the RSP-GMRES solver only needs
to factorize a single PDE block-matrix, such as J

y1 .
Next, we consider the 3D case, and apply the RSP-IIP method to (4.2) with

↵ = 10�7 and � = 1. Figure 5 shows slices of a typical optimal model u⇤ for N
E

= 6
PDE constraints on an N

h

⇥ N

h

⇥ N

h

mesh with N

h

= 25, which also exhibits a
maximum about (0.25, 0.25, 0.25) and a minimum about (0.75, 0.75, 0.75).

In Table 4.5 we list the number of optimization steps and total run-time for
varying N

E

and mesh sizes N

h

⇥ N

h

⇥ N

h

. Again, all problems were solved within
merely 15 optimization steps, which barely increases with growing mesh size. More-
over, the RSP-IIP method e�ciently takes advantage of the added information from
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Fig. 6. 3D log conductivity estimation: average run-time per optimization step of the RSP-IIP
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Fig. 7. 3D log conductivity estimation: number of RSP-GMRES iterations (⇥) and relative
residual (⇧) at SMART acceptance for varying number of PDE constraints, NE , and mesh sizes
Nh ⇥Nh ⇥Nh. Note the di↵erent scales on the left and right axes.
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increasingly many PDE constraints, as the number of optimization steps actually de-
creases for increasing N

E

. In Figure 6, we again observe the linear average run-time
complexity of the RSP-IIP method with respect to N

E

for two di↵erent N
h

⇥N

h

⇥N

h

meshes. Remarkably, the total run-time is even sub-linear due to the mild decrease
in the number of optimization steps with increasing N

E

. In Fig. 7 we also fol-
low the evolution of the number of RSP-GMRES iterations (’⇥’) and the relative
residual of the accepted search direction (’⇧’) at each optimization step. The rel-
ative residual of the accepted iterate, never below 10�6, typically lies above 10�2.
Hence, the SMART tests do not demand increasingly accurate solutions from the
RSP-GMRES solver during the optimization process. Although the number of RSP-
GMRES iterations typically increases in the course of any optimization run, all
KKT systems were solved within 25 RSP-GMRES iterations, independently of N

h

or
N

E

.

4.4. Geophysical Imaging. Full waveform seismic inversion leads to some of
the most challenging nonlinear PDE-constrained optimization problems. Here we con-
sider the Marmousi model [8, 31, 34], a standard benchmark in seismic imaging. It cor-
responds to a vertical slice through the Cuanza basin in Angola [19] delimited by the
two dimensional domain ⌦ = (0.4 km, 6.4 km)⇥(0 km, 1.6 km).

Given measurements, ŷ
k

, k = 1, . . . , N
E

from N

E

= 11 seismic events (“shots”),
we shall attempt to reconstruct the true velocity profile û(x) in ⌦ – see Figure 8 (a).
The measurements are obtained for each point source �

k

by recording the amplitude of
the corresponding (complex-valued) wave field, y

k

, at 367 observation points located
at the surface and the two lateral boundaries (vertical wells); those values are then col-
lected in the vector v(y

k

). Hence, we consider the PDE-constrained optimization prob-
lem:

min
y,u

F (y, u) =
1

2

NE
X

k=1

||v(y
k

)� ŷ

k

||2
`

2 +
↵

2
TV (u),

s.t.�r · (u2ry

k

)� !

2

y

k

= �

k

in ⌦,

@y

k

@n

= i

!

u

y

k

on @⌦,

(4.3)

u�  u  u

+

.

Here TV (u) =
R

⌦

p

|ru|2 + " dx denotes regularization by total variation with " =
18.75 and ↵ = 10�4. Each wave field, y

k

, satisfies the Helmholtz equation (forward
problem) for a given velocity profile u(x) and frequency ! > 0. At the bound-
ary of the computational domain, @⌦, we impose a first-order Sommerfeld-like ab-
sorbing boundary condition. To generate the synthetic data ŷ

k

, we first solve the
forward problem on a fine mesh with mesh size h = 8m using Q

1 elements for
u and Q

2 elements for y

k

; then we add 1% white noise to the recorded values.
The finite element discretization was implemented using libMesh [21] and PETSc

[1].
Since the problem is nonconvex, any local optimization method may converge to

a false solution. Prior knowledge, in practice often available as inequality constraints,
reduces the search space and thereby prevents the algorithm from becoming trapped
too easily in a (false) local minimum. Here, the upper and lower bounds u

+

, u� are
determined from û by local mean and maximum, or minimum filtering [30] respec-
tively, followed by 10% further expansion of the feasible interval – see Figure 8 (c) and
(d).
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1.5 1.9 2.3 2.8 3.2 3.6 4.0 4.4

(a) Target profile û (b) Initial profile u0

(c) Lower bound u� (d) Upper bound u+

Fig. 8. Geophysical imaging: target velocity profile in (km/s) of the Marmousi benchmark û

(a), and the initial guess u0 (b) that will be used for its reconstruction, along with the upper (c)
and lower (d) bounds for the control u+, u

�

. The stars indicate the location of the di↵erent point
sources �k.

As the number of extrema increases with frequency, we further reduce the risk of
ending up in a (false) local minimum through frequency stepping: starting at lower
frequency !, we progressively increase ! while initializing each optimization run from
the previous optimal model obtained at lower frequency. In all cases we set "

tol

= 10�4

in (2.4), as smaller values did not yield any further improvement in the reconstruction.
Moreover, we discretize both, u and y

k

with Q

1 finite elements on a coarser mesh, thus
avoiding any potential “inverse crime”.

Starting at the lowest frequency, ! = 20, we now apply the RSP-IIP method
to (4.3) with mesh size h = 40m for u and h = 20m for y

k

. We initialize the
algorithm with µ = 10�3 and u = (u

+

+ u�)/2 – see Figure 8. After only 10
optimization steps, the RSP-IIP method converges to the optimal model u

⇤, dis-
played in Figure 9; the imaginary part of one typical wave field, y

2

is also shown
there. At such low frequency, the wave length is still large and hence unable to
detect smaller features in the medium – see also Figure 10. The total run-time
and problem size are summarized in Table 4.6. In Figure 11, we follow the num-
ber of RSP-GMRES iterations required to solve the n ⇥ n system with n = 1.1 ·
106.

Next, we let ! = 40 and initialize the RSP-IIP algorithm with the optimal point
from the previous run at ! = 20. Again, we observe in Figure 11 an increase in the
number of RSP-GMRES iterations during the optimization process. Although the
problem size and the number of optimization steps are identical, the overall larger
number of RSP-GMRES iterations results in a slight increase in total run-time – see
Table 4.6.

Finally, we let ! = 60, µ = 10�5, and choose a finer mesh width h = 20m for the
model parameter, too. As a consequence, the KKT system barely increases, whereas
the KKT Schur complement now increases by a factor four. Nontheless, the RSP-IIP
method converges in only 14 steps, while the number of RSP-GMRES iterations never
exceeds 300 iterations. The reconstructed model, shown in Figure 9, now reproduces
the sharp transitions in the velocity field from the true model, with even smallest de-
tails revealed in Figure 10.

For comparison we now also apply the exact IP method to (4.3) with ! = 40. The
linear systems are solved using the direct solver Pardiso with 4 OpenMP threads.
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Table 4.6
Geophysical imaging: time frequency, !, problem size, size of the KKT system, n, number of

inexact interior-point iterations, and run-times.

! # States # Model Param. n # IIP steps run-time [s]
20 5.36 · 105 6.19 · 103 1.10 · 106 10 825
40 5.36 · 105 6.19 · 103 1.10 · 106 10 1’001
60 5.36 · 105 2.44 · 104 1.19 · 106 14 1’734

Optimal reconstructed profile u

⇤

! Im{y2}

1.5 1.9 2.3 2.8 3.2 3.6 4.0 4.4 -0.8 -0.5 -0.1 0.3 0.6 1.0 1.4 1.8

! = 20

! = 40

! = 60

û

Fig. 9. Geophysical imaging: initial model for ! = 20, and reconstructed optimal model for
! = 20, 40, and 60 (left); Imaginary part of the y2 for ! = 20, 40, and 60 (right). Compare with
true model in Figure 8.
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Fig. 10. Geophysical imaging: vertical cross-section of the true wave speed û, its reconstruction
u

⇤ and lower and upper bounds u+ and u

�

at x1 = 4.0 at increasingly higher frequencies ! = 20, 40
and 60.
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Fig. 11. Geophysical imaging: number of RSP-GMRES iterations (⇥) and relative residual (⇧)
at SMART acceptance for ! = 20, 40 and 60. Note the di↵erent scales on the left and right axes.

The exact IP method converges in 9 optimization steps, instead of 10 for the inexact
IP method, yet its total run-time of 140993 s now results in a fifteenth fold increase,
despite the multi-threaded hardware! This illustrates that the SMART tests e�ciently
control the inexactness, thus leading to very few additional optimization steps, while
the RSP-GMRES solver takes advantage of the sparsity structure of the KKT sys-
tems.

5. Concluding Remarks. Starting from the inexact interior-point (IIP) frame-
work from [10, 12], we have devised an e↵ective reduced-space preconditioner (RSP)
for the iterative solution of the KKT system needed at each Newton step. Together
they yield a scalable and robust numerical method for the solution of large-scale non-
convex PDE-constrained optimization problems with inequality constraints. Because
it uses the full Hessian matrix, modifying it whenever needed, the RSP-IIP method is
not only globally convergent, but also converges fast locally.

The RSP preconditioner is not tailored to any particular class of PDEs or con-
straints, but instead judiciously exploits the structure of the KKT system. It ef-
ficiently handles any number of PDE constraints, N

E

, a key advantage for inverse
problems where the influence of noisy data is often reduced by including data from
multiple sources. Moreover, our numerical experiments show that the number of opti-
mization steps remains independent of N

E

. Similarly, both the number of inner RSP-
GMRES iterations and of outer Newton iterations remains essentially independent of
the mesh size h. As a consequence, we repeatedly observe (optimal) linear run-time
complexity with respect to N

E

or to h, even in the presence of active inequality con-
straints.

The number of optimization steps needed by the RSP-IIP method is always com-
parable to that of the corresponding exact IP approach, where the KKT system
is explicitly factorized. Yet by exploiting the sparsity structure of the KKT sys-
tem (2.5), the RSP-IIP method achieves a significant speed-up over the exact IP
method, even more so as the size of the KKT system increases. Since the two dom-
inant blocks of the KKT system (2.5) are both block-diagonal, the PDEs can be
solved independently of one another and in parallel. Hence if every forward solve
is assigned to a separate processor, the total execution time becomes independent of
N

E

.
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