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Abstract

We consider inviscid limits to shocks for viscous scalar conservation
laws in one space dimension, with strict convex fluxes. We show that we
can obtain sharp estimates in L

2 for a class of large perturbations and
for any bounded time interval. Those perturbations can be chosen big
enough to destroy the viscous layer. This shows that the fast convergence
to the shock does not depend on the fine structure of the viscous layers.
This is the first application of the relative entropy method developed in
[22], [23] to the study of an inviscid limit to a shock.
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entropy method; shocks.
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1 Introduction and the main result

For any strictly convex flux function A ∈ C2(R), we consider the family of
viscous scalar conservation laws in one space dimension:

{

∂tU + ∂xA(U) = ε∂2xxU for t > 0, x ∈ R,

U(0, x) = U0(x) for x ∈ R,
(1)

for any ε > 0 and U0 ∈ L∞. Global unique solutions to (1) have been con-
structed by Hopf [17] and Olĕınik [28]. The inviscid case, ε = 0, is covered by
the theory of Kružkov [20]. Kuznetsov showed in [21] that, for fixed initial data
U0, the solutions Uε of (1) converge in L1, when ε goes to zero, to the solution
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U0 of the inviscid scalar conservation law (the equation (1) with ε = 0) with
the rate

√
ε:

‖Uε(t)− U0(t)‖L1 ≤ C
√
εtTV(U0)

(for the proof, e.g. see either Serre [32] or Perthame [29]).

In this paper we consider the inviscid limit for general initial values and for
any bounded time interval. We are particularly interested in the cases where
the initial values carry too much entropy for the structure of the layer to be
preserved in its vanishing viscosity limit. The shocks solutions of the inviscid
case (ε = 0) can be described as follows. Consider two constants CL > CR, and
the associated function defined by

S0(x) =

{

CL if x < 0,

CR if x ≥ 0.
(2)

Then, the Rankine-Hugoniot conditions ensures that the function

S0(x − σt) with σ :=
A(CL)−A(CR)

CL − CR
, (3)

is a solution to the inviscid equation (1) with ε = 0. The condition CL > CR

implies that they verify the entropy conditions, that is:

∂tη(U) + ∂xG(U) ≤ 0, t > 0, x ∈ R,

for any convex functions η, and G′ = η′A′.

Our main result is the following.

Theorem 1.1. Let CL > CR and U0 ∈ L∞(R) ∩BVloc(R) be such that

(U0 − S0) ∈ L2(R) and (
d

dx
U0)+ ∈ L2(R).

Then, there exists ε0 > 0 such that for any T > 0, we have a constant C∗ > 0
with the following:

I. For any U solution to (1) with 0 < ε ≤ ε0, there exists a curve X ∈
L∞(0, T ) such that X(0) = 0 and for any 0 < t < T :

‖U(t)− S(t)‖2L2(R) ≤ ‖U0 − S0‖2L2(R) + C∗ε log(1/ε), (4)

where S(t, x) := S0(x−X(t)), and S0 is defined by (2).

II. Moreover, this curve satisfies

|Ẋ(t)| ≤ C∗ and (5)

|X(t)− σt|2 ≤ C∗t2/3
(

‖U0 − S0‖2L2(R) + ε log(1/ε)
)

. (6)
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III. The constant ε0 depends only on ‖( d
dxU0)+‖L2 , CL, CR, ‖U0‖L∞ and the

flux function A, while C∗ depends only on the same set as well as T.

Remark 1.1. For any continuous function g, we define the function g+ by
g+(x) := g(x) · χ{g>0}(x) where χ{g>0} is the characteristic function on the
positive part of the function g. In our theorem, the assumption U0 ∈ BVloc en-
sures that d

dxU0 is a Radon measure. Hence, ( d
dxU0)+ is also a Radon measure,

and the condition ( d
dxU0)+ ∈ L2 makes sense. Note that our estimates do not

depend on any local BV norms of U0.

Remark 1.2. The condtion ( d
dxU0)+ ∈ L2(R) can be replaced with ( d

dxU0)+ ∈
Lp(R) for any 1 < p ≤ ∞. Indeed, as in Lemma 3.2, it can be shown that
‖(∂xU(t))+‖Lp(R) is non-increasing in time (see Remark 3.1). The only place

where the assumption ( d
dxU0)+ ∈ L2(R) is used is in the estimate (19) in the

proof of Proposition 3.3. In order to use ( d
dxU0)+ ∈ Lp(R) for any 1 < p ≤ ∞,

one needs to have (εδ)1−1/p instead of
√
εδ in (19).

Remark 1.3. The term σt in the estimate (6) is meaningful when t≫ (ε log(1/ε))3.

This result shows a rate of convergence slightly worse than ε (to the log), for
the inviscid limit to a shock, measured via the L2 norm (squared). In the case
of the limit to a regular solution of the inviscid case, the rate of convergence is√
ε (see [34], for instance). We also refer to Goodman and Xin [16], Bressan,

Liu and Yang [6], Lewicka [24], Bressan and Yang [5], Christoforou and Trivisa
[10].

An easy layer study shows that ε is the optimal rate for shocks with special
initial data. Indeed, one can construct an associated steady viscous layer (see
for example Il′in and Olĕınik [18]) S1 solution to

{

A(S1)−A(CL)− σ(S1 − CL) = S′
1, x ∈ R,

lim
x→−∞

S1 = CL, lim
x→+∞

S1 = CR.
(7)

It is easy to show that S1((x − σt)/ε) is a solution to (1) with initial data
S1(x/ε). In this case, the rate of convergence is of order ε since:

∫

R

|S1((x− σt)/ε)− S0(x− σt)|2 dx = ε

∫

R

|S1(x) − S0(x)|2 dx = Cε.

This layer study can be extended to the case of small initial perturbation where:
∫

R

|U0(x)− S0(x)|p dx ≤ Cε,

for a 1 ≤ p <∞. In this case, for a solution U to (1), we can consider

V (t, x) = U(εt, εx),

and study the asymptotic for large time. The function V is a solution to the
equation

{

∂tV + ∂xA(V )− ∂2xxV = 0,

V (0, x) = U(0, εx).
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The convergence to S1, up to a (constant) drift, in this setting, has been ex-
tensively studied (see for instance [18], Freistühler and Serre [14], Kenig and
Merle [19]). In this situation of small perturbation of the initial shock, those
results show that the convergence with rate ε for the system (1) is due to the
asymptotic limit in large time of the layer function U(·/ε) to S1((· − σt)/ε).

This layer study, however, collapses when
∫

R

|U0(x)− S0(x)|2 dx≫ ε.

In this situation, there is too much entropy for the asymptotic limit of the layer
structure to be true. The physical layer may be destroyed. Theorem 1.1 shows
that, nevertheless, the sharp convergence (up to the log) still holds for any
bounded time interval.

Taking a limit as ε goes to 0 in Theorem 1.1, we recover the L2 stability
of shocks (up to a drift) first showed by Leger in [22]. Note that the stability
result has to be up to a drift which depends on the solution itself (and may be
not unique). This feature is also true for our result. The drift cannot be taken
constant, as in the case of the layer problem.

Our result is based on the relative entropy method first used by Dafermos
and DiPerna to show L2 stability and uniqueness of Lipschitzian solutions to
conservation laws [11, 12, 13]. They showed, in particular, that if U is a Lip-
schitzian solution of a suitable conservation law on a lapse of time [0, T ], then
for any bounded weak entropic solution U it holds:

∫

R

|U(t)− U(t)|2 dx ≤ C

∫

R

|U(0)− U(0)|2 dx, (8)

for a constant C depending on U and T .

The relative entropy method is also an important tool in the study of asymp-
totic limits (ε → 0). The main idea is that convergence holds thanks to the
strong stability of the solutions of the limit equations. Roughly speaking, if
we have good consistency of ε models, with respect to the limit one, then non
linearities are driven by the strong stability of the solution of the limit equation.
Applications of the relative entropy method in this context began with the work
of Yau [35] and have been studied by many others. For incompressible limits,
see Bardos, Golse, Levermore [1, 2], Lions and Masmoudi [25], Saint Raymond
et al. [15, 31, 26, 30]. For compressible models, see Tzavaras [33] in the context
of relaxation and [4, 3, 27] in the context of hydrodynamical limits. However,
in all those cases, the method works as long as the limit solution is Lipschitz.
This is due to the fact that strong stability as (8) is not true when U has a
discontinuity. It has been proven in [22, 23], however, that some shocks are
strongly stable up to a shift (see also related works from Chen and Frid [7, 8]
and Chen, Frid and Li [9]). This article is the first extension of those results of
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stability, to the study of inviscid limits to a shock. This is a part of the program
initiated in [34].

The result can be extended to any entropy in the following way. Fix any
strictly convex function η ∈ C2 as an entropy. We define the associated relative
entropy functional η(·|·) as

η(x|y) := η(x) − η(y)− η′(y)(x− y).

We then have the following extension.

Theorem 1.2. Consider a strictly convex entropy functional η ∈ C2(R). Let
CL > CR and U0 ∈ L∞(R) ∩BVloc(R) be such that

(U0 − S0) ∈ L2(R) and (
d

dx
U0)+ ∈ L2(R).

Then, there exists ε0 > 0 such that for any T > 0, we have a constant C∗ > 0
with the following:

I. For any U solution to (1) with 0 < ε ≤ ε0, there exists a curve X ∈
L∞(0, T ) such that X(0) = 0, and for any 0 < t < T , and for any α
verifying ε ≤ α ≤ ε0, we have:

∫

{|x−X(t)|≥C∗α}

η(U(t, x)|S(t, x)) dx ≤
∫

R

η(U0(x)|S0(x)) dx + C∗e−α/ε,

(9)

where S(t, x) := S0(x−X(t)), and S0 is defined by (2).

II. Moreover, this curve satisfies

|Ẋ(t)| ≤ C∗ and (10)

|X(t)− σt|2 ≤ C∗t2/3
(∫

R

η(U0(x)|S0(x)) dx + ε log(1/ε)

)

. (11)

III. The constant ε0 depends only on ‖( d
dxU0)+‖L2 , CL, CR, ‖U0‖L∞, the flux

function A and the entropy functional η, while C∗ depends only on the
same set as well as T.

Remark 1.4. As in Remark 1.2, the condtion ( d
dxU0)+ ∈ L2(R) can be replaced

with ( d
dxU0)+ ∈ Lp(R) for any 1 < p ≤ ∞.

Theorem 1.1 is a direct application of Theorem 1.2 with η(x) := x2, and
α = ε log(1/ε). Indeed, in this case we have η(x|y) = (x− y)2, and

∫

{|x−X(t)|≤C∗α}

η(U(t, x)|S(t, x)) dx ≤ C|{|x−X(t)| ≤ C∗α}| ≤ CC∗α.
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For the rest of the paper, we will assume that the initial value U0 lies not only
BVloc but also C

1. It allows us to work with smooth solutions U ∈ C1([0, T ]×R).
The general BVloc case can be obtained by a density argument.

The idea of the proof is to study the evolution of the relative entropy of the
solution with respect to the shock, outside of a small region centered at X(t)
(this small region corresponds to the layer localization):

∫ X(t)−δε

−∞

η(U(t, x)|CL) dx+

∫ ∞

X(t)+δε

η(U(t, x)|CR) dx. (12)

The change in time involves two effects. One is due to the hyperbolic part of
the equation, and the second involves the parabolic part (or order ε). In [22],
it was shown that, for the hyperbolic case ε = 0, with zero layer width δ = 0,
the quantity (12) is non-increasing when we choose wisely the drift X(t). When
considering the viscous term, the layer with width (δε) is introduced to avoid the
effect of the viscous term on the layer (see Lemma 2.1). The idea is then that the
stability induced by the hyperbolic part is enough to counterbalance the effect of
the parabolic term, provided that we consider a layer fat enough (see Proposition
3.3 and the proof of Proposition 4.1). For technical considerations, we will fix
δ = log(1/ε). The drift X(t) is still chosen with respect to the hyperbolic part
of the equation in a similar way as in [22]. Stability is preserved, despite the
non zero layer width, thanks to a monotonicity property induced in the layer
by the additional assumption ( d

dxU0)+ ∈ L2(R).

2 Evolution of the relative entropy

For δ > 0, we consider a Lipschitz nondecreasing function φ to localize the layer,
verifying

φ(x) =

{

0 if x ≤ 0,

1 if x ≥ δ.

To get the optimal result, we will later fix a special function (see (20)).

For any fixed δ > 0 and X ∈ C1([0, T ]), we are interesting in the evolution
of

H(t) :=

∫ ∞

−∞

φ2(|x−X(t)|/ε)η(U(t, x)|S(t, x)) dx, (13)

where S(t, x) := S0(x−X(t)) and where S0 is defined in (2). A special value of
δ (depending on ε), and of the function X will be chosen later. Note that H(t)
controls the quantity (12). In fact, we have (12) ≤ H(t).

Let us denote F (·, ·) the flux of the relative entropy η(·|·) defined by

F (x, y) := G(x) −G(y)− η′(y)(A(x) −A(y)). (14)



7

Note that

∂Uη(U |C) = η′(U)− η′(C),

∂UF (U,C) = G′(U)− η′(C)A′(U) = (η′(U)− η′(C))A′(U).

So, for any solution U of (1) and any constant C, multiplying (1) by η′(U) −
η′(C), we get

∂tη(U |C) + ∂xF (U,C) = ε(η′(U)− η′(C))∂2xxU (15)

We have the following lemma.

Lemma 2.1. The function H, defined in (13), satisfies the following on (0, T )

dH

dt
(t) =

∫ X(t)

X(t)−δε

2

ε
φ
(−x+X(t)

ε

)

φ′
(−x+X(t)

ε

)[

Ẋ(t)η(U(t, x)|CL)− F (U(t, x), CL)
]

dx

+ ε

∫ X(t)

−∞

[

φ
(−x+X(t)

ε

)]2

∂2xxU(t, x)(η′(U(t, x)) − η′(CL))dx

−
∫ X(t)+δε

X(t)

2

ε
φ
(x−X(t)

ε

)

φ′
(x−X(t)

ε

)[

Ẋ(t)η(U(t, x)|CR)− F (U(t, x), CR)
]

dx

+ ε

∫ ∞

X(t)

[

φ
(x−X(t)

ε

)]2

∂2xxU(t, x)(η′(U(t, x))− η′(CR))dx

:= (L)Hyp + (L)Dif + (R)Hyp + (R)Dif.

Proof. First we split the term H(t) into the two parts:

H(t) =

∫ ∞

−∞

[

φ
( |x−X(t)|

ε

)]2

η(U |S)dx

=

∫ ∞

−∞

([

φ
(−x+X(t)

ε

)]2

+
[

φ
(x−X(t)

ε

)]2)

η(U |S)dx

=

∫ ∞

−∞

[

φ
(−x+X(t)

ε

)]2

η(U |CL)dx +

∫ ∞

−∞

[

φ
(x−X(t)

ε

)]2

η(U |CR)dx

:= HL +HR.

To compute d
dt (H

L), we put C = CL in (15), multiply by
[

φ
(

−x+X(t)
ε

)]2

,

and integrate in x. Then we have

d

dt
(HL) =

∫ ∞

−∞

∂t

([

φ
(−x+X(t)

ε

)]2)

η(U |CL)dx

+

∫ ∞

−∞

∂x

([

φ
(−x+X(t)

ε

)]2)

F (U,CL)dx

+ ε

∫ ∞

−∞

[

φ
(−x+X(t)

ε

)]2

∂2xxU(η′(U)− η′(CL))dx
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=

∫ X(t)

X(t)−δε

(
2

ε
) · φ

(−x+X(t)

ε

)

φ′
(−x+X(t)

ε

)[

Ẋ(t)η(U |CL)− F (U,CL)
]

dx

+ ε ·
∫ X(t)

−∞

[

φ
(−x+X(t)

ε

)]2

∂2xxU(η′(U)− η′(CL))dx = (L)Hyp + (L)Dif.

We get the result for d
dt (H

R) = (R)Hyp + (R)Dif in the same way.

3 Control of the hyperbolic terms

In this section, we show that by choosing a special drift function X(·), the hy-
perbolic effects become nonpositive. This will be used in section 4 to control
the parabolic effects.

Following [22], we define the normalized relative entropy flux f(·, ·) by

f(x, y) :=
F (x, y)

η(x|y) .

We have the following properties.

Lemma 3.1. For any L > 0, there exists a constant Λ > 0, such that for any
x, y with |x|, |y| ≤ L, we have

.

1/Λ ≤ η′′(x) ≤ Λ,

1

2Λ
(x− y)2 ≤ η(x|y) ≤ 1

2
Λ(x− y)2,

|F (x, y)| ≤ Λ(x− y)2,

0 ≤ (∂xf)(x, y) ≤ Λ,

1/Λ ≤ (∂yf)(x, y).

(16)

The proof of this lemma can be found in [22].

We now define the shift function X . It is the solution of the following O.D.E.

{

Ẋ(t) = f
(

U(t,X(t)), CL+CR

2

)

X(0) = 0
. (17)

Note that for any ε > 0, U ∈ C1([0, T ]× R) (since U0 ∈ C1(R)). The existence
and uniqueness of X comes from the Cauchy-Lipschitz theorem.

First, X is Lipschitz, since we have from Lemma 3.1

|Ẋ(t)| ≤

∣
∣
∣F

(

U(t,X(t)), CL+CR

2

)∣
∣
∣

η
(

U(t,X(t))
∣
∣
∣
CL+CR

2

) ≤ 2Λ2 (18)
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where we used the fact ‖U(t)‖L∞ ≤ ‖U0‖L∞ for t > 0. It proves (10).

Note that from the definition of X , if the velocity U were constant in the
layer (that is U(t, x) ∼ U(t,X(t)) for −δε ≤ x−X(t) ≤ δε), then, from the last
property of Lemma 3.1, we would have directly that

(L)Hyp + (R)Hyp ≤ −CL − CR

Λ
(η(U(t,X(t))|CL) + η(U(t,X(t))|CR)).

However, this is too much to hope, since the layer characterize the region where
the function U(t, ·) is expected to drop from about CL to about CR. We still
can show that the hyperbolic terms are negative, provided that the behavior of
U in the layer is not too much oscillatory (the values can drop, but not much
bounce back). This last property of U is proved in the following lemma which
can be seen as a weak version of the Olĕınik’s principle .

Lemma 3.2. ‖(∂xU(t))+‖L2(R) ≤ ‖( d
dxU0)+‖L2(R) for any t > 0.

Proof. We differentiate (1) w.r.t. x, multiply (∂xU)+ and integrate in x to get

0 =

∫

(∂xU)+

[

∂t∂xU +A′′(U)|∂xU |2 +A′(U)∂2xxU − ε∂3xxxU
]

dx

=

∫ [1

2
∂t([(∂xU)+]

2) +A′′(U)(∂xU)3+

+A′(U)∂x

( [(∂xU)+]
2

2

)

+ ε|∂x((∂xU)+)|2
]

dx.

Then, we use the integration by parts to get

=

∫ [1

2
∂t([(∂xU)+]

2) +
1

2
A′′(U)(∂xU)3+ + ε|∂x((∂xU)+)|2

]

dx

≥ 1

2

d

dt

∫

[(∂xU)+]
2dx.

Remark 3.1. The result of the above lemma can be extended up to the case Lp

for any 1 ≤ p ≤ ∞. Indeed, for any finite p, we just multiply
(

(∂xU)+

)p−1

instead of (∂xU)+ in the proof. Then the limit case p = ∞ follows directly.

We now prove the main proposition of this section.

Proposition 3.3. Let (L)Hyp and (R)Hyp be such as in Lemma 2.1. There

exists a constant θ > 0 such that, for any ε, δ satisfying

εδ ≤ θ,

we have

(L)Hyp + (R)Hyp

≤ −θ
ε

∫ X(t)+δε

X(t)−δε

φ

( |x−X(t)|
ε

)

φ′
( |x−X(t)|

ε

)

(U(t, x)− S(t, x))2 dx.
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Proof. We use the definition of X(t) to get

(L)Hyp =

∫ X(t)

X(t)−δε

(
2

ε
) · φ

(−x+X(t)

ε

)

· φ′
(−x+X(t)

ε

)

· η(U |CL) · h(t, x)dx

where h(t, x) :=
[

f
(

U(t,X(t)), CL+CR

2

)

− f(U(t, x), CL)
]

.

In order to make the function h(t, x) strictly negative over the domain of
the above integral, we use the condition ( d

dxU0)+ ∈ L2(R). Indeed, we observe
that, for any x ∈ [X(t)− δε,X(t)],

U(t,X(t))− U(t, x) =

∫ X(t)

x

(∂xU)(t, y)dy ≤
∫ X(t)

x

(∂xU)+(t, y)dy

≤ ‖(∂xU(t))+‖L2(R)

√

|X(t)− x| ≤ ‖( d
dx
U0)+‖L2(R)

√
δε,

(19)

where we used that ‖(∂xU(t))+‖L2 is not increasing (see Lemma 3.2).
We can rewrite the function h as

h(t, x) = f
(

U(t,X(t)),
CL + CR

2

)

− f
(

U(t, x),
CL + CR

2

)

+ f
(

U(t, x),
CL + CR

2

)

− f(U(t, x), CL).

Since f is increasing with respect to the first variable, we have

h(t, x) ≤ f
(

U(t, x) + ‖( d
dx
U0)+‖L2(R)

√
δε,

CL + CR

2

)

− f
(

U(t, x),
CL + CR

2

)

+ f
(

U(t, x),
CL + CR

2

)

− f(U(t, x), CL).

Then, thanks to Lemma 3.1, we get

h(t, x) ≤ Λ‖( d
dx
U0)+‖L2(R)

√
δε− CL − CR

2Λ
≤ −θ < 0

for
√
δε and θ small enough.

Since φ(·), φ′(·) and η(·|·) ≥ 0, we get

(L)Hyp ≤ −θ
∫ X(t)

X(t)−δε

2

ε
φ
(−x+X(t)

ε

)

φ′
(−x+X(t)

ε

)

η(U |CL)dx.

Then, from Lemma 3.1, we have (changing the constant θ if necessary)

(L)Hyp ≤ −θ
∫ X(t)

X(t)−δε

(
2

ε
)φ
(−x+X(t)

ε

)

φ′
(−x+X(t)

ε

)

(U − CL)
2dx.
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In a similar way, we obtain the following estimate on (II)Hyp.

(R)Hyp ≤ −θ
∫ X(t)+δε

X(t)

(
2

ε
)φ
(x−X(t)

ε

)

φ′
(x−X(t)

ε

)

(U − CR)
2dx.

Combining the two last inequalities gives the desired result.

4 Control of the parabolic terms

For any δ ≥ 1/θ, we now fix the function φ in the following explicit way.

φ(x) =

{

θe1−θδx, for x ∈ [0, 1/θ),

eθ(x−δ), for x ∈ [1/θ, δ].
(20)

We will use the straightforward computation:

∫ δ

0

(φ′(x))2χ{φ′>θφ} dx = Cθ · e−2θδ. (21)

This section is dedicated to the proof of the following proposition.

Proposition 4.1. There exists constants θ, C > 0 such that for any ε, δ veri-
fying

1

θ
≤ δ and εδ ≤ θ,

we have
dH(t)

dt
≤ Ce−θδ.

Proof. First, we estimate the term (L)Dif. Integrating by parts, we obtain

(L)Dif =

∫ X(t)

−∞

2φ
(−x+X(t)

ε

)

φ′
(−x+X(t)

ε

)

∂xU(η′(U)− η′(CL))dx

− 2ε

∫ X(t)

−∞

[

φ
(−x+X(t)

ε

)]2

η′′(U)|∂xU |2dx

Then, using Hölder’s inequality and Lemma 3.1, we get

(L)Dif ≤
2ε

Λ

∫ X(t)

−∞

[

φ
(−x+X(t)

ε

)]2

|∂xU |2dx

+
Λ

8ε

∫ X(t)

∞

[

2φ′
(−x+X(t)

ε

)

(η′(U)− η′(CL))
]2

dx

− 2ε

Λ

∫ X(t)

−∞

[

φ
(−x+X(t)

ε

)]2

|∂xU |2dx

≤ C

ε

∫ X(t)

X(t)−δε

[

φ′
(−x+X(t)

ε

)]2

|U − CL|2 dx.
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In the same way, we obtain the following estimate for (R)Dif.

(R)Dif ≤
C

ε

∫ X(t)+δε

X(t)

[

φ′
(x−X(t)

ε

)]2

|U − CR|2 dx.

Combining the two last inequalities, we find

(L)Dif + (R)Dif ≤
C

ε

∫ X(t)+δε

X(t)−δε

[

φ′
( |x−X(t)|

ε

)]2

|U(t, x)− S(t, x)|2 dx. (22)

Using Lemma 2.1, Proposition 3.3, and (22), we find

dH(t)

dt
≤ 1

ε

∫ X(t)+δε

X(t)−δε

[

φ′(Cφ′ − θφ)
]( |x−X(t)|

ε

)

|U(t, x)− S(t, x)|2 dx.

(23)

Using that U − S is a bounded function, and doing the change of variables
z = (x−X(t))/ε, we find:

dH(t)

dt
≤ C

ε

∫ X(t)+δε

X(t)−δε

[

(φ′)2χ{Cφ′−θφ>0}

]( |x−X(t)|
ε

)

|U(t, x)− S(t, x)|2 dx

≤ C‖U(t)− S(t)‖2L∞

ε

∫ X(t)+δε

X(t)−δε

[

(φ′)2χ{Cφ′−θφ>0}

]( |x−X(t)|
ε

)

dx

≤ C

∫ δ

0

(φ′)2(z)χ{Cφ′−θφ>0}(z) dz.

Changing the constant θ if needed, and using (21), gives the desired result.

5 Proof of Theorem 1.2

This section is devoted to the proof of Theorem 1.2. Integrating the estimate
of Proposition 4.1 between 0 and t ∈ (0, T ) gives the result of (I). Indeed, for
any ε, δ with 1

θ ≤ δ and εδ ≤ θ, where θ is the constant from Proposition 4.1,
we have

∫

{|x−X(t)|≥δε}

η(U(t, x)|S(t, x)) dx ≤ H(t) ≤ H(0) +

∫ t

0

d

dt
H(s) ds

≤
∫

R

η(U0|S0) dx+ CTe−θδ

By taking ε0 := θ2, we have for any ε ≤ α ≤ ε0,

∫

{|x−X(t)|≥α/θ}

η(U(t, x)|S(t, x)) dx ≤
∫

R

η(U0|S0) dx+ CTe−α/ε.
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It proves our main estimate (9) by taking C∗ large enough.

Observe that
∫

R

η(U |S) dx =

∫

{|x−X(t)|≥C∗α}

η(U |S) dx+

∫

{|x−X(t)|<C∗α}

η(U |S) dx

and the second term is bounded by CC∗α. Thus, by taking α = ε log(1/ε), we
obtain for any t ∈ (0, T ),

∫

R

η(U |S) dx ≤
∫

R

η(U0|S0) dx+ C∗ε log(1/ε) (24)

for any ε ≤ ε0 (changing ε0 and C∗ if needed).

It only remains to prove (11). We define first ψ(x) :=







0 if |x| > 2,

1 if |x| ≤ 1

2− |x| if 1 < |x| ≤ 2

.

Let s ∈ (0, t) and R > 0. We multiply ΨR(s, x) := ψ(x−X(s)
R ) to the equation

(1) and integrate in x to get

0 =− d

ds

∫

ΨR · Udx+
∫

∂x(ΨR)A(U)dx+

∫

∂t(ΨR)Udx+ ε

∫

ΨR · ∂2xxUdx

= − d

ds

∫

ψ(
x−X(s)

R
) · U(s, x)dx

︸ ︷︷ ︸

(I)

+
1

R

∫

ψ′(
x−X(s)

R
) ·

(

A(U(s, x)) − Ẋ(s)U(s, x)
)

dx

︸ ︷︷ ︸

(II)

− ε
1

R

∫

ψ′(
x−X(s)

R
) · ∂xU(s, x)dx

︸ ︷︷ ︸

(III)

.

By using the above observation, we have

(σ − Ẋ(s)) =
1

CL − CR

(

A(CL)−A(CR)− (CL − CR)Ẋ(s)
)

=
1

CL − CR

(

A(CL)−A(CR)− (CL − CR)Ẋ(s)− (II) + (I) + (III)
)

.

Then we integrate the above equation in time on [0, t] to get:

|σt−X(t)| ≤ C
(

t · max
s∈(0,t)

∣
∣
∣A(CL)−A(CR)− (CL − CR)Ẋ(s)− (II)

∣
∣
∣

︸ ︷︷ ︸

(II′)

+
∣
∣
∣

∫ t

0

(I)ds
∣
∣
∣+ t · max

s∈(0,t)

∣
∣
∣(III)

∣
∣
∣

)

.

(25)
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We observe

(II ′) ≤
∣
∣
∣A(CL)−A(CR)−

1

R

∫

ψ′(
x−X(s)

R
) · A(U)dx

∣
∣
∣

︸ ︷︷ ︸

(II′

1
)

+
∣
∣
∣ − (CL − CR)Ẋ(s) +

1

R

∫

ψ′(
x −X(s)

R
) ·

(

Ẋ(s)U(s, x)
)

dx
∣
∣
∣

︸ ︷︷ ︸

(II′

2
)

.

For (II ′1), we compute

(II ′1) =
∣
∣
∣A(CL)−

1

R

∫ −R+X(s)

−2R+X(s)

A(U)dx −A(CR) +
1

R

∫ 2R+X(s)

R+X(s)

A(U)dx
∣
∣
∣

≤ 1

R

[ ∫ −R+X(s)

−2R+X(s)

|A(CL)−A(U)|dx +

∫ 2R+X(s)

R+X(s)

|A(U)−A(CR)|dx
]

.

We use |A(y)−A(z)| ≤ C|y − z| for |y|, |z| ≤M1 to get

≤ C

R

∫ 2R+X(s)

−2R+X(s)

|U − S|dx.

We use Hölder’s inequality and Lemma 3.1 to get

(II ′1)
2 ≤ C

R
·
∫

R

η(U(s)|S(s))dx.

Likewise, for the second term (II ′2), we have

(II ′2) = |Ẋ(s)| ·
∣
∣
∣− (CL − CR) +

1

R

∫

ψ′(
x−X(s)

R
) · U(s, x)dx

∣
∣
∣

≤ C

R

∫ 2R+X(s)

−2R+X(s)

|U − S|dx ≤ C√
R

· ‖U(s)− S(s)‖L2(R)

where we used |Ẋ(s)| ≤ C. Thus we get

(II ′)2 ≤ C

R
·
∫

R

η(U(s)|S(s))dx. (26)

On the other hand, we compute

∣
∣
∣

∫ t

0

(I)ds
∣
∣
∣ =

∣
∣
∣

∫

ψ(
x−X(t)

R
) · U(t, x)dx −

∫

ψ(
x

R
) · U0(x)dx

∣
∣
∣

=
∣
∣
∣

∫

ψ(
x−X(t)

R
) ·

(

U(t, x)− S(t, x)
)

dx+

∫

ψ(
x−X(t)

R
) · S(t, x)dx

−
∫

ψ(
x

R
) · S0(x)dx −

∫

ψ(
x

R
) ·

(

U0(x) − S0(x)
)

dx
∣
∣
∣.
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Note that
∫
ψ(x−X(t)

R ) · S(t, x)dx =
∫
ψ( x

R ) · S0(x)dx. Thus, we have

≤
∣
∣
∣

∫

ψ(
x−X(t)

R
) ·

(

U(t, x) − S(t, x)
)

dx
∣
∣
∣+

∣
∣
∣

∫

ψ(
x

R
) ·

(

U0(x)− S0(x)
)

dx
∣
∣
∣.

We use Hölder’s inequality and Lemma 3.1 to get

∣
∣
∣

∫ t

0

(I)ds
∣
∣
∣

2

≤ CR
(∫

R

η(U(t)|S(t))dx +

∫

R

η(U0|S0)dx
)

. (27)

Also, we have

∣
∣
∣(III)

∣
∣
∣ =

ε

R

∣
∣
∣

∫

ψ′(
x−X(s)

R
) · ∂xU(s, x)dx

∣
∣
∣

=
ε

R

∣
∣
∣

∫ −R+X(s)

−2R+X(s)

∂xU(s, x)dx −
∫ 2R+X(s)

R+X(s)

∂xU(s, x)dx
∣
∣
∣

≤ ε

R
· 4 · ‖U(s)‖L∞ ≤ C · ε

R
.

(28)

Finally, by using (24), we combine (26), (27) and (28) with (25) to get, for
any t ∈ (0, T ),

|σt−X(t)|2 ≤ C
( t2

R
+R

)

·
(∫

R

η(U0|S0)dx + ε log(
1

ε
)
)

+
C · ε2 · t2

R2
.

Since the above estimate holds for any 0 < R < ∞, the estimate (11) follows
once we take R := t2/3 (changing C∗ if needed).
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