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UNCONDITIONAL UNIQUENESS OF THE CUBIC GROSS-PITAEVSKII
HIERARCHY WITH LOW REGULARITY

YOUNGHUN HONG, KENNETH TALIAFERRO, AND ZHIHUI XIE

ABSTRACT. In this paper, we establish the unconditional uniqueness of solutions to the cubic Gross-
Pitaevskii hierarchy on R? in a low regularity Sobolev type space. More precisely, we reduce the
regularity s down to the currently known regularity requirement for unconditional uniqueness of
solutions to the cubic nonlinear Schrédinger equation (s > % ifd=1,2and s > s, = % if d = 3).
In such a way, we extend the recent work of Chen-Hainzl-Pavlovié-Seiringer [3].

1. INTRODUCTION

1.1. Background. The cubic Gross-Pitaevskii (GP) hierarchy in R? is an infinite system of coupled
linear equations given by

iy ™ = (A, + Ay )7 + ABe 1y, VEkeN, (1.1)

where v(F) = yB)(t, 2, 24) : T x R* x R¥* — C, I = R is a time interval and A\ = +1. Here,
we denote d-dimensional k-spatial variables (z1,x2,...,z;) by z;, and the corresponding Laplace
operator by A, = 25:1 Agz;, and similarly for the primed variables. For each k € N, k) is a

bosonic density matrix on L2, (R%) which is hermitian,

and is symmetric in all components of z;,, and in all components of 2, respectively,

’Y(k) (tv mo‘(l)? e 7$0'(k)7x;—/(1)a e amlg’(k)) = ’Y(k) (t7£k’£§{;)

for any permutations o,c’ on k elements. The equations in ((1.1]) are coupled by the contraction

operator By.1,
k

k

— —_ + -

Bk+1 = Bj;k+1 = Z(Bj;]ngl - Bj;k+1)>
Jj=1 Jj=1

where each B]J.:kﬂ contracts the triple x;, xx41, ﬂ:;Hl,

<B;k+17(k+1)) (ta@w%) = fdxk+1d$;c+16(mj - l‘k+1)5($j - $§c+1)7(k+1)(ta$k+1;£;c+l)

= ’Y(kJrl) (t7 Ly Lj, Q;cv xj)

_ . , ,
and each Bj;k,Jrl contracts the triple T, Tht1, Tpyqs

< ;k+17(k+1)) (t, g, 2)) = jdxk+1d$;c+16($; — Tpy1)0(2 — $2+1)7(k+1)(ta£k+1;£2+1)

_ (k+1 ro /
—’Y( )(t7£kaxj7£k7$j)-

The cubic GP hierarchy is called focusing (defocusing, respectively) if A = 1 (A = —1, respectively).
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The cubic GP hierarchy is an infinite hierarchy of equations modeling a Bose-Einstein condensate.
For the mathematical study of Bose-Einstein condensation (BEC) in systems of interacting bosons
in the stationary case, we refer to the fundamental works [30} [33], 32, B1] and the references therein.
To study the dynamics of Bose-Einstein condensates, one considers N bosonic particles whose

quantum mechanical wave function ¢y € Lsym(RdN ) satisfies the N-body Schrédinger equation

10N = Hyyn, (1.2)

where

N
=N AT Y Vo)
j=1 N 1<i<j<N
and Vi (z) = NV (NPz) with 8 e (0,1) (we remark that the case 8 = 1 is much more difficult to
control [11] 12} 13, [14]). The pair interaction potential V' is assumed to be rotationally symmetric,
and to satisfy certain regularity properties. The cubic GP hierarchy is then formally obtained from
a limit of the BBGKY hierarchy of marginal density matrices associated to as N — o0. In this
limit, Vv converges weakly to ({V(z)dz)d, where § denotes the delta distribution. In this sense,
the cubic GP hierarchy describes a Bose gas of infinitely many particles with repulsive or attractive
two-body delta interactions.
In the special case of factorized initial data %()k) (zp,2),) = H] 1 do(5) o %) in (L.1), the state
of a Bose-Einstein condensate can be simply described by the cubic nonlinear Schrodlnger equation
(NLS). Indeed, in this case, the cubic GP hierarchy admits a solution

7( t xlmxk t .T] )7

H:?v

preserving the factorization property as time evolves, if ¢ solves the cubic NLS

100 = — A + Ao, 6(0) = ¢o. (1.3)

In this way, the cubic NLS is derived as a dynamical mean field limit of the many body quantum
dynamics of an interacting Bose gas, provided that given initial data, a solution to the GP hierarchy
is unique. We call this formal derivation the BBGKY approach. In his fundamental works [28], 29],
Lanford had employed the BBGKY hierarchy to study N-body systems in classical mechanics in
the limit N — oo.

Research efforts aimed at providing a rigorous derivation of nonlinear dispersive equations as
mean field limits of N-body Schrédinger dynamics have a long and rich history. The first results
on the derivation of nonlinear Hartree equations (NLH) were due to Hepp [22], and Ginibre and
Velo [16] [17]. Their techniques are based on embedding the N-body Schriodinger equation into the
second quantized Fock-space representation. In [37] Spohn gives the first derivation of NLH by use
of the BBGKY hierarchy. More recently, Erdés, Schlein and Yau further developed the BBGKY
approach, and gave the first derivation of NLS in their celebrated works [11], 2], 13| 14]. In [35],
Rodnianski and Schlein proved estimates on the convergence rate of the evolution in the mean field
limit using the Fock space approach. Their results were extended with second-order corrections
in the two-body interaction setting by Grillakis, Machedon and Margetis [19, [20], and three-body
interaction setting by X. Chen [g].

The derivation of the cubic NLS in R3, via the BBGKY approach, due to Erdds, Schlein and
Yau [11], 12, 13| [14], comprises the following two main parts:

(i) Derivation of the GP hierarchy as the limit of the N-body BBGKY hierarchy as N — 0.
(ii) Establishing the uniqueness of solutions to the GP hierarchy. In particular, it is proved
that for factorized initial data, the solutions to the GP hierarchy are determined by a cubic

NLS.
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In this program, the proof of the uniqueness theorem (part (ii)) is very involved, one of the dif-
ficulties being the factorial growth of the number of terms from iterated Duhamel expansions.
The authors give a sophisticated combinatorial argument that settled this problem by a clever
re-grouping of Feynman graph expansions.

Later, in [27], Klainerman and Machedon gave a shorter proof of uniqueness of solutions to the
3D cubic GP hierarchy in a different solution space, provided that solutions obey a priori bound,

T
f |R®) Bjjosry ™V (8, ) 2 gar wparydt < CF, Wk e N, (1.4)
0

where R; = (—ij)l/Q, R, = (- Am])l/2 and R H] L\ Rj ]_[j ;. The approach is in
part motivated by the authors’ previous work on the space-time estlmates [26]. In [27], Klain-
erman and Machedon gave a concise reformulation of the Erdos-Schlein-Yau combinatorial method
[11L 12l 13 [14], and presented it as an elegant board game argument. The uniqueness theorem of
[27] is conditional due to the hypothesis (1.4)). Since the work [25] for the cubic GP hierarchy on
two dimensional Euclidean space as well as the 2-dimensional torus, the approach of Klainerman
and Machedon was used in various recent works for the derivation of the NLS from interacting Bose
gases [5], [0, 9], 10, 25] [7, B9]. The method also inspired the analysis of the Cauchy problem for the
GP hierarchy, which was initiated in [4] and continued e.g. in [18] [7].

We will call the uniqueness of solutions to the GP hierarchy unconditional if it holds without
assuming any a priori bound of the form (1.4). Recently, in [3], Chen-Hainzl-Pavlovié¢-Seiringer
presented a new, simpler proof of the unconditional uniqueness of solutions to the 3D cubic GP
hierarchy, which is equivalent to the uniqueness result of Erdds-Schlein-Yau [I12]. The authors
employed the quantum de Finetti theorem (T heorem and combined with the Erdos-Schlein-
Yau combinatorial method [IT], T2, [13][14] in board game representation as presented by Klainerman-
Machedon in [27].

1.2. Main result. In this paper, we investigate the unconditional uniqueness of solutions to the
cubic GP hierarchy in a low regularity setting.

To state the main theorem, we first introduce the following definitions. Let {7y },cn be a
sequence of bosonic density matrices on Lsym(de). We say that {y*)},cy is admissible if v*) is

(R%*) and v*) = Tr(y*#+D) for all k € N. We call a

sequence {7y k)}keN a limiting hierarchy if there is a sequence {7§VN)} Nen of non-negative density

matrices on L2, (R™) with Tr(VJ(VN) ) = 1 such that 4(¥) is the weak-* limit of the k-particle
(N) .

marginals of vy’ in the trace class on Lgym(de), that is,

a non-negative trace class operator on Lsym

k N
’yl(v) = Trk+17..A,N(7](V )) —* ~yB) as N — o0.
For s € R, we define the function space $)° by the collection of sequences {'y(k)}keN of density

matrices on Lgym (R9) such that

Tr(|S*)4®)|) < M?* Wk e N for some constant M > 0,

where

k
(1—Ag;)2( 1—Aj)5.
j=1

J
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We say that {7 (t)}ren is a mild solution, in the space ng[o 7)9°, to the cubic GP hierarchy with
initial data {7(*)(0)}rey if it solves the integral equation

t
1 B(E) = TR0 00) + i | Ut = 9By *H(5)ds,
0

where U®) () := eit(Az’“_A%), and satisfies the bound
sup Tr(|S®)yF())) < M?*  Vk e N for some constant M > 0.
te[0,T)

Our main theorem states that any mild solution to the cubic GP hierarchy, which is either
admissible or a limiting hierarchy, is unconditionally unique in Ltog[o T)Sﬁs for small s.

Theorem 1.1 (Unconditional uniqueness). Let

{s>g ifd=1,2,

1.5
s>s. ifd=3, (1.5)

where s, = d%. If {v®) ()} en is a mild solution in L?g[O’T)ﬁS to the (de)focusing cubic GP

hierarchy with initial data {y*)(0)}ren, which is either admissible or a limiting hierarchy for each
t, then it is the only such solution for the given initial data.

Our theorem reduces the regularity requirement for unconditional uniqueness for the GP hierar-
chy in [3]. We remark that the regularity assumption in is the same as in the currently known
unconditional uniqueness results for the cubic NLS

i0ip + Ap— Mo*¢ = 0, ¢(0) = do € H".
For NLS, by unconditional uniqueness, we mean uniqueness of solutions in the Sobolev space
H? itself, while uniqueness in the intersection of the Sobolev space and auxiliary spaces is called
conditional. By the contraction mapping argument with auxiliary Strichartz spaces, the conditional
uniqueness is proved in H* for s > max(s,0), where s, = %52 (see [1]). However, the unconditional
uniqueness is proved in H* only for s in , and it is an open problem to push s down to zero in
one and two dimensions [23] [15, [36] 38| 21].

Our proof uses the Klainerman-Machedon board game formulation [27] of the combinatorial
argument of Erdés-Schlein-Yau [T} 12] 13} [14], and the method of Chen-Hainzl-Pavlovi¢-Seiringer
[3] via the quantum de Finetti theorem.

The quantum de Finetti theorem is a quantum analogue of the Hewitt-Savage theorem in prob-
ability theory. We state its strong and weak versions in the formulation of [34].

Theorem 1.2 (Strong quantum de Finetti theorem). If a sequence {7 }ien of bosonic density
matrices on Lgym(de) is admissible, then there exists a unique Borel probability measure u, sup-

ported on the unit sphere S < L? (Rd) and invariant under multiplication of ¢ € L2(Rd) by complex
numbers of modulus one, such that

vwszwmww@kkeN (1.6)

Theorem 1.3 (Weak quantum de Finetti theorem). If a sequence {v*)}ien of bosonic density
matrices on Lgym(de) 18 a limiting hierarchy, then there exists a unique Borel probability measure

w, supported on the unit ball B < L*(R?) and invariant under multiplication of ¢ € L*(R?) by
complex numbers of modulus one, such that (1.6]) holds.

The crucial advantage of using the quantum de Finetti theorem is that it provides a factorized
representation of solutions to the GP hierarchy in the integral form (see (2.10)). This structure
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allows us to make use of techniques of NLS theory to analyze solutions to the GP hierarchies (see
[3] and [2]).

As described in Section 6.1.1 of [3], the main difficulty in lowering regularity is from the last
cubic term [|¢[?¢] 2 = |¢||7¢ in the distinguished tree. Indeed, this last term can be controlled
by the Sobolev norm |¢||3;s only for s > 1 in R3. We solve this problem by using the dispersive
estimate

e T e Vi

L 1+2e [ 5—2¢

in R3, for instance. Indeed, if one applies the dispersive estimate and the endpoint Strichartz

estimate to the factorized representation of the solution in the framework of [3], one gets a better

last cubic term |||¢|%¢| _s = [¢|®> 15 , and it allows us to reduce s down to 2 +e. The regularity
L5-2¢ [5—2¢

requirement in the classical Kato’s work on the unconditional uniqueness for the 3D cubic NLS [23]
can be covered in this way. We further push s almost down to the critical regularity by employing
negative order Sobolev norms (Lemma , which are well-known tools in the literature on un-
conditional uniqueness for NLS. Combining the dispersive estimate, the Strichartz estimates and
negative Sobolev norms, we formulate the key trilinear estimates (Lemma in our proof.

Organization of the paper. We prove Theorem in Section [2, by reducing it to the main
Lemma [2.5, In Section 3, we present an example calculation to explain the ingredients involved
in the proof of Lemma In Section [4] we introduce tree graphs for the organization of iterated
Duhamel expansions, and give properties of the associated kernels. Finally, we prove the main
Lemma in Section [5] We prove the crucial trilinear estimates in Lemma in Appendix [A]

2. PROOF OF THE MAIN THEOREM

In this section, we prove the main theorem. First, in we present the setup of the proof. In
§2.2| we review Klainerman-Machedon’s board game formulation [27] of the combinatorial argument
of Erdés-Schlein-Yau [11), 12, 13| 14]. In we reduce the proof of the main theorem to the key
lemma (Lemma , via the quantum de Finetti theorem. The rest of the paper is then devoted
to the proof of the lemma.

2.1. Setup of the proof. The setup of the proof is similar to that of Chen-Hainzl-Pavlovi¢-
Seiringer [3], but we use a negative order Sobolev type norm to lower the regularity.

Let {ﬁk) (t)}ren and {'yék) (t)}ken be two mild solutions in L?g[o 7 $° to the cubic GP hierarchy
with the same initial data, which are either admissible or limiting hierarchies. For uniqueness, it is
enough to show that their difference {y*)(#)}1en, given by

k k
7B@) =) —5"@), kel

vanishes for all k£ in a certain norm.
Due to the linearity of the GP hierarchy, it follows that the difference {7y (t)}gen solves the GP
hierarchy with zero initial data. Hence, each v(¥) (t) satisfies the integral equation

t
YR (t) = z’)\f UB(t —t1)Bryy "D (1) dty .
0
Now fix k. Iterating this integral equation (n — 1) times, we write

A (£) = (in)" f UR (¢ —t1)Bjpy - U D (1 — 1) Beyny ™ (8,)dty - - - db.
th<--<t1<t
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For notational convenience, we denote (k + 1)-temporal variables (to,t1,- - ,t,) by t,, with to = ¢,
and the linear propagator U® (tj —t;) by U](?,. Then, we rewrite 4(¥)(¢) in a compact form as

A1) = (A" j JE (L)t (2.1)

tn <<t <t
where

Jk (tn) — U(g’kl)Bk-i-lUl(fo)Bk-&-Q L U(k+n_1)Bk+n’}’(k+n) (tn)

n—1n

By density, our uniqueness theorem follows from uniqueness in an even weaker norm.

Proposition 2.1. For all t € [0,T) with T > 0 small enough, the trace norm of S%~=4 @)
vanishes as n — o0 uniformly in k, that is

Tr(|S*- Dy @))) =0, vk, (2.2)
where d > 0 is the dimension.

2.2. Erdos-Schlein-Yau Combinatorial method in board-game form. One obstacle in show-
ing uniqueness is the number of terms in J*(t,). Indeed, each By, ; is a sum of (k + i — 1) terms.
Thus, in the expansion of J¥(t,), there are a total of k(k + 1)---(k +n — 1) = O(n!) terms for
fixed k. We solve this problem by using the powerful combinatorial methods of Erdés-Schlein-Yau
[11] 12} [13], 14] in the board-game formulation of Klainerman-Machedon [27].

The key idea of the board game arguments is that, by grouping the large number of integral terms
into equivalence classes in which we have control, we can avoid estimating the rapidly increasing
number of terms one by one. Throughout this section, we present a few lemmas that will help us
group these terms and derive bounds on certain equivalence classes.

Let p be a map from {k + 1,k +2,--- ,k +n} to {1,2,--- ,k +n — 1} such that p(2) = 1 and
u(j) < j for all j. Denotes by My, ,, the set of all such maps.

We express the operators Bj.; and J* in terms of map . We have

k+i—1

Biti = 2 Bj;k+i: Z B,u(k+'i);k+i
j=1 MeMk,n
and
o) = D) Tt ), (2.3)
MeMk,n
where

T (s ) = UP (= 81) By a U (81 = t0) - UF D (101 — £0) By ™ ().

By the definition of u, we can represent p by highlighting exactly one nonzero entry B, 41) k41
(I-th column, p(k + 1)-th row) in each column of a (k +n — 1) x n matrix. Since u(k +1) < k +1,
we set the remaining entries of the matrix equal to 0.

Bixy1 Bigs2 - Bikin

Bo.gi1  Bogia - B in

Bikt1 Brki2 0 Brgan (2.4)
0 Bk+1;k+2 T Bk+1;k+n
0 0 T Bk+n—1;k+n

Henceforth, we can rewrite (2.1]) as

t tn
'y(k)(t)zf f D T )ty - dtn. (2.5)
0 0 MeMk,n
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Here the time domain {t, < t,—1 < --- < t} < [0,t]" is the same for all 4 € My,. We now
consider the terms I(u, o) in the sum v*)(t) = 2uemsy,, L1, 0). We have

I(p,0) = f ¥ (s p)dty .. dty, (2.6)

to‘(n)étc(n—l)g"'gt
where ¢ is a permutation of 1,2,...,n. We associate the integral I(u, o) the following (k 4+ n) x n
matrix. We may also use it to visualize B, (14 )1+, that correspond to a highlighted entry.

t071(1) t071(2) e tU71(n)

Bixi1  Bikt2 - Bikin

Bogy1 Bogya 0 Boggn

Bik+1 Bkk+2 0 Brkin 27)
0 Bk+1;k+2 to Bk+1;k+n
0 0 “++ Bpyn

The columns of matrix are labeled 1 through n, and the rows are labeled 0 through k +mn — 1.
Each term corresponds to a unique matrix of form . A key observation is that two
matrices of this form can have to the same value for I(u; o) given that one matrix can be transformed
to another under the so called acceptable mowves.
In the following paragraph, we will present a few key lemmas to help us with the combinatorial
reduction. For the proof of these lemmas, we refer the reader to [I1], 12} 13| [14], 27, [5] 39].

2.2.1. Acceptable Moves. If u(k + j + 1) < pu(k + j), we take the following steps at the same time
e exchange the highlights in columns j and j + 1
e exchange the highlights in rows £+ j and k + j + 1
e exchange t,-1(;) and t5-1(j41)
The exchange only happens when there is a highlight, if there is no highlight we will skip that step.
The following lemma highlights the necessity to introduce equivalence classes.

Lemma 2.2. Let (u,0) be transformed into (1, 0’) by an acceptable move. Then, for the corre-
sponding integrals (2.6)), we have I(pu,0) = I(y',0")
2.2.2. Equivalence Class. Consider the subset {us} < My, of special upper echelon matrices in

which each highlighted element of a higher row is to the left of each highlighted element of a lower
row. An example of a special upper echelon matrix (with k = 1,n = 4) is

1,2 Bi3s Bia Bips

0 Bg3 By Bajs

0 0 Bsa Bss

0 0 0 Bys

Lemma 2.3. For each element of My, ,, there is a finite number of acceptable moves which brings
the matrixz to upper echelon form.

Lemma 2.4. Let C},, be the number of (k+n — 1) x n special upper echelon matrices of the type
discussed above. Then Cj, p < Qk+2n—2

Let us be a special upper echelon matrix. We say p is in the equivalence class of pg: g ~ pg if
1 can be transformed to ps in finitely many acceptable moves.

Theorem 2.1. There exists a subset D of [0,t]™ such that

t tn—1
> J f J’“(gn;u)dtl...dtn=JJk(;n;M)dt1...dtn. (2.8)
p~ps V0 0

D
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Proof. We perform finitely many acceptable moves on the matrix associated to the integral

t tn—1
I(p,id) —f f JE(t,; p)dty ... dt,
0 0

Let I(u,id) be the integral associated to the upper echelon matrix obtained. By Lemma
I(p,id) = I(ps, 0).

Assume that (p1,id) and (ug,id) with py # po yield the same echelon form pg. Then the corre-
sponding permutations o7 and o must be different. Therefore, D can be chosen to be the union of
all {t > t51) = ty2) =+ = ty(n)} for all permutations o which occur in a given equivalence class
of some . O

With the above theorem, we are able to reduce the sum of O(n!) terms into a sum of O(C™)

terms:
= ] f dt, J*(t,;0), (2.9)

oeMp p

which we can afford.

2.3. Proof of the main theorem. As mentioned above, it suffices to show Proposition 2.1} For
the proof, we uses the framework of Chen-Hainzl-Pavlovi¢-Seiringer [3] via the quantum de Finetti
theorem.

Applying the strong or the weak quantum de Finetti theorem, we write

A1) = fdm(@(\@ @GN, VkeN, (2.10)

where [i; = ugl) — uff) with

() = [ an @10 o), i=1.2

Plugging ([2.10) into J*(¢,;; ¢) in the reduced Duhamel expansion (2.9), we obtain a new expression

Ue%:k JDM Jdut (0)T* (s ), (2.11)

where

k+1

TF(tn;0) = Ué,kl) (k+1); k+1U1(2 )Bg(k+z);k+2“'U£k+1nn 1)Ba(k+n wrn([0) (PPETM(2.12)

Then, we formulate the following key lemma that implies Proposition (and thus the main
theorem).

Lemma 2.5 (Key lemma). There exists a uniform constant C > 0 such that for arbitrarily small
€ > 0, we have

(€T g™ ifd>3

f Cdty  Tr(|SET T (b 0)]) < 3 (CTVR gl ifd = 2 (2.13)
e (T2 g,
where s, = % + €.



Proof of Theorem assuming Lemma[2.5 We present the proof for the case d > 3 only. Indeed,
when d = 1 (d = 2, resp), it can be proved in an analogous way by replacing the H®¢ norm with
the HY% norm (the HY3 norm, resp).

Let {v®)(t)}ren be as above. The goal is to show that Tr(|S*~D~E)(#)[) = 0 for all k € N.
Applying the triangle inequality and Lemma [2.5] we write

Te( st DB < 3 Y f dt fdut ()T (1S®=D 4t o))

i=120eMy p
(2.14)

<EyIT Y N s | a2 @norifi.

i=1,2 ce My, tn€l0,
We claim that there exists M > 0 such that
|| gee <M as. p?, Vte[0,T). (2.15)
Indeed, since {7 (t)}pen € L?g[o 7%, there exists M > 0 such that

fdut (D)ol = Tr(|S®IyP (1)) < M?*, VEkeN. (2.16)

Hence, it follows from the Chebyshev inequality that for A > M,

M\ 2k
p (0 27 1oln > A) < g | @0l < (5) —0 ask—o.  (217)
Returning to (2.14), by (2.15) and Lemma [2.4] we prove that
M2k2k 1T

Tr(|SE=DA®) (1)) < (CT)P 1T - 2. 2h+2n=2 . pp2(kin) TMCTEMQ) — 0 as n — o0.
(2.18)
for T < (4CM?)~V/e, O

The remainder of our paper will be devoted to proving Lemma We remark that our
proof heavily relies on the following trilinear estimates which combine the dispersive estimate,
the Strichartz estimates and negative Sobolev norms. The proof of these trilinear estimates is
given in the appendix.

Lemma 2.6 (Trilinear estimates). We define the trilinear form T by

T(£.9.1) = (02 p)(e/0-1D2g) (101921
(Z) d > 3 FOT Small € > 0 we have

17Cf9:01,, e sy S TNyt grre gl e s, (2.19)
te [0,T)
17Cf: 9. MLy iz S TS rsellglrrse Rl se, (2.20)
where sc = S. + € = % +€, 1. = 7d+22(‘f_6).
(1) d = 2. For small € > 0, we have
Tl ez, ST, Il g, (2.21)
te[0,T)" " ®
T 9Py e S U sl (2:22)
(17) d = 1. We have
(. 9.Wes, 23 S P21 sl e Dol (2.23)
I7Cf,9: W)Ly 422 = T2 £l gl 2R - (2.24)
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We will prove Lemma in the following sections. To this end, we will proceed as in [3] and use
binary tree graphs to help organize the terms in J*(,, o) (see ) For the reader’s convenience,
before proving the lemma, we give an example calculation in Section[3] We remark that the trilinear
estimates in Lemma are the key estimates, and will be applied recursively in general case (see
Section [9)).

3. AN EXAMPLE

In this section, we illustrate the ideas of the proof of Lemma [2.5] via an example.
Let d > 3, k =2 and n = 4 in Lemma [2.5] We investigate the example
| dTese P w0 (5.1)
[0,7)

with a specific map o represented by the matrix

8 Dza Das D, 3.2
0 B3y Bss Bsg (3:2)
0 0 Bss Bag
In other words,
J? = J(ty;0) = UO(,Ql)BL?)Ul(?Q)B274U2(j§)B375U?E,54)B376<|¢><¢D®6- (3-3)

To this end, in §3.1-3.2, we organize the terms in J2(t,, o). Then, in §3.3, we estimate the example
by the trilinear estimates (Lemma [2.6)).

3.1. Factorization of J2. We will decompose J? into two one-particle density matrices by ex-
amining the effect of the contraction operators starting with the last one on the RHS of ({3.3).
We denote each factor in the last term (|¢){(#|)®® by w;, ordered by increasing index i, so that

(I6) (¢))®° = Ry ui-

First of all, in (3.3)), the last interaction operator Bsg contracts the factor us and ug, and leaves
all other factors unchanged,

B3 6(®%_1ui) = u1 ® uz ® O4 ® ug @ us. (3.4)
where
©4 := By 2(u3z ® ug).
The index « in O, associates O, to the a-th interaction operator from the left in . Since we

only run the expansion to the n-th level, we have 1 < o < n. In this specific case, n = 4, the 4th
interaction operator is B3 g.

Next, Bg 5 contracts U§}2®4 and U§}4)U5,

BysUs ) (BA) = (Us (1 ® u2)) ® 03 ® (U ). (38.5)
where
O3 := 31,2((U:§,14)@4) ® (U:)S,lzl)%))-
Then, by the semigroup property, UQ(Z%U?EQ = UQ(Z)L The operator Bs 4 contracts U2(}4) ug with U2(}4) Uyq,
which correspond to the 2nd and 5th factors in . The other factors are left invariant.

BoaUS 5 (BF) = (US]u1) ® 02 ® (U3 303), (3.6)

where )
@2 = BLQ(UQ(A) (UQ ® U4))
10



Finally, B; 3 contracts (U1(}4) uyp) and (Ul(,lg) ©O3) and leaves other factors unchanged.
BisU3 (B) = 01 @ (U}16,), (3.7)

where .
01 = Bia((UgJu) ® (U1303)).
Therefore, J? can be factorized as
J2 = (UY61) ® (U§362) := Jl @ J3. (3.8)

In the above expression we may write the factors J jl (for j < k = 2) as one-particle matrices and
substitute with u; = |¢){¢|, for i < k +mn = 6. Thus, it follows that

Tb = U B1oU ) By sUSE) B a(|6) ()™ (3.9)

where we relabel the index in operators By, (), such that the interaction operators in cor-
respond to Bi 3, B35, B3¢ respectively, and most importantly keep the connectivity structure be-
tween them. The relabeling function o1 (see the notation in (2.12)) take values: 01(2) = 1,01(3) =
2,01(4) = 3. Moreover, for j = 1, we perform the relabeling in the same spirit find that

Ty = USY) B1aUR) (169 (o)) (3.10)

where 09(2) = 1.

We note that for any [ < I, the interaction operators Bs@y, and By in J? (associated to
the matrix (3.2))) belong to the same factor le if either o(l) = o(I') or o(I') = I. In such cases,
we consider them as being connected. This connectivity structure is exactly the key point of the
Duhamel terms that we want to illustrate using binary tree graphs. Each o; can be viewed as the
restriction of o to .J Jl We call factors that have a free propagator applied to each ¢ (like J3) regular
and factors that involve the contractions of (|¢) (¢|)®? without free propagator in between (like Ji)
distinguished.

3.2. Recursive determination of contraction structure. Next, repeating the argument in
we express the kernel of each factor explicitly.

Consider the distinguished factor Ji. For a = 1,2, 3, we denote by ©, the kernel obtained after
contracting a two particle density matrix to a one particle matrix via the interaction operator. We
will determine O, recursively in the normal form

Ou(z,2') = Ecgawga (z)x3, (2), §, = *1 (3.11)
Ba
from the last interaction operator. First, contracting variables by Bs 4, we get
Baa(|6){¢])®" = (|9)(¢]) ® O3 ® (|9){¢]) (3.12)
with
— 2 R
O3(x,2) = [8]d(x)d(a") — ¢(2)|o[P(a") = Y b uh, ()x, ().
B3=1
Next, contracting variables by Bs 3,
BsUs B12) = (|Us.40)Us 46]) @ O, (3.13)
where U; j := elti=t)A and
2 — (R —
Oa(w,0) = Y} e, (Vs avl, U401 ) (@)Us.x3, (@) — b Us.atsh, (@) (Us.al, [Us.ax?) @)
Bz=1

11



4

= Y ARG ).
B2=1

Finally, by the first interaction operator B 2,

4
B12U BI3) = Bia(IU140)01401® Y, ¢, |U1s03,XU1ax3,|) = O,
B2=1

where ©1(z,2') is given by

4
>, <U1,4¢U1,3¢§2 UL:%X%;Q) (2)U14¢(2") — c3,Ura¢(x) <U1,4¢U1,3¢?32 U1,3X%32> (z)
=1

8

=Y ook (0 @)
pf1=1

Therefore, J;i can be represented by

8
JH(@,2') = Us 01, 2') = 3] e, Uoav, (@)U, (),
=1
Similarly, we write the regular factor JJ as
J3 (033 ta,t4) = Us{ 01 (a Z ¢ Unatg, ()Uoaxs (a),

Br=
where

O1(z,z) (|U2 10°U2,40)(2)Uz46(2") — Uz a(x)(|U2,4¢|°U,40) (z")

Il
n M

04T )

3.3. Recursive Estimates. Now, we estimate the example (3.1) using the structural properties
obtained from the previous two subsections. The key tool is the trilinear estimates (Lemma [2.6)).

Observe that in the example (3 , the distinguished factor Ji is independent of t9, and the
regular factor JJ depends only on t2 and t4 (see (3.9 . and - Thus, can be factored as

ED - ( f dnadtsTe(|S 1) ( f dtsTe(|S0.3))). (3.14)
[0,T)? 0
We estimate these two factors separately.

3.3.1. Distinguished factor. By and we have

J‘[O T)Q dtldt3Tr(|S(1’7 Z f dtldt?,“'lpﬂl HH d”Xﬁl ”H d (315)

B1=1

where for each S, only one out of two terms ¥g, and xj_ Is cubic. Among the eight integrals on

the right hand side of (3.15]), we estimate the following two cases.
12



Case 1. Consider the integral whose Y3, ’s are all cubic, precisely

Vb = UradUs a3, Uisx3,, xb, = Urad,
V5, = Usat, [Usagl’, X3, = UsaXp, (3.16)
wgg = ‘¢|2¢7 X?}?’ - ¢
We apply the trilinear estimates (2.19)) recursively keeping the Wset3:7¢ norm on ¢§ . Then, we
obtain that

o vtk Lr-slchll-e < | dtatsoh syl by Soboley inee

)

:‘ﬂOTﬁcﬁldhdlﬁA¢Lﬁgdﬁ2U13x%2RV(&¢§%u|¢|H&

T
< CT* | "ty e I e ol (by @)

T
— T jo b |Us 4%, | U3 462 oo 5y |0l

< (CoT V93, |- cocr gore D1 Frsc - (by @19))
= (CoT V[0 Plly—coc+ §).re [l Froe
< (CoT9)?| @)% (by Sobolev ineq).

Case 2. Consider the integral whose V3, ’s are all linear except the last one, that is,
Vh, = Urs¥s,, Xp, = UL3x5,|U4dl”,
VB, = Uy, XB, = Usaxh,|Us a6, (3.17)
3 2 3
1%3 = ||, XBs = b.
In this case, we first combine linear propagators acting on 1/)23 so that
Vp, = Ur3Usa(|6°¢) = Ura(|¢|*6).
Then, applying the trilinear estimate (2.20]) twice, we obtain

J[ . dtydts| vl |g—alxp, |- < f . dtrdts| Uy 4(1¢1*0) | r—a | U1,sX3, U148 | o

) )

= | dndtalioPol a1V, Ui

)

T
< T fo At 1Py e I3, lrree |61, (by (@20))

< (CoT V(162 dl - cecr e D1 T (by @2:20))
< (CoT9)?| @)% (by Sobolev ineq),

which is the same bound as in Example 1.

Similarly, one can show that the other six integrals satisfy the same bound. Then, it follows that
f dtydtsTr(| ST JY)) < 8(CoT )6
[0,7)?

13



3.3.2. Regular factor. For the regular factor, we have

T 2 T
| a5 By < 3 | atalil o155, Do (3.18)
B1=1

where for each Bl, only one out of two terms 1%1 and )Z%l is cubic. For instance, when 1%1 =
\U274¢|2U274¢ and )Zgl = Uz 4¢, it follows from the trilinear estimate (2.20|) that

T T
| dtald el %5, L < |l Va6Vl Ul < oIl
0 0

Similarly, one can also show that the other integral satisfies the same bound. Therefore, we get
T
| dete(so0a) < 200y
0

3.3.3. Conclusion. Going back to (3.14)), we conclude that
BI) < 2" (CoT) 637

4. BINARY TREE GRAPHS FOR THE GENERAL CASE

In order to prove Lemma in the general case, we proceed as in [3], and use binary tree
graphs. These graphs will help us keep track of the contraction operations applied iteratively in
the Duhamel expansion ([2.11]).

4.1. The binary tree graphs. We begin by recalling that, by ([2.12)), J* is given by

']k(ﬁnv 0) = Uﬂ(i)Ba(k+1);k+lUff€2+l)Ba(k+2);k+2 e U?S]i_'i,nn_l)Ba(kJrn);k+n(’¢> <¢|)®(k+n)7
where
k+n
(OXSDEH (g s y) = | [ (16X (@i )
i=1
is a product of one-particle kernels. Since the free evolution operators U and the contraction
operators B preserve the product structure, it follows that we can also decompose

k
TRttty oL X)) = 1_[1 le(t,tgjyl, .. 7tlj,mj ;0 xj;x;) (4.1)
J:

into a product of one-particle kernels J jl. We associate to this decomposition k£ disjoint binary tree
graphs 71, 79, ..., 7,. These graphs appear as skeleton graphs in [11], 12], 13 [14]. As in [3], we assign
root, internal, and leaf vertices to for each tree 7;.

e A root vertex labeled as Wj, j = 1,2,--- |k, to represent le (x4, x;)
e An internal vertex labeled by v, I = 1,2,--- ,n, corresponding to Bg(j11) x4 and attached
to the time variable ;.
o A leaf vertex u;, i = 1,2,--- , k + n, representing each factor (|¢)(¢|)(x;, x}).
Next, we connect the vertices with edges, as described below.

e If v; is the smallest value of [ such that o(k + 1) = j, then we connect v; to the root vertex
W; and write W; ~ v (or equivalently W; ~ Bg(xyq)p+1)- If there is no internal vertex
connected to a root vertex W;, then we connect W; to the leaf u;, and write W; ~ u;.

e For any 1 < < n, if 3’ > [ such that o(k +1) = o(k+1') or o(k +1') = k + [, then we
connect v; and vy and write v; ~ vy (or equivalently B (xiy) k1 ~ Bo(ktr)k+r)- In this
case, we call v; the parent vertex of vy, and vy the child vertex of v;. We denote the two
child vertices of v; by vy,_ () and vy, 3y, with k(1) < k4 (1).

14



Wi oV

By 3(v1)

FIGURE 1. An example binary tree graphs of J*. It is a disjoint union of two trees
71 and T with root vertices W1 and Wj, respectively. Each tree corresponds to a

one-particle kernel in the example in section [3, where k = 2 and n = 4.

e When there is no internal vertex with ' > r and k +1 = o(k +1"), we connect v; to the leaf
vertex uy,; and write v; ~ ug4; (or equivalently Bo(kst) k41 ~ ug+1). If there is no internal
vertex with I’ > [ and o(k +1) = o(k +1’), then we connect v; to the leaf vertex wuq ;) and

write v ~ Uy (rqqy (O equivalently By (i1 k1 ~ Ug(k+1))-

We remark that it follows from the construction above that each root vertex has only one child
vertex, and each internal vertex has exactly two child vertices (which can be internal and leaf). We
call the tree 7; distinguished if v, € 7;, and regular if v, ¢ 7;. The two leaves connected to v,, are
called distinguished leaf vertices, and all other leaves are called regular leaf vertices. Clearly, there

are k — 1 regular trees and one distinguished tree in each binary tree graph.

A sample binary tree graph is given in Figure [1} for J* as in (3.3). Each tree 7; has root
vertex W;, for j = 1,2. The two leaf vertices ug and ug and the internal vertex vy (or Bsg) are

distinguished. 77 is the distinguished tree, and is drawn with thick edges.

4.2. The distinguished one particle kernel le. Let 7; denote the distinguished tree graph. It

has m; internal vertices (Ugj@)gz . and m; + 1 leaf vertices (uﬂ)?ijlﬂ. We enumerate the internal
vertices with a € {1,...,m;} and the leaf vertices with o € {m; + 1,...,2m; + 2}. To simplify

notation, we refer to the vertex v;, by its label a. We observe that le has the form

JH(tte, et my 05)

— U(l)(t _ tﬂj,1) ... U(l)(te,’l_1 _ Uj’l)ng(Z)’2 ..

J

e 'Boj(a),aU(a) <t£j,oa—1 - téj,oc—l‘i’l) U@ (tfj,oﬁl - tfj,a)Baj(a—&-l),a-i-l T

o U(mj)(téj7m]'—1 - tlj,mj)BO']'(mj-i—l),mj-i-l(|¢><¢|)®(mj+1)’
By the group property
U@ )U N (s) = U@ (t + s),
and the fact that ¢;(2) = 1, (4.2)) reduces to

1 .
J] (ta t@j,p oo 7t€j,mj70—j)
15
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= U(l)(t _ tfj,1)Bl,2 o

e 'Boj(a),aU(a) (tej,afl - tﬁj,a)Baj (a+1),a+1 """

o U(mj)(tfj,m]'—l - tlj,m]')BO'j(m]'-‘t-l),m]'-i-l(|¢><¢|)®(mj+1)7
where £j ,, = 1.
4.3. Definition of the kernels O, at the vertices of the distinguished tree graph. In this
section, we proceed as in [3], and recursively assign a kernel ©, to each vertex « of the distinguished

tree graph. The kernels at the vertices of the regular tree graph are defined similarly. We begin by
assigning the kernel

Ou(w;2') 1= p(x)(2")

to the leave vertex with label o€ {m; +1,...,2m + j + 2} (corresponding to u; o—m,)-
Next, we determine ©,,, at the distinguished vertex a = m; from the term on the last line of
(4.3)), given by

By my+1)my 41 ([9)@)) M+ = (|g)(g] )25+ @ @y,
® (|p) o) Bmat1=e5(m;+1)=1)

where

O, (w52) 1= () (') — () () (4.4)
with ¢ := |¢|2¢. It is obtained from contracting two copies of |¢)(¢| at the two leaf vertices
k—(m;), k+(m;) which have m; as their parent vertex.

Now we are ready to begin the induction. Let ac € {1,...,m; —1}. Suppose that the kernels O,/
have been determined for all o/ > . We let k_(a), k4 () label the two child vertices (of internal
or leaf type) of «,

oi(0) = o3 (@) 5 o= oy(ms(a).
Since O,_(q) and O, () have already been determined, we can now define
Oa(z;2')
= B1o(UV(ta — ty_(a)) ® UV (ta — by, (0)On, (o)) (w3 2")
= (U (ta =t (0)O%_ (@) (@2 )[(UW (ta = by, (2)) O, (o)) (w; )
- (U(l)(ta - tn+(o¢))@n+(a))($l; xl)]
The induction ends when we obtain the kernel ©1 at o = 1.

4.4. Key properties of the kernels O,. As in [3], we observe that the kernels 0, satisfy the
following properties.

e O, can be written as a sum of differences of factorized kernels

Oalw;a’) = D g X3, (2)¥5, () (4.5)
Ba

with at most 277 nonzero coeflicients ¢ € {1, —1}.
e The product x3_ (x)yg (') in (4.5) above is either of the form

Xga (I’)?ﬂ%ﬂ (JJ’) = (Ua;/i_ (a)Xg’;_(?i) ) (x) (Ua;n_ (a)wg;_((()g) ) (JJ/)

(Ua;n+ (a)Xg:i?i) ) (‘T) (Ua;n+ (a)w;:f?g ) (w) (4'6)

16



or

X5, (@05, @) = Uae_ (@)X 2 )@) U@y @) (@)

(Uains (@G o) @) Ui oy ) ) @) (4.7)

for some values of 5,;_(a), Bk, (o) that depend on f,. Observe that above, the function X3,
is either of the cubic form

X5, (@) = Uaen_ (o) )(@)

(Uaies (@)X o)) (@) Ui, (@) ) () (438)
or the linear form
X5, () = Uage_(@)X5. ") ) (@). (4.9)

Accordingly, ¢§ respectively is either of linear or cubic form, and the product x§_(x)y§ (')

always has quartic form or .

e We call the functions X3, g, in the sum distinguished if they are a function of
|$|2¢. In the product on the right hand side of , respectively , at most one of the
four factors is distinguished. Indeed, this is true for all regular leaf vertices, and for the
distinguished vertex (4.4]). By induction along decreasing values of «, it is also true for the
internal vertices.

5. PROOF OF LEMMA

In this section, we prove Lemma We begin by considering the contribution of each factor le
on the right hand side of separately. One of these factors is distinguished, and will be dealt
with in Proposition below. Proposition [5.4] will be for the regular factors.

We note that the analog of Proposition in [3] has a shorter proof. This is because, where

the authors of [3] work in L?, we work in W=+ 3)m ¢4 achieve lower regularity. In W~

the linear propagators e**® are no longer isometries, and so we have to carefully rearrange them so
that they do not interfere with our proof. This occurs in case 2 of our proof of Lemma

We begin with Proposition which addresses the contribution of the distinguished factor le.
We prove Proposition by induction. Lemma [5.2] will serve as our first induction step, and
Lemma [5.3] will serve as the remainder of our proof by induction.

55“!‘%)7”‘5
9y

Proposition 5.1. Let d > 3. Then, for the distinguished tree 7j, we have the bound

)

L L L 2m,;—1
< 2mimi oM Lpelmi—1) | |2 1L B (5.1)

)

1
< 2mi 1 om0 16 20
w

f[o i dty ... dtmj1ﬂ< ‘S(l’_d)J;(t,tl, ety )

Similarly, when d = 2, we have the bound

J B dtl...dtmj_lTr<‘S(1’d)le(t,tl,--- s, 0j)
[O,T)mJ 1

H1/3 —(%—%),Te’ (52)

)

and, when d = 1, we have the bound

J[O - dty .. .dtmler< ‘S(l’_d),]jl(t, th, ot 0j)
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1 o
< 21 oM D6 20 1626 1 (5.3)

Proof. For d > 3, Proposition follows immediately from Lemma below. Indeed, in the
statement of Lemma there are at most 2™ ! terms in the sum over j3;.

Observe that in the proofs of Lemmas and we use the bounds for d > 3 presented in
Lemma The proof of Proposition for d = 1,2 is analogous (we use the corresponding bounds
for d = 1,2 presented in Lemma . O

We now prove Lemma [5.2] which will serve as the first induction step in our proof of Lemma[5.1

Lemma 5.2. Let d = 3. Then, the distinguished factor

Jj(tpsogim,a’) = U (E—t1) Y e b (2)xh, (2)
B1

satisfies the following. For each value of 31, either there exits a non-negative integer £ < m; — 1
such that

f dty ... dtmj_lTr< ‘S(lv—d)[](l)(t _ tl)cll31 Wél ><X}31|
[O,T)mj_l

| (Uerafio) Uesaftie) Uesafiio) |y —set s Ueraf ol mrse - |Uera f25 se,  (5.4)
where the functions f are defined in terms of the functions wga and X%‘a as described in the proof

below, or

< (CTG)EZL dtgp1 - dbm;—1
B1

O,T)mj_é_l

J[O s dt .. .dtmler< ’S(L—d)U(l)(t — t1)ch, [k O,
s J

m;—1re(m;—1) 2m;—1 2
<O 9P e (5.5)
Moreover, fél+2 is the only distinguished fuction on the right hand side of ((5.4)).
Proof. We recall that U; ; := elti—t)A “and let Uj := Ujj4+1. We have
J b dtmj_lTr( ‘S(l’_d)U(l)(t —t1)ch, [Wh, Xxh,| )
[0,7)™3
g f p— dtl o dtm]‘_leél HH_dHX[l:)’l HH_d' (56)
[0,7)™3

Now, we recall from subsection that one of functions wél,xél is distinguished. Moreover the

distinguished function is either of the cubic form (4.8) or of the linear form (4.9). We will now
label the distinguished function f{ and the regular function f2.
Case 1: f{ is cubic. If f] is cubic, then, by (4.6 and (4.7), fi and f? are of the form

fl = U2£3)(U2£3)(U2.f3),
f2=Usfs.

As in Section [3| we apply the W™%*27< norm to the distinguished function fi and the H*< norm
to the regular function f? and find that

B9 - j[ e LA il
s J

B j[o Ty dty - dto,—1|(U2f3) (U2 f3) (U2 £3) g-a | U2 2|
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<of by dt, (U)o e Ui e,
[0,7)™i w 2

which is of the form ([5.4)).
Case 2: f? is cubic. In this case, we have that fi and fZ are of the form

fi = Usfs,
1t = (U203)(U23)(U2f5)-
Since f{ is distinguished, there exists £ > 1 such that
fo = Usfs, f5 = Uafis s f7 = Urrafisn,
and

fior = Ueraflio) Uera f20) Uerafiys) or fiyy = 6176, (5.7)

where fél+2 (or f€2+2 or ft%rz) is a distinguished function. Thus, combining all propagators acting
on fng, we write

1 1
fi = Utetrafise-

Again, we apply the W~ " norm to the distinguished function f{ and the H® norm to the
regular function fZ and find that

€
5c+§7

ED = | e d il s
[0,7)™i™

- J[O - dty - dtmj71|‘fé1+1”H—d ”(U2f22)(U2f§))(U2f§)”H7d
T)™

< f[ L A1l s (DO G Dl 59)
s J
Since fy1 doesn’t depend on 11, ..., %y, we find that after ¢ applications of ([2.20)),
ED <@ [ il Bl U e 69
J

If felJrl = |¢|?¢, then it follows from the binary tree graph structure presented in section |4 that
¢ = mj —1 and ffll = ¢ for " > 2, and so we have proven (5.5). Otherwise, if f},, =
(Ursa o) Uesaf20)(Ussaf3,5). then we have that

B9) < (CT) f

dtgyy - dtm;—1

[o,0)™i !
|Ueraftye) Ueraf o) Ueraf o) lyy—ses s |2 llmse - 1704 | mse
= (CTe)Z J[O7T)mje1 dt£+1 .. 'dtmjfl
|Ueraflio) UerafZio) Uesafiio)lyy—ser gore [UerafZialmse - - [Ueraf g mse,
which is of the form ([5.4)). O

In Lemmal5.3], we complete the induction process. Observe that in the proof below, we proceed as
in the proof of Lemma In each induction step, we apply the W#¢*2'"< norm to the distinguished
function, and the H® norm to the regular functions.
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Lemma 5.3. Let d > 3. Then, the distinguished factor

Jj(tyiogs,a’) = Ut —t1) Y ek vh, (2)xh, (2)
B1
satisfies the following. For each value of 1,

JL() Lyt dty .. .dtmj_lTr< ‘S(l,d)U(l)(t _ tl)cél |wé1><xé1|
s J

- - 2m;—1
< M et g |||¢|2¢>HW

)

Proof. By Lemma we have that for each (1, either (5.10) holds, or there is a non-negative
integer £ < mj; — 1 such that
< (CTG)@zmﬂf gy - dbm, 1
[o.7)™a ="

H(UE+2fe1+2)(UZ+2fz2+2)(U€+2fz3+2)||W75c+§,rs |UesafZyoll e -+ HU£+2fg2f§4HH$ea (5.11)

where fglJr2 is the only distinguished function on the right hand side of . We recall from
Section {4f that le o is either of the cubic form or the linear for .

Now, we will proceed by induction, and show that in each induction step, we can bound by
an expression of the same form, but with a larger value of £. In the last induction step, we find
that holds, which completes the proof of . Indeed, this follows from the binary tree
graph structure presented in section [

Case 1: f41+2 is cubic. If f€1+2 is cubic, then

froo = Uess fiog) (Uess frs) (Urra fivs),

2 4 3 5 2044 2046
fivo = Uirafivs, fivo = Uessfiyss - fiys =Unsfiiz -

Since f7,, is distinguished, one of f}, 4, f7, 4, f7.5 is distinguished, say f}, ;. Then, applying (2.19),
we get the integral of the form ([5.11]) back:

(5.10)

_(Sc+§),7”e ’

J‘[O — dty ... dtm]-—lTI'( ‘S(Ld)U(l) (t _ tl)c,}ﬁ |1/}[1?1><Xé1’
, J

BID) < (CT9) 2! f dteps - Aty 1| fhyall y—or srme | fZvallmse -+ - | F70 N arse.

[D7T)m]-—Z—2

_ (CT€>€+12m]‘71 J

[o.7)™s 72
¢
X ||f?+3HHS€ T Hf£2+§6HHSE‘

Case 2: f€2+2 is cubic. If f}+2 is cubic, then

dtpyo -+ dtm]-—lH(U£+3f£1+3)(U£+3f£2+3>(U€+3f4§+3)HW—(SC+§),re

f£1+2 = U£+3f£1+3’
f20 = (Uesaf2.3) Uesafios) (Uesafis),

3 5 20+4 20+6
f£+2 = U£+3f£+3’ o Jeg2 T U£+3fg+3 .
Since f£1+2 is distinguished, there exists ¢/ > 1 such that
1 1 1 1 1 1
f£+3 = U£+4f£+4a f£+4 = U€+5f2+5a R 7f£+1+€’ = Ué+2+é’fz+2+eu
and
1 1 2 3 1 2
fevore = Wessso fira0) Uersio s o) Ueiste [z o) of firore = (0170, (5.12)
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where fel+3 +p 18 a distinguished function. Thus, combining all linear propagators acting on f} Lo
we write

1 1
fz+2 = U£+2,e+3+£’fz+2+e/-

Then, applying (2.19) and (2.20)), we obtain

¢ o 14
BID) < (C1)+12m! f[o B T TN R PO Ve
)™
14 i— L
< (CTe)+2gmi! j[ s 653 i By oo el 157250
)™
(5.13)

where, in the second inequality, we applied (2.20) to the cubic regular function f£2+2- After ¢/ — 1
applications of (2.20]), we find that

(.13) < (CTe)tH 1+ gms—1 b dty, (5.14)
[O’T)mjfzfzfe J
| fososol oot srmc | Prasollmse - |23 o | rrse. (5.15)
If
fivave = 019, (5.16)

then it follows from the binary tree graph structure presented in section [4| that £+ 2+ ¢/ = m; and
ffjr2 +o = ¢ for £ = 2, and so we have completed the proof of (5.10). Otherwise, by (5.12)),

515 — (CTE)£+1+£/2mj1f

dt coodty,. —
A (4240 mj—1

H (U€+3+€’ f£1+3+2') (Ue+3+e/f22+3+z')(Uz+3+z/f?+3+e') HWf(sCJrgxre

f2Z+2£/+4HHSe,

X \Uessre fErapolmse - |Uerare fe53

which is of the form (5.11)).
Case 3: fé‘+2 is cubic. This case can be treated like Case 2. We choose ¢/ > 1 satisfying (5.12)),

and combine linear propagators acting on le o+ Then, we repeat the above procedure to bound
E-11) by (5-13). O

Next, we consider the contribution of the regular factors le.

Proposition 5.4. Let d > 3. Then, for the regular tree 7;, we have the bound

J dtq ...dtijr< >
[o,7)™
2mj+2

< 2m]- ijT€mj ||¢||H5€ . (517)
Similarly, when d = 2, we have the bound
2mj+2

J dty ... dtijr< ‘S(l’d)J}(t,tl, ety 05)
[0,7)™
1
<2MO™TI™ | s (5.18)

)

1 )
< 2MCTITA™ || 3R, (5.19)
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and, when d = 1, we have the bound

J dty . .. dtijr< ‘S(l’d)J}(t,th g 0j)
[0.7)"™3




Proof. Again, we consider the case d > 3, and note that the proof for d = 1,2 is analogous (based
on using the bounds for d = 1,2 in Lemma .
We now proceed with the proof for d > 3.

J dty . ..dtijr< ‘S(L—d)J;(t,tl, 5 0)
[0,1)™

)

= J dty ... dtijr< ‘S(l’_d)U(l)(t — )0
[0,7)™
< ZJ . dty - dtmj Wél HH*dHXél | pr—a

<y J Cdty < dt [0, e b, e (5.20)

By (4.6) and (4.7)), one of 1/)}31, X}h is cubic, and the other is linear. We define f{ to be the cubic
function, and f? to be the linear one. Then, by (4.6) and (4.7), f{ and f? are of the form

f = (Uaf3)(Uaf3)(Usf3).
12 =Usf3.
By , we have

@W=§U@WdW~%MWMM%ﬁWM®M%%ﬁh% (5.21)
B1 ) J
< (CT*
<)§L

By construction, only one of the factors ff is cubic. Without loss of generality, f4 is cubic, and so
we have

s 12 e, 3| B | Lo e (5.22)
s J

fs = (Usf3)(Usf3)(Usf3),
fgf =Us §+2 for £ = 2,3, 4.
Thus,

1mm=«ﬁqZﬁMWHﬁT%mwWMM%ﬁmw®MH%ﬁm%%ﬁha%£mm
g Y104
which is again of the form (5.21]). Recall from subsection that there are at most 2% terms in

the sum over ;. Repeating this argument m; — 1 more times yields the desired result (5.17). O

Before we proceed with the proof of Lemma [2.5] we present a short lemma that we use to bound
the term |¢|?¢ appearing on the right hand side of (5.1)).

Lemma 5.5. Let ¢ > 0. Then, for s, = g -1, re= and d = 3, we have

2d
d+2(1—e)’

(] S ] (5.23)
Similarly, when d = 2, we have
162013 gye < 19130 (5.24)

Proof. Let d = 3. By two applications of the Sobolev inequality, we have

Ol yy—er 5 < H\¢I2¢\|nggé = H¢Hi% S H¢>H2dge S o

This establishes (5.23]). The proof for the case d = 2 is similar.
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We are now ready to conclude the proof of Theorem by proving Lemma,

Proof of Lemma[2.5. Recall from (1)) that J* can be decomposed into a product of k one particle
kernels

Jk‘(t,tl,..., ttg]l,...,tgj’mj;dj),

||::]?r

where only one of the factors J jl distinguished. It now follows from Propositions and H that

f dtl -"dtn_lTI‘< )
[0,7)n—1

k
B J[0 T)n—1 At H B <‘S(l’_d) le (t’ tfj,lv v ath,mj ; Uj)
j=1

Sk=d) gkt 11 . tni0)

)

nn— e(n— kn .
22O TG NG g, A>3
non— n— (k4+n)—3 X
< {2 on s D 2 )y ifd =2
W ‘3 2/77°¢
nn— n (k .
2nCn T2V P 4120, ifd=1.

Thus, for t € [0,T), it follows from Lemma [5.5) m that
| ot (s o)
[0,7)"~

(€T Ygl5e™  itd>3
(

<A (TR g ifd =2
(CT2) =Ygl itd =1,
which is precisely the statement of Lemma ]

APPENDIX A. PROOF OF LEMMA

We prove Lemma combining the dispersive estimate, the Strichartz estimates (see [24] for
example) and negative order Sobolev norms.

Lemma A.1 (Dispersive estimates). For 2 < r < o0, we have

€2 flluy < (174G £ (A1)

Lemma A.2 (Homogeneous Strichartz estimates). We call a pair of exponents (q,r) Schrodinger
admissible if 2 < q,r < 0, % + % = % and (q,r,d) # (2,00,2). Then for any admissible exponents
(q,r) we have the homogeneous Strichartz estimate

it A
1€ Fllpary < 1f1zs- (A.2)

Lemma A.3 (Negative order Sobolev norms). Let € > 0 be a small number. Then, for s = s.+ 5,
we have

| Fgllw—sre < 1 flyy—srellgl

w?* s

2d

where Te = m
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Proof. By Holder’s inequality, the fractional Leibniz rule and the Sobolev inequality, we have

| F@)g@REIa] < 1l
<1 et (191 o g Vol 2+ gl Bl

a [P 2

ST Vbl

The lemma now follows from the standard duality argument. O

Proof of Lemma[2.6. (i). For notational convenience, we omit the time interval [0, T) in the norms.

(2.19): By Lemma we get

ITCf g M) ytoer srme S 1€ CTIRFL oorgne (€072 g) (12 0))

Woet 5 aratae
(A.3)
< W“f“w-(%*—%),re lg| zrse [P zrse -
Here, in the second inequality, we use the dispersive estimate:
i(t—t1) A
Hez(t t1) fHW—(sc‘F%),ré < WHJCHW—(%%),TS
and the fractional Leibniz rule and the Sobolev inequality:
i(t—t2)A N i(t—t3)A
(2 S
< \Iei(t_tQ)Ag\\Wsc+e 24 H@’(t s Ah\l PR ] 7H€ (t=ts AhH g2 (A4)

< TR g e AR e = gl prse [ e

Integrating out the time variable ¢, we prove ([2.19)).

(2.20)): By the fractional Leibniz rule, we have
HT(fagah)HLtlH;e < Hei(t—tl)AfH
L3

t T

i(t—t2)A

i(t—t3)A
QHLngdHeZ(t ts) hHLngd

+ Hei(tftl)AfHLﬂgdHei(tftQ)A 64 Hei(tft?’)AhHL?ng

gl L

:1:

i(t—t1) A i )A
+ ettt fHLngdHez(t 2)8 9“L3L3dH€ (=) h” ser g9l

t x
Then, by the Sobolev inequality and the Strichartz estimates, we bound the first term by
< ”€i(t—t1)AfH i(t—t2)A (t—ts AhH

91, 1
t x t

< Te!\ei(t_“)AfH 2 A . ettt AhH o8l
3 W, ©3d— 4+6 eWz€’3d74+65

sergg Sl o
W 3d—4+6e

Ses 3d
t T

S T\ fllmsellglzse [ zrse

Similarly, we bound the other two terms.

(i4). (2.21)): The proof is similar to that of (2.19), but here we use Lemma with s = (3 —
alA.3

Indeed, by the dispersive estimate and Lemm

1T 9,1y —gye S 1T _amg) 122 g) ()2 0))

N
~—

1_e€ 2d
W3 2 dT¥2—3e
1
< WH

(ez(t—tg) g) (ez(t—tg)A h) H L

WS_%’#d—Se ’
Then, modifying (A.1), we obtain
(722 g) (=12 ) |

€ 2d
2°d+2-3¢

1
W3
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(t—t2)A Hez(tftg)AhH (t—t2)A (t—ts AhH

e +He

gl qa [l

gl 1 e 2

< Je't s
w3 24d

1_e 2
W3 2'd—e

< 2] s [T R] g = gl s Il s,

Applying this to the above inequality and Integrating out ¢, we compete the proof.

- Although we set € to be small and d > 3 in the proof of -, it actually works for € = %
and d = 2 which is exactly (2.22f -

(#i7). For (2.23), by the Holder inequality and the 1d dispersive estimates, we get

I7(f,9.0) 11 < 1€ o2 g 2R 12 < g | o gl 2l 2.

Integrating out the time variable ¢, we prove ([2.23)).

For

(2.24), by the Holder inequality and the Strichartz estimate,

IT(f, 9. W)y < TV 1 fls |6 Dglps [ hl s < TV £ z2llgl ] =
O
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