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Singular Behavior of Electric Field of
High Contrast Concentrated Composites

Yuliya Gorb∗

Abstract

A heterogeneous medium of constituents with vastly different mechanical properties, whose
inhomogeneities are in close proximity to each other, is considered. The gradient of the solution
to the corresponding problem exhibits singular behavior (blow up) with respect to the distance
between inhomogeneities. This paper introduces a concise procedure for capturing the leading
term of gradient’s asymptotics precisely. This procedure is based on a thorough study of the
system’s energy. The developed methodology allows for straightforward generalization to
heterogeneous media with a nonlinear constitutive description.

1 Introduction

This paper is on the study of blow up phenomena that occur in heterogeneous media consisting
of a finite-conductivity matrix and perfectly conducting inhomogeneities (particles or fibers) close
to touching. This investigation is motivated by the issue of material failure initiation where one
has to assess the magnitude of local fields, including extreme electric or current fields, heat fluxes,
and mechanical loads, in the zones of high field concentrations. Such zones are normally created
by large gradient flows confined in very thin regions between particles of different potentials, see
e.g. [4, 12, 15, 19].

These media are described by elliptic or degenerate elliptic equations with discontinuous coef-
ficients. The problem of analytical study of solution regularity for such problems has been actively
studied since 1999, and resulted in series of papers [1–6, 11, 13, 16–18, 20, 21] investigating differ-
ent cases based on dimensions, shape of inclusions, applied boundary conditions, etc. The main
result up to date can be summarized as follows: For two perfectly conducting particles of an arbitrary
smooth shape located at distance δ from each other and away from the external boundary, typically there
exists C > 0 independent of δ such that

1

C
√
δ
≤ ‖∇u‖L∞ ≤ C√

δ
for d = 2,

log δ−1

C δ
≤ ‖∇u‖L∞ ≤ C log δ−1

δ
for d = 3, (1)

and corresponding bounds for the case of N > 2 particles and d > 3, see [6]. It is important to
note that even though in some referred studies it was mentioned on what parameters the constant
C in (1) depends upon, the precise asymptotics have not been captured, only bounds for it have
been established. Moreover, methods in the aforementioned contributions have their limitations,
e.g. some of them use methods that work only in 2D, some deal with inhomogeneities of spherical
shape only, and the developed techniques, except one [13] by the author, were designed to treat
linear problems only, with no direct extension or generalization to a nonlinear case.
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In the current paper an approach for gradient estimates for problems with particles of degen-
erate properties that works for any number of particles of arbitrary shape in any dimensions is
presented. The advantage and novelty is that the rate of blow up of the electric field is captured
precisely as opposed to the existing methods and allows for direct extensions to the nonlinear
case (e.g. p-Laplacian). In particular, it is shown that

‖∇u‖L∞ =
C√
δ

for d = 2, ‖∇u‖L∞ =
C log δ−1

δ
for d = 3, (2)

with explicitly computable constant C that depends on dimension d, particles array and their
shapes, and an applied boundary field.

The rest of the paper is organized as follows. Chapter 2 provides the problem setting and
formulation of main results, proof of which is presented in Chapter 3. Discussion of possible
extensions is done in Chapter 4 and conclusions are given in Chapter 5. Proofs of auxiliary facts
are shown in Appendices.

Acknowledgements. The author thank A. Novikov for helpful discussions on the subject of the
paper.

2 Problem Formulation and Main Results

The current paper focuses only on physically relevant dimensions d = 2, 3. To that end, let Ω ∈ R
d,

d = 2, 3 be an open bounded domain with C1,α (0 < α ≤ 1) boundary Γ. It contains two particles
B1 and B2 with smooth boundaries at the distances 0 < δ ≪ 1 from each other; see Figure 2. We
assume

dist(∂Ω,B1 ∪ B2) ≥ K (3)

for some K independent of δ. Let Ωδ model the matrix (or the background medium) of the com-
posite, that is, Ωδ = Ω/(B1 ∪ B2), in which we consider



























△u(x) = 0, x ∈ Ωδ

u(x) = const, x ∈ ∂Bi, i = 1, 2
∫

∂Bi

∂u

∂n
ds = 0, i = 1, 2

u(x) = U(x), x ∈ Γ

(4)

where a bounded weak solution u represents the electric potential in Ωδ, andU is the given applied
potential on the external boundary Γ. Note u takes a constant value, that we denote Ti, on the
boundary of particle Bi (i = 1, 2). This is a unique constant for which the zero-flux condition, that
is the third equation of (4), is satisfied. The constants T1, T2 are unknown apriori and should be
found in the course of solving the problem.

The goal is to derive the asymptotics of the solution gradient with respect to the small param-
eter δ ≪ 1 that defines the close proximity of particles to each other. To formulate the main result
of the paper, consider an auxiliary problem defined as follows. Construct a line connecting the
centers of mass of B1 and B2 and “move” particles toward each other along this line until they
touch. Denote now the newly obtained domain outside of particles by Ωo where we consider the
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(a) Particles are at distance δ from each other (b) Particles are touching at one point

Figure 1: Configurations of the composite occupying the domain Ω with particles B1 and B2

following problem:


























△vo(x) = 0, x ∈ Ωo

vo(x) = const, x ∈ ∂B1 ∪ ∂B2
∫

∂B1

∂vo
∂n

ds+

∫

∂B2

∂vo
∂n

ds = 0,

vo(x) = U(x), x ∈ Γ

(5)

This problem differs from (4) by that the potential takes the same constant value on the boundaries
of both particles. We denote this potential by To and introduce a number that depends on the
external potential U :

Ro = Ro[U ] :=

∫

∂B1

∂vo
∂n

ds. (6)

Without loss of generality, we assume that particles potential in (4) satisfy T2 > T1, which would
mean that Ro > 0 for sufficiently small δ.

The following theorem summarizes the main result of this study.

Theorem 2.1 The asymptotics of the electric field for problem (4) is given by

‖∇u‖L∞(Ωδ) = [1 + o(1)]















Ro

C12
1

δ1/2
, d = 2

Ro

C12
1

δ| ln δ| , d = 3
for δ ≪ 1, (7)

with Ro defined above in (6) and explicitly computable constant C12 that depends on curvatures of particle
boundaries ∂B1 and ∂B2 at the point of the closest distance and defined below in (34).

3 Proof of Main Results

The proof of Theorem 2.1 consists of ingredients collected in the following facts.
In [13] using the method of barriers it was shown that the electric field of the system associated

with the problem:










△φ(x) = 0, x ∈ Ωδ

φ(x) = Ti, x ∈ ∂Bi, i = 1, 2

φ(x) = U(x), x ∈ Γ

(8)
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stated on the same domain Ωδ with the same boundary potential U as in the above problem (4) is
given by

‖∇φ‖L∞(Ωδ) =
|T2 − T1|

δ
[1 + o(1)], for δ ≪ 1.

In contrast to (4), the constants T1 and T2 in (8) are arbitrary, which implies the solution of (8) may
not satisfy the integral identities the flux of u on ∂Bi as in (4). In particular, one has

Lemma 3.1 The asymptotics of the electric field of (4) is as follows:

‖∇u‖L∞(Ωδ) =
T2 − T1

δ
[1 + o(1)], for δ ≪ 1, (9)

where T2 and T1 are the potentials on B1 and B2, respectively, for which the zero integral flux condition as
in (4) satisfied.

With (9) the problem is reduced to finding the asymptotics of the potential difference T2 − T1 in
terms of the distance parameter δ, given in the proposition.

Proposition 3.2 The asymptotics of the potential difference T2 − T1 is given by:

T2 − T1 =
Ro

gδ
[1 + o(1)], for δ ≪ 1, (10)

where Ro is defined by (6) and gδ by:

gδ =

{

C12δ−1/2, d = 2

C12| ln δ|, d = 3
(11)

with constant C12 introduced below in (34) that depends on curvatures of particles boundaries at the point
of their closest distance.

Proof of Proposition 3.2.
The method of proof is based on observation that asymptotics (10) of T2 − T1 can be derived by
investigating the energy associated with the system (4) and defined by:

E =

∫

Ωδ

|∇u|2 dx, (12)

where u solves (4). A remarkable feature of problem (4) is that potentials T1 and T2 are minimizers
of the energy quadratic form of the potentials:

E = min
{T1,T2}

E(T1, T2), E(T1, T2) =

∫

Ωδ

|∇φ|2 dx, where φ solves (8). (13)

This observation is the essence of the so-called Iterative Minimization Lemma, first introduced in
[8]. Therefore, if we find an approximation of E for sufficiently small δ, we would be able to derive
an asymptotics for T2 − T1 then. For the energy E the following holds true.

Lemma 3.3 The energy E of (4) can be written as

E = min
{t1,t2}

[

a1t
2
1 + a2t

2
2 + 2b1t1 + 2b2t2 + 2c12t1t2 + C

]

, (14)

with asymptotics of coefficients of the quadratic form E:

a1 = a2 = gδ[1 + o(1)], b1 = −b2 = Ro[1 + o(1)], c12 = −gδ[1 + o(1)], for δ ≪ 1, (15)

and Ro given by (6), and gδ by (11).
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This lemma is proven in Appendix 6.1. Now substituting asymptotics (15) of coefficients to
(14) and dropping the low order terms we define the quadratic form:

Ê(t1, t2) = gδ(t2 − t1)
2 − 2Ro(t2 − t1),

whose minimizer (t̂1, t̂2) provides asymptotics of the sought potential difference, namely,

T2 − T1 = |t̂2 − t̂1|[1 + o(1)] =
Ro

gδ
[1 + o(1)], for δ ≪ 1.

This concludes the proof of Proposition 3.2. �

Proof of Theorem 2.1.
Asymptotic relations (9)-(10) and definition (11) yield main result (7) for sufficiently small δ. �

4 Extensions

4.1. Extension to the case of N > 2 particles. The presented above approach allows for an
extension to any number of particles N > 2, where neighbors Bi and Bj are located at the distance
δij = O(δ) ≪ 1 from each other, see Figure 2. The notion of “neighbors” can be defined based
onthe Voronoi tesselation with respect to the particles centers of mass, namely, the neighbors are
the nodes that share the same Vonoroi face. In this case, similarly to above, one has to consider a
“limiting problem” (5) in the domain Ωo where the third condition is replaced to

N
∑

i=1

∫

∂Bi

∂vo
∂n

ds = 0.

To obtain Ωo one can connect centers of mass of neighboring pairs Bi, Bj with lines, and “move” all
particles alone those lines toward each other until ∂Bi touches at least one of its neighbor, where
i ∈ {1, . . . , N}, j ∈ Ni, where Ni is the set of indices of neighbors to particle Bi. Now, similarly to
(6), introduce numbers

Ri = Ri[U ] :=

∫

∂Bi

∂vo
∂n

ds, i ∈ {1, . . . , N}.

Then minimize the energy quadratic form E as in (14) and derive asymptotics of its coefficients

Figure 2: Composite containing N > 2 particles B1, . . . ,BN

in terms of Ri and δij using |Ti − Tδ| ≪ 1 to obtain the potential difference asymptotics for the
neighbors:

|Ti − Tj| =
|Ri −Rj|

gij
[1 + o(1)], for δ ≪ 1, and i ∈ {1, . . . , N}, j ∈ Ni. (16)
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Asymptotics of parameters gij in (16) is similar to one of gδ and given by

gij = Cij
{

δ
−1/2
ij , d = 2

|ln δij | , d = 3
,

with Cij given by formula (34) in Appendix 6.3 where i should be replaced by 1 and j by 2. Finally,
use

‖∇u‖L∞(Ωδ) = max
i∈{1,..,N}, j∈Ni

|Ti − Tj|
δij

[1 + o(1)], for δ ≪ 1,

with asymtotics (16) to obtain the blow up of electric field of the composite with more than two
particles.

4.2. Extension to the nonlinear case. One can also generalize the proposed methodology
for high-contrast materials with the matrix described by nonlinear constitutive laws such as p-

Laplacian. The system’s energy in this case is given by E =

∫

Ωδ

|∇u|p dx, (p > 2), where u solves (4)

with first and third equations replaced by ∇·
(

|∇u|p−2∇u
)

= 0 in Ωδ and

∫

∂Bi

|∇u|p−2(∇u ·n) ds =
0, respectively. Note that for a successful application of the described approach, one needs to
show that the energy function E(T1, T2), whose minimal value E is attained at the solution u, is
differentiable with respect to the potential Ti on ∂Bi. The blow up of the electric field is then

‖∇u‖L∞(Ωδ) =

(Ro

C12

)
1

p−1

δ
− d−1

2(p−1) [1 + o(1)] , p > 2, d = 2, 3, for δ ≪ 1,

see also [13].

4.3. Extension to dimensions d > 3. The described above procedure remains the same if one
needs to obtain asymptotics for |∇u| in dimensions greater than three. For this, one has to derive
asymptotics of gδ for d > 3 first, following method described in Appendices 6.2 and 6.3. For
simplicity of presentation we omit this case here.

5 Conclusions

As observed in [12, 15, 19], in a composite consisting of a matrix of finite conductivity with per-
fectly conducting particles close to touching the electric field exhibits blow up. This blow up is,
in fact, the main cause for a material failure which occurs in the thin gaps between neighboring
particles of different potentials. The electric field of such composites is described by the gradient
of the solution to the corresponding boundary value problem. The current paper provides a con-
cise and elegant procedure for capturing the singular behavior of the solution gradient precisely
that does not require employing a heavy analytical machinery developed in previous studies [1–
3, 5, 6, 13, 18, 20, 21]. This procedure relies on simple observations about energy of the correspond-
ing system and its minimizers that were sufficient to acquire the sought asymtpotics exactly. The
techniques developed and adapted here are independent of dimension d, particles shape and their
total number N , whereas strict dependence on d and particles shape was the main limitation of
previous contributions on the subject [1–3, 5, 6, 13, 18, 20, 21]. Furthermore, the developed above
procedure allows for a straightforward generalization to a nonlinear case.
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6 Appendices

6.1 Proof of Lemma 3.3

Proof. Consider a family of auxiliary problems defined on the same domain Ωδ as (4):



























△v(x) = 0, x ∈ Ωδ

v(x) = const, x ∈ ∂B1 ∪ ∂B2
∫

∂B1

∂v

∂n
ds+

∫

∂B2

∂v

∂n
ds = 0,

v(x) = U(x), x ∈ Γ

(17)

As in (5) the constant value of the potential is the same on both particles that we denote by Tδ.
However, in contrast to (5) here particles are located at distance δ from each other while in (5)
particles touch at one point. With that, similarly to (5) we introduce the number

Rδ[U ] :=

∫

∂B1

∂v

∂n
ds. (18)

In [13], it was shown that asymptotics of Rδ[U ] is given by

Rδ[U ] = Ro[1 + o(1)], for δ ≪ 1. (19)

Using the linearity of problem (4) we decompose its solution into

u = v + (T1 − Tδ)ψ1 + (T2 − Tδ)ψ2, (20)

with ψi (i = 1, 2) solving











△ψi(x) = 0, x ∈ Ωδ

ψi(x) = δij , x ∈ ∂Bj, i, j ∈ {1, 2}
ψi(x) = 0, x ∈ Γ

(21)

where δij is the Kroneker delta. Invoking (20), we compute the energy (12) of the system and
obtain:

E = Ev + G1(T1 − Tδ)2 + G2(T2 − Tδ)2 + 2Rδ[U ](T1 − T2) + 2C12(T1 − Tδ)](T2 − Tδ), (22)

where

Ev :=

∫

Ωδ

|∇v|2 dx, Gi :=

∫

Ωδ

|∇ψi|2 dx =

∫

∂Bi

∂ψi

∂n
ds, i = 1, 2, (23)

are the energies of systems given by (17) and (21), respectively, and

C12 :=
∫

Ωδ

(∇ψ1 · ∇ψ2) dx.

Trivial integration by parts yields that

C12 = −G1 + C1 = −G2 + C2, (24)
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where constants Ci depend on d, K and shape of the particles, but independent of δ. On the other
hand, the problem (17) is regular in the sense that its electric field |∇v| does not exhibit blow up
since there is no potential drop between the particles. Hence,

Ev =: C, (25)

that depends on the same parameters as the above constants. Finally, in Appendix 6.2 we show
that for sufficiently small δ:

Gi = gδ[1 + o(1)]. (26)

With notations introduced in (15), (25), (23), Iterative Minimization Lemma (13), and asymptotics
(19), (24), (26) we have from (22):

E = C + a1(T1 − Tδ)2 + a2(T2 − Tδ)2 + 2b1T1 + 2b2T2 + 2c12(T1 − Tδ)(T2 − Tδ),

which with (13) yields (14), where ti = Ti − Tδ, i = 1, 2.
�

6.2 Asymptotics of Gi

Here we prove asymptotic formula (26) which is stated in the following lemma.

Lemma 6.1 For δ ≪ 1 asymptotics of the energy Gi defined in (23) is given by Gi = gδ[1 + o(1)], i = 1, 2,
with gδ defined in (11).

Proof. To derive an asymptotics of Gi we adopt the method of variational bounds that has become
a classical tool in capturing the leading terms of asymptotics of the energy of the corresponding
system. This method is based on two equivalent variational formulations of the corresponding
problem that provide upper and lower bounds for the energy matching up the leading order of
asymptotics. Employing this method we use of a couple observations made in [7, 9, 10] which are
vital in capturing the sought asymtptotics. But before, we need to introduce a coordinate system
in which the construction will be made.

First, we write each point x ∈ R
d as x = (x̄, xd) where

{

x̄ = x, xd = y, when d = 2

x̄ = (x, y), xd = z, when d = 3

Then, connect the centers of mass of particles with a line and “move” B1 and B2 along this line
toward each other until they touch, thus, producing domain Ωo as above in (5). The point of their
touching defines the origin of our cylindrical coordinate system. The line connecting the centers
will be the axis Oxd, see Figure 3(a). When particles are “moved back” at the distance δ from each
other alongOxd, we construct a “cylinder” of radius w ≫ δ that contains this line. This “cylinder”
is depicted as the red region in Figure 3(b) that we call a neck and denote by Π. Also, introduce the
distance H = H(x̄) between boundaries of B1 and B2, which in the selected coordinate system is
a function of x̄ ∈ R

d−1.
The mentioned above observations about energy estimates are as follows. First, the minimal

value of the energy functional in the neck Π is attained on the system with insulating lateral
boundary ∂Π of the cylinder, that is,

Gi =

∫

Ωδ

|∇ψi|2 dx ≥
∫

Π
|∇ψi|2 dx ≥

∫

Π
|∇ψi

Π|2 dx,

8



(a) (b)

Figure 3: (a) Coordinate system; (b) Neck Π between particles B1 and B2

where function ψi
Π solves the problem



















△ψi
Π(x) = 0, x ∈ Π

ψi
Π(x) = δij , x ∈ ∂Bj , i, j ∈ {1, 2}

∂ψi
Π

∂n
(x) = 0, x ∈ ∂Π

(27)

On the other hand, since energy Gi is the minimal value of the energy functional attained at the
minimizer ψi, its upper bound is given by any test function φi from the set

Vi =
{

φi ∈ H1(Ω) : φi = δij on ∂Bj, φi = 0 on Γ
}

,

via

Gi =

∫

Ωδ

|∇ψi|2 dx ≤
∫

Ωδ

|∇φi|2 dx.

Hence, the variational bounds for Gi are
∫

Π
|∇ψi

Π|2 dx ≤ Gi ≤
∫

Ωδ

|∇φi|2 dx, where φi ∈ Vi, and ψi
Π solves (27). (28)

Therefore, the problem is now reduced to construction of an approximation to ∇ψi
Π and finding

a function φi ∈ Vi so that the integrals in (28) match up to the leading order for δ ≪ 1. For this
purpose, one can use the Keller’s functions [14] defined in Π by

φiΠ(x) =
xd
H(x̄)

, x ∈ Π. (29)

With this φiΠ, we define a test function φi ∈ Vi by

φi(x) =

{

φiΠ(x), x ∈ Π

φio(x) x ∈ Ωδ \ Π
,

where φio solves






















△φio(x) = 0, x ∈ Ωδ \ Π
φio(x) = δij , x ∈ ∂Bj, i, j ∈ {1, 2}
φio(x) = φiΠ, x ∈ ∂Π

φio(x) = 0, x ∈ Γ

9



Employing the method of barriers to this problem one can show that |∇φio| ≤ C with constant C
depending on d and K but independent of δ. Thus,

Gi ≤
∫

Π
|∇φiΠ|2 dx+ C, for δ ≪ 1.

The dual variational principle will help to estimate integral

∫

Π
|∇ψi

Π|2 dx, namely,

∇ψi
Π = argmaxWΠ

[

−
∫

Π
j2i dx+ 2

∫

∂Bi

(ji · n) ds
]

,

WΠ =
{

j ∈ L2(Π;Rd) : ∇ · j = 0 in Π, j · n = 0 on ∂Π
}

.

The test flux ji ∈ R
d is chosen

ji =















(

0,
1

H(x)

)

, d = 2

(

0, 0,
1

H(x, y)

)

, d = 3

(30)

Therefore,
∫

Π
j2i dx =

∫

Π

dx̄

H2(x̄)
. (31)

Hence, we have two-sided bounds for Gi:

−
∫

Π
j2i dx+ 2

∫

∂Bi

(ji · n) ds ≤ Gi ≤
∫

Π
|∇φiΠ|2 dx+C, for δ ≪ 1.

With selected test functions φiΠ and ji by (29) and (30), respectively, it is trivial to show that the
difference between the upper and lower bounds is simply

∣

∣

∣

∣

∫

Π
|∇φiΠ|2 dx+

∫

Π
j2i dx− 2

∫

∂Bi

(ji · n) ds
∣

∣

∣

∣

=

∫

Π
|∇φiΠ − ji|2 dx.

This quantity is bounded, hence, the asymptotics of Gi is given by (31), whose asymptotics in its
turn is shown in Appendix 6.3, see also [7, 9, 10]), and is given by:

∫

Π

dx̄

H2(x̄)
= gδ[1 + o(1)], for δ ≪ 1.

�

6.3 Constant C12 in definition of gδ

Here we show what is the constant C12 in asymptotics of gδ that we claimed to be dependent on
curvatures of particles boundaries at the point of the smallest distance between each other.

In the cylindrical coordinate system introduced above, that is, the one with the axis Oxd coin-
ciding with the line of the closest distance between B1 and B2, and with the origin at the mid-point

10



of this line, the boundaries ∂B1 and ∂B2 are approximated by parabolas (d = 2) and paraboloids
(d = 3):

∂B1 : y =
δ

2
+

x2

2α1
, ∂B2 : y = −δ

2
− x2

2α2
, d = 2

∂B1 : z =
δ

2
+

x2

2a1
+

y2

2b1
, ∂B2 : z = −δ

2
− x2

2a2
− y2

2b2
, d = 3

(32)

The distance between these paraboloids is

h(x̄) =















δ +
x2

α
, α :=

2α1α2

α1 + α2
, d = 2

δ +
x2

a
+
y2

b
, a :=

2a1a2
a1 + a2

, b :=
2b1b2
b1 + b2

, d = 3

(33)

For sufficiently small neck-width w ≪ 1, this distance h(x̄) by (33) is a “good” approximation for
the actual distance H(x̄) between the boundaries ∂B1 and ∂B2 in the sense that

∫

Π

dx̄

H2(x̄)
=

∫

Π

dx̄

h2(x̄)
[1 + o(1)],

that is, provides the leading asymptotics of Gi from Appendix 6.2. Going back to (33), we note that
in 2D the parameter α is the harmonic mean of the radii of curvatures of parabolas approximating
∂B1 and ∂B2. Similarly, in 3D quantities a and b are related to the Gaussian Ki and mean Hi

curvatures of the corresponding paraboloids at the points of the their closest distance via:

Ki =
4

aibi
, Hi =

ai + bi
aibi

, i = 1, 2.

Finally, direct evaluating of the integral

∫

Π

dx̄

h2(x̄)
yields the main asymptotic term for Gi as δ ≪ 1

and defines gδ of (11):

∫

Π

dx̄

h2(x̄)
= [1 + o(1)]

{

παδ1/2, d = 2

πab| ln δ|, d = 3
for δ ≪ 1,

where α, a, b are defined in (33) in terms of coefficients of the osculating paraboloids (32) at the
point of the closest distance between particles surfaces. Thus,

C12 =
{

πα, d = 2

πab, d = 3
(34)

�
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