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Alternating Direction Method of Multipliers for a Class of Nonconvex and
Nonsmooth Problems with Applications to Background/Foreground Extraction∗
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Abstract. In this paper, we study a general optimization model, which covers a large class of existing models
for many applications in imaging sciences. To solve the resulting possibly nonconvex, nonsmooth,
and non-Lipschitz optimization problem, we adapt the alternating direction method of multipliers
(ADMM) with a general dual step-size to solve a reformulation that contains three blocks of variables
and analyze its convergence. We show that for any dual step-size less than the golden ratio, there
exists a computable threshold such that if the penalty parameter is chosen above such a threshold
and the sequence thus generated by our ADMM is bounded, then the cluster point of the sequence
gives a stationary point of the nonconvex optimization problem. We achieve this via a potential
function specifically constructed for our ADMM. Moreover, we establish the global convergence of
the whole sequence if, in addition, this special potential function is a Kurdyka– Lojasiewicz function.
Furthermore, we present a simple strategy for initializing the algorithm to guarantee boundedness of
the sequence. Finally, we perform numerical experiments comparing our ADMM with the proximal
alternating linearized minimization proposed in [Bolte, Sabach, and Teboulle, Math. Program.,
146 (2014), pp. 459–494] on the background/foreground extraction problem with real data. The
numerical results show that our ADMM with a nontrivial dual step-size is efficient.

Key words. nonsmooth and nonconvex optimization, alternating direction method of multipliers, dual step-size,
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1. Introduction. In this paper, we consider the following optimization problem:

min
L,S

Ψ(L) + Φ(S) +
1

2
‖D −A [B(L) + C(S)]‖2F ,(1.1)

where

• Ψ,Φ : Rm×n → R+ ∪ {∞} are proper closed nonnegative functions, and Ψ is convex,
while Φ is possibly nonconvex, nonsmooth, and non-Lipschitz ;

• A,B, C : Rm×n → Rm×n are linear maps and B, C are injective.
In particular, Ψ(L) and Φ(S) in (1.1) can be regularizers used for inducing the desired struc-
tures. For instance, Ψ(L) can be used for inducing low rank in L. One possible choice is
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ADMM FOR NONCONVEX AND NONSMOOTH PROBLEMS 75

Ψ(L) = ‖L‖∗ (see the next section for notation and definitions). Alternatively, one may con-
sider Ψ(L) = δΩ(L), where Ω is a compact convex set such as Ω = {L ∈ Rm×n | ‖L‖∞ ≤
l, L:1 = L:2 = · · · = L:n} with l > 0, or Ω = {L ∈ Rm×n | ‖L‖∗ ≤ r} with r > 0; the former
choice restricts L to having rank at most 1 and makes (1.1) nuclear-norm-free (see [30, 33]).
On the other hand, Φ(S) can be used for inducing sparsity. In the literature, Φ(S) is typically
separable, i.e., taking the form

(1.2) Φ(S) = µ
m∑
i=1

n∑
j=1

φ(sij),

where φ is a nonnegative continuous function with φ(0) = 0 and µ > 0 is a regularization
parameter. Some concrete examples of φ are

1. bridge penalty [27, 28]: φ(t) = |t|p for 0 < p ≤ 1;

2. fraction penalty [20]: φ(t) = α|t|/(1 + α|t|) for α > 0;

3. logistic penalty [39]: φ(t) = log(1 + α|t|) for α > 0;

4. smoothly clipped absolute deviation [16]: φ(t) =
∫ |t|

0 min(1, (α− s/µ)+/(α− 1)) ds for
α > 2;

5. minimax concave penalty [49]: φ(t) =
∫ |t|

0 (1− s/(αµ))+ ds for α > 0;

6. hard thresholding penalty function [17]: φ(t) = µ− (µ− |t|)2
+/µ.

The bridge penalty and the logistic penalty have also been considered in [13]. Finally, the
linear map A can be suitably chosen to model different scenarios. For example, A can be
chosen to be the identity map for extracting L and S from a noisy data D and the blurring
map for a blurred data D. The linear map B can be the identity map or some “dictionary”
that spans the data space (see, for example, [34]), and C can be chosen to be the identity map
or the inverse of certain sparsifying transform (see, for example, [40]). More examples of (1.1)
can be found in [8, 9, 10, 13, 41, 47].

One representative application that is frequently modeled by (1.1) via a suitable choice of
Φ, Ψ, A, B, and C is the background/foreground extraction problem, which is an important
problem in video processing; see [6, 7] for recent surveys. In this problem, one attempts to
separate the relatively static information called “background” and the moving objects called
“foreground” in a video. The problem can be modeled by (1.1), and such models are typically
referred to as robust principal component analysis–(RPCA) based models. In these models,
each image is stacked as a column of a data matrix D, and the relatively static background is
then modeled as a low rank matrix, while the moving foreground is modeled as sparse outliers.
The data matrix D is then decomposed (approximately) as the sum of a low rank matrix
L ∈ Rm×n modeling the background and a sparse matrix S ∈ Rm×n modeling the foreground.
Various approximations are then used to induce low rank and sparsity, resulting in different
RPCA-based models, most of which take the form of (1.1). One example is to set Ψ to be the
nuclear norm of L, i.e., the sum of singular values of L, to promote low rank in L and Φ to be
the `1 norm of S to promote sparsity in S, as in [10]. Besides convex regularizers, nonconvex
models have also been widely studied recently and their performances are promising; see
[13, 44] for background/foreground extraction and [4, 12, 22, 38, 39, 50] for other problems
in image processing. There are also nuclear-norm-free models that do not require matrix
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76 LEI YANG, TING KEI PONG, AND XIAOJUN CHEN

decomposition of the matrix variable L when solving them, making the model more practical
especially when the matrix is large. For instance, in [30], the authors set Φ to be the `1 norm
of S and Ψ to be the indicator function of Ω = {L ∈ Rm×n | L:1 = L:2 = · · · = L:n}. A
similar approach was also adopted in [33] with promising performances. Clearly, for nuclear-
norm-free models, one can also take Φ to be some nonconvex sparsity inducing regularizers,
resulting in a special case of (1.1) that has not been explicitly considered in the literature
before; we will consider these models in our numerical experiments in section 5. The above
discussion shows that problem (1.1) is flexible enough to cover a wide range of RPCA-based
models for background/foreground extraction.

Problem (1.1), though nonconvex in general, as we will show later in section 3, can be
reformulated into an optimization problem with three blocks of variables. This kind of prob-
lems containing several blocks of variables has been widely studied in the literature; see, for
example, [30, 37, 41]. Hence, it is natural to adapt the algorithm used there, namely, the al-
ternating direction method of multipliers (ADMM), for solving (1.1). Classically, the ADMM
can be applied to solving problems of the following form that contains two blocks of variables:

min
x1,x2

{f1(x1) + f2(x2) | A1(x1) +A2(x2) = b} ,(1.3)

where f1 and f2 are proper closed convex functions, and A1 and A2 are linear operators. The
iterative scheme of ADMM is

xk+1
1 ∈ Argmin

x1

{
Lβ(x1, x

k
2, z

k)
}
,

xk+1
2 ∈ Argmin

x2

{
Lβ(xk+1

1 , x2, z
k)
}
,

zk+1 = zk − τβ(A1(xk+1
1 ) +A2(xk+1

2 )− b),

where τ ∈ (0,
√

5+1
2 ) is the dual step-size and Lβ is the augmented Lagrangian function for

(1.3) defined as

Lβ(x1, x2, z) := f1(x1) + f2(x2)− 〈z,A1(x1) +A2(x2)− b〉

+
β

2
‖A1(x1) +A2(x2)− b‖2

with β > 0 being the penalty parameter. Under some mild conditions, the sequence {(xk1, xk2)}
generated by the above ADMM can be shown to converge to an optimal solution of (1.3); see,
for example, [3, 15, 19, 21]. However, the ADMM used in [30, 37, 41] does not have a con-
vergence guarantee; indeed, it was shown recently in [11] that the ADMM, when applied to a
convex optimization problem with three blocks of variables, can be divergent in general. This
motivates the study of many provably convergent variants of the ADMM for convex problems
with more than two blocks of variables; see, for example, [24, 25, 35, 36]. Recently, Hong, Luo,
and Razaviyayn [26] established the convergence of the multiblock ADMM for certain types of
nonconvex problems whose objective is a sum of a possibly nonconvex Lipschitz differentiable
function and a bunch of convex nonsmooth functions when the penalty parameter is chosen
above a computable threshold. The problem they considered covers (1.1) when Φ is convex

D
ow

nl
oa

de
d 

05
/1

1/
22

 to
 1

58
.1

32
.1

61
.1

81
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ADMM FOR NONCONVEX AND NONSMOOTH PROBLEMS 77

or smooth and possibly nonconvex. Later, Wang, Cao, and Xu [44] considered a more general
type of nonconvex problems that contains (1.1) as a special case and allows some nonconvex
nonsmooth functions in the objective. To solve this type of problem, they considered a variant
of the ADMM whose subproblems are simplified by adding a Bregman proximal term. How-
ever, their results cannot be applied to the direct adaptation of the ADMM for solving (1.1).

In this paper, following the studies in [26, 44] on convergence of nonconvex ADMM and
its variant, and the recent studies in [1, 31, 45], we manage to analyze the convergence of the
ADMM applied to solving the possibly nonconvex problem (1.1). In addition, we would like to
point out that all the aforementioned nonconvex ADMM have a dual step-size of τ = 1. While

it is known that the classical ADMM converges for any τ ∈ (0,
√

5+1
2 ) for convex problems, and

that empirically τ ≈
√

5+1
2 works best (see, for example, [18, 19, 21, 36]), to our knowledge,

the algorithm with a dual step-size τ 6= 1 has never been studied in the nonconvex scenarios.
Thus, we also study the ADMM with a general dual step-size, which will allow more flexibility
in the design of algorithms.

The contributions of this paper are as follows:
1. We show that for any positive dual step-size τ less than the golden ratio, the cluster

point of the sequence generated by our ADMM gives a stationary point of (1.1) if
the penalty parameter is chosen above a computable threshold depending on τ , when-
ever the sequence is bounded. We achieve this via a potential function specifically
constructed for our ADMM. To the best of our knowledge, this is the first conver-
gence result for the ADMM in the nonconvex scenario with a possibly nontrivial dual
step-size (τ 6= 1). This result is also new for the convex scenario for the multiblock
ADMM.

2. We establish global convergence of the whole sequence generated by the ADMM under
the additional assumption that the special potential function is a Kurdyka– Lojasiewicz
(KL) function. Following the discussions in [2, section 4], one can check that this
condition is satisfied for all the aforementioned φ.

3. Furthermore, we discuss an initialization strategy to guarantee the boundedness of the
sequence generated by the ADMM.

We also conduct numerical experiments to evaluate the performance of our ADMM by
using different nonconvex regularizers and real data. Our computational results illustrate the
efficiency of our ADMM with a nontrivial dual step-size.

The rest of this paper is organized as follows. We present notation and preliminaries in
section 2. The ADMM for (1.1) is described in section 3. We analyze the convergence of
the method in section 4. Numerical results are presented in section 5, and some concluding
remarks are given in section 6.

2. Notation and preliminaries. In this paper, we use Rm×n to denote the set of all m×n
matrices. For a matrix X ∈ Rm×n, we let xij denote its (i, j)th entry and X:j denote its
jth column. The number of nonzero entries in X is denoted by ‖X‖0 and the largest entry
in magnitude is denoted by ‖X‖∞. Moreover, the Fröbenius norm is denoted by ‖X‖F ;
the nuclear norm is denoted by ‖X‖∗, which is the sum of singular values of X; and `1-
norm and `p-quasi-norm (0 < p < 1) are given by ‖X‖1 :=

∑m
i=1

∑n
j=1 |xij | and ‖X‖p :=

(
∑m

i=1

∑n
j=1 |xij |p)

1
p , respectively. Furthermore, for two matrices X and Y of the same size,
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78 LEI YANG, TING KEI PONG, AND XIAOJUN CHEN

we denote their trace inner product by 〈X,Y 〉 :=
∑m

i=1

∑n
j=1 xijyij . Finally, for the linear

map A : Rm×n → Rm×n in (1.1), its adjoint is denoted by A∗, while the largest (resp.,
smallest) eigenvalue of the linear map A∗A is denoted by λmax (resp., λmin). The identity
map is denoted by I.

For an extended-real-valued function f : Rm×n → [−∞,∞], we say that it is proper if
f(X) > −∞ for all X ∈ Rm×n and its domain domf := {X ∈ Rm×n | f(X) < ∞} is

nonempty. For a proper function f , we use the notation Y
f−→ X to denote Y → X and

f(Y )→ f(X). Our basic (limiting-)subdifferential [42, Definition 8.3] of f at X ∈ domf used
in this paper, denoted by ∂f(X), is defined as

∂f(X) :=
{
D ∈ Rm×n : ∃ Xk f−→ X and Dk → D with Dk ∈ ∂̂f(Xk) for all k

}
,

where ∂̂f(U) denotes the Fréchet subdifferential of f at U ∈ domf , which is the set of all
D ∈ Rm×n satisfying

lim inf
Y 6=U,Y→U

f(Y )− f(U)− 〈D,Y − U〉
‖Y − U‖F

≥ 0.

From the above definition, we can easily observe that{
D ∈ Rm×n : ∃Xk f−→ X, Dk → D, Dk ∈ ∂f(Xk)

}
⊆ ∂f(X).(2.1)

We also recall that when f is continuously differentiable or convex, the above subdifferential
coincides with the classical concept of derivative or convex subdifferential of f ; see, for ex-
ample, [42, Exercise 8.8] and [42, Proposition 8.12]. Moreover, from the generalized Fermat’s
rule [42, Theorem 10.1], we know that if X ∈ Rm×n is a local minimizer of f , then 0 ∈ ∂f(X).
Additionally, for a function f with several groups of variables, we write ∂Xf (resp., ∇Xf) for
the subdifferential (resp., derivative) of f with respect to the group of variables X.

For a compact convex set Ω ⊆ Rm×n, its indicator function δΩ is defined by

δΩ(X) =

{
0 if X ∈ Ω,
+∞ otherwise.

The normal cone of Ω at the point X ∈ Ω is given by NΩ(X) = ∂δΩ(X). We also use
dist(X,Ω) to denote the distance from X to Ω, i.e., dist(X,Ω) := infY ∈Ω ‖X − Y ‖F , and
PΩ(X) to denote the unique closest point to X in Ω.

Next, we recall the KL property, which plays an important role in our global convergence
analysis. For notational simplicity, we use Ξη (η > 0) to denote the class of concave functions
ϕ : [0, η) → R+ satisfying (1) ϕ(0) = 0; (2) ϕ is continuously differentiable on (0, η) and
continuous at 0; (3) ϕ′(x) > 0 for all x ∈ (0, η). Then the KL property can be described as
follows.

Definition 2.1 (KL property and KL function). Let f be a proper lower semicontinuous func-
tion.
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ADMM FOR NONCONVEX AND NONSMOOTH PROBLEMS 79

(i) For X̃ ∈ dom ∂f := {X ∈ Rm×n : ∂f(X) 6= ∅}, if there exist an η ∈ (0,+∞], a
neighborhood V of X̃, and a function ϕ ∈ Ξη such that for all X ∈ V ∩ {X ∈ Rm×n :
f(X̃) < f(X) < f(X̃) + η}, it holds that

ϕ′(f(X)− f(X̃))dist(0, ∂f(X)) ≥ 1,

then f is said to have the KL property at X̃.
(ii) If f satisfies the KL property at each point of dom ∂f , then f is called a KL function.

We refer the interested readers to [2] and references therein for examples of KL functions.
We also recall the following uniformized KL property, which was established in [5, Lemma 6].

Proposition 2.2 (uniformized KL property). Suppose that f is a proper lower semicontinu-
ous function and Γ is a compact set. If f ≡ f∗ on Γ for some constant f∗ and satisfies the
KL property at each point of Γ, then there exist ε > 0, η > 0 and ϕ ∈ Ξη such that

ϕ′(f(X)− f∗)dist(0, ∂f(X)) ≥ 1

for all X ∈ {X ∈ Rm×n : dist(X,Γ) < ε} ∩ {X ∈ Rm×n : f∗ < f(X) < f∗ + η}.

Before ending this section, we discuss first-order necessary conditions for (1.1). First,
recall that (1.1) is the same as

min
L,S
F(L, S) := Ψ(L) + Φ(S) +

1

2
‖D −A [B(L) + C(S)]‖2F .

Hence, from [42, Theorem 10.1], we have 0 ∈ ∂F(L̄, S̄) at any local minimizer (L̄, S̄) of (1.1).
On the other hand, from [42, Exercise 8.8] and [42, Proposition 10.5], we see that

∂F(L, S) =

(
∂Ψ(L) + B∗A∗ (A(B(L) + C(S))−D)
∂Φ(S) + C∗A∗ (A(B(L) + C(S))−D)

)
.

Consequently, the first-order necessary conditions of (1.1) at the local minimizer (L̄, S̄) are
given by {

0 ∈ ∂Ψ(L̄) + B∗A∗
(
A(B(L̄) + C(S̄))−D

)
,

0 ∈ ∂Φ(S̄) + C∗A∗
(
A(B(L̄) + C(S̄))−D

)
.

(2.2)

In this paper, we say that (L∗, S∗) is a stationary point of (1.1) if (L∗, S∗) satisfies (2.2) in
place of (L̄, S̄).

3. Alternating direction method of multipliers. In this section, we present an ADMM
for solving (1.1), which can be equivalently written as

min
L,S,Z

Ψ(L) + Φ(S) +
1

2
‖D −A(Z)‖2F

s.t. B(L) + C(S) = Z.

(3.1)
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To describe the iterates of the ADMM, we first introduce the augmented Lagrangian function
of the above optimization problem:

Lβ(L, S, Z,Λ) = Ψ(L) + Φ(S) +
1

2
‖D −A(Z)‖2F

− 〈Λ, B(L) + C(S)− Z〉+
β

2
‖B(L) + C(S)− Z‖2F ,

where Λ ∈ Rm×n is the Lagrangian multiplier and β > 0 is the penalty parameter. The
ADMM for solving (3.1) (equivalently (1.1)) is then presented as in Algorithm 1.

Algorithm 1. ADMM for solving (3.1).
Input: Initial point (S0, Z0,Λ0), dual step-size parameter τ > 0, penalty

parameter β > 0, k = 0
while a termination criterion is not met, do

Step 1. Set

Lk+1 ∈ Argmin
L

Lβ(L, Sk, Zk,Λk)(3.2a)

Sk+1 ∈ Argmin
S

Lβ(Lk+1, S, Zk,Λk)(3.2b)

Zk+1 = argmin
Z

Lβ(Lk+1, Sk+1, Z,Λk)(3.2c)

Λk+1 = Λk − τβ(B(Lk+1) + C(Sk+1)− Zk+1)

Step 2. Set k := k + 1

end while
Output: (Lk, Sk)

Compared with the ADMM considered in [26], the above algorithm has an extra dual
step-size parameter τ > 0 in the Λ-update. Such a dual step-size was introduced in [19, 21]
for the classical ADMM (i.e., for convex problems with two separate blocks of variables) and
was further studied in [18, 36, 43, 48] for other variants of the ADMM. Numerically, it was

also demonstrated in [43] that a larger dual step-size (τ ≈
√

5+1
2 ) results in faster convergence

for the convex problems they consider. Thus, we adapt this dual step-size τ in our algorithm

above. Surprisingly, in our numerical experiments, a parameter choice of τ ≈
√

5+1
2 leads to

the worst performance for our nonconvex problems.
When τ = 1, the above algorithm is a special case of the general algorithm studied in [26]

when Ψ and Φ are smooth functions, or convex nonsmooth functions. The algorithm is shown
to converge when β is chosen above a computable threshold. However, their convergence result
cannot be directly applied when τ 6= 1 or when Φ is nonsmooth and nonconvex. Nevertheless,
following their analysis and the related studies [31, 44, 45], the above algorithm can be shown
to be convergent under suitable assumptions. We will present the convergence analysis in
section 4.
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Before ending this section, we further discuss the three subproblems in Algorithm 1. First,
notice that the L-update and S-update are given by

Lk+1 ∈ Argmin
L

{
Ψ(L) +

β

2
‖B(L) + C(Sk)− Zk − 1

β
Λk‖2F

}
,

Sk+1 ∈ Argmin
S

{
Φ(S) +

β

2
‖B(Lk+1) + C(S)− Zk − 1

β
Λk‖2F

}
.

In general, these two subproblems are not easy to solve. However, when Ψ and Φ are chosen
to be some common regularizers used in the literature, for example, Ψ(L) = ‖L‖∗ and Φ(S) =
‖S‖1, then these subproblems can be solved efficiently via the proximal gradient method.
Additionally, when Ψ(L) = δΩ(L) with Ω being a closed convex set and B = I, the L-update
can be given explicitly by

Lk+1 = PΩ

(
−C(Sk) + Zk +

1

β
Λk
)
,

which can be computed efficiently if Ω is simple, for example, when Ω = {L ∈ Rm×n | ‖L‖∞
≤ l, L:1 = L:2 = · · · = L:n} for some l > 0. For the S-update, when Φ is given by (1.2)
with φ being one of the penalty functions presented in the introduction and C = I, it can be
solved efficiently via a simple root-finding procedure. Finally, from the optimality conditions
of (3.2c), the Zk+1 can be obtained by solving the linear system

A∗A(Z) + βZ = A∗(D)− Λk + β
(
B(Lk+1) + C(Sk+1)

)
,

whose complexity would depend on the choice of A in our model (1.1). For example, when A
is just the identity map, the Zk+1 is given explicitly by

Zk+1 =
1

1 + β

[
D − Λk + β

(
B(Lk+1) + C(Sk+1)

)]
.

4. Convergence analysis. In this section, we discuss the convergence of Algorithm 1 for

0 < τ < 1+
√

5
2 . We first present the first-order optimality conditions for the subproblems in

Algorithm 1 as follows, which will be used repeatedly in our convergence analysis below.

0 ∈ ∂Ψ(Lk+1)− B∗(Λk) + βB∗
(
B(Lk+1) + C(Sk)− Zk

)
,(4.1a)

0 ∈ ∂Φ(Sk+1)− C∗(Λk) + βC∗
(
B(Lk+1) + C(Sk+1)− Zk

)
,(4.1b)

0 = A∗(A(Zk+1)−D) + Λk − β(B(Lk+1) + C(Sk+1)− Zk+1),(4.1c)

Λk+1 − Λk = −τβ
(
B(Lk+1) + C(Sk+1)− Zk+1

)
.(4.1d)

Our convergence analysis is largely based on the following potential function:

Θτ,β(L, S, Z,Λ) = Lβ(L, S, Z,Λ) + θ(τ)β‖B(L) + C(S)− Z‖2F ,

where

θ(τ) := max

{
1− τ, (τ − 1)τ2

1 + τ − τ2

}
for 0 < τ <

1 +
√

5

2
.(4.2)
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Note that θ(·) is a convex and nonnegative function on (0, 1+
√

5
2 ). Thus, for any (L, S, Z,Λ),

we have Θτ,β(L, S, Z,Λ) ≥ Lβ(L, S, Z,Λ) for 0 < τ < 1+
√

5
2 , and the equality holds when

τ = 1 (so that θ(τ) = 0).
Our convergence analysis also relies on the following assumption.

Assumption 4.1. Ψ, Φ, B, C, β, and τ satisfy
(a1) B∗B � σI for some σ > 0 and C∗C � σ′I for some σ′ > 0;
(a2) Ψ is continuous in its domain;
(a3) the first iterate (L1, S1, Z1,Λ1) satisfies

Θτ,β(L1, S1, Z1,Λ1) < h0 := lim inf
‖L‖F +‖S‖F→∞

Ψ(L) + Φ(S).

Remark 4.1 (note on Assumption 4.1). (i) Since B and C in (1.1) are injective, (a1) holds
trivially; (ii) (a2) holds for many common regularizers (for example, the nuclear norm) or the
indicator function of a set; (iii) (a3) places conditions on the first iterate of the algorithm. It
is not hard to observe that this assumption holds trivially if both Ψ and Φ are coercive, i.e.,
if lim inf‖L‖F +‖S‖F→∞Ψ(L) + Φ(S) = ∞. We will discuss more sufficient conditions for this
assumption after our convergence results, i.e., after Theorem 4.4.

We now start our convergence analysis by proving the following preparatory lemma, which
states that the potential function is decreasing along the sequence generated from Algorithm
1 if the penalty parameter β is chosen above a computable threshold.

Lemma 4.1. Suppose that 0 < τ < 1+
√

5
2 and {(Lk, Sk, Zk,Λk)} is a sequence generated by

Algorithm 1. If (a1) in Assumption 4.1 holds, then for k ≥ 1, we have

Θτ,β(Lk+1, Sk+1, Zk+1,Λk+1)−Θτ,β(Lk, Sk, Zk,Λk)

≤
(

max
{

1
τ ,

τ2

1+τ−τ2

}
· λ

2
max
β − λmin+β

2

)
‖Zk+1 − Zk‖2F −

σβ
2 ‖L

k+1 − Lk‖2F .
(4.3)

Moreover, if β ≥ −λmin
2 + 1

2

√
λ2

min + max{ 1
τ ,

τ2

1+τ−τ2 } · 8λ2
max, then the sequence {Θτ,β(Lk, Sk,

Zk, Λk)}∞k=1 is decreasing.

Proof. We start our proof by noticing that

Θτ,β(Lk+1, Sk+1, Zk+1,Λk+1)−Θτ,β(Lk+1, Sk+1, Zk+1,Λk)

= −〈Λk+1 − Λk, Lk+1 + Sk+1 − Zk+1〉 =
1

τβ
‖Λk+1 − Λk‖2F ,

(4.4)

where the last equality follows from (4.1d). We next derive an upper bound of ‖Λk+1−Λk‖2F .
To proceed, we first note from (4.1c) that

0 = A∗(A(Zk+1)−D) + Λk − β(B(Lk+1) + C(Sk+1)− Zk+1)

= A∗(A(Zk+1)−D) + Λk +
1

τ
(Λk+1 − Λk)

=⇒ Λk+1 = τA∗(D −A(Zk+1)) + (1− τ)Λk,
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where the second equality follows from (4.1d). Hence, for k ≥ 1,

Λk+1 − Λk

= [τA∗(D −A(Zk+1)) + (1− τ)Λk]− [τA∗(D −A(Zk)) + (1− τ)Λk−1]

= τA∗A(Zk − Zk+1) + (1− τ)(Λk − Λk−1).(4.5)

We now consider two separate cases: 0 < τ ≤ 1 and 1 < τ < 1+
√

5
2 .

• For 0 < τ ≤ 1, it follows from the convexity of ‖ · ‖2F that

‖Λk+1 − Λk‖2F =
∥∥∥τA∗A(Zk − Zk+1) + (1− τ)(Λk − Λk−1)

∥∥∥2

F

≤ τλ2
max‖Zk+1 − Zk‖2F + (1− τ)‖Λk − Λk−1‖2F .

We further add −(1 − τ)
∥∥Λk+1 − Λk

∥∥2

F
to both sides of the above inequality and

simplify the resulting inequality to get

‖Λk+1 − Λk‖2F
≤ λ2

max‖Zk+1 − Zk‖2F + 1−τ
τ

(
‖Λk − Λk−1‖2F − ‖Λk+1 − Λk‖2F

)
= (1− τ)τβ2

(
‖B(Lk) + C(Sk)− Zk‖2F − ‖B(Lk+1) + C(Sk+1)− Zk+1‖2F

)
+ λ2

max‖Zk+1 − Zk‖2F ,

(4.6)

where the last equality follows from (4.1d).

• For 1 < τ < 1+
√

5
2 , dividing τ from both sides of (4.5), we have

1

τ

(
Λk+1 − Λk

)
= A∗A

(
Zk − Zk+1

)
+

(
1

τ
− 1

)
(Λk − Λk−1)

=
1

τ
τA∗A

(
Zk − Zk+1

)
+

(
1− 1

τ

)
(Λk−1 − Λk).

This together with 0 < 1
τ < 1 and the convexity of ‖ · ‖2F implies that∥∥∥ 1

τ

(
Λk+1 − Λk

)∥∥∥2

F
≤ 1

τ ‖τA
∗A
(
Zk − Zk+1

)
‖2F +

(
1− 1

τ

)
‖Λk−1 − Λk‖2F

≤ τλ2
max‖Zk+1 − Zk‖2F +

(
1− 1

τ

)
‖Λk − Λk−1‖2F

=⇒ ‖Λk+1 − Λk‖2F ≤ τ3λ2
max‖Zk+1 − Zk‖2F +

(
τ2 − τ

)
‖Λk − Λk−1‖2F .

Then, adding −
(
τ2 − τ

) ∥∥Λk+1 − Λk
∥∥2

F
to both sides of the above inequality, simpli-

fying the resulting inequality, and using the fact that 1 + τ − τ2 > 0 for 1 < τ < 1+
√

5
2 ,

we see that

‖Λk+1 − Λk‖2F
≤ τ3λ2max

1+τ−τ2 ‖Z
k+1 − Zk‖2F + τ2−τ

1+τ−τ2

(
‖Λk − Λk−1‖2F − ‖Λk+1 − Λk‖2F

)
= τ3λ2max

1+τ−τ2 ‖Z
k+1 − Zk‖2F + (τ−1)τ3β2

1+τ−τ2

(
‖B(Lk) + C(Sk)− Zk‖2F

− ‖B(Lk+1) + C(Sk+1)− Zk+1‖2F
)
,

(4.7)

where the equality follows from (4.1d).D
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Thus, for 0 < τ < 1+
√

5
2 , combining (4.6), (4.7) and recalling the definition of θ(τ) in (4.2),

we have

1

τβ
‖Λk+1 − Λk‖2F ≤ max

{
1
τ ,

τ2

1+τ−τ2

}
· λ

2
max
β ‖Z

k+1 − Zk‖2F

+ θ(τ)β
(
‖B(Lk) + C(Sk)− Zk‖2F − ‖B(Lk+1) + C(Sk+1)− Zk+1‖2F

)
.

(4.8)

Next, note that the function Z 7→ Lβ(Lk+1, Sk+1, Z,Λk) is strongly convex with modulus
at least λmin + β. Using this fact and the definition of Zk+1 as a minimizer in (3.2c), we see
that

Θτ,β(Lk+1, Sk+1, Zk+1,Λk)−Θτ,β(Lk+1, Sk+1, Zk,Λk)

= Lβ(Lk+1, Sk+1, Zk+1,Λk)− Lβ(Lk+1, Sk+1, Zk,Λk)

+ θ(τ)β
(
‖B(Lk+1) + C(Sk+1)− Zk+1‖2F − ‖B(Lk+1) + C(Sk+1)− Zk‖2F

)
≤ θ(τ)β

(
‖B(Lk+1) + C(Sk+1)− Zk+1‖2F − ‖B(Lk+1) + C(Sk+1)− Zk‖2F

)
− λmin+β

2 ‖Zk+1 − Zk‖2F .

(4.9)

Moreover, using the fact that Sk+1 is a minimizer in (3.2b), we have

Θτ,β(Lk+1, Sk+1, Zk,Λk)−Θτ,β(Lk+1, Sk, Zk,Λk)

= Lβ(Lk+1, Sk+1, Zk,Λk)− Lβ(Lk+1, Sk, Zk,Λk)

+ θ(τ)β
(
‖B(Lk+1) + C(Sk+1)− Zk‖2F − ‖B(Lk+1) + C(Sk)− Zk‖2F

)
≤ θ(τ)β

(
‖B(Lk+1) + C(Sk+1)− Zk‖2F − ‖B(Lk+1) + C(Sk)− Zk‖2F

)
.

(4.10)

Finally, note that L 7→ Lβ(L, Sk, Zk,Λk) is strongly convex with modulus at least σβ from
(a1) in Assumption 4.1. From this, we can similarly obtain

Θτ,β(Lk+1, Sk, Zk,Λk)−Θτ,β(Lk, Sk, Zk,Λk)

≤ θ(τ)β
(
‖B(Lk+1) + C(Sk)− Zk‖2F − ‖B(Lk) + C(Sk)− Zk‖2F

)
− σβ

2
‖Lk+1 − Lk‖2F .

(4.11)

Thus, summing (4.4), (4.8), (4.9), (4.10), and (4.11), we obtain (4.3).

Now, suppose in addition that β ≥ −λmin
2 + 1

2

√
λ2

min + max{ 1
τ ,

τ2

1+τ−τ2 } · 8λ2
max. Then it

is easy to check that

max

{
1

τ
,

τ2

1 + τ − τ2

}
· λ

2
max

β
− λmin + β

2
≤ 0.

Hence we see from (4.3) that

Θτ,β(Lk+1, Sk+1, Zk+1,Λk+1)−Θτ,β(Lk, Sk, Zk,Λk) ≤ 0,

which means that {Θτ,β(Lk, Sk, Zk,Λk)}∞k=1 is decreasing. This completes the proof.
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We next show that the sequence generated by Algorithm 1 is bounded if β is chosen above
a computable threshold, under (a1) and (a3) in Assumption 4.1. For notational simplicity,
from now on, we let

β̄ := max

{
max{1/τ, τ} · λmax,−λmin

2 + 1
2

√
λ2

min+max
{

1
τ ,

τ2

1+τ−τ2

}
· 8λ2

max

}
.(4.12)

Proposition 4.2 (boundedness of sequence generated by ADMM). Suppose that 0 < τ <
1+
√

5
2 and β > β̄. If (a1) and (a3) in Assumption 4.1 hold, then a sequence {(Lk, Sk, Zk,Λk)}∞k=1

generated by Algorithm 1 is bounded.

Proof. With our choice of β and (a1) in Assumption 4.1, we see immediately from Lemma
4.1 that the sequence {Θτ,β(Lk, Sk, Zk,Λk)}∞k=1 is decreasing. This together with (a3) in
Assumption 4.1 shows that, for k ≥ 1,

h0 > Θτ,β(L1, S1, Z1,Λ1) ≥ Θτ,β(Lk, Sk, Zk,Λk)

= Ψ(Lk) + Φ(Sk) +
1

2
‖D −A(Zk)‖2F − 〈Λk,B(Lk) + C(Sk)− Zk〉

+ (1 + 2θ(τ))
β

2
‖B(Lk) + C(Sk)− Zk‖2F

= Ψ(Lk) + Φ(Sk) +
1

2
‖D −A(Zk)‖2F +

β

2
‖B(Lk) + C(Sk)− Zk − 1

β
Λk‖2F

− 1

2β
‖Λk‖2F + θ(τ)β‖B(Lk) + C(Sk)− Zk‖2F ,

(4.13)

where the last equality is obtained by completing the square. We next derive an upper bound

for
∥∥Λk

∥∥2

F
. We start by substituting (4.1d) into (4.1c) and rearranging terms to obtain

0 = A∗(A(Zk)−D) + Λk−1 +
1

τ
(Λk − Λk−1)

=⇒ −τΛk = τA∗(A(Zk)−D) + (1− τ) (Λk − Λk−1).(4.14)

We now consider two different cases:
• For 0 < τ ≤ 1, it follows from the convexity of ‖ · ‖2F and (4.14) that

‖ − τΛk‖2F ≤ τ‖A∗(A(Zk)−D)‖2F + (1− τ)‖Λk − Λk−1‖2F
≤ τλmax‖A(Zk)−D‖2F + (1− τ)‖Λk − Λk−1‖2F
= τλmax‖A(Zk)−D‖2F + (1− τ)τ2β2‖B(Lk) + C(Sk)− Zk‖2F ,

where the equality follows from (4.1d). Then, we have

‖Λk‖2F ≤
λmax

τ
‖A(Zk)−D‖2F + (1− τ)β2‖B(Lk) + C(Sk)− Zk‖2F .(4.15)

• For 1 < τ < 1+
√

5
2 , by dividing −τ from both sides of (4.1c), we obtain

Λk =
1

τ
τA∗(D −A(Zk)) +

(
1− 1

τ

)
(Λk − Λk−1).
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Then, since 0 < 1
τ < 1, using the convexity of ‖ · ‖2F and (4.1d), we have

‖Λk‖2F ≤
1

τ
‖τA∗(D −A(Zk))‖2F +

(
1− 1

τ

)
‖Λk − Λk−1‖2F

≤ τλmax‖D −A(Zk)‖2F + (τ − 1)τβ2‖B(Lk) + C(Sk)− Zk‖2F .
(4.16)

Thus, combining (4.15) and (4.16), we have

‖Λk‖2F ≤ max{1/τ, τ} · λmax‖D −A(Zk)‖2F
+ max{1− τ, (τ − 1)τ}β2‖B(Lk) + C(Sk)− Zk‖2F

=⇒ − 1

2β
‖Λk‖2F ≥ −

max{1/τ,τ}λmax

2β ‖D −A(Zk)‖2F(4.17)

−max{1−τ,(τ−1)τ}β
2 ‖B(Lk) + C(Sk)− Zk‖2F .

Substituting (4.17) into (4.13), we have

h0 > Θτ,β(Lk, Sk, Zk,Λk) ≥ Ψ(Lk) + Φ(Sk)

+
1

2

(
1−max{1/τ, τ} · λmax

β

)
‖D −A(Zk)‖2F

+
β

2
‖B(Lk) + C(Sk)− Zk − 1

β
Λk‖2F

+ [2θ(τ)−max{1− τ, (τ − 1)τ}] · β
2
‖B(Lk) + C(Sk)− Zk‖2F .

(4.18)

With (4.18) established, we are now ready to prove the boundedness of the sequence. We

start with the observation that for 0 < τ < 1+
√

5
2 and β > β̄, we always have

1−max{1/τ, τ} · λmax

β
> 0(4.19)

and

2θ(τ)−max{1− τ, (τ − 1)τ} =


1− τ > 0 for 0 < τ < 1,

0 for τ = 1,

τ(τ−1)(τ2+τ−1)
1+τ−τ2 > 0 for 1 < τ < 1+

√
5

2 ,

(4.20)

where θ(τ) is defined in (4.2). Then we consider two cases:

• For τ ∈ (0, 1) ∪ (1, 1+
√

5
2 ), it follows from (4.18), (4.19), (4.20), and the nonnegativity

of Ψ and Φ that {‖D − A(Zk)‖F }, {‖B(Lk) + C(Sk) − Zk − 1
βΛk‖F } and {‖B(Lk) +

C(Sk)− Zk‖F } are bounded, and moreover,

Ψ(Lk) + Φ(Sk) < h0.

The boundedness of {Lk} and {Sk} follows immediately from this last relation. Fur-
thermore, {Λk} is bounded since

‖Λk‖F ≤ β‖B(Lk) + C(Sk)− Zk − 1

β
Λk‖F + β‖B(Lk) + C(Sk)− Zk‖F .
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Finally, we obtain the boundedness of {Zk} from

‖Zk‖F ≤ ‖B(Lk) + C(Sk)− Zk − 1

β
Λk‖F + ‖B(Lk)‖F

+ ‖C(Sk)‖F +
1

β
‖Λk‖F .

(4.21)

• For τ = 1, it follows from (4.18), (4.19), (4.20), and the nonnegativity of Ψ and
Φ that {‖D − A(Zk)‖F } and {‖B(Lk) + C(Sk) − Zk − 1

βΛk‖F } are bounded, and

moreover Ψ(Lk) + Φ(Sk) < h0, from which we see immediately that {Lk} and {Sk}
are bounded. The boundedness of {Λk} now follows from (4.14) with τ = 1, i.e.,
Λk = A∗(D −A(Zk)). The boundedness of {Zk} again follows from (4.21).

This completes the proof.

We are now ready to prove our first global convergence result for Algorithm 1, which also
characterizes the cluster point of the sequence generated.

Theorem 4.3 (global subsequential convergence). Suppose that 0 < τ < 1+
√

5
2 and β > β̄.

If Assumption 4.1 holds, then
(i) limk→∞ ‖Lk+1 − Lk‖F + ‖Sk+1 − Sk‖F + ‖Zk+1 − Zk‖F + ‖Λk+1 − Λk‖F = 0;
(ii) any cluster point (L∗, S∗, Z∗,Λ∗) of a sequence {(Lk, Sk, Zk,Λk)} generated by Algo-

rithm 1 is a stationary point of (1.1).

Proof. The boundedness of the sequence {(Lk, Sk, Zk,Λk)} follows immediately from Propo-
sition 4.2 and thus a cluster point exists. We now prove statement (i).

Suppose that (L∗, S∗, Z∗,Λ∗) is a cluster point of the sequence {(Lk, Sk, Zk,Λk)} and let
{(Lki , Ski , Zki ,Λki)} be a convergent subsequence such that

lim
i→∞

(Lki , Ski , Zki ,Λki) = (L∗, S∗, Z∗,Λ∗).

By summing (4.3) from k = 1 to k = ki − 1, we have

Θτ,β(Lki , Ski , Zki ,Λki)−Θτ,β(L1, S1, Z1,Λ1)

≤ −C
ki−1∑
k=1

‖Zk+1 − Zk‖2F −
σβ

2

ki−1∑
k=1

‖Lk+1 − Lk‖2F ,
(4.22)

where C := λmin+β
2 −max{ 1

τ ,
τ2

1+τ−τ2 } ·
λ2max
β > 0 (since β > β̄). Passing to the limit in (4.22)

and rearranging terms in the resulting relation, we obtain

C
∞∑
k=1

‖Zk+1 − Zk‖2F +
σβ

2

∞∑
k=1

‖Lk+1 − Lk‖2F

≤ Θτ,β(L1, S1, Z1,Λ1)−Θτ,β(L∗, S∗, Z∗,Λ∗) <∞,

where the last inequality follows from the properness of Ψ and Φ. This together with C > 0
and σ > 0 implies that

∞∑
k=1

‖Zk+1 − Zk‖2F <∞ and
∞∑
k=1

‖Lk+1 − Lk‖2F <∞.
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Hence, we have

Zk+1 − Zk → 0, Lk+1 − Lk → 0.(4.23)

Next, by summing both sides of (4.8) from k = 1 to k = ki and passing to the limit, we have

∞∑
k=1

‖Λk+1 − Λk‖2F ≤ max
{

1
τ ,

τ2

1+τ−τ2

}
· τλ2

max

∞∑
k=1

‖Zk+1 − Zk‖2F

+ θ(τ)τβ2

(
‖B(L1) + C(S1)− Z1‖2F − lim inf

k→∞
‖B(Lk+1) + C(Sk+1)− Zk+1‖2F

)
,

from which we conclude that

Λk+1 − Λk → 0.(4.24)

Finally, we have Sk+1− Sk → 0 from (4.23), (4.24), (4.1d), and (a1) in Assumption 4.1. This
proves statement (i).

We next prove statement (ii). From the lower semicontinuity of Θτ,β (since Ψ and Φ are
lower semicontinuous), we have

lim inf
i→∞

Θτ,β(Lki+1, Ski+1, Zki ,Λki) ≥ Ψ(L∗) + Φ(S∗) +
1

2
‖D −A(Z∗)‖2F

− 〈Λ∗, B(L∗) + C(S∗)− Z∗〉+ (1 + 2θ(τ))
β

2
‖B(L∗) + C(S∗)− Z∗‖2F .

(4.25)

On the other hand, from the definition of Ski+1 as a minimizer in (3.2b), we have

Θτ,β(Lki+1, Ski+1, Zki ,Λki) ≤ Θτ,β(Lki+1, S∗, Zki ,Λki)

+ θ(τ)β
(
‖B(Lki+1) + C(Ski+1)− Zki‖2F − ‖B(Lki+1) + C(S∗)− Zki‖2F

)
.

Taking the limit in the above equality, and invoking statement (i) and (a2) in Assumption
4.1, we see that

lim sup
i→∞

Θτ,β(Lki+1, Ski+1, Zki ,Λki) ≤ Ψ(L∗) + Φ(S∗) +
1

2
‖D −A(Z∗)‖2F

− 〈Λ∗, B(L∗) + C(S∗)− Z∗〉+ (1 + 2θ(τ))
β

2
‖B(L∗) + C(S∗)− Z∗‖2F .

(4.26)

Then, combining (4.25) and (4.26), we see that

lim
i→∞

Θτ,β(Lki+1, Ski+1, Zki ,Λki) = Ψ(L∗) + Φ(S∗) +
1

2
‖D −A(Z∗)‖2F

− 〈Λ∗, B(L∗) + C(S∗)− Z∗〉+ (1 + 2θ(τ))
β

2
‖B(L∗) + C(S∗)− Z∗‖2F ,

which, together with (a2) in Assumption 4.1, Lk+1−Lk → 0, Sk+1−Sk → 0, and the definition
of Θτ,β, implies that

lim
i→∞

Φ(Ski+1) = Φ(S∗).(4.27)
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τ

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

β
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8

9

10

β̄

Figure 1. The computable threshold β̄ for 0 < τ < 1+
√
5

2
.

Thus, passing to the limit in (4.1a)–(4.1d) along {(Lki , Ski , Zki ,Λki)} and invoking state-
ment (i), (4.27), and (2.1), we see that

0 ∈ ∂Ψ(L∗)− B∗(Λ∗) + βB∗ (B(L∗) + C(S∗)− Z∗) ,
0 ∈ ∂Φ(S∗)− C∗(Λ∗) + βC∗ (B(L∗) + C(S∗)− Z∗) ,
0 = A∗(A(Z∗)−D) + Λ∗ − β(B(L∗) + C(S∗)− Z∗),
B(L∗) + C(S∗) = Z∗.

(4.28)

Rearranging terms in (4.28), it is not hard to obtain{
0 ∈ ∂Ψ(L∗) + B∗A∗ (A(B(L∗) + C(S∗))−D) ,

0 ∈ ∂Φ(S∗) + C∗A∗ (A(B(L∗) + C(S∗))−D) .

This shows that (L∗, S∗, Z∗,Λ∗) is a stationary point of (1.1). This completes the proof.

Remark 4.2 (comments on the computable threshold). From the above discussions, we es-

tablish under Assumption 4.1 the convergence of the ADMM with 0 < τ < 1+
√

5
2 when the

penalty parameter β is chosen above a computable threshold β̄ which depends on τ . The
existence of this kind of threshold is also obtained in the recent studies [1, 26, 31, 44, 45] on
the nonconvex ADMM and its variants with τ = 1. In Figure 1, we plot β̄ against τ with A
being the identity map (hence, λmax = λmin = 1). It is not hard to see from Figure 1 that for
a given penalty parameter β > 1, we can always choose a dual step-size τ from an interval
containing 1 so that the corresponding ADMM is convergent.

Remark 4.3 (practical computation consideration on penalty parameter). In computation,

for a 0 < τ < 1+
√

5
2 , the β̄ in (4.12) may be too large and hence fixing a β close to it can lead

to slow convergence. As in [32, 43], one could possibly accelerate the algorithm by initializing
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the algorithm with a small β (less than β̄) and then increasing the β by a constant ratio
until β > β̄ if the sequence generated becomes unbounded or the successive change does not
vanish sufficiently fast. Clearly, after at most finitely many increases, the penalty parameter
β gets above the threshold β̄ and the convergence of the resulting algorithm is guaranteed by
Theorem 4.3 under Assumption 4.1. On the other hand, if β is never increased, this means
that the successive change goes to zero and the sequence is bounded. Then it is routine to
show that any cluster point is a stationary point if Φ is continuous in its domain.

Under the additional assumption that the potential function Θτ,β is a KL function, we
show in the next theorem that the whole sequence generated by Algorithm 1 is convergent
if β is greater than a computable threshold, again under Assumption 4.1. Our proof makes
use of the uniformized KL property; see Proposition 2.2. This technique was previously used
in [5] to prove the convergence of the proximal alternating linearized minimization (PALM)
algorithm for nonconvex and nonsmooth problems and later in [44, 45] to prove the global
convergence of the Bregman ADMM with τ = 1. Our analysis, though it follows a similar line
of arguments as in [44, 45], is much more intricate. This is because when τ 6= 1, the successive
change in the dual variable cannot be controlled solely by the successive changes in the primal
variables.

Theorem 4.4 (global convergence of the whole sequence). Let 0 < τ < 1+
√

5
2 and β > β̄.

Suppose in addition that Assumption 4.1 holds and the potential function Θτ,β(·) is a KL
function. Then, the sequence {(Lk, Sk, Zk, Λk)}∞k=1 generated by Algorithm 1 converges to a
stationary point of (1.1).

Proof. In view of Theorem 4.3, we only need to show that the sequence is convergent. We
start by noting from (4.18), (4.19), and (4.20) that {Θτ,β(Lk, Sk, Zk, Λk)}∞k=1 is bounded
below. Since this sequence is also decreasing from Theorem 4.1, we conclude that limk→∞
Θτ,β(Lk, Sk, Zk,Λk) =: θ∗ exists. In the following, we will consider two cases.

Case 1. Suppose first that Θτ,β(LN , SN , ZN ,ΛN ) = θ∗ for some N ≥ 1. Since {Θτ,β(Lk,
Sk, Zk, Λk)}∞k=1 is decreasing, we must have Θτ,β(Lk, Sk, Zk,Λk) = θ∗ for all k ≥ N . Then,
it follows from (4.3) that LN+t = LN and ZN+t = ZN for all t ≥ 0. Hence, {Lk} and {Zk}
converge finitely. Moreover, from (4.5), we have

‖Λk+1 − Λk‖F = |1− τ | · ‖Λk − Λk−1‖F = · · · = |1− τ |k+1−N · ‖ΛN − ΛN−1‖F

for all k ≥ N . Since 0 < τ < 1+
√

5
2 , we have 0 < 1− |1− τ | ≤ 1 and hence we see further that

∞∑
k=N

‖Λk+1 − Λk‖F ≤
1

1− |1− τ |
‖ΛN − ΛN−1‖F <∞,(4.29)

which implies the convergence of {Λk}. Additionally, for all k ≥ N , we have

‖Sk+1 − Sk‖F ≤
1√
σ′
‖C(Sk+1)− C(Sk)‖F

=
1√
σ′

∥∥∥∥ 1

τβ
(Λk − Λk+1)− 1

τβ
(Λk−1 − Λk)

∥∥∥∥
F

≤ 1

τβ
√
σ′
‖Λk+1 − Λk‖F +

1

τβ
√
σ′
‖Λk − Λk−1‖F ,
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where the first inequality follows from (a1) in Assumption 4.1 and the equality follows from
(4.1d). This together with (4.29) implies that

∑∞
k=N ‖Sk+1 − Sk‖F <∞. Thus, {Sk} is also

convergent. Consequently, we see that {(Lk, Sk, Zk, Λk)}∞k=1 is a convergent sequence in this
case.

Case 2. From now on, we consider the case where Θτ,β(Lk, Sk, Zk, Λk) > θ∗ for all
k ≥ 1. In this case, we will divide the proof into three steps: (1) we first prove that Θτ,β is
constant on the set of cluster points of the sequence {(Lk, Sk, Zk, Λk)}∞k=1 and then apply the
uniformized KL property; (2) we bound the distance from 0 to ∂Θτ,β(Lk, Sk, Zk,Λk); (3) we
show that the sequence {(Lk, Sk, Zk, Λk)}∞k=1 is a Cauchy sequence and hence is convergent.
The complete proof is presented as follows.

Step 1. We recall from Proposition 4.2 that the sequence {(Lk, Sk, Zk, Λk)}∞k=1 generated
by Algorithm 1 is bounded and hence must have at least one cluster point. Let Γ denote the
set of cluster points of {(Lk, Sk, Zk, Λk)}∞k=1. We will show that Θτ,β is constant on Γ.

To this end, take any (L∗, S∗, Z∗,Λ∗) ∈ Γ and consider a convergent subsequence {(Lki ,
Ski , Zki ,Λki)} with limi→∞(Lki , Ski , Zki ,Λki) = (L∗, S∗, Z∗,Λ∗). Then from the lower semi-
continuity of Θτ,β (since Ψ and Φ are lower semicontinuous) and the definition of θ∗, we
have

θ∗ = lim
i→∞

Θτ,β(Lki , Ski , Zki ,Λki) ≥ Θτ,β(L∗, S∗, Z∗,Λ∗).(4.30)

On the other hand, notice from the definition of Sk+1 as a minimizer in (3.2b) that

Θτ,β(Lki , Ski , Zki−1,Λki−1)−Θτ,β(Lki , S∗, Zki−1,Λki−1)

= Lβ(Lki , Ski , Zki−1,Λki−1)− Lβ(Lki , S∗, Zki−1,Λki−1)

+ θ(τ)β
(
‖B(Lki) + C(Ski)− Zki−1‖2F − ‖B(Lki) + C(S∗)− Zki−1‖2F

)
≤ θ(τ)β

(
‖B(Lki) + C(Ski)− Zki−1‖2F − ‖B(Lki) + C(S∗)− Zki−1‖2F

)
.

This together with Theorem 4.3(i), the continuity of Θτ,β with respect to L (from (a2) in
Assumption 4.1), Z, and Λ, and the definition of θ∗ implies that

θ∗ = lim
i→∞

Θτ,β(Lki , Ski , Zki ,Λki) ≤ Θτ,β(L∗, S∗, Z∗,Λ∗).(4.31)

Combining (4.30) and (4.31), we conclude that Θτ,β(L∗, S∗, Z∗,Λ∗) = θ∗. Since (L∗, S∗,
Z∗,Λ∗) ∈ Γ is arbitrary, we conclude further that the potential function Θτ,β is constant on Γ.

The fact that Θτ,β ≡ θ∗ on Γ together with our assumption that Θτ,β(·) is a KL function
and Proposition 2.2 implies that there exist ε > 0, η > 0, and ϕ ∈ Ξη such that

ϕ′ (Θτ,β(L, S, Z,Λ)− θ∗) dist (0, ∂Θτ,β(L, S, Z,Λ)) ≥ 1

for all (L, S, Z,Λ) satisfying dist((L, S, Z,Λ),Γ) < ε and θ∗ < Θτ,β(L, S, Z,Λ) < θ∗+η. On the
other hand, since limk→∞ dist((Lk, Sk, Zk,Λk),Γ) = 0 by the definition of Γ, and Θτ,β(Lk, Sk,
Zk, Λk)→ θ∗, then for such ε and η, there exists k1 ≥ 3 such that dist((Lk, Sk, Zk,Λk),Γ) < ε
and θ∗ < Θτ,β(Lk, Sk, Zk,Λk) < θ∗ + η for all k ≥ k1. Thus, for k ≥ k1, we have

ϕ′
(

Θτ,β(Lk, Sk, Zk,Λk)− θ∗
)

dist
(

0, ∂Θτ,β(Lk, Sk, Zk,Λk)
)
≥ 1.(4.32)
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Step 2. We next consider the subdifferential ∂Θτ,β(Lk, Sk, Zk,Λk). Looking at the partial
subdifferential with respect to L, we have

∂LΘτ,β(Lk, Sk, Zk,Λk)

= ∂Ψ(Lk)− B∗(Λk) + (1 + 2θ(τ))βB∗(B(Lk) + C(Sk)− Zk)
= ∂Ψ(Lk)− B∗(Λk−1) + βB∗(B(Lk) + C(Sk−1)− Zk−1) + 2θ(τ)βB∗(B(Lk) + C(Sk)− Zk)
− B∗(Λk − Λk−1) + βB∗(C(Sk)− Zk − C(Sk−1) + Zk−1)

3 2θ(τ)βB∗(B(Lk) + C(Sk)− Zk)− B∗(Λk − Λk−1) + βB∗(C(Sk)− Zk − C(Sk−1) + Zk−1)

(i)
= −

(
1 + 2θ(τ)

τ

)
B∗(Λk − Λk−1) + βB∗[(C(Sk)− Zk)− (C(Sk−1)− Zk−1)]

(ii)
= −

(
1 + 2θ(τ)

τ

)
B∗(Λk − Λk−1) + βB∗

[(
−B(Lk)− Λk−Λk−1

τβ

)
−
(
−B(Lk−1)− Λk−1−Λk−2

τβ

)]
= −

(
1 + 2θ(τ)+1

τ

)
B∗(Λk − Λk−1) + 1

τB
∗(Λk−1 − Λk−2)− βB∗B(Lk − Lk−1),

where the inclusion follows from (4.1a) and the equalities (i) and (ii) follow from (4.1d).
Similarly,

∂SΘτ,β(Lk, Sk, Zk,Λk)

= ∂Φ(Sk)− C∗(Λk) + (1 + 2θ(τ))βC∗(B(Lk) + C(Sk)− Zk)
= ∂Φ(Sk)− C∗(Λk−1) + βC∗(B(Lk) + C(Sk)− Zk−1)

+ 2θ(τ)βC∗(B(Lk) + C(Sk)− Zk)− C∗(Λk − Λk−1)− βC∗(Zk − Zk−1)

3 2θ(τ)βC∗(B(Lk) + C(Sk)− Zk)− C∗(Λk − Λk−1)− βC∗(Zk − Zk−1)

= −
(

1 +
2θ(τ)

τ

)
C∗(Λk − Λk−1)− βC∗(Zk − Zk−1),

where the inclusion follows from (4.1b) and the last equality follows from (4.1d). Moreover,

∇ZΘτ,β(Lk, Sk, Zk,Λk)

= A∗(A(Zk)−D) + Λk − β(B(Lk) + C(Sk)− Zk)
− 2θ(τ)β(B(Lk) + C(Sk)− Zk)

= A∗(A(Zk)−D) + Λk−1 − β(B(Lk) + C(Sk)− Zk)
− 2θ(τ)β(B(Lk) + C(Sk)− Zk) + (Λk − Λk−1)

= −2θ(τ)β(B(Lk) + C(Sk)− Zk) + (Λk − Λk−1)

=

(
1 +

2θ(τ)

τ

)
(Λk − Λk−1),

where the third equality follows from (4.1c) and the last equality follows from (4.1d). Finally,

∇λΘτ,β(Lk, Sk, Zk,Λk) = −(B(Lk) + C(Sk)− Zk) =
1

τβ
(Λk − Λk−1),
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where the last equality follows from (4.1d). Thus, from the above relations, there exists a > 0
so that

dist
(

0, ∂Θτ,β

(
Lk, Sk, Zk,Λk

))
≤ a

(
‖Lk − Lk−1‖F + ‖Zk − Zk−1‖F + ‖Λk − Λk−1‖F + ‖Λk−1 − Λk−2‖F

)
.

(4.33)

Step 3. We now prove the convergence of the sequence by combining (4.33) with (4.32).
For notational simplicity, define

∆k := ϕ
(

Θτ,β(Lk, Sk, Zk,Λk)− θ∗
)
− ϕ

(
Θτ,β(Lk+1, Sk+1, Zk+1,Λk+1)− θ∗

)
.

Since Θτ,β is decreasing and ϕ is monotonic, it is easy to see ∆k ≥ 0 for k ≥ 1. Then we have
for all k ≥ k1 that

a
(
‖Lk − Lk−1‖F + ‖Zk − Zk−1‖F + ‖Λk − Λk−1‖F + ‖Λk−1 − Λk−2‖F

)
·∆k

≥ dist(0, ∂Θτ,β(Lk, Sk, Zk,Λk)) ·∆k

≥ dist(0, ∂Θτ,β(Lk, Sk, Zk,Λk)) · ϕ′
(

Θτ,β(Lk, Sk, Zk,Λk)− θ∗
)

·
[
Θτ,β(Lk, Sk, Zk,Λk)−Θτ,β(Lk+1, Sk+1, Zk+1,Λk+1)

]
≥ Θτ,β(Lk, Sk, Zk,Λk)−Θτ,β(Lk+1, Sk+1, Zk+1,Λk+1)

≥ b1‖Lk+1 − Lk‖2F + b2‖Zk+1 − Zk‖2F

≥ 1

2
min{b1, b2} ·

[
‖Lk+1 − Lk‖F + ‖Zk+1 − Zk‖F

]2
,

(4.34)

where the first inequality follows from (4.33), the second inequality follows from the concavity
of ϕ, the third inequality follows from (4.32), and the fourth inequality follows from (4.3) with

b1 := σβ
2 and b2 := λmin+β

2 −max{ 1
τ ,

τ2

1+τ−τ2 } ·
λ2max
β .

Dividing both sides of (4.34) by c := 1
2 min{b1, b2}, taking the square root, and using the

inequality
√
uv ≤ u+v

2 for u, v ≥ 0 to further upper bound the left-hand side of the resulting
inequality, we obtain that

1
2γ

(
‖Lk − Lk−1‖F + ‖Zk − Zk−1‖F + ‖Λk − Λk−1‖F + ‖Λk−1 − Λk−2‖F

)
+ γa

2c∆k

≥ ‖Lk+1 − Lk‖F + ‖Zk+1 − Zk‖F ,
(4.35)

where γ is an arbitrary positive constant. On the other hand, it follows from (4.5) that

‖Λk − Λk−1‖F = ‖τA∗A(Zk−1 − Zk) + (1− τ)(Λk−1 − Λk−2)‖F
≤ τλmax‖Zk − Zk−1‖F + |1− τ | · ‖Λk−1 − Λk−2‖F .

Adding −|1 − τ | · ‖Λk − Λk−1‖F to both sides of the above inequality and simplifying the
resulting inequality, we obtain that

‖Λk − Λk−1‖F
≤ τλmax

1−|1−τ |‖Z
k − Zk−1‖F + |1−τ |

1−|1−τ |
(
‖Λk−1 − Λk−2‖F − ‖Λk − Λk−1‖F

)
= d1‖Zk − Zk−1‖F + d2

(
‖Λk−1 − Λk−2‖F − ‖Λk − Λk−1‖F

)
,

(4.36)
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where we write d1 := τλmax
1−|1−τ | and d2 := |1−τ |

1−|1−τ | for notational simplicity. Similarly,

‖Λk−1 − Λk−2‖F ≤ d1‖Zk−1 − Zk−2‖F

+ d2

(
‖Λk−2 − Λk−3‖F − ‖Λk−1 − Λk−2‖F

)
.

(4.37)

Then substituting (4.36) and (4.37) into (4.35) and rearranging terms, we have(
1− 1

2γ

)
‖Lk+1 − Lk‖F +

(
1− 1

2γ −
d1
γ

)
‖Zk+1 − Zk‖F

≤ 1
2γ

(
‖Lk − Lk−1‖F − ‖Lk+1 − Lk‖F

)
+
(

1
2γ + d1

γ

)(
‖Zk − Zk−1‖F − ‖Zk+1 − Zk‖F

)
+ d1

2γ

(
‖Zk−1 − Zk−2‖F − ‖Zk − Zk−1‖F

)
+ d2

2γ

(
‖Λk−1 − Λk−2‖F − ‖Λk − Λk−1‖F

)
+ d2

2γ

(
‖Λk−2 − Λk−3‖F − ‖Λk−1 − Λk−2‖F

)
+ γa

2c∆k.

(4.38)

Thus, summing (4.38) from k = k1 to ∞, we have(
1− 1

2γ

)∑∞
k=k1
‖Lk+1 − Lk‖F +

(
1− 1

2γ −
d1
γ

)∑∞
k=k1
‖Zk+1 − Zk‖F

≤ 1
2γ ‖L

k1 − Lk1−1‖F +
(

1
2γ + d1

γ

)
‖Zk1 − Zk1−1‖F + d1

2γ ‖Z
k1−1 − Zk1−2‖F

+ d2
2γ ‖Λ

k1−1 − Λk1−2‖F + d2
2γ ‖Λ

k1−2 − Λk1−3‖F + aγ
2c ϕ

(
Θτ,β(Lk1 , Sk1 , Zk1 ,Λk1)− θ∗

)
<∞.

Recall that γ introduced in (4.35) is an arbitrary positive constant. Taking γ > 1+2d1
2 and

hence 1− 1
2γ > 1− 1

2γ −
d1
γ > 0, we have from the above inequality that

∞∑
k=k1

‖Lk+1 − Lk‖F <∞ and

∞∑
k=k1

‖Zk+1 − Zk‖F <∞.

Hence {Lk} and {Zk} are convergent. Additionally, summing (4.36) from k = k1 to ∞, we
have

∞∑
k=k1

‖Λk − Λk−1‖F ≤ d1

∞∑
k=k1

‖Zk − Zk−1‖F + d2‖Λk1−1 − Λk1−2‖F <∞,

which implies that {Λk} is convergent. Finally, from (4.1d) and (a1) in Assumption 4.1, we
see that {Sk} is also convergent. Consequently, we conclude that {(Lk, Sk, Zk, Λk)}∞k=1 is a
convergent sequence. This completes the proof.
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Our convergence analysis relies on Assumption 4.1. While (a3) in Assumption 4.1 appears
restrictive since it makes assumptions on the first iterate of Algorithm 1, we show below that
this assumption would hold upon a suitable choice of initialization. Specifically, if we initialize
at (L0, S0, Z0,Λ0) satisfying{

Θτ,β(L1, S1, Z1,Λ1) ≤ Θτ,β(L0, S0, Z0,Λ0),(4.39a)

Θτ,β(L0, S0, Z0,Λ0) < h0,(4.39b)

then it is easy to check that (a3) in Assumption 4.1 holds. In the next proposition, we
demonstrate that (4.39a) can always be satisfied with a suitable initialization. After this, we
will propose a specific way to initialize Algorithm 1 for a wide range of problems so that both
(4.39a) and (4.39b) are satisfied.

Proposition 4.5. Suppose that 0 < τ < 1+
√

5
2 and β > β̄. If the initialization (L0, S0, Z0,Λ0)

is chosen as (L0, S0) ∈ dom Ψ× dom Φ and

Λ0 = A∗(D −A(Z0)),(4.40)

then we have

Θτ,β(L1, S1, Z1,Λ1) ≤ Θτ,β(L0, S0, Z0,Λ0).

Proof. First, from (4.1c), we have

0 = A∗(A(Z1)−D) + Λ0 − β(B(L1) + C(S1)− Z1)

=⇒ B(L1) + C(S1)− Z1 =
1

β
Λ0 +

1

β
A∗(A(Z1)−D) =

1

β
A∗A(Z1 − Z0),

(4.41)

where the last equality follows from (4.40). Then,

Θτ,β(L1, S1, Z1,Λ1)−Θτ,β(L1, S1, Z1,Λ0)

= −〈Λ1 − Λ0,B(L1) + C(S1)− Z1〉 = τβ‖B(L1) + C(S1)− Z1‖2F
= (τ + θ(τ))β‖B(L1) + C(S1)− Z1‖2F − θ(τ)β‖B(L1) + C(S1)− Z1‖2F
= (τ + θ(τ))β

∥∥∥ 1
βA
∗A(Z1 − Z0)

∥∥∥2

F
− θ(τ)β‖B(L1) + C(S1)− Z1‖2F

≤ (τ + θ(τ))
λ2

max

β
‖Z1 − Z0‖2F − θ(τ)β‖B(L1) + C(S1)− Z1‖2F ,(4.42)

where the second equality follows from (4.1d) and the fourth equality follows from (4.41).
Additionally, using the same arguments as in the proof of Lemma 4.1 leading to (4.9), (4.10),
and (4.11), it is easy to see that

Θτ,β(L1, S1, Z1,Λ0)−Θτ,β(L1, S1, Z0,Λ0) ≤ −λmin+β
2 ‖Z1 − Z0‖2F

+ θ(τ)β
(
‖B(L1) + C(S1)− Z1‖2F − ‖B(L1) + C(S1)− Z0‖2F

)
,(4.43)

Θτ,β(L1, S1, Z0,Λ0)−Θτ,β(L1, S0, Z0,Λ0)

≤ θ(τ)β
(
‖B(L1) + C(S1)− Z0‖2F − ‖B(L1) + C(S0)− Z0‖2F

)
,(4.44)

Θτ,β(L1, S0, Z0,Λ0)−Θτ,β(L0, S0, Z0,Λ0)

≤ θ(τ)β
(
‖B(L1) + C(S0)− Z0‖2F − ‖B(L0) + C(S0)− Z0‖2F

)
.(4.45)
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Summing (4.42), (4.43), (4.44), and (4.45), we obtain

Θτ,β(L1, S1, Z1,Λ1)−Θτ,β(L0, S0, Z0,Λ0)

≤
(

(τ + θ(τ)) λ
2
max
β − λmin+β

2

)
‖Z1 − Z0‖2F − θ(τ)β‖B(L0) + C(S0)− Z0‖2F .

(4.46)

We now consider two cases:
• For 0 < τ ≤ 1, it is easy to see θ(τ) = 1− τ and

β > max

{
λmax

τ
,−λmin

2
+

1

2

√
λ2

min +
8

τ
λ2

max

}
.

Then, we have

(τ + θ(τ))
λ2

max

β
− λmin + β

2
=
λ2

max

β
− λmin + β

2
≤ λ2

max

τβ
− λmin + β

2
< 0.

• For 1 < τ < 1+
√

5
2 , it is easy to see θ(τ) = (τ−1)τ2

1+τ−τ2 and

β > max

{
τλmax,−

λmin

2
+

1

2

√
λ2

min +
8τ2

1 + τ − τ2
λ2

max

}
.

Then, we have

(τ + θ(τ))
λ2

max

β
− λmin + β

2
=

τλ2
max

(1 + τ − τ2)β
− λmin + β

2

<
τ2λ2

max

(1 + τ − τ2)β
− λmin + β

2
< 0.

Thus, combining the above with (4.46) and θ(τ) ≥ 0, we conclude that

Θτ,β(L1, S1, Z1,Λ1) ≤ Θτ,β(L0, S0, Z0,Λ0).

This completes the proof.

From Proposition 4.5, we see that if the initialization (L0, S0, Z0,Λ0) is chosen to satisfy
the conditions in Proposition 4.5, then (4.39a) holds. Based on this, we can now present
one specific way to initialize Algorithm 1 so that both (4.39a) and (4.39b) are satisfied for
a class of problems, whose objective functions Ψ(L) and Φ(S) take forms δΩ(L) and (1.2),
respectively; here, Ω is a compact convex set.

The initialization we consider is

L0 = PΩ(κD), S0 = 0, Z0 = B(L0), Λ0 = A∗
(
D −A(Z0)

)
,(4.47)

where κ is a scaling parameter. One can easily check that this initialization satisfies (4.40).
Moreover,

Θτ,β(L0, S0, Z0,Λ0) =
1

2

∥∥D −A (Z0
)∥∥2

F
=

1

2
‖D −A (B(PΩ(κD)))‖2F .
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Thus, the condition (4.39b) is equivalent to

(4.48)
1

2
‖D −A (B(PΩ(κD)))‖2F < lim inf

‖L‖F +‖S‖F→∞
Ψ(L) + Φ(S) = lim inf

‖S‖F→∞
Φ(S).

We further discuss this inequality for some concrete examples of Φ presented in the introduc-
tion.

Example 4.1. Suppose that Φ is coercive. Then lim inf‖S‖F→∞Φ(S) =∞ and hence (4.48)
holds trivially for any choice of κ.

Example 4.2. Suppose that Φ(S) = µ
∑m

i=1

∑n
j=1

α|sij |
1+α|sij | for α > 0. Then lim inf‖S‖F→∞

Φ(S) = µ. Hence (4.48) holds if the parameter κ can be chosen so that 1
2 ‖D−A (B(PΩ(κD)))‖2F

< µ.

Example 4.3. Suppose that Φ(S) = µ
∑m

i=1

∑n
j=1

∫ |sij |
0 min(1, (α − t/µ)+/(α − 1)) dt for

α > 2. Then lim inf‖S‖F→∞Φ(S) = 1
2(α+ 1)µ2. Hence (4.48) holds if κ can be chosen so that

1
2 ‖D −A (B(PΩ(κD)))‖2F <

1
2(α+ 1)µ2.

Example 4.4. Suppose that Φ(S) = µ
∑m

i=1

∑n
j=1

∫ |sij |
0 (1 − t/(αµ))+ dt for α > 0. Then,

lim inf‖S‖F→∞Φ(S) = 1
2αµ

2. Hence (4.48) holds if κ can be chosen so that
1
2 ‖D −A (B(PΩ(κD)))‖2F <

1
2αµ

2.

Example 4.5. Suppose that Φ(S) = µ
∑m

i=1

∑n
j=1 µ − (µ − |sij |)2

+/µ. Then it is not hard

to show that lim inf‖S‖F→∞Φ(S) = µ2. Hence (4.48) holds if κ can be chosen so that
1
2 ‖D −A (B(PΩ(κD)))‖2F < µ2.

5. Numerical experiments. In this section, we conduct numerical experiments to show
the performances of our algorithm. All experiments are run in MATLAB R2014b on a 64-bit
PC with an Intel Core i7-4790 CPU (3.60 GHz) and 16 GB of RAM equipped with Windows
8.1 OS.

5.1. Implementation details.
Testing model. We consider the problem of extracting background/foreground from a given

video under different scenarios. Specifically, we consider

min
L,S

Φ(S) + 1
2‖D −A(L+ S)‖2F

s.t. L ∈ Ω,
(5.1)

where Ω = {L ∈ Rm×n | ‖L‖∞ ≤ 1, L:1 = L:2 = · · · = L:n} and A is a linear map. This model
corresponds to (1.1) with Ψ(L) = δΩ(L) and B = C = I. We compare the performances of
the ADMM with different choices of τ , as well as the PALM proposed in [5], on solving (5.1).
For ease of future reference, we recall that the PALM for solving (5.1) is given by

Lk+1 = PΩ

(
Lk − 1

ck
A∗(A(Lk + Sk)−D)

)
,

Sk+1 ∈ Argmin
S

{
Φ(S) +

dk
2

∥∥∥∥S − Sk +
1

dk
A∗(A(Lk+1 + Sk)−D)

∥∥∥∥2

F

}
,
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where ck and dk are positive numbers.
In our experiments, we consider the following three choices of sparse regularizers Φ(S):

• bridge regularizer: Φ(S) = µ‖S‖pp for 0 < p ≤ 1;

• fraction regularizer: Φ(S) = µ
∑m

i=1

∑n
j=1

α|sij |
1+α|sij | for α > 0;

• logistic regularizer: Φ(S) = µ
∑m

i=1

∑n
j=1 log(1 + α|sij |) for α > 0;

we consider two choices of linear map A:

• A(L + S) := L + S: in this case, model (5.1) can be applied to extracting back-
ground/foreground from a surveillance video with noise.

• A(L+ S) := H(L+ S) with H ∈ Rm×m being the matrix representation of a regular
blurring operator (the blurring is assumed to occur framewise): in this case, model
(5.1) can be applied to extracting background/foreground from a blurred and noisy
surveillance video.

Testing videos. We choose four real videos, “Hall”, “Bootstrap”, “Fountain”, and “Shop-
pingMall”, from the dataset I2R1 provided by Li et al. [29]. The details of these videos are as
follows:

• the Hall video contains 200 144× 176 frames (from airport2001 to airport2200);
• the Bootstrap video contains 200 120× 160 frames (from b01801 to b02000);
• the Fountain video contains 200 128×160 frames (from Fountain1301 to Fountain1500);
• the ShoppingMall video contains 200 256 × 320 frames (from ShoppingMall1501 to

ShoppingMall1700).
We show one frame of each testing video under two different scenarios (noisy and noisy blurred)
and their ground-truth images of foregrounds in Figure 2. Additionally, all pixel values of the
testing videos are rescaled into [0, 1] in our numerical experiments.

Parameters setting. For the ADMM, we use the following heuristics2 to update β: we
initialize ns = 0 and β = 0.6β̄, where β̄ is given in (4.12). In the kth iteration, we compute

fnormk = ‖Lk‖F + ‖Zk‖F ,
succ chgk = ‖Lk − Lk−1‖F + ‖Zk − Zk−1‖F .

Then, we increase ns by 1 if succ chgk > 0.99 · succ chgk−1. Obviously, ns is nondecreasing
in this procedure. We then update β as 1.1β whenever β ≤ 1.01β̄ and the sequence satisfies
either ns ≥ 0.3k or fnormk > 1010. On the other hand, for PALM, we set ck = dk = λmax

0.99 .
We initialize our algorithm and the PALM at the point specified in (4.47) with κ = 1.

Moreover, we terminate our ADMM by the following two-stage criterion:3 in each iteration,

1This dataset is available at http://perception.i2r.a-star.edu.sg/bk model/bk index.html. The authors also
provide 20 ground-truth images of foregrounds for each video in this dataset.

2Note from Theorem 4.3(i) that the successive change of each variable goes to zero as k → ∞. Thus,
intuitively, it is more favorable to see a decrease in the successive change as k increases. This heuristic is
designed based on this intuition.

3We use this two-stage criterion rather than computing the relative errors of all four variables (L, S, Z,
Λ) in each iteration of our algorithm because computing matrix Frobenius norms can be expensive, especially
for large scale problems. This strategy will help reduce the cost per iteration. We examine ‖Lk −Lk−1‖F and
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Hall Bootstrap Fountain ShoppingMall

noisy

noisy
blurred

ground
truth

Figure 2. One frame (from left to right: airport2180, b01842, Fountain1440, and ShoppingMall1535) of
each testing video under different scenarios (the first two rows) and the ground-truth image of foreground of
each testing video (the last row).

we check if

‖Lk − Lk−1‖F + ‖Zk − Zk−1‖F
‖Lk‖F + ‖Zk‖F + 1

< TolA,1

for some TolA,1 > 0; if it holds, then we further check if

‖Sk − Sk−1‖F + ‖Λk − Λk−1‖F
‖Sk‖F + ‖Λk‖F + 1

< TolA,2

for some TolA,2 > 0. We terminate the algorithm if this latter condition is also satisfied. For
the PALM, we terminate it when

‖Lk − Lk−1‖F + ‖Sk − Sk−1‖F
‖Lk‖F + ‖Sk‖F + 1

< TolP

for some TolP > 0. The specific values of TolA,1, TolA,2, and TolP are given in the following
experiments.

5.2. Comparisons between ADMM with different τ and PALM. In this subsection, we
use the performance profile to evaluate the performances of the ADMM with different τ and
the PALM for extraction under different scenarios. The performance profile is proposed by
Dolan and Moré [14] as a tool for evaluating and comparing the performance of a collection
of solvers K on a set of test problems J .

‖Zk − Zk−1‖F in the first stage because these quantities being small intuitively implies that ‖Sk − Sk−1‖F
and ‖Λk−Λk−1‖F are small; see the proof of Theorem 4.3, particularly (4.23), (4.24), and the discussions that
follow.
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Table 1
Problem setting for A(L+ S) = L+ S.

Data µ Regularizers

4 real videos
5e-1, 1e-1, 5e-2, 1e-2, 5e-3 bridge: p = 0.2, 0.4, 0.5, 0.6, 0.8, 1
1e-3, 5e-4, 1e-4, 5e-5, 1e-5 fraction/logistic: α = 0.01, 0.1, 1, 2, 5, 10

To describe this method, we assume that we have K solvers and J problems, and we use
the iteration number as a performance measure. Then, for each problem j and solver k, we
set

iterj,k = the iteration number required to solve problem j by solver k

and compute the performance ratio

rj,k =
iterj,k

min{iterj,k : k ∈ K}
.(5.2)

The performance profile of iteration numbers is then defined as the distribution function for
the performance ratio, i.e.,

ρk(ν) =
1

J
]{j ∈ J : rj,k ≤ ν}

for ν ≥ 1. Similarly, the performance profile of function values is obtained by using fvalj,k in
place of iterj,k in (5.2), where fvalj,k denotes the function value at the solution given by solver
k for solving problem j. Generally speaking, for solver k ∈ K, the higher ρk(ν) indicates a
better performance within the factor ν.

In our experiments, we evaluate the following solvers: the ADMM with τ = 0.8, the
ADMM with τ = 1, the ADMM with τ = 1.6, and the PALM.

For A(L+ S) = L+ S, our test problems are described in Table 1, where we use the four
real videos introduced above as our input data in (5.1), with 3 choices of sparse regularizers,
10 choices of µ, and 6 choices of p and α. Thus, we have 4 solvers and a total of 720 test
problems, with 240 test problems for each sparse regularizer. Moreover, we set TolA,1 = 10−4,
TolA,2 = 5 × 10−3, and TolP = 10−4. Figure 3 shows the performance profiles of iteration
numbers and function values for different regularizers under this scenario.

For A(L + S) = H(L + S), our test problems are described in Table 2, where we use
2 choices of p and α. Thus, we have 4 solvers and a total of 240 test problems, with 80
test problems for each sparse regularizer. In our experiments, we use the method described
in [23] to generate the blurring matrix H, which can be represented as a Kronecker product
H = Hr ⊗ Hc under the periodic boundary condition. The MATLAB codes4 that generate
Hr and Hc are shown below, where “frame size” is the size of each frame:

[P, center] = psfGauss(frame_size, 1);

[Hr, Hc] = kronDecomp(P, center, ’periodic’);

Moreover, we set TolA,1 = 5× 10−3, TolA,2 = 10−2, and TolP = 3× 10−3. Figure 4 shows the
performance profiles under this scenario.

4The codes are available at http://www.imm.dtu.dk/∼Pcha/HNO/ as a supplement to the book [23].
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Table 2
Problem setting for A(L+ S) = H(L+ S).

Data µ Regularizers

4 real videos
5e-1, 1e-1, 5e-2, 1e-2, 5e-3 bridge: p = 0.5, 1
1e-3, 5e-4, 1e-4, 5e-5, 1e-5 fraction/logistic: α = 1, 2

It is not hard to see from Figures 3 and 4 that the performance profiles of iteration
numbers for the ADMM with τ = 0.8 and τ = 1 usually lie above those for the PALM,
and their performance profiles of function values are almost the same. This shows that the
ADMM with τ = 0.8 or τ = 1 takes fewer iterations for solving all the test problems while
giving comparable function values. For bridge regularizer in the case where A(L+S) = L+S
(see Figure 3(a)) and in the case where A(L + S) = H(L + S) (see Figure 4(a)), we can see
that the ADMM with τ = 0.8 sightly outperforms the ADMM with τ = 1 in terms of the
number of iterations. For other regularizers, their performances are comparable. Additionally,
for the ADMM with τ = 1.6, we can see from Figures 3 and 4 that it always terminates with
the worst function value, although it is always fastest in the case where A(L+S) = H(L+S)
(see Figure 4).

To better visualize the performance of the algorithms in terms of function values, we also
plot RelErrk := |F(Lk, Sk)−Fmin|/Fmin against the number of iterations for each algorithm,
where F(Lk, Sk) denotes the objective value obtained by each algorithm at (Lk, Sk) and Fmin

denotes the minimum of the objective values obtained from all algorithms. We only consider
the ADMM with τ = 0.8, the ADMM with τ = 1, and the PALM and terminate them only
after at least 500 iterations and the termination criteria are satisfied with TolA,1 = 10−5,
TolA,2 = 5× 10−4, and TolP = 10−5. For brevity, we focus on the scenario A(L+ S) = L+ S
and use the “Hall” video. The results are presented in Figure 5, from which we can see that
the ADMM with τ = 1 or τ = 0.8 performs better than PALM for those particular instances.

5.3. Simulation results. In this subsection, we present some simulation results for the
background/foreground extraction problem. In order to evaluate the performance in back-
ground/foreground extraction, we compare the support of the recovered foreground S∗ with
the support of the ground-truth S̃ by computing the following measurement:

F-measure := 2× precision · recall

precision + recall
,

where precision and recall are defined as

precision :=
TP

TP + FP
, recall :=

TP

TP + FN
,

in which
• TP stands for true positives: the number of true foreground pixels that are recovered;
• FP stands for false positives: the number of background pixels that are misdetected

as foreground;
• FN stands for false negatives: the number of true foreground pixels that are missed.
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(a) bridge regularizer
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(c) logistic regularizer

Figure 3. Performance profiles of iteration numbers (denoted by “ iter” on the left) and function values
(denoted by “ fval” on the right) for each sparse regularizer with A(L + S) = L + S. The blown-up subfigures
are used to highlight the differences in a specific range of ν.
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(c) logistic regularizer

Figure 4. Performance profiles of iteration numbers (denoted by “ iter” on the left) and function values
(denoted by “ fval” on the right) for each sparse regularizer with A(L+S) = H(L+S). The blown-up subfigures
are used to highlight the differences in a specific range of ν.
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Figure 5. The RelErrk vs the number of iterations for each sparse regularizer.
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Table 3
Numerical results for extraction from noisy surveillance videos.

ADMM PALM
Data Regularizer µ iter Time F-measure µ iter Time F-measure

Hall

bri. p 1.0 5e-02 10 3.21 0.7562 5e-02 19 3.96 0.7560
0.5 1e-02 32 11.26 0.7634 1e-02 36 9.29 0.7624

fra.α 1.0 5e-02 23 8.26 0.7578 5e-02 33 8.53 0.7578
2.0 5e-02 12 4.17 0.7368 5e-02 15 3.69 0.7371

log.α 1.0 5e-02 12 21.12 0.7566 5e-02 39 68.70 0.7576
2.0 5e-02 12 16.00 0.7368 5e-02 16 29.04 0.7368

Bootstrap

bri. p 1.0 1e-01 14 3.30 0.8180 1e-01 19 3.15 0.8180
0.5 5e-02 23 6.77 0.8206 5e-02 22 4.93 0.8209

fra.α 1.0 1e-01 15 4.91 0.8163 1e-01 20 5.32 0.8165
2.0 1e-01 14 4.18 0.8264 1e-01 16 3.72 0.8261

log.α 1.0 1e-01 16 21.92 0.8195 1e-01 22 28.62 0.8195
2.0 1e-01 12 8.91 0.8363 1e-01 10 6.50 0.8363

Fountain

bri. p 1.0 1e-01 9 2.19 0.7749 1e-01 7 1.10 0.7749
0.5 5e-02 13 3.54 0.7000 5e-02 11 2.13 0.6922

fra.α 1.0 1e-01 9 2.39 0.7717 1e-01 8 1.63 0.7717
2.0 5e-02 10 2.82 0.7717 5e-02 9 1.87 0.7717

log.α 1.0 1e-01 9 13.41 0.7738 1e-01 7 9.65 0.7738
2.0 5e-02 9 12.46 0.7717 5e-02 8 11.51 0.7717

ShoppingMall

bri. p 1.0 1e-01 10 9.66 0.7046 1e-01 13 8.73 0.7043
0.5 1e-02 39 52.39 0.7087 1e-02 79 83.62 0.7078

fra.α 1.0 1e-01 12 14.33 0.7055 1e-01 18 16.95 0.7055
2.0 5e-02 15 18.46 0.7062 5e-02 26 25.34 0.7064

log.α 1.0 1e-01 11 66.96 0.7055 1e-01 16 94.06 0.7055
2.0 5e-02 12 40.23 0.7057 5e-02 18 74.83 0.7057

The support of the recovered foreground S∗ is obtained by thresholding S∗ entrywise with a
threshold value (we use 1e-3 in our numerical experiments). We would like to point out that
the F-measure varies between 0 and 1 according to the similarity of the support of S∗ and S̃.
The higher the F-measure value, the better the recovery accuracy of the support of S̃. The
F-measure approaches the maximum value 1 if the supports of S∗ and S̃ are the same, which
means the foreground is recovered completely.

In our experiments below, we choose τ = 0.8 for the ADMM. We also use the aforemen-
tioned four real videos as input with three choices of sparse regularizers and two choices of
p and α. For each fixed p and α, we experiment with different regularization parameters µ
(5e-1, 1e-1, 5e-2, 1e-2, 5e-3, 1e-3, 5e-4, 1e-4, 5e-5, 1e-5) and present only the µ corresponding
to the maximal F-measure.5

Extraction from noisy surveillance videos. In this case, A(L+ S) = L+ S, λmax = λmin = 1
and we set TolA,1 = 10−4, TolA,2 = 5 × 10−3, and TolP = 10−4. The computational results
are reported in Table 3, where we report p and α, the optimal µ, the number of iterations,
the CPU time (seconds), and the F-measure. We also show the extracted backgrounds and
foregrounds given by the ADMM in Figure 6.

5If the F-measures are the same, we pick the µ that corresponds to the minimal number of iterations.
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bri.p = 1.0 bri.p = 0.5 fra.α = 1

fra.α = 2 log.α = 1 log.α = 2

Figure 6. Extracted backgrounds and foregrounds given by the ADMM for noisy surveillance videos.

Extraction from noisy and blurred surveillance videos. In this case, A(L + S) = H(L + S),
λmax = λmax(H∗H), λmin = λmin(H∗H) and we set TolA,1 = 5 × 10−3, TolA,2 = 10−2, and
TolP = 3 × 10−3. The blurring matrix H is generated by the same method introduced in
subsection 5.2. One frame of each corrupted video is shown in the second row in Figure 2.
We report the computational results in Table 4 and show the extracted backgrounds and
foregrounds by the ADMM in Figure 7.
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Table 4
Numerical results for extraction from noisy and blurred surveillance videos.

ADMM PALM
Data Regularizer µ iter Time F-measure µ iter Time F-measure

Hall

bri. p 1.0 5e-02 24 15.37 0.6801 5e-02 36 26.72 0.6626
0.5 1e-02 44 31.96 0.6358 1e-02 45 35.11 0.6357

fra.α 1.0 5e-02 57 40.40 0.5265 5e-02 49 37.02 0.5616
2.0 1e-02 66 52.25 0.5381 1e-02 61 50.51 0.5445

log.α 1.0 5e-02 42 93.40 0.5970 5e-02 44 100.84 0.6033
2.0 1e-02 54 118.58 0.5188 1e-02 52 120.68 0.5211

Bootstrap

bri. p 1.0 1e-01 22 10.56 0.7651 1e-01 50 26.20 0.7364
0.5 1e-02 56 36.50 0.6692 1e-02 86 55.18 0.6589

fra.α 1.0 5e-02 66 36.75 0.5705 5e-02 99 60.04 0.5270
2.0 5e-02 73 41.08 0.5265 5e-02 111 61.89 0.4674

log.α 1.0 5e-02 47 83.24 0.5651 5e-02 87 158.16 0.5666
2.0 5e-02 73 131.17 0.4891 5e-02 115 213.62 0.4179

Fountain

bri. p 1.0 5e-02 28 12.72 0.7229 5e-02 64 36.25 0.6970
0.5 1e-02 51 28.54 0.6881 1e-02 78 45.68 0.6606

fra.α 1.0 5e-02 64 34.55 0.5155 5e-02 84 49.98 0.5000
2.0 1e-02 62 37.87 0.4482 1e-02 87 56.47 0.4341

log.α 1.0 5e-02 50 98.81 0.6095 5e-02 77 162.12 0.5760
2.0 1e-02 53 105.63 0.4438 1e-02 80 169.25 0.4525

ShoppingMall

bri. p 1.0 5e-02 22 51.99 0.6431 5e-02 25 62.71 0.6411
0.5 5e-03 54 157.53 0.6271 5e-03 40 119.91 0.6328

fra.α 1.0 1e-02 33 109.64 0.5045 5e-02 60 188.48 0.5106
2.0 1e-02 51 153.19 0.5810 1e-02 38 127.47 0.5935

log.α 1.0 5e-02 58 263.00 0.5453 5e-02 39 178.60 0.5967
2.0 1e-02 38 174.88 0.5856 1e-02 33 149.36 0.5913

Summary. From the results above, it can be seen that the ADMM with τ = 0.8 performs
better in the sense that it takes less CPU time for solving most test problems while returning
comparable F-measures. The performances of our ADMM for extraction are also promising
from Figures 6 and 7.

6. Concluding remarks. In this paper, we study a general (possibly nonconvex and non-
smooth) model and adapt the ADMM with a general dual step-size τ , which can be chosen

in (0, 1+
√

5
2 ), to solve it. We establish that any cluster point of the sequence generated by

our ADMM gives a stationary point under some assumptions; we also give simple sufficient
conditions for these assumptions. Under an additional assumption that a potential function is
a Kurdyka– Lojasiewicz function, we can further establish the global convergence of the whole
sequence generated by our ADMM. Our computational results demonstrate the efficiency of
our algorithm.

Note that our ADMM may not be beneficial when B or C has no special structure, because
the corresponding subproblems of ADMM may not have closed-form solutions. Nonetheless,
as in [31, 44, 45], it may be possible to add “proximal terms” to simplify the subproblems of
our ADMM. In addition, in view of the recent work [46], it may also be possible to study the
convergence of our ADMM for some specially structured nonconvex Ψ. These are possible
future research directions.
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bri.p = 1.0 bri.p = 0.5 fra.α = 1

fra.α = 2 log.α = 1 log.α = 2

Figure 7. Extracted backgrounds and foregrounds given by the ADMM for noisy and blurred surveillance
videos.
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