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Sebastian M. Cioabă∗1, Jack H. Koolen†2

Hiroshi Nozaki‡ & Jason R. Vermette∗1

∗Department of Mathematical Sciences,

University of Delaware, Newark DE 19716-2553, USA

† School of Mathematical Sciences,

University of Science and Technology of China,

Wen-Tsun Wu Key Laboratory of the Chinese Academy of Sciences, Hefei, Anhui, China

‡ Department of Mathematics,

Aichi University of Education, 1 Hirosawa, Igaya-cho, Kariya, Aichi 448-8542, Japan

cioaba@udel.edu, koolen@ustc.edu.cn

hnozaki@auecc.aichi-edu.ac.jp, vermette@udel.edu

March 31, 2018

Abstract

From Alon and Boppana, and Serre, we know that for any given integer k ≥ 3 and

real number λ < 2
√
k − 1, there are only finitely many k-regular graphs whose second

largest eigenvalue is at most λ. In this paper, we investigate the largest number of

vertices of such graphs.

1 Introduction

For a k-regular graph G on n vertices, we denote by λ1(G) = k > λ2(G) ≥ . . . ≥ λn(G) =

λmin(G) the eigenvalues of the adjacency matrix of G. For a general reference on the eigen-
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values of graphs, see [9, 18].

The second eigenvalue of a regular graph is a parameter of interest in the study of graph

connectivity and expanders (see [1, 9, 24] for example). In this paper, we investigate the

maximum order v(k, λ) of a connected k-regular graph whose second largest eigenvalue is

at most some given parameter λ. As a consequence of work of Alon and Boppana, and of

Serre [1, 12, 16, 24, 25, 28, 31, 35, 36, 42], we know that v(k, λ) is finite for λ < 2
√
k − 1.

The recent result of Marcus, Spielman and Srivastava [29] showing the existence of infinite

families of Ramanujan graphs of any degree at least 3 implies that v(k, λ) is infinite for

λ ≥ 2
√
k − 1.

For any λ < 0, the parameter v(k, λ) can be determined using the fact that a graph with

only one nonnegative eigenvalue is a complete graph. Indeed, if a graph has only one nonneg-

ative eigenvalue, then it must be connected. If a connected graph G is not a complete graph,

then G contains an induced subgraph isomorphic to K1,2, so Cauchy eigenvalue interlacing

(see [9, Proposition 3.2.1]) implies λ2(G) ≥ λ2(K1,2) = 0, contradiction. Thus v(k, λ) = k+1

for any λ < 0 and the unique graph meeting this bound is Kk+1. The parameter v(k, 0) can

be determined using the fact that a graph with exactly one positive eigenvalue must be a

complete multipartite graph (see [7, page 89]). The largest k-regular complete multipartite

graph is the complete bipartite graph Kk,k, since a k-regular t-partite graph has tk/(t− 1)

vertices. Thus v(k, 0) = 2k, and Kk,k is the unique graph meeting this bound. The values

of v(k,−1) and v(k, 0) also follow from Theorem 2.3 in Section 2 below.

Results from Bussemaker, Cvetković and Seidel [10] and Cameron, Goethals, Seidel, and

Shult [11] give a characterization of the regular graphs with smallest eigenvalue λmin ≥ −2.

Since the second eigenvalue of the complement of a regular graph is λ2 = −1 − λmin, the

regular graphs with second eigenvalue λ2 ≤ 1 are also characterized. This characterization

can be used to find v(k, 1) (see Section 3).

The values remaining to be investigated are v(k, λ) for 1 < λ < 2
√
k − 1. The parameter

v(k, λ) has been studied by Teranishi and Yasuno [44] and Høholdt and Justesen [22] for

the class of bipartite graphs in connection with problems in design theory, finite geometry

and coding theory. Some results involving v(k, λ) were obtained by Koledin and Stańıc

[26, 27, 43] and Richey, Shutty and Stover [47] who implemented Serre’s quantitative version

of the Alon–Boppana Theorem [42] to obtain upper bounds for v(k, λ) for several values of k

and λ. For certain values of k and λ, Richey, Shutty and Stover [47] made some conjectures

about v(k, λ). We will prove some of their conjectures and disprove others in this paper.

Reingold, Vadhan and Wigderson [38] used regular graphs with small second eigenvalue as

the starting point of their iterative construction of infinite families of expander using the

zig-zag product. Guo, Mohar, and Tayfeh-Rezaie [19, 32, 33] studied a similar problem

involving the median eigenvalue. Nozaki [37] investigated a related, but different problem
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from the one studied in our paper, namely finding the regular graphs of given valency and

order with smallest second eigenvalue. Amit, Hoory and Linial [2] studied a related problems

of minimizing max(|λ2|, |λn|) for regular graphs of given order n, valency k and girth g.

In this paper, we determine v(k, λ) explicitly for several values of (k, λ), confirming or

disproving several conjectures in [47], and we find the graphs (in many cases unique) which

meet our bounds. In many cases these graphs are distance-regular. For definitions and

notations related to distance-regular graphs, we refer the reader to [9, Chapter 12]. Table

1 contains a summary of the values of v(k, λ) that we found for k ≤ 22. Table 2 contains

six infinite families of graphs and seven sporadic graphs meeting the bound v(k, λ) for some

values of k, λ due to Theorem 2.3. Table 3 illustrates that the graphs in Table 2 that meet

the bound v(k, λ) also meet the bound v(k, λ′) for certain λ′ > λ due to Proposition 2.9.

2 Linear programming method

In this section, we give a bound for v(k, λ) using the linear programming method developed

by Nozaki [37]. Let Fi = F
(k)
i be orthogonal polynomials defined by the three-term recurrence

relation:

F
(k)
0 (x) = 1, F

(k)
1 (x) = x, F

(k)
2 (x) = x2 − k,

and

F
(k)
i (x) = xF

(k)
i−1(x)− (k − 1)F

(k)
i−2(x)

for i ≥ 3. The following is called the linear programming bound for regular graphs.

Theorem 2.1 (Nozaki [37]). Let G be a connected k-regular graph with v vertices. Let

λ1 = k, λ2, . . . , λn be the distinct eigenvalues of G. Suppose there exists a polynomial f(x) =
∑

i≥0 fiF
(k)
i (x) such that f(k) > 0, f(λi) ≤ 0 for any i ≥ 2, f0 > 0, and fi ≥ 0 for any

i ≥ 1. Then we have

v ≤ f(k)

f0
.

Using Theorem 2.1, Nozaki [37] proved Theorem 2.2 below. Note that the paper [37] deals

only with the problem of minimizing the second eigenvalue of a regular graph of given order

and valency. While related to the problem of estimating v(k, λ), the problem considered by

Nozaki in [37] is quite different from the one we study in this paper.

Theorem 2.2 (Nozaki [37]). Let G be a connected k-regular graph of girth g, with v vertices.

Assume the number of distinct eigenvalues of G is d + 1. If g ≥ 2d holds, then G has the

smallest second-largest eigenvalue in all k-regular graphs with v vertices.
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Table 1: Summary of our Results for k ≤ 22

(k, λ) v(k, λ) (k, λ) v(k, λ) (k, λ) v(k, λ)

(2,−1) 3 (7, 1) 18
(

14,
√
13
)

366

(2, 0) 4 (7, 2) 50
(

14,
√
26
)

4760
(

2, 12
(√

5− 1
))

5 (8,−1) 9
(

14,
√
39
)

804468

(2, 1) 6 (8, 0) 16 (15,−1) 16
(

2,
√
2
)

8 (8, 1) 21 (15, 0) 30
(

2, 12
(√

5 + 1
))

10
(

8,
√
7
)

114 (15, 1) 32
(

2,
√
3
)

12
(

8,
√
14
)

800 (16,−1) 17

(3,−1) 4
(

8,
√
21
)

39216 (16, 0) 32

(3, 0) 6 (9,−1) 10 (16, 1) 34

(3, 1) 10 (9, 0) 18 (16, 2) 77
(

3,
√
2
)

14 (9, 1) 24 (17,−1) 18
(

3,
√
3
)

18
(

9, 2
√
2
)

146 (17, 0) 34

(3, 2) 30 (9, 4) 1170 (17, 1) 36
(

3,
√
6
)

126
(

9, 2
√
6
)

74898 (18,−1) 19

(4,−1) 5 (10,−1) 11 (18, 0) 36

(4, 0) 8 (10, 0) 20 (18, 1) 38

(4, 1) 9 (10, 1) 27
(

18,
√
17
)

614
(

4,
√
5− 1

)

10 (10, 2) 56
(

18,
√
34
)

10440
(

4,
√
3
)

26 (10, 3) 182
(

18,
√
51
)

3017196

(4, 2) 35
(

10, 3
√
2
)

1640 (19,−1) 20
(

4,
√
6
)

80
(

10, 3
√
3
)

132860 (19, 0) 38

(4, 3) 728 (11,−1) 12 (19, 1) 40

(5,−1) 6 (11, 0) 22 (20,−1) 21

(5, 0) 10 (11, 1) 24 (20, 0) 40

(5, 1) 16 (12,−1) 13 (20, 1) 42

(5, 2) 42 (12, 0) 24
(

20,
√
19
)

762
(

5, 2
√
2
)

170 (12, 1) 26
(

20,
√
38
)

14480
(

5, 2
√
3
)

2730
(

12,
√
11
)

266
(

20,
√
57
)

5227320

(6,−1) 7
(

12,
√
22
)

2928 (21,−1) 22

(6, 0) 12
(

12,
√
33
)

354312 (21, 0) 42

(6, 1) 15 (13,−1) 14 (21, 1) 44
(

6,
√
5
)

62 (13, 0) 26 (22,−1) 23
(

6,
√
10
)

312 (13, 1) 28 (22, 0) 44
(

6,
√
15
)

7812 (14,−1) 15 (22, 1) 46

(7,−1) 8 (14, 0) 28 (22, 2) 100

(7, 0) 14 (14, 1) 30

4



Note also that while Table 2 is similar to [37, Table 2], the problems and tools in our

paper are significantly different from the ones in [37].

Let T (k, t, c) be the t × t tridiagonal matrix with lower diagonal (1, 1, . . . , 1, c), upper

diagonal (k, k−1, . . . , k−1), and with constant row sum k, where c is a positive real number.

Theorem 2.3 is the main theorem in this section and gives a new comprehension of the

linear programming method and a general upper bound for v(k, λ) without any assumption

regarding the existence of some particular graphs.

Theorem 2.3. If λ2 is the second largest eigenvalue of T (k, t, c), then

v(k, λ2) ≤ M(k, t, c) = 1 +

t−3
∑

i=0

k(k − 1)i +
k(k − 1)t−2

c
. (1)

Let G be a k-regular connected graph with second largest eigenvalue at most λ2, valency k,

and v(k, λ2) vertices. Then v(k, λ2) = M(k, t, c) if and only if G is distance-regular with

quotient matrix T (k, t, c) with respect to the distance-partition.

Proof. We first show that the eigenvalues of T that are not equal to k, coincide with the

zeros of
∑t−2

i=0 Fi(x) + Ft−1(x)/c (see also [7, Section 4.1 B]). Indeed,

[F0, F1, . . . , Ft−2, Ft−1/c]T = [xF0, xF1, . . . , xFt−2, (k − 1)Ft−2 + (k − c)Ft−1/c],

and

[F0, F1, . . . , Ft−2, Ft−1/c](T − xI) = [0, 0, . . . , 0, (k − 1)Ft−2 + (−x+ k − c)Ft−1/c]

= [0, 0, . . . , 0, (k − x)(

t−2
∑

i=0

Fi + Ft−1/c)]

= [0, 0, . . . , 0, (k − x)((c− 1)Gt−2 +Gt−1)/c]

by the three-term recurrence relation, where Gi(x) =
∑i

j=0 Fj(x). This equation implies

that the zeros of (k − x)((c − 1)Gt−2 + Gt−1) are eigenvalues of T . The monic polyno-

mials Gi form a sequence of orthogonal polynomials with respect to some positive weight

on the interval [−2
√
k − 1, 2

√
k − 1] [37]. Since the zeros of Gt−2 and Gt−1 interlace on

[−2
√
k − 1, 2

√
k − 1], the zeros of (k − x)((c − 1)Gt−2 + Gt−1) are simple. Therefore all

eigenvalues of T coincide with the zeros of (k − x)((c− 1)Gt−2 +Gt−1), and are simple.

Let λ1 = k > λ2 > . . . > λt be the eigenvalues of T . We prove that the polynomial

f(x) =
1

c
· (x− λ2)

t
∏

i=3

(x− λi)
2 =

2t−3
∑

i=0

fiFi(x) (2)
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satisfies fi > 0 for i = 0, 1, . . . , 2t−3. Note that it trivially holds that f(k) > 0, and f(λ) ≤ 0

for any λ ≤ λ2. The polynomial f(x) can be expressed as

f(x) =
(c− 1)Gt−2 +Gt−1

x− λ2
·
(

t−2
∑

i=0

Fi + Ft−1/c

)

. (3)

By [13, Proposition 3.2], g(x) = ((c − 1)Gt−2 + Gt−1)/(x − λ2) has positive coefficients

in terms of G0, G1, . . . , Gt−2. This implies that g(x) has positive coefficients in terms of

F0, F1, . . . , Ft−2. Therefore fi > 0 for i = 0, 1, . . . , 2t− 3 by [37, Theorem 3].

The polynomial g(x) can be expressed as g(x) =
∑t−2

i=0 giFi(x). By [37, Theorem 3], we

get that f0 =
∑t−2

i=0 giFi(k) = g(k). Using Theorem 2.1 for f(x), we obtain that

v(k, λ2) ≤
f(k)

f0
=

t−2
∑

i=0

Fi(k) + Ft−1(k)/c

= 1 +

t−3
∑

i=0

k(k − 1)i +
k(k − 1)t−2

c
.

By [37, Remark 2], the graph attaining the bound has girth at least 2t − 2, and at most t

distinct eigenvalues. Therefore the graph is a distance-regular graph with quotient matrix

T (k, t, c) by [37, Theorem 6] and [14]. Conversely the distance-regular graph with quotient

matrix T (k, t, c) clearly attains the bound M(k, t, c).

Remark 2.4. The distance-regular graphs which have T (k, t, c) as a quotient matrix of the

distance partition are precisely the distance-regular graphs with intersection array {k, k −
1, . . . , k − 1; 1, . . . , 1, c}.

Corollary 2.5. Let H be a connected k-regular graph with at least M(k, t, c) vertices. Let

λ2 be the second largest eigenvalue of T (k, t, c). Then λ2 ≤ λ2(H) holds with equality only if

H meets the bound M(k, t, c).

Proof. By Theorem 2.3, if λ2 > λ2(H), then the order of H is at most M(k, t, c). If the order

of H is equal to M(k, t, c), then H has at most t− 1 distinct eigenvalues by [37, Remark 2].

However then the order of H is less than M(k, t−1, 1) by the Moore bound, a contradiction.

Therefore if λ2 > λ2(H), then the order of H is less than M(k, t, c). Namely if the order

of H is at least M(k, t, c), then λ2 ≤ λ2(H). If λ2 = λ2(H) holds, then the order of H is

bounded above by M(k, t, c) in Theorem 2.3, and attains the bound.

We will discuss a possible second eigenvalue λ2 of T (k, t, c). Indeed for any −1 ≤ λ <

2
√
k − 1 there exist t, c such that λ is the second eigenvalue of T (k, t, c). Let λ(t), µ(t) be the

largest zero of Gt, Ft, respectively. The zero λ(t) can be expressed by λ(t) = 2
√
k − 1 cos θ,

where π/(t+ 1) < θ < π/t [3, Section III.3].
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Proposition 2.6. The following hold:

(1) λ(t) < µ(t) for any k, t.

(2) µ(t−1) < λ(t) for k ≥ 5 and any t, k = 4 and t ≤ 5, or k = 3 and t ≤ 3.

(3) µ(t−1) > λ(t) for k = 4 and t ≥ 6, or k = 3 and t ≥ 4.

Proof. Since Ft(λ
(t)) = Gt(λ

(t)) − Gt−1(λ
(t)) = −Gt−1(λ

(t)) < 0, we have λ(t) < µ(t) for

any k, t. Note that Ft has a unique zero greater than λ(t). By the equality (k − 1)Ft−1 =

(k − 1− x)Gt−1 +Gt, we obtain that

(k − 1)Ft−1(λ
(t)) = (k − 1− λ(t))Gt−1(λ

(t)) +Gt(λ
(t))

= (k − 1− λ(t))Gt−1(λ
(t))

= (k − 1− 2
√
k − 1 cos θ)Gt−1(λ

(t))






> (k − 1− 2
√
k − 1 cos π

t+1
)Gt−1(λ

(t)) ≥ 0 for (k, t) in (2),

< (k − 1− 2
√
k − 1 cos π

t
)Gt−1(λ

(t)) ≤ 0 for (k, t) in (3).

This finishes the proof of the proposition.

Remark 2.7. The second largest eigenvalue λ2(c) of T (k, t, c) is the largest zero of (c −
1)Gt−2+Gt−1. Since the zeros of Gt−2 and Gt−1 interlace, λ2(c) is a monotonically decreasing

function in c. In particular, limc→∞ λ2(c) = λ(t−2), λ2(1) = λ(t−1), and limc→0 λ2(c) = µ(t−1).

Note that both Fi and Gi form a sequence of orthogonal polynomials with respect to some

positive weight on the interval [−2
√
k − 1, 2

√
k − 1]. By Remark 2.7, the second eigenvalue

λ2(t, c) of T (k, t, c) may equal all possible values between λ2(2, 1) = −1 and limt→∞ λ2(t, c) =

2
√
k − 1. The following proposition shows that we may assume c ≥ 1 in Theorem 2.3 to

obtain better bounds.

Proposition 2.8. For any λ such that λ(t−1) < λ < µ(t−1), there exist 0 < c1 < 1, c2 > 0

such that both the second-largest eigenvalues of T (k, t, c1) and T (k, t+1, c2) are λ. Then we

have M(k, t, c1) > M(k, t + 1, c2).

Proof. Because (c1−1)Gt−2(λ)+Gt−1(λ) = 0, we get c1 = −Gt−1(λ)−Gt−2(λ)
Gt−2(λ)

= −Ft−1(λ)/Gt−2(λ).

Similarly c2 = −Ft(λ)/Gt−1(λ). Note that Ft−1(λ) = −c1Gt−2(λ) < 0 and Ft(λ) =

7



−c2Gt−1(λ) < 0. Therefore

M(k, t, c1)−M(k, t + 1, c2) = k(k − 1)t−2
( 1

c1
− 1− 1

c2
(k − 1)

)

= k(k − 1)t−2
(

− Gt−2(λ)

Ft−1(λ)
− 1 + (k − 1)

Gt−1(λ)

Ft(λ)

)

= k(k − 1)t−2
(

− Gt−1(λ)

Ft−1(λ)
+ (k − 1)

Gt−1(λ)

Ft(λ)

)

=
k(k − 1)t−2Gt−1(λ)

Ft−1(λ)Ft(λ)

(

− Ft(λ) + (k − 1)Ft−1(λ)
)

=
k(k − 1)t−2(k − λ)Gt−1(λ)

2

Ft−1(λ)Ft(λ)
> 0.

Table 2 shows the known examples attaining the bound M(k, t, c). The incidence graphs

of PG(2, q), GQ(q, q), and GH(q, q) are known to be unique for q ≤ 8, q ≤ 4, and q ≤ 2,

respectively (see, for example, [7, Table 6.5 and the following comments]). The incidence

graphs of PG(2, 2), GQ(2, 2), and GH(2, 2) are the Heawood graph, the Tutte-Coxeter graph

(or Tutte 8-cage), and the Tutte 12-cage, respectively.

Table 2: Known graphs meeting the bound M(k, t, c)

(k, λ) v(k, λ) Graph meeting bound Unique? Ref.

(2, 2 cos(2π/n)) n n-cycle Cn yes

(k,−1) k + 1 Complete graph Kk+1 yes

(k, 0) 2k Complete bipartite graph Kk,k yes

(q + 1,
√
q) 2(q2 + q + 1) incidence graph of PG(2, q) ? [7, 41]

(q + 1,
√
2q) 2(q + 1)(q2 + 1) incidence graph of GQ(q, q) ? [4, 7]

(q + 1,
√
3q) 2(q + 1)(q4 + q2 + 1) incidence graph of GH(q, q) ? [4, 7]

(3, 1) 10 Petersen graph yes [21]

(4, 2) 35 Odd graph O4 yes [34]

(7, 2) 50 Hoffman–Singleton graph yes [21]

(5, 1) 16 Clebsch graph yes [18, 40]

(10, 2) 56 Gewirtz graph yes [8, 17]

(16, 2) 77 M22 graph yes [6, 20]

(22, 2) 100 Higman–Sims graph yes [17, 20]

PG(2, q): projective plane, GQ(q, q): generalized quadrangle,

GH(q, q): generalized hexagon, q: prime power

The bounds in Table 2 solve several conjectures of Richey, Shutty, and Stover [47]. Richey,

Shutty, and Stover prove that v(3, 2) ≤ 105, but they note that the largest 3-regular graph

with λ2 ≤ 2 they are aware of is the Tutte-Coxeter graph on 30 vertices. They conjectured
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that v(3, 2) = 30. They show that v(4, 2) ≤ 77 and conjecture that the largest 4-regular graph

with λ2 ≤ 2 is the so-called rolling cube graph on 24 vertices (that is, the bipartite double of

the cuboctahedral graph which is the line graph of the 3-cube). They also conjectured that

v(4, 3) = 27 and the largest 4-regular graph with λ2 ≤ 3 is the Doyle graph on 27 vertices

(see [15, 23] for a description of this graph). In Table 2 we confirm that v(3, 2) = 30 and the

Tutte-Coxeter graph (the incidence graph of GQ(2, 2)) is, in fact, the unique graph which

meets this bound (see [7, Theorem 7.5.1] for uniqueness). However, Table 2 shows that

v(4, 2) = 35 (the Odd graph O4) and that v(4, 3) = 728 (the incidence graph of GH(3, 3)),

disproving the latter two conjectures.

Since the order of a graph is an integer, v(k, λ) can be bounded above by ⌊M(k, t, c)⌋.
The graphs meeting the bound M(k, t, c) can be maximal under the assumption of a larger

second eigenvalue.

Proposition 2.9. Let λ1, λ2 be the second largest eigenvalues of T (k, t+1, c1) and T (k, t, c2),

respectively. Suppose there exists a graph which attains the bound M(k, t, c) of Theorem 2.3.

Then

(1) If c = 1, then v(k, λ1) = v(k, λ) for c1 > k(k − 1)t−1. Moreover if M(k, t, c) is even,

and k is odd, then v(k, λ1) = v(k, λ) for c1 > k(k − 1)t−1/2.

(2) If c > 1, v(k, λ2) = v(k, λ) for c2 > c− c2/(k(k − 1)t−2 + c). Moreover if M(k, t, c) is

even, and k is odd, then v(k, λ2) = v(k, λ) for c2 > c− 2c2/(k(k − 1)t−2 + 2c).

Proof. We show only (1) because (2) can be proved similarly. For c1 > k(k − 1)t−1, we have

M(k, t, c) = v(k, λ) ≤ v(k, λ1) ≤ ⌊M(k, t, c1)⌋ = M(k, t, c).

Therefore v(k, λ) = v(k, λ1). If k is odd, v(k, λ1) must be even. For c1 > k(k − 1)t−1/2, we

have

M(k, t, c) = v(k, λ) ≤ v(k, λ1) ≤ ⌊M(k, t, c1)⌋ = M(k, t, c) + 1.

Thus if M(k, t, c) is even, then v(k, λ) = v(k, λ1).

The larger second eigenvalues in Proposition 2.9 are calculated in Table 3. The graphs

in Table 3 meet v(k, λ) for any λ2 ≤ λ < λ′, where λ′ is the largest zero of f(x) in the table.

By Theorem 2.3, we can obtain an alternative proof of the theorem due to Alon and

Boppana, and Serre (see [1, 12, 16, 24, 25, 28, 31, 35, 36, 42] for more details).

Corollary 2.10 (Alon–Boppana, Serre). For given k, λ < 2
√
k − 1, there exist finitely many

k-regular graphs whose second largest eigenvalue is at most λ.
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Proof. The second largest eigenvalue λ2(t) of T (k, t, 1) is equal to the largest zero of Gt−1.

The zero is expressed by λ2(t) = 2
√
k − 1 cos θ, where θ is less than π/(t − 1) [3, Section

III.3]. This implies that there exists a sufficiently large t′ such that λ2(t
′) > λ. Therefore we

Table 3: Graphs meeting v(k, λ) for λ2 ≤ λ < λ′

Graph t c f(x) λ′

Kk+1 (k: even) 2 1 x2 − (k − k2)x+ k2 − 2k

Kk+1 (k: odd) 2 1 2x2 − (k − k2) x+ k2 − 3k

Kk,k (k: even) 3 k x2 − (1− k)x− 1

Kk,k (k: odd) 3 k (k + 1)x2 + (k2 − k) x− 2k

PG(2, q) (q + 1: even) 4 q + 1 (q2 + 1)x3 + (q3 + q2) x2

+ (−q3 − 2q − 1) x− q4 − q3

PG(2, q) (q + 1: odd) 4 q + 1 + (q2 + 2) x3 + (q3 + q2) x2

+ (−q3 − 4q − 2) x− q4 − q3

GQ(q, q) (q + 1: even) 5 q + 1 (−q2 + q − 1)x4 − q3x3

+ (2q3 − 2q2 + 2q + 1)x2

+2q4x− q

GQ(q, q) (q + 1: odd) 5 q + 1 (−q3 − 2)x4 + (−q4 − q3) x3

+ (2q4 + 6q + 2) x2 + (2q5 + 2q4) x

−2q2 − 2q

GH(q, q) (q + 1: even) 7 q + 1 (−q4 + q3 − q2 + q − 1) x6

+ (4q5 − 4q4 + 4q3 − 4q2 + 4q + 1)x4

+ (−3q6 + 3q5 − 3q4 + 3q3 − 3q2 − 3q)x2

−q5x5 + 4q6x3 − 3q7x+ q2

GH(q, q) (q + 1: odd) 7 q + 1 (−q5 − 2)x6 + (−q6 − q5) x5

+ (4q6 + 10q + 2)x4 + (4q7 + 4q6)x3

+ (−3q7 − 12q2 − 6q)x2

+ (−3q8 − 3q7)x+ 2q3 + 2q2

Petersen 3 1 x3 + 12x2 + 7x− 24 1.11207

Odd graph O4 4 2 19x3 + 36x2 − 97x− 108 2.02156

Hoffman–Singleton 3 1 x3 + 126x2 + 113x− 756 2.02845

Clebsch 3 2 3x2 + 5x− 10 1.1736

Gewirtz 3 2 23x2 + 45x− 185 2.02182

M22 3 4 61x2 + 240x− 736 2.02472

Higman–Sims 3 6 13x2 + 77x− 209 2.0232

λ′ is the largest zero of f(x)
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have

v(k, λ) ≤ v(k, λ2(t
′)) ≤ 1 +

t′−2
∑

i=0

k(k − 1)i.

3 Second largest eigenvalue 1

In this section, we classify the graphs meeting v(k, 1). The complement of a regular graph

with second eigenvalue at most 1 has smallest eigenvalue at least −2. The structure of such

graph is obtained from a subset of a root system, and it is characterized as a line graph

except for sporadic examples [7, Theorem 3.12.2]. The following theorem is immediate by

[7, Theorem 3.12.2].

Theorem 3.1. Let G be a connected regular graph with v vertices, valency k, and second

largest eigenvalue at most 1. Then one of the following holds:

(1) G is the complement of the line graph of a regular or a bipartite semiregular connected

graph.

(2) v = 2(k−1) ≤ 28, and G is a subgraph of the complement of E7(1), switching-equivalent

to the line graph of a graph ∆ on eight vertices, where all valencies of ∆ have the same

parity (graphs nos. 1–163 in Table 9.1 in [10]).

(3) v = 3(k−1) ≤ 27, and G is a subgraph of the complement of the Schläfli graph (graphs

nos. 164–184 in Table 9.1 in [10]).

(4) v = 4(k−1) ≤ 16, and G is a subgraph of the complement of the Clebsch graph (graphs

nos. 185–187 in Table 9.1 in [10]).

The following theorem shows the classification of graphs meeting v(k, 1). Note that this

result will show that v(k, 1) = 2k + 2 for k large whereas Theorem 2.3 would give a larger

upper bound for v(k, 1).

Theorem 3.2. Let G be a connected k-regular graph with second largest eigenvalue at most

1, with v(k, 1) vertices. Then the following hold:

(1) v(2, 1) = 6, and G is the hexagon.

(2) v(3, 1) = 10, and G is the Petersen graph.

(3) v(4, 1) = 12, and G is the complement of the graph no. 186 in Table 9.1 in [10].

(4) v(5, 1) = 16, and G is the Clebsch graph.
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(5) v(6, 1) = 15, and G is the complement of the line graph of the complete graph with 6

vertices, or the complement of one of the graphs nos. 171–176 in Table 9.1 in [10].

(6) v(7, 1) = 18, and G is the complement of one of the graphs nos. 177–180 in Table 9.1

in [10].

(7) v(8, 1) = 21, and G is the complement of one of the graphs nos. 181, 182 in Table 9.1

in [10].

(8) v(9, 1) = 24, and G is the complement of the graph no. 183 in Table 9.1 in [10].

(9) v(10, 1) = 27, and G is the complement of the Schläfli graph.

(10) v(k, 1) = 2k + 2 for k ≥ 11, and G is the complement of the line graph of K2,k+1.

Proof. (1): A connected 2-regular graph is an n-cycle, whose eigenvalues are 2 cos(2πj/n)

(j = 0, 1, . . . , n− 1). This implies (1).

(2), (4): By Theorem 2.3 for T (k, 3, (k−1)/2), we have v(k, 1) ≤ 3k+1. The two graphs

are unique graphs attaining this bound (see [18, Theorem 10.6.4] and [21, 37]).

(10): The complement of the line graph of K2,k+1 is of degree k and has 2k + 2 vertices

for any k. We will prove that there exists no graph with at least 2k + 2 vertices except for

these graphs for k ≥ 11. In the case of Theorem 3.1 (3) (4), we have no graph for k ≥ 11.

In the case of Theorem 3.1 (2), trivially v = 2(k − 1) < 2k + 2. We consider the case of

Theorem 3.1 (1). Let G be the complement of the line graph of a t-regular graph with u

vertices. Then G is of degree k = (u/2 − 2)t + 1, and has v = ut/2 vertices. Therefore

v = ut/2 = u(k − 1)/(u − 4) ≤ 2(k − 1) < 2k + 2 because u ≥ 8 for k ≥ 11. Let G be

the complement of the line graph of a bipartite semiregular connected graph (V1, V2, E). Let

|Vi| = ui and the degree of x ∈ Vi be ti, where we suppose t1 ≥ t2. Then G is of degree

k = (u1 − 1)t1 − t2 + 1 ≥ (u1 − 2)t1 + 1, and has v = u1t1 vertices. If u1 = 1 holds, then G

has no edge. For u1 > 3, it is satisfied that

v ≤
(

1 +
2

u1 − 2

)

(k − 1) ≤ 2(k − 1) < 2k + 2 (4)

for any k. For u1 = 3, we have t2 ≤ u1 = 3 and

v = 3t1 =
3

2
(k + t2 − 1) ≤ 3

2
(k + 2) < 2k + 2 (5)

for k > 2. For u1 = 2, similarly t2 ≤ u1 = 2 and

v = 2t1 = 2(k + t2 − 1) ≤ 2k + 2 (6)

for any k, with equality only if t1 = k + 1, t2 = 2, u1 = 2 and u2 = k + 1. Thus (10) holds.
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(3), (5)–(9): Every candidate of maximal graphs comes from Theorem 3.1 (3) or (4)

except for the case of the complete graph in (5). We prove that there does not exist a larger

graph which comes from Theorem 3.1 (1). By inequalities (4)–(6), the complement of the line

graph of a bipartite semiregular graph is not maximal for k > 2. We consider the case of the

complements of the line graphs of t-regular graphs with u vertices. Since v = k− 1+2t is at

least 12, 15, 18, 21, 24, 27, we have u−1 ≥ t ≥ 5, 5, 6, 7, 8, 9 for k = 4, 6, 7, 8, 9, 10, respectively.

Therefore k = (u/2 − 2)t + 1 ≥ (t − 2)(t − 1)/2 ≥ 6, 6, 10, 15, 21, 28 for k = 4, 6, 7, 8, 9, 10,

respectively. The only parameter (v, k, u, t) = (15, 6, 6, 5) satisfies the conditions and it

corresponds to the case of the complete graph in (5).

4 Other Values of v(k, λ)

When no graph meets the bound given by Theorem 2.3, other techniques may be necessary

to find v(k, λ). However, the bound is still useful in reducing the size of graphs which must

be checked. In this section we describe several tools which we will use (Lemma 4.3 and

Lemma 4.4), and then find v(k, λ) in a few more cases (Proposition 4.5, Proposition 4.6,

Proposition 4.7).

Let n(k, g) denote the minimum possible number of vertices of a k-regular graph with

girth g. A (k, g)-cage is a graph which attains this minimum. The following lower bound on

n(k, g) due to Tutte [46] will be useful.

Lemma 4.1. Define nl(k, g) by

nl(k, g) =







k(k−1)(g−1)/2−2
k−2

if g is odd,

2(k−1)g/2−2
k−2

if g is even.

Then n(k, g) ≥ nl(k, g).

The following lemma is easily verified.

Lemma 4.2. ’ Each of the graphs in Figure 1 has spectral radius greater than 2.

t

t

t

t

t

t t

�
�
❅

❅
�
�

❅
❅

(a)

t

t

t t
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t

�
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�
�

❅
❅

(b)

Figure 1: Graphs with spectral radius greater than 2.

For a graph G, a vertex v ∈ V (G), and a subset U ⊂ V (G), define the distance

dist(v, U) = minu∈U dist(u, v). For an induced subgraph H of G, let Γi(H) and Γ≥i(H)
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be the sets of vertices in G at distance exactly i and at least i from V (H) in G, respectively.

Let ρ(G) and d(G) denote the spectral radius and average degree of G, respectively. Note

that d(G) ≤ ρ(G).

Lemma 4.3. Suppose G is a connected, k-regular graph with second largest eigenvalue

λ2(G) ≤ λ < k, and H is an induced subgraph of G with d(H) ≥ λ. Then for the sub-

graph K induced by Γ≥2(H) we have d(K) ≤ λ, with equality only if d(H) = λ2(G) = λ.

Proof. Consider the quotient matrix Q of the partition {V (H),Γ1(H),Γ≥2(H)} of V (G). We

have

Q =







α k − α 0

γ k − (γ + ǫ) ǫ

0 k − β β






,

where α = d(H), β = d(K), and γ and ǫ are the average numbers of neighbors in H and

K, respectively, of the vertices in Γ1(H). The eigenvalues of Q interlace those of G (see [9,

Corollary 2.5.4]), so we must have λ2(Q) ≤ λ2(G) ≤ λ. It is straightforward to verify that

λ1(Q) = k and

λ2(Q) =
1

2

(

α+ β − (γ + ǫ) +
√
∆
)

, (7)

where ∆ = (α + β − (γ + ǫ))2 − 4(αβ − βγ − αǫ). By hypothesis we have α ≥ λ. If also

β ≥ λ, then we find that α = β = λ2(Q) = λ, as we will prove below.

Indeed, if both α > λ and β > λ, then by Cauchy interlacing [9, Proposition 3.2.1]

λ2(G) ≥ λ2(H +K) > λ, where H +K is the disjoint union of H and K, a contradiction.

Suppose α ≥ λ and β ≥ λ. If α = β = λ, then (7) becomes λ2(Q) = λ. Otherwise we must

have α > β = λ or β > α = λ. If
√
∆ ≥ γ + ǫ, then clearly λ2(Q) > λ, a contradiction. If√

∆ < γ + ǫ, then ∆ < (γ + ǫ)2, which implies (α− β)(α− β + 2(ǫ− γ)) < 0. Thus we have

either α > β and ǫ < γ − 1
2
(α − β), or β > α and γ < ǫ− 1

2
(β − α). Suppose the former is

true. Then β = λ and we can write α = β + s = λ + s and ǫ = γ − s
2
− t for some s, t > 0.

Then (7) becomes

λ2(Q) =
1

4

(

4λ− 4γ + 3s+ 2t+
√
∆′
)

,

where ∆′ = 16γ2 + (s− 2t)2 − 8γ(s+ 2t). If
√
∆′ > 4γ − 3s− 2t, then clearly λ2(Q) > λ, a

contradiction. If
√
∆′ ≤ 4γ − 3s− 2t, then ∆′ ≤ (4γ − 3s− 2t)2, which implies γ ≤ s

2
+ t.

However, this implies ǫ = γ − s
2
− t ≤ 0, a contradiction. If β > α and γ < ǫ − 1

2
(β − α),

the same argument holds (simply swap the roles of α and β and of γ and ǫ in the above

argument). Thus we cannot have α ≥ λ and β ≥ λ unless α = β = λ, so we must have

β < λ or α = β = λ2(Q) = λ.
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Lemma 4.4. Suppose G is a connected, k-regular graph with second largest eigenvalue

λ2(G) ≤ λ < k. If G contains an induced subgraph H on s vertices with t edges and

either d(H) ≥ λ or ρ(H) > λ, then

|V (G)| ≤ s+
2k − λ− 1

k − λ
(ks− 2t). (8)

Proof. Since G is k-regular, there are ks−2t edges fromH to Γ1(H), which implies |Γ1(H)| ≤
ks−2t. We will show that |Γ≥2(H)| ≤ k−1

k−λ
|Γ1(H)|, which completes the proof that (8) holds.

First, note that each vertex in Γ1(H) has a neighbor in H , so each such vertex has at

most k − 1 neighbors in Γ≥2(H). Then there are at most (k − 1) |Γ1(H)| edges from Γ1(H)

to Γ≥2(H). If d(H) ≥ λ then by Lemma 4.3 we have d(K) ≤ λ, where K is the subgraph

induced by Γ≥2(H). If not, then ρ(H) > λ, so ρ(K) ≤ λ (and so also d(K) ≤ λ) by eigenvalue

interlacing. Since G is k-regular, this implies that the average number of neighbors in Γ1(H)

of the vertices in Γ≥2(H) is at least k − λ, so there are at least (k − λ) |Γ≥2(H)| edges from
Γ≥2(H) to Γ1(H). This completes the proof.

Proposition 4.5. If G is a connected, 3-regular graph with λ2(G) > 1, then λ2(G) ≥
√
2,

with equality if and only if G is the Heawood graph.

Proof. We have already seen in Table 2 that v(3,
√
2) = 14 and the Heawood graph (the

incidence graph of PG(2, 2)) is the unique graph meeting this bound. Thus we only need

to show that no 3-regular graph has second eigenvalue between 1 and
√
2. Suppose G is a

3-regular graph with 1 < λ2(G) <
√
2. We will show that this yields a contradiction. We

have immediately that |V (G)| < 14. Since G is 3-regular, this implies |V (G)| ≤ 12.

We note that the average degree of any cycle is 2 >
√
2 > λ2(G). If G has girth 3,

then Lemma 4.4 implies |V (G)| ≤ 6
7
(
√
2 + 10) ≈ 9.78. Since G is 3-regular, this implies

|V (G)| ≤ 8. Lemma 4.1 implies that a graph with girth more than 5 has at least 14 vertices,

so G has girth at most 5.

We partition the vertices of G by P1 = {V (H),Γ1(H),Γ≥2(H)}, where H is a subgraph

of G isomorphic to Cm, where m ∈ {3, 4, 5} is the girth of G. This partition has quotient

matrix Q given by

Q =







2 1 0

γ 3− (α+ γ) α

0 β 3− β






,

where γ |Γ1(H)| = m (by counting edges from H to Γ1(H)) and α |Γ1(H)| = β |Γ≥2(H)| (by
counting edges from Γ1(H) to Γ≥2(H)).

We first suppose G has girth 3. Then 4 ≤ |V (G)| ≤ 8. If |V (G)| = 4, then G ∼= K4, and

we have λ2(G) = −1. If |V (G)| = 6, it is straightforward to show that G ∼= C3�K2, where �

denotes the graph Cartesian product, and we have λ2(G) = 1. Either case is a contradiction.
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If |V (G)| = 8 then Γ1(H) has 2 or 3 vertices. If |Γ1(H)| = 2, then we have |Γ≥2(H)| = 3,

γ = 3/2, and depending on whether there is an edge in Γ1(H) or not we have α = 1/2

or 3/2, β = 1/3 or 1, and λ2(Q) = 1
3
(
√
13 + 4) ≈ 2.54 or 2, respectively. Either case is

a contradiction. If |Γ1(H)| = 3, then |Γ≥2(H)| = 2, γ = 1, and depending on whether

there is an edge in Γ≥2(H) or not we have β = 2 or 3, α = 4/3 or 2, and λ2(Q) = 5/3 or
1
2
(
√
17− 1) ≈ 1.56, respectively. Either case is a contradiction. Thus G cannot have girth 3.

Suppose G has girth 4. Then we have 6 ≤ |V (G)| ≤ 12. If |V (G)| = 6, then G ∼= K3,3

and we have λ2(G) = 0. If |V (G)| = 8, then it is straightforward to verify that G must either

be the 3-cube Q3 or the graph in Figure 2. In either case we have λ2(G) = 1, a contradiction.

t t

t t

t t

t t

❏
❏

✟✟ ✟✟

✟✟ ✟✟

☞
☞
☞☞

Figure 2: A 3-regular graph on 8 vertices with girth 4.

If |V (G)| = 10, then Γ1(H) has 2, 3, or 4 vertices. If |Γ1(H)| = 2, then |Γ≥2(H)| = 4, γ = 2,

α = 1, β = 1/2, and λ2(Q) = 1
4
(
√
41 + 3) ≈ 2.35, a contradiction. If |Γ1(H)| = 3, then

|Γ≥2(H)| = 3, γ = 4/3, and α = β. Then α ≤ 5/3 (since 3− (α + γ) ≥ 0) implies β ≤ 5/3,

which implies Γ≥2(H) has at least 2 edges. Since G has girth 4, Γ≥2(H) cannot have 3

edges, so Γ≥2(H) has exactly 2 edges, α = β = 5/3, and λ2(Q) = 1
2
(
√
241 + 7) ≈ 1.88, a

contradiction. If |Γ1(H)| = 4, then |Γ≥2(H)| = 2, γ = 2, and depending on whether there is

an edge in Γ≥2(H) or not we have β = 2 or 3, α = 1 or 3/2, and λ2(Q) = 1
2
(
√
5 + 1) ≈ 1.62

or 3/2, respectively. Either case is a contradiction. If |V (G)| = 12, then Γ1(H) must be a

coclique on 4 vertices (otherwise there are at most 6 edges from Γ1(H) to Γ≥2(H), so Lemma

4.3 implies |Γ≥2(H)| < 6/(3 −
√
2) ≈ 3.78, which implies |V (G)| < 11.78, a contradiction).

Then we have |Γ1(H)| = |Γ≥2(H)| = 4, γ = 1, α = β = 2, and λ2(Q) =
√
3. This is a

contradiction, so G cannot have girth 4.

Suppose G has girth 5. Then 10 ≤ |V (G)| ≤ 12. The Petersen graph with 10 vertices

and λ2 = 1 is the unique (3, 5)-cage (see [21]), so G must have 12 vertices. Note we must

have |Γ1(H)| = 5 and γ = 1, since vertices in H cannot have common neighbors outside of

H . Since |V (G)| = 12, we have |Γ≥2(H)| = 2, and depending on whether there is an edge

in Γ≥2(H) or not we have β = 2 or 3, α = 4/5 or 6/5, and λ2(Q) = 1
5
(2
√
6 + 3) ≈ 1.58 or

1
10
(
√
241− 1) ≈ 1.45, respectively. Either case is a contradiction.

Thus G cannot exist as described, which completes the proof.

Proposition 4.6. If G is a connected, 4-regular graph with λ2(G) > 1, then λ2(G) ≥
√
5−1,

with equality if and only if G is either the graph in Figure 3 or the circulant graph Ci10(1, 4)

(the Cayley graph of (Z10,+) with generating set {±1,±4}).
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Figure 3: The 4-regular graph G on 8 vertices with λ2(G) =
√
5− 1.

Proof. It is straightforward to verify that the second eigenvalue of T (4, 3, (4−(
√
5−1)2)/

√
5) =√

5−1 and M(4, 3, (4− (
√
5−1)2)/

√
5) = 5+12

√
5/(4− (

√
5−1)2) ≈ 15.85, so by Theorem

2.3 we have v(4,
√
5 − 1) ≤ 15. We checked by computer all 4-regular graphs on at most

15 vertices and found that, in each case where λ2(G) > 1, we have λ2(G) ≥
√
5 − 1, with

equality if and only if G is either the graph in Figure 3 or the circulant graph Ci10(1, 4).

The previous result and Theorem 3.2 part (iii) imply that v(4,
√
5 − 1) = 12. It would

be interesting to find a proof of Proposition 4.6 which does not require a computer search.

For the proof above the computer must check 906,331 graphs.

Richey, Shutty, and Stover [47] conjectured that v(3, 1.9) = 18. We confirm this conjec-

ture, and show that there are exactly two graphs meeting this bound.

Proposition 4.7. If G is a connected, 3-regular graph with second largest eigenvalue λ2(G) ≤
1.9, then |V (G)| ≤ 18, with equality if and only if G is the Pappus graph (see Figure 4(a))

or the graph in Figure 4(b).

(a) The Pappus graph with

second eigenvalue
√
3.

(b) A graph with λ2 = γ ≈ 1.8662, the largest

root of f(x) = x3 + 2x2 − 4x− 6.

Figure 4: The 3-regular graphs on 18 vertices with λ2 < 1.9.

Proof. It is straightforward to verify that the second eigenvalue of T (3, 4, 2641/3510) =

19/10 = 1.9 and M(3, 4, 2641/3510) = 68530/2641 ≈ 25.95, so by Theorem 2.3 we have

v(3, 1.9) ≤ 25. Since G is 3-regular, this implies v(3, 1.9) ≤ 24. We note again that any cycle

has spectral radius 2. Then, by Lemma 4.4, if G has girth 3, 4, 5, or 6, then G has at most
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11.45, 15.27, 19.09, or 22.91 vertices, respectively. Since G is 3-regular, this implies G has

at most 10, 14, 18, or 22 vertices, respectively. A 3-regular graph of girth 8 has at least 30

vertices by Lemma 4.1 (or note that the Tutte-Coxeter graph is the unique (3,8)-cage, see

[45, 46]). Thus, we have shown that a 3-regular graph G with λ2(G) ≤ 1.9 and more than

18 vertices must have girth 6 or 7.

If G has girth 7, we note that the McGee graph on 24 vertices is the unique (3,7)-cage

(see [7, p.209] or [30, 46]), so G must be the McGee graph. Since the McGee graph has

second eigenvalue 2, we have proved that G does not have girth 7.

Now, if G has more than 18 vertices then G must have girth 6 and at most 22 vertices.

Among 3-regular graphs, we checked by computer the 32 graphs with girth 6 on 20 vertices

and the 385 graphs with girth 6 on 22 vertices and found that each has second eigenvalue

more than 1.9. Thus G has at most 18 vertices. If G has 18 vertices, then G must have

girth 5 or 6. Among 3-regular graphs, we checked by computer the 450 graphs with girth

5 on 18 vertices and found that each has second eigenvalue more than 1.9. We checked

the 5 graphs with girth 6 on 18 vertices and found that all but two of them have second

eigenvalue more than 1.9. The exceptions were the Pappus graph with second eigenvalue
√
3

and the graph in Figure 4(b) with second eigenvalue γ, where γ ≈ 1.8662 is the largest root

of f(x) = x3 + 2x2 − 4x− 6.

Note that this implies v(3,
√
3) = 18 and v(3, γ ≈ 1.8662) = 18 (and, of course, v(3, 1.9) =

18). It would be nice to find a proof of Proposition 4.7 that does not require a computer

search.

5 Final Remarks

We conclude the paper with some questions and problems for future research.

Problem 5.1. Determine v(k,
√
k) for k ≥ 3.

We have λ2(T (k, 4, k−
√
k)) =

√
k and M(k, 4, k−

√
k) = 2k2+k3/2−k−

√
k+1, which

yields

v(k,
√
k) ≤ 2k2 + k3/2 − k −

√
k + 1.

The Odd graph O4 meets this bound (see Table 2). We do not know what other graphs, if

any, meet this bound. Odd graphs, in general, do not have T (k, t, c) as a quotient matrix.

Problem 5.2. Determine v(k,
√
2) for k ≥ 3.

Recall that for k = 3 we have v(3,
√
2) = 14 and the Heawood is the unique graph

meeting this bound. For k > 3 we note that Lemma 4.4 with H = K3 implies that a
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graph G with λ2(G) ≤
√
2 and girth 3 satisfies |V (G)| ≤ 3(k − 1)

(

1 + k−2
k−

√
2

)

, and Lemma

4.4 with H = K1,3 implies that such a graph with girth more than 3 satisfies |V (G)| ≤
4 + 2(2k − 3)

(

1 + k−1
k−

√
2

)

(note that in both cases we have ρ(H) > λ2(G)). Combining this

with Lemma 4.1 allows one to restrict the search to graphs with certain girth. For k ≥ 7,

nl(k, g) is larger than these bounds unless the girth is at most 4, and for k = 4, 5, or 6

nl(k, g) is larger than these bounds unless the girth is at most 5. Thus the graphs sought in

Problem 5.2 must have girth at most 5 for k = 4, 5, 6 and girth at most 4 for k ≥ 7.

Problem 5.3. Among regular graphs, what is the smallest second eigenvalue larger than 1?

Yu [48] found a 3-regular graph G on 16 vertices (see Figure 5) with smallest eigenvalue

t

t

t

t

t

t

t t

t

t

t

t

t

t

t

t

✔
✔

❚
❚

✔
✔

❚
❚

✔
✔

❚
❚

✔
✔

❚
❚

��

❅❅

❅❅

��

Figure 5: The unique 3-regular graph with largest least eigenvalue less than −2.

λmin = γ ≈ −2.0391, where γ is the smallest root of f(x) = x6 − 3x5 − 7x4 + 21x3 + 13x2 −
35x − 4, and moreover proved that there is no connected, 3-regular graph with smallest

eigenvalue in the interval (γ,−2) (that is, among all connected, 3-regular graphs G has the

largest least eigenvalue less than −2). Since the second eigenvalue of the complement of a

regular graph is λ2 = −1− λmin, the complement G of G, a 12-regular graph on 16 vertices,

has second eigenvalue λ2(G) = −1 − γ ≈ 1.0391. We do not know if G has smallest second

eigenvalue larger than 1 among regular graphs, but it is not unique. Indeed, the complement

of the disjoint union G + kK4 of G and k copies of K4 is a connected, (12 + 4k)-regular

graph on 16 + 4k vertices with second eigenvalue λ2(G+ kK4) = −1 − γ, so we have found

an infinite family of regular graphs with second eigenvalue −1− γ.

Problem 5.4. For any integer k ≥ 2, let λ(k) := (−1 +
√
4k − 3)/2. Then we find that

v(k, λ(k)) ≤ k2 + 1 with equality if and only if the associated graph is a Moore graph of

diameter 2. Moore graphs of diameter 2 only exists for k = 2, 3, 7, and possibly 57. If k is

not 2, 3, 7, 57, then v(k, λ(k)) ≤ k2. Determine the exact value of v(k, λ(k)) in these cases.

An (n, k, λ)-graph is a k-regular graph with n vertices such that |λi| ≤ λ for i ≥ 2. This

notion was introduced by Alon (see [1, 25]) motivated by the study of pseudo-random graphs

and expanders among other things. The following question seems natural and interesting.

Problem 5.5. Given k ≥ 3 and 1 < λ < 2
√
k − 1, what is the maximum order n of an

(n, k, λ)-graph ?

19



Acknowledgments

The authors thank Joel Friedman, Chris Godsil, Bill Martin and an anonymous referee for

some useful comments and suggestions.

References

[1] N. Alon, Eigenvalues and expanders, Combinatorica 6 (1986), 83–96.

[2] A. Amit, S. Hoory and N. Linial, A continuous analogue of the girth problem, J. Combin.

Theory, Series B 84 (2002), 340–363.

[3] E. Bannai and T. Ito, Algebraic Combinatorics I: Association Schemes, Ben-

jamin/Cummings, Menlo Park, CA, 1984.

[4] C.T. Benson, Minimal regular graphs of girths eight and twelve, Canad. J. Math. 18

(1966), 1091–1094.

[5] N.L. Biggs, A.G. Boshier, and J. Shawe-Taylor, Cubic distance-regular graphs, J. Lon-

don Math. Soc. (2) 33 (1986), 385-394.

[6] A.E. Brouwer, The uniqueness of the strongly regular graph on 77 points, J. Graph

Theory 7 (1983), no. 4, 455–461.

[7] A.E. Brouwer, A.M. Cohen, and A. Neumaier, Distance-regular graphs, Springer, 1989.

[8] A.E. Brouwer and W.H. Haemers, The Gewirtz graph: an exercise in the theory of

graph spectra, European J. Combin. 14 (1993), 397–407.

[9] A.E. Brouwer and W.H. Haemers, Spectra of Graphs, Springer, 2012.
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[43] Z. Stańıc, On regular graphs and coronas whose second largest eigenvalue does not

exceed 1, Linear and Multilinear Algebra 58 (2010), 545–554.

22

http://arxiv.org/abs/1304.4132
http://arxiv.org/abs/1407.4562


[44] Y. Teranishi and F. Yasuno, The second largest eigenvalues of regular bipartite graphs,

Kyushu J. Math. 54 (2000), 39–54.

[45] W.T. Tutte, A family of cubical graphs, Proc. Cambridge Phil. Soc. 43 (1947), 459–474.

[46] W.T. Tutte, Connectivity in Graphs, University of Toronto Press, 1966.

[47] J. Richey, N. Shutty and M. Stover, Finiteness theorems in spectral graph theory, avail-

able at arXiv:1306.6548.

[48] H. Yu, On the limit points of the smallest eigenvalues of regular graphs, Des. Codes

Cryptogr. 65 (2012), no. 1-2, 77–88.

23

http://arxiv.org/abs/1306.6548

	1 Introduction
	2 Linear programming method
	3 Second largest eigenvalue 1
	4 Other Values of v(k,)
	5 Final Remarks

