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Abstract. Stochastic models are necessary for the realistic description of an increasing number
of applications. The ability to identify influential parameters and variables is critical to a thor-
ough analysis and understanding of the underlying phenomena. We present a new global sensitivity
analysis approach for stochastic models, i.e., models with both uncertain parameters and intrinsic
stochasticity. Our method relies on an analysis of variance through a generalization of Sobol’ indices
and on the use of surrogate models. We show how to efficiently compute the statistical properties of
the resulting indices and illustrate the effectiveness of our approach by computing first order Sobol’
indices for two stochastic models.
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1. Introduction. Stochastic computer models are non-deterministic simulators:
repeated evaluations with the same inputs yield different outputs. Examples include
agent-based models, queuing models, Monte-Carlo based numerical models and mod-
els of intrinsically stochastic phenomena such as those found in biological systems [49]
or chemical reaction networks [15]. We consider stochastic computer models of the
form

Y = f(X(ϑ), ω), (1.1)

where X = (X1, . . . , Xp) is a random vector whose entries are uncertain model pa-
rameters; the variables ϑ and ω correspond to two distinct sources of randomness,
namely the uncertain parameters in the model and the stochasticity of the problem,
respectively. The precise mathematical formulation of (1.1) is given in Section 3.

The development and predictive capabilities of such computer models depend
on the ability to apportion uncertainty in the model output to different sources of
uncertainty in the model input parameters and intrinsic stochasticity, i.e., on global
sensitivity analysis [42]. To that end, efficient methods [19, 37, 42, 43, 44] have been
developed for the simpler model

Y = f(X(ϑ)), (1.2)

which only incorporates parametric uncertainty. For stochastic models such as (1.1),
however, even the concept of sensitivity is delicate. Additionally, stochastic models
are both computationally more demanding and substantially harder to fit to data
than their deterministic counterparts; the need for efficient and reliable sensitivity
analysis in the context of (1.1) is thus clear.

In this article, we propose a new notion of global sensitivity for stochastic models
based on

∗This work was supported by the National Science Foundation under grant DMS-1522765.
†Department of Mathematics, North Carolina State University, Raleigh, NC 27695-8205 jl-

hart3@ncsu.edu
‡Department of Mathematics, North Carolina State University, Raleigh, NC 27695-8205 alexan-

derian@ncsu.edu
§Department of Mathematics, North Carolina State University, Raleigh, NC 27695-8205 gre-

maud@ncsu.edu

1

ar
X

iv
:1

60
2.

06
21

8v
2 

 [
st

at
.C

O
] 

 2
8 

N
ov

 2
01

6

mailto:jlhart3@ncsu.edu
mailto:jlhart3@ncsu.edu
mailto:alexanderian@ncsu.edu
mailto:alexanderian@ncsu.edu
mailto:gremaud@ncsu.edu
mailto:gremaud@ncsu.edu


2 J.L. HART, A. ALEXANDERIAN, AND P.A. GREMAUD

• a generalization of Sobol’ indices [43] to the case of stochastic models,
• the use of surrogate models.

We briefly introduce both concepts.
For (1.2), the Sobol’ indices are defined as

Su =
Var{E{f(X)|Xu}}

Var{f(X)}
, u ⊂ {1, 2, . . . , p}, (1.3)

where Xu denotes the subset of entries in X corresponding to u; for instance X{2,5} =
(X2, X5). The indices apportion relative contributions to the variance of the output
among the inputs; variables contributing more (larger Su’s) are deemed more im-
portant. When u = {k}, Sk is called the first order Sobol’ index; when u = {k}c,
Tk = 1 − Su is called the total Sobol’ index. A direct application of this concept
to (1.1) instead of (1.2) yields Sobol’ indices Su, u ⊂ {1, 2, . . . , p}, which are them-
selves random variables. Example 1.1 below illustrates this point; a full justification
is given in Section 3.

Traditional methods to evaluate the Sobol’ indices (1.3) involve Monte Carlo
integration [41] and are infeasible for problems where f is expensive to evaluate. To

overcome this obstacle, a surrogate model f̂ can be constructed whereby
• f̂ is representative of f , i.e., f̂ ≈ f in some sense,
• f̂ can be evaluated cheaply.

Several families of surrogate models (or metamodels) have been proposed including
polynomial chaos expansions [46, 7, 23, 28, 4, 27], Kriging models and Gaussian
processes [24, 26, 27], and non-parametric statistical models [18, 40].

Our proposed approach is as follows:
1. construct a surrogate model f̂ of (1.1),

2. compute the Sobol’ indices of f̂ (which are here random variables themselves),
3. compute the statistical properties of the Sobol’ indices.

While replacing f by f̂ greatly facilitates computational analysis, it also creates a
fundamental difficulty: to what extend is the global sensitivity analysis of f̂ reflective
of the properties of f? This difficult and general question is largely open in the context
of global sensitivity analysis (see, however, our discussion in Section 2.1 below).

For stochastic models such as (1.1), an alternative approach is to first marginal-
ize over ω, and then evaluate the Sobol’ indices. For instance, we can construct a
surrogate model ĝ for the expected value in ω

ĝ(X(ϑ)) ≈ g(X(ϑ)) := Eω{f(X(θ), ω)},

and then evaluate the Sobol’ indices of ĝ. This method is used for example in
[20, 32, 33]. In other words, the same three steps noted above are used, but in a
different order: 3, 1, 2. At the heart of our approach is the fact that, for appropriate
surrogates, it is possible to efficiently and directly compute sensitivity information for
the stochastic model (1.1) without such a priori marginalizations. Moreover, comput-
ing ω-moments and evaluating Sobol’ indices for (1.1) are two operations that do not
commute. This simple observation has significant consequences as averaging over ω
before computing sensitivity indices significantly reduces the amount of information
available for analysis. This point is illustrated by the following example.

Example 1.1. Let (Θ, E , λ), (Ω,F , ν), be probability spaces, and X : Θ → R2,
W : Ω→ R be random variables defined as follows. We let X(ϑ) = (µ(ϑ), σ(ϑ)) with
µ ∼ U(0, 1), σ ∼ U(1, L + 1) for some positive L and W ∼ N (0, 1), where U and N



Sobol’ indices for stochastic models 3

denote uniform and normal distributions, respectively. We consider an example of a
stochastic model of the form (1.1) as follows:

Y = f(X(ϑ), ω) = µ(ϑ) + σ(ϑ)W (ω), (1.4)

For L = 0, σ is deterministic; as the value of L increases, so does the uncertainty on
σ. We therefore expect the importance of σ to increase with L. This is confirmed by
direct calculations. The first order Sobol’ indices of Y with respect to both µ and σ
can be found analytically

Sµ(Y )(ω) =
1

1 + L2W (ω)2
and Sσ(Y )(ω) =

L2W (ω)2

1 + L2W (ω)2
,

and the corresponding expected values are given by

Eω{Sµ(Y )} =
1

L

√
π

2
exp

(
1

2L2

)
erfc

(
1√
2L

)
,

Eω{Sσ(Y )} = 1− Eω{Sµ(Y )},

where erfc is the complementary error function. Figure 1.1 illustrates the behavior of
Eω{Sσ(Y )} as a function of L confirming the increasing importance of σ with L.
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Fig. 1.1: Expected first order Sobol’ index of Y from (1.4) with respect to the uncertain
parameter σ as a function of L.

Reversing the order of operations between averaging and computing the Sobol’
indices leads to an entirely different picture which is at odds with the very nature of
(1.4). Indeed, the expected value of Y with respect to ω is simply Eω{Y } = µ and
therefore the first order Sobol’ indices are given by

Sµ(Eω{Y }) = 1 and Sσ(Eω{Y }) = 0.

In other words, σ appears insignificant regardless of L.
A fair amount of recent work on global sensitivity analysis for stochastic models

has been directed toward the analysis of stochastic chemical systems [8, 29, 36]. In [29],
for instance, the authors develop a method, based on polynomial chaos expansion and
a stochastic Galerkin formalism, for the analysis of variance of stochastic differential
equations driven by additive or multiplicative Wiener noise. In [36], a method is
proposed for the sensitivity analysis of stochastic chemical systems to the different
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reaction channels and channel interactions. There has also been significant progress in
local (derivative-based) sensitivity analysis for stochastic systems. References [17, 23,
35, 38, 39] provide a sample of such efforts. Finally, other approaches for sensitivity
analysis of stochastic systems rely on information theory [2, 25, 30, 31].

Surrogate models are an important component of our approach. While our frame-
work is agnostic to the choice of surrogates, practical considerations such as ease of
calculation and efficiency in high dimensions have to be taken into account. For many
surrogates, the Sobol’ indices can be evaluated at negligible cost or even analytically.
Further, since by construction

0 ≤ Su ≤ 1, for u ⊂ {1, 2, . . . , p},

the moments of the Sobol’ indices can be computed efficiently, as shown in Section 3.
Therefore, the most expensive of the steps 1–3 mentioned above is the construction
of the surrogate model itself.

We rely on Multivariate Adaptive Regression Splines (MARS) [12, 13, 18] for
surrogate construction. MARS is a nonparametric model which adaptively allocates
basis functions. This results in the surrogate itself screening variables prior to the ap-
plication of a more sophisticated tool from sensitivity analysis (such as Sobol’ indices).
MARS approximations tend to omit the less important variables. Consequently, the
Sobol’ indices of the influential variables are “biased high” while the indices of the
less influential variables are “biased low”. This apparent flaw is in fact a benefit for
global sensitivity analysis as the accurate identification of influential vs non-influential
variables is the goal; the Sobol’ indices are but a tool to obtain that information. We
demonstrate the efficiency of MARS in the context of global sensitivity analysis [45]
by comparing it to polynomial chaos [14, 28], see Section 2.

The proposed method is tested on two numerical examples in Section 4. The
first example is a synthetic problem based on a stochastic version of the well-known
g-function [44]. Inexpensive function evaluations and analytic expressions for the
Sobol’ indices facilitate the systematic assessment of the method. The second example
involves a stochastic biochemical reaction network exhibiting fast timescales and an
oscillatory behavior. We illustrate the performance of our method by estimating the
oscillatory time dependent behavior of the Sobol’ indices.

2. Surrogate models for sensitivity analysis. In this section, we focus on
first order Sobol’ indices and consider their computation using surrogate models;
similar analysis may be done for higher order Sobol’ indices.

2.1. Accuracy. Let f be as in (1.2) and S = (S1, S2, . . . , Sp) be its first order

Sobol’ indices. Further, let Ŝ = (Ŝ1, Ŝ2, . . . , Ŝp) be the corresponding indices for a

surrogate f̂ . Ideally, S and Ŝ would lead to the identification of the same set of
influential variables; various metrics can be considered for computing the discrepancy
between these two vectors of indices. It is often observed in practice that

∑p
k=1 Ŝk >∑p

k=1 Sk. As the Sobol’ indices measure the relative importance of the variables in any
given problem, we define a corresponding error E through the following normalization

E =

∥∥∥∥∥∥∥∥
S
p∑
k=1

Sk

− Ŝ
p∑
k=1

Ŝk

∥∥∥∥∥∥∥∥
∞

, (2.1)
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and refer to S/(
∑p
k=1 Sk) as the normalized indices. The choice of the norm, here `∞,

has little effects on the results presented in this paper; using the `1 and `2 norms lead
to similar conclusions. We are not aware of theoretical results regarding either E from
(2.1) or other similar error measures; error assessment is however discussed in [22] for
surrogates admitting local error bounds (which is not the case of most methods from
non-parametric statistics including MARS).

2.2. MARS. Let f and X be as in (1.2). We assume f ∈ L2(X ,B(X ), FX),
where FX denotes the distribution function of X, X ⊆ Rp is the support of the
distribution law of X, and B(X ) is the Borel sigma-algebra on X . MARS [12, 13] ap-
proximations to f are constructed through an adaptive regression procedure involving
truncated one-sided linear splines and products thereof. More precisely, let

C = {(xj − t)+, (t− xj)+ : t ∈ {xi,j}, i = 1, . . . , n, j = 1, . . . , p}

be a set of 2np elementary functions (assuming distinct input values), where {xi,j} is
the set of available data and, for ξ ∈ R, ξ+ = max{0, ξ}. The model is of the form

f̂(x) = β0 +

M∑
m=1

βm φm(x), (2.2)

where Φ = {φ1, φ2, ..., φM} is the basis (constructed in algorithm 1) and the βm’s are
obtained through standard linear regression.

Algorithm 1 MARS basis

Φ = {1}
while |Φ| ≤ max size (max size > M) do

find (`?, j?, i?) corresponding to the best approximation of the form

f̂(x) ∈ span{Φ, φ`(x)(xj − t)+, φ`(x)(t− xj)+ : φ` ∈ Φ, t ∈ {xi,j}}
Φ = Φ ∪ {φ`?(x)(xj? − xi?,j?)+, φ`?(x)(xi?,j? − xj?)+}

end while
Φ = {φ1, φ2, ..., φ|Φ|}
while |Φ| > M do

find j corresponding to the best approximation of the form
f̂(x) ∈ span{Φ \ {φj}}
Φ = Φ \ {φj}

end while

Note: M is chosen by the algorithm, not by the user. Statistical tests are used to
determine when to end the while loops [12]. We use M to simplify the presentation
of the algorithm which is more complex in its actual implementation.

MARS is often used with the lowest degree of interaction [34], namely one, in
which case it corresponds to an additive model. This is the approach we adopt below.
We use the R function earth [34] to build MARS surrogates. The additive structure
of a MARS surrogate with degree of interaction one enables analytic computation of
the Sobol’ indices. As we work exclusively with additive MARS surrogates, we focus
on first order Sobol’ indices–higher order Sobol’ indices would carry no additional
information [43]. However, higher order and total Sobol’ indices could also be con-
sidered in the proposed framework provided the surrogate model incorporates mixed
terms, i.e., interactions between different uncertain parameters.
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The additive MARS model can be represented as

f̂(x) = β0 +

p∑
k=1

Mk∑
j=1

βk,j φk,j(xk), (2.3)

where Mk is the number of basis functions depending on xk. Let Ik,j =
∫
φk,jdFx be

the mean of φk,j ; we can then rewrite (2.3) as

f̂(x) =

β0 +

p∑
k=1

Mk∑
j=1

βk,jIk,j

+

p∑
k=1

Mk∑
j=1

βk,j (φk,j(xk)− Ik,j), (2.4)

which is the ANOVA decomposition of f̂ . The first order Sobol’ indices are obtained

analytically by computing Vk =
∫ (∑Mk

j=1 βk,j (φk,j(xk)− Ik,j)
)2

dFx for k = 1, . . . p

and setting Sj = Vj/(
∑p
k=1 Vk).

2.3. A numerical example. In this subsection we demonstrate the utility of
MARS to compute Sobol’ indices for problems of the form (1.2). To this end, we
compare results obtained using MARS against those computed using a polynomial
chaos (PC) expansion, which is a well known tool for constructing surrogate models.

Before presenting the numerical test, we briefly recall some basics regarding PC
expansions. The PC expansion of f ∈ L2(X ,B(X ), FX) is a series expansion of the
type f =

∑∞
k=0 ckΨk, where {Ψk}∞0 is a set of p-variate polynomials forming an

orthogonal basis of L2(X ,B(X ), FX). The PC basis is dictated by the statistical dis-
tribution of the uncertain parameters X1, . . . , Xp. For example, if X1, . . . , Xp are iid
uniform random variables, the PC basis can be taken as p-variate Legendre polyno-
mials. Implementation is done through truncated expansions of the form

f ≈
npc∑
k=0

ckΨk, (2.5)

where the number of retained basis functions npc depends on the truncation strategy.
For instance, the case of basis functions of total order not exceeding r results in
npc = (p+ r)!/(p!r!).

Computation of PC coefficients can be a difficult problem for computationally
extensive models [28, 51]. This has led to development of various efficient approaches
for computing PC expansions for computationally intensive mathematical models in
recent years; see e.g., [5, 9, 6, 50, 21].

For the numerical illustrations below, we compute the PC expansion through a
regression based method that encourages sparsity by controlling the `1 norm of the
PC coefficient vector

min
c∈Rnpc

‖Λc− d‖2, subject to
1

npc

npc∑
k=0

|ck| ≤ τ, (2.6)

where Λ ∈ Rn×npc , Λjk = Ψk(Xj), and d =
(
f(X1), . . . , f(Xn)

)
. We use the

solver [47] for the solution of the above optimization problem, with τ = 0.025, and
compute a third order PC expansion. For the purposes of sensitivity analysis, once a
PC expansion is available, the Sobol’ indices can be computed analytically [1, 7, 46].
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For our comparison we consider the classical g-function initially proposed by I.
Sobol’ in [44]; this corresponds to the synthetic function (4.1) of Section 4 with the
random parameters replaced by their expected values, i.e.,

f(X(ϑ)) =

15∏
k=1

|4Xk(ϑ)− 2|+ Eω{ak}
1 + Eω{ak}

, (2.7)

where the ak’s are given in Table 4.1. We construct MARS and PC surrogates for
sensitivity analysis by sampling the model n times, through a Latin Hypercube design,
with n = 100, 150, 200, . . . , 950, 1000. Because of randomness in the data sampling,
the experiment is repeated 500 times for each fixed n and the errors (2.1) are averaged.
Figure 2.1 (left) displays the resulting average error Ē as a function of n. These
errors can be interpreted by considering Figure 2.1 (right) in which we show the
normalized exact indices alongside their normalized MARS and PC approximations
for a representative sample of size n = 600.
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Fig. 2.1: Left: average errors from (2.1) for the Sobol indices. The empirical con-
vergence rates are 0.65 for MARS and 0.51 for PC. Right: bar plots comparing the
normalized exact indices with their normalized MARS and PC approximations for a
representative sample of size n = 600.

We observe that in the case of (2.7) and for the implementations described above,
MARS and PC perform comparably for the purpose of global sensitivity analysis
when provided an equal number of function evaluations. In particular, the average
error improves for both methods as the sample size is increased. We note that, in
the present example, MARS is found to have a slight edge in terms of flexibility and
accuracy, when compared to PC-based computation of Sobol indices using the above
implementations.

3. Formulation and Method. We start by providing a precise mathematical
definition of the function f in (1.1). Let (Θ, E , λ) be the probability space associated
with the uncertain parameters in (1.1) and X : Θ→ Rp be the corresponding random
vector. In addition, we consider another probability space, (Ω,F , ν), that carries the
stochasticity of a model. The corresponding product space

(Θ, E , λ)⊗ (Ω,F , ν) = (Θ× Ω, E ⊗ F , λ⊗ ν),

can be constructed in a standard fashion: E ⊗ F is the product σ-algebra and λ⊗ ν
is the product measure. We let f be a function defined on X × Ω, where X ⊆ Rp
is the support of the distribution law of X. For the type of stochastic problems
we consider here, the response functions are of the form Y (ϑ, ω) = f(X(ϑ), ω). We
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assume Y : Θ × Ω → R belongs to L2(Θ × Ω, E ⊗ F , λ ⊗ ν). For a fixed ω ∈ Ω, we
may consider f(X(·), ω) : Θ→ R as a deterministic function of uncertain parameters
and compute the Sobol’ indices (1.3) for each ω ∈ Ω. This defines the functions

Su : Ω→ [0, 1],

ω 7→ Su(f(X(·), ω)), u ⊂ {1, 2, . . . , p}.

Invoking the remarks in Theorem 1.7.2 of [10] and elementary properties of measurable
functions, it can be seen that the Su’s are F-measurable functions, i.e., they are
random variables.

As illustrated by Example 1.1, the distribution of the indices {Su(ω)}u⊂{1,2,...,p}
may contain significant information needed for sensitivity analysis. Computing these
sensitivity indices is, in general, costly. For instance, to compute all p first order
indices {Sk(ω)}pk=1 through the sampling based method from [41] with N Monte
Carlo samples requires (p + 1)N evaluations of f(X(·), ω) for each fixed ω ∈ Ω.
To characterize the statistical properties of the indices, an additional Monte Carlo
sampling over Ω has to be performed. Assuming a sample size of m in Ω leads to a
total of

Tsamp = m(p+ 1)N (3.1)

evaluations of the stochastic response function f . Such a cost is prohibitive in many
applications where N might be of the order of tens of thousands.

We use surrogate models to reduce the cost. Namely, for each fixed ω, we construct
f̂(X, ω) ≈ f(X, ω). The construction of the surrogate f̂ requires an ensemble of
function evaluations, {f(Xj , ω)}nj=1, where {Xj}nj=1 are realizations of the uncertain
parameters, drawn from the distribution law FX .

The construction of an efficient surrogate only requires n function evaluations
where n is much smaller than the number of Monte Carlo samples, i.e., n � N . In
addition, and as noted earlier, most surrogates allow inexpensive or even analytic
calculation of the Sobol’ indices. This reduces the total cost from (3.1) to

Tsurrogate = mn (3.2)

evaluations of f , where n is significantly smaller than (p+ 1)N . While the computa-
tional cost (3.2) appears to be independent of the uncertain parameter dimension p,
it should be noted that the choice of n depends on p. This dependence is linked to
the surrogate model itself. An adaptive surrogate model such as MARS can exploit
the problem structure and thus tempers this dependence.

Higher order indices may also be computed and similar cost analysis may be done.
We summarize the main steps of our method for computing general sensitivity indices
for stochastic models in Algorithm 2.

The algorithm returns m realizations of Sobol’ indices of f̂(X, ω), i.e., Ŝu(ω), u ⊂
{1, 2, . . . , p}. Let us denote these realizations Ŝiu

iid∼ Ŝu, i = 1, . . . ,m, u ⊂ {1, 2, . . . , p}
and consider the sample r-th moment

µ̂[r]
u (ω) =

1

m

m∑
i=1

(Ŝiu(ω))r. (3.3)

Clearly, we have

Eω{µ̂[r]
u } = Eω{(Ŝu)r} and Varω{µ̂[r]

u } =
Varω{(Ŝu)r}

m
, u ⊂ {1, 2, . . . , p}.
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Algorithm 2 Efficient approximation of {Su}u⊂{1,2,...,p}
for i from 1 to m do

Randomly generate ωi ∈ Ω
Generate realizations {Xj}nj=1 of the uncertain parameter vector
Evaluate f(Xj , ωi), for each j = 1, . . . , n

Construct surrogate f̂(X, ωi) ≈ f(X, ωi) using data set (Xj , f(Xj , ωi))
n
j=1

Compute Ŝu(ωi) using the surrogate f̂(X, ωi) for u ⊂ {1, 2, . . . , p}
end for
Approximate statistical properties of Su using {Ŝu(ωi)}mi=1 for u ⊂ {1, 2, . . . , p}

The error in approximating Eω{(Su)r} can be decomposed into Monte Carlo error
using m samples from Ω and surrogate approximation error using n samples from Θ.

Proposition 3.1. Let µ̂
[r]
u , Su, and Ŝu be as defined above. Then,

1. Eω{µ̂[r]
u − Eω{(Su)r}} = Eω{(Ŝu)r − (Su)r},

2. Varω{µ̂[r]
u − Eω{(Su)r}} ≤ Eω{(Ŝu)r}(1− Eω{(Ŝu)r})/m ≤ 1

4m
.

Proof. The first statement follows from

Eω{µ̂[r]
u − Eω{(Su)r}} = Eω{µ̂[r]

u − Eω{(Ŝu)r}+ Eω{(Ŝu)r} − Eω{(Su)r}}

=
(
Eω{µ̂[r]

u } − Eω{(Ŝu)r}
)

+ Eω{(Ŝu)r − (Su)r} = Eω{(Ŝu)r − (Su)r}.

For the second statement, we note

Varω{µ̂[r]
u − Eω{(Su)r}} = Varω{µ̂[r]

u }

=
Varω{(Ŝu)r}

m
≤ Eω{(Ŝu)r}(1− Eω{(Ŝu)r})

m
≤ 1

4m
,

where the inequalities follow from the Theorem 2 in [3] and the fact that Ŝu is sup-
ported on [0, 1].

To understand the implication of the above result, consider the point estimator
for the expected value of Su(ω) given by the sample mean:

µ̂[1]
u (ω) =

1

m

m∑
i=1

Ŝiu(ω). (3.4)

Proposition 3.1 characterizes the bias of this estimator as the approximation error
due to the surrogate, i.e., Eω{Ŝu − Su}. Further, since, Eω{(Ŝu)r} ∈ [0, 1], for every
r ≥ 1, the second statement of Proposition 3.1 indicates that even a modest value of
m, say in the order of a few hundreds, can be very effective in obtaining an estimator
with small variance. Finally, an estimate of the error can be obtained in the L2 norm
by using the elementary definition of the variance and Proposition 3.1

Eω{(µ̂[1]
u − Eω{Su})2} ≤ Eω{Ŝu − Su}2 +

1

4m
.

4. Numerical results. The following two examples illustrate some of the points
raised in the previous section: (i) the convergence of the estimators as a function of n
(number of samples to build MARS) and m (number of samples over Ω) and (ii) the
effect of the surrogate bias on the statistical distribution of the Sobol’ indices.
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4.1. The stochastic g-function. Let (Θ, E , λ) and (Ω,F , ν) be two probability
spaces and let X : Θ→ R15 and W : Ω→ R be two random variables such that

X = [X1, . . . , Xp] with Xi
iid∼ U(0, 1), i = 1, . . . , p,

W ∼ Beta(5, 3);

in other words, we have

λ
(
X ∈ (c1, d1)× · · · × (c15, d15)

)
=

15∏
k=1

(dk − ck) for any 0 ≤ ck ≤ dk ≤ 1, k = 1, . . . , p,

ν(W ∈ (a, b)) = K

∫ b

a

t4(1− t)2 dt for any a, b, 0 ≤ a ≤ b ≤ 1,

with a normalization factor K = Γ(5 + 3)/
(
Γ(5)Γ(3)

)
= 105.

We now define a stochastic version of the g-function

f(X(ϑ), ω) =

15∏
k=1

|4Xk(ϑ)− 2|+ ak(W (ω))

1 + ak(W (ω))
, (4.1)

where Xk(ϑ) is the kth component of X(ϑ) and the parameters ak : [0, 1] → R,
k = 1, . . . , 15, are chosen to create a variety of means and variances for the Sobol’
indices. Analytic expressions for the ak’s are given in Table 4.1.

a1(t) = (1− t)5 a2(t) = t5 a3(t) = sin2(8t)

a4(t) = sin2(10(1− t)) a5(t) = cos2(10(1− t)) a6(t) = cos2(8t)

a7(t) = (1.5− t)2 a8(t) = (.5 + t)2 a9(t) = (3− t)2

a10(t) = (2 + t)2 a11(t) = (3.5− t)2 a12(t) = (2.5 + t)2

a13(t) = (4− t)2 a14(t) = (3 + t)2 a15(t) = (4 + t)2

Table 4.1: Expressions of the parameters ak, k = 1, . . . , 15, for the stochastic g-
function example (4.1).

We compute the Sk’s analytically and subsequently evaluate Eω{Sk}, k = 1, . . . , 15,
using numerical quadratures. The trapezoidal rule with 106 quadrature nodes is used
to ensure accurate computation of the expectations.

In our first test, we study the error approximating Eω{Sk}, k = 1, . . . , 15, as a
function of the number of surrogate samples n. For n = 100, 150, . . . , 950, 1000, the

µ̂
[1]
k ’s from (3.4) are obtained from Algorithm 2. Samples from Θ are taken using

a Latin Hypercube design. To remove dependence upon sampling, we generate 500
different datasets for each fixed n and define the error as the average errors over these
datasets

Ē =
1

500

500∑
`=1

∥∥∥∥∥∥∥∥
Eω{S}
p∑
k=1

Eω{Sk}
− µ̂(`, n)

p∑
k=1

µ̂k(`, n)

∥∥∥∥∥∥∥∥
∞

, (4.2)
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Fig. 4.1: Convergence of the expected Sobol’ indices for the stochastic g-function
(4.1). Left: average error Ē (4.2) in the normalized expectation of the indices as
the surrogate sampling size n varies; the empirical convergence rate is 0.59. Right:
comparison of normalized expectation of the indices for a representative sample size
of n = 600.

where µ̂(`, n) = [µ̂1(`, n), µ̂2(`, n), . . . , µ̂p(`, n)] and each µ̂k(`, n) is a realization of

the random variable µ̂
[1]
k using the `th dataset of size n. Figure 4.1 (left) shows the

error Ē as a function of n while Figure 4.1 (right) compares the normalized expected
Sobol’ indices of MARS with the normalized exact indices for a representative sample
of size n = 600. We study the effect of m in (3.4) in Figure 4.2, which shows the

convergence of µ̂
[1]
1 and µ̂

[1]
3 as the number of samples m increases. The results in

Figure 4.2 are computed using the sample of size n = 600 from Figure 4.1 (right).
The first and third variables are chosen because they have the largest expectation
and variance, respectively. These results confirm both the efficiency of MARS as a
surrogate and the fast convergence of the expectation of the indices with only 200
samples in Ω.

0 50 100 150 200

0.
1

0.
15

0.
2

m

µ̂
[1
]

Fig. 4.2: Dependency of µ̂
[1]
1 (red) and µ̂

[1]
3 (black) on the number of samples m in Ω.

Accurate approximations of the distributions of the Sobol’ indices can be obtained
from sampling their analytical expressions; as above, we take 106 samples from Ω. We
use these highly accurate approximations to assess convergence in distribution of the
Sobol’s indices computed through our proposed method.

For each ωi, i = 1, . . . , 200, one thousand points are sampled from the uncertain
parameter space; these are subsampled for n = 100, 150, . . . , 950, 1000 and the result-
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Fig. 4.3: Convergence in distribution of the Sobol’ indices for the g-function (4.1).
Top row; S1, index with the largest expectation; bottom row: S3, index with the
largest variance. Left: heat map of the histograms as the surrogate sampling size
n varies. Each vertical slice is a histogram for a fixed n; right: comparison of the
“exact” (see text) and approximation distributions using n = 1000.

ing histograms are evaluated. Figure 4.3 illustrates convergence in distribution of both
S1, the index with largest expectation, and S3, the index with largest variance. For
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Fig. 4.4: QQ plot of the Sobol’ indices of the eight most important variables. Lying
above or below the line indicates being biased high or low respectively.

S1, the histograms appear to converge, see Figure 4.3, top left; however, Figure 4.3,
top right, shows that they converge to a distribution that is biased high. This results
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from the built-in adaptivity of MARS which causes an inherent bias toward the more
important variables. As mentioned in Section 1, this is a useful feature for the pur-
pose of dimension reduction. The bottom row of Figure 4.3 illustrates the unbiased
convergence in distribution of S3. Figure 4.4 further illustrates the bias from MARS
with a QQ plot of the eight most important variables. The “exact” distribution was
generated using 106 samples from the analytic expressions of the Sobol’ indices. Lying
along the line indicates being unbiased; lying below or above the line indicates being
biased low or high respectively. This plot demonstrates the general trend that the
most important variables are biased high while the less important variables are biased
low; S6 and S8 fail to follow this trend.

4.2. Genetic oscillator. We apply the proposed stochastic sensitivity analysis
method to the study of a circadian oscillator mechanism from biochemistry. The
problem is detailed in [48] and is commonly referred to as the genetic oscillator. It
corresponds to a biochemical reaction network consisting of nine species and sixteen
reactions. The nine system species are described in Table 4.2.

DA, D′A activator genes

DR, D′R repressor genes

A, R activator and repressor proteins

MA, MR mRNA of A and R

C complex species

Table 4.2: Nine species of the genetic oscillator problem from [48].

Denoting the number of molecules of each of the species with the corresponding
symbol, the state vector of the system is given by

[DA,D
′
A,A,D

′
R,DR,R,MA,MR,C] ∈ R9.

The initial state is taken as

[1, 0, 0, 0, 1, 0, 0, 0, 0],

that is, initially, DA = DR = 1, and all the other variables are set to zero.
The reactions and reaction rates are listed in Table 4.3 which also includes the

nominal reaction rates from [48]. We consider parametric uncertainties in the reaction
rate constants; that is, the uncertain parameter vector for the system is given by

X = [γA, θA, γR, θR, γC , αA, αR, α
′
A, α

′
R, βA, βR, δMA, δA, δMR, δR] ∈ R15.

We assume that the coordinates of X, i.e., the reaction rates, are iid uniform random
variables centered at their respective nominal values given in Table 4.3, and with a
10% perturbation around the mean.

With fixed reaction rates the time evolution of the state vector is stochastic.
The sequence of reactions is random with probabilities parameterized by the reaction
rates and state vector; see e.g., [11]. We compute realizations of the genetic oscillator
through Gillespie’s stochastic simulation algorithm (SSA) [15, 16, 11]. To fix a real-
ization of the inherent stochasticity and sample the reaction rates we generate and



14 J.L. HART, A. ALEXANDERIAN, AND P.A. GREMAUD

reaction # reaction rate (nominal value)

1 DA + A → D′A γA (1.0)

2 D′A → DA + A θA (50.0)

3 DR + A → D′R γR (1.0)

4 D′R → DR + A θR (100.0)

5 A + R → C γC (2.0)

6 DA → DA + MA αA (50.0)

7 DR → DR + MR αR (0.01)

8 D′A → D′A + MA α′A (500.0)

9 D′R → D′R + MR α′R (50.0)

10 MA → MA + A βA (50.0)

11 MR → MR + R βR (5.0)

12 MA → ∅ δMA (10.0)

13 A → ∅ δA (1.0)

14 MR → ∅ δMR (0.5)

15 R → ∅ δR (0.2)

16 C → R δA (same as react. 13)

Table 4.3: Reactions and reaction rates for the genetic oscillator system [48].

save a sequence of random numbers to input to SSA for each sample of the reaction
rates. This corresponds to evaluating f(Xj , ωi), for each j = 1, . . . , n, in Algorithm 2;
ωi corresponds to the fixed sequence of random numbers.

Our goal is to evaluate the sensitivity of the number of C molecules to the un-
certain reaction rates. Letting the probability spaces (Θ, E , ν) and (Ω,F , µ) carry
the intrinsic and the parametric randomness of the system, respectively, we note that
C : Θ×Ω× [0, Tfinal]→ R is a stochastic process. Figure 4.5 illustrates the dynamics
of C = C(ϑ, ω, t) by displaying four typical realizations of the stochastic process when
the uncertain parameters are fixed at their nominal values. The differing periods and
small oscillations are a result of the inherent stochasticity of the system.

We use Algorithm 2, with n = 400, m = 200, and MARS as the surrogate model.
By subsampling Θ from our existing data, we assess convergence in n and determine
that n = 400 is an adequate sample size for this application. Moreover, thanks to
Proposition 3.1, a relatively small m is sufficient to ensure a small variance of the
estimators of the Sobol’ indices.

Figure 4.6, left, shows the time evolution of the expectation of the Sobol’ indices;
for each index, the expectation becomes periodic after an initial transient. Moreover,
we observe that the reaction rates βR and α′R have the most notable contribution
to the model variance during the transient regime. After the transient regime, the
degradation rates for the proteins A and R, i.e., δA and δR, are the most important
factors. Figure 4.6, top right, displays the time evolution of the expectation of the
Sobol’ indices for these two reaction rates. We note in particular that δA and δR
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Fig. 4.6: Evolution of the Sobol’ indices for the genetic oscillator. Left: expectation
of the Sobol’ indices. Each row corresponds to a specific reaction rate. Top right:
time evolution of the expectation of the Sobol’ indices for the two most important
reaction rates. Bottom right: time evolution of the histogram of the Sobol’ index of
δR. Each vertical slice is a histogram for the Sobol’ index of δR at a given time.

periodically swap role of the most dominant contributor to variance of C after the
intial transient regime. The time-dependent behavior of the statistical distribution of
sensitivity index for δR is illustrated in Figure 4.6, bottom right.

The computational cost of the above analysis is n × m = 400 × 200 = 80, 000
SSA simulations. While this is still a significant number of function evaluations, it
should be contrasted with the complexity of traditional sampling based method for
computing the Sobol’ indices, given in (3.1), which, for such a stochastic model, would
be orders of magnitudes larger.



16 J.L. HART, A. ALEXANDERIAN, AND P.A. GREMAUD

5. Summary and future work. We have proposed and investigated a strat-
egy for the global sensitivity analysis of stochastic models. Within this framework,
a thorough analysis of variable importance is obtained by computing the statistical
properties of the Sobol’ indices. The proposed approach requires sampling in the
product of probability spaces carrying the model stochasticity and parametric uncer-
tainty. The number of samples in the uncertain parameter space is driven by the
choice of surrogate model construction, and can be controlled via the use of adaptive
surrogates such as MARS. We provide theoretical and numerical evidence that the
moments of the indices can be evaluated with only a modest number of samples in
the stochastic space.

As mentioned in the introduction, one may also consider performing sensitivity
analysis on Eω{f(X, ω)} directly. However, as illustrated in Example 1.1, this ap-
proach may result in a significant loss of information. The variance of the Monte
Carlo estimator for Eω{f(X, ω)} is Varω{f(X, ω)}/m, which in general is not known
a priori. In contrast, the variance of the Monte Carlo estimator for Eω{Su(ω)} in our
proposed framework is bounded above by 1/(4m) independently of f . This gives our
proposed method theoretical and computational advantages.

Our numerical results focus on computing first order Sobol’ indices and MARS was
shown to be an efficient surrogate for this task. Higher order indices may be computed
in our proposed framework as well, provided a sufficiently accurate surrogate model
is available.

In our future work, we aim to address the following:
• Thorough analysis of the role played by the surrogates both in terms of acting

as possible screening mechanisms (as is the case for MARS) and regarding
index approximation errors.

• Explore the use of other surrogates to compute higher order indices in our
framework.

• Convergence analysis of the distributions of the Sobol’ indices and study of
what can be inferred from them in light of surrogate induced biases.
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