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SINGULARITY FORMATION FOR THE COMPRESSIBLE

EULER EQUATIONS

GENG CHEN, RONGHUA PAN, AND SHENGGUO ZHU

Abstract. It is well-known that singularity will develop in finite time
for hyperbolic conservation laws from initial nonlinear compression no
matter how small and smooth the data are. Classical results, including
Lax [14], John [13], Liu [22], Li-Zhou-Kong [16], confirm that when ini-
tial data are small smooth perturbations near constant states, blowup
in gradient of solutions occurs in finite time if initial data contain any
compression in some truly nonlinear characteristic field, under some
structural conditions. A natural question is that: Will this picture keep
true for large data problem of physical systems such as compressible
Euler equations? One of the key issues is how to find an effective way
to obtain sharp enough control on density lower bound, which is known
to decay to zero as time goes to infinity for certain class of solutions. In
this paper, we offer a simple way to characterize the decay of density
lower bound in time, and therefore successfully classify the questions
on singularity formation in compressible Euler equations. For isentropic
flow, we offer a complete picture on the finite time singularity formation
from smooth initial data away from vacuum, which is consistent with
the small data theory. For adiabatic flow, we show a striking observation
that initial weak compressions do not necessarily develop singularity in
finite time. Furthermore, we follow [7] to introduce the critical strength
of nonlinear compression, and prove that if the compression is stronger
than this critical value, then singularity develops in finite time, and oth-
erwise there are a class of initial data admitting global smooth solutions
with maximum strength of compression equals to this critical value.

1. Introduction

The compressible Euler equations are the oldest system of nonlinear PDEs
modeling the motion of gases. Under Lagrangian coordinates, the compress-
ible Euler equations in one space dimension take the following form
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τt − ux = 0 , (1.1)

ut + px = 0 , (1.2)
(1
2
u2 + E

)
t
+ (u p)x = 0 , (1.3)

where x is the Lagrangian spatial variable, t ∈ R
+ is the time. τ = ρ−1

denotes the specific volume for the density ρ. p, u and E stand for the
pressure, the velocity, and the specific internal energy, respectively. For
polytropic ideal gases, it holds that

p = K e
S
cv τ−γ , E =

pτ

γ − 1
, γ > 1 , (1.4)

where S is the entropy, K and cv are positive constants, see [9] or [30]. For
most gases, the adiabatic exponent γ lies between 1 and 3, that is 1 < γ < 3.

For C1 solutions, it follows that (1.3) is equivalent to the “entropy equa-
tion”:

St = 0 . (1.5)

Therefore, when entropy is constant, the flow is called isentropic, then (1.1)
and (1.2) become a closed system, known as the p-system (or isentropic
Euler equations)

τt − ux = 0 , (1.6)

ut + px = 0 , (1.7)

with
p = K1 τ

−γ , (1.8)

where, K1 > 0 is a constant.
Compressible Euler equations (1.1)–(1.3) and p-system (1.6)–(1.7) are two

of the most important physical models for hyperbolic conservations laws

ut + f(u)x = 0 , (1.9)

where u = u(x, t) ∈ R
n is the unknown vector and f : Rn → R

n is the
nonlinear flux. It is a general belief that system (1.9) typically develops
discontinuity singularity, i.e. shock wave, no matter how small and smooth
the initial data are. This belief has been justified in a series of beautiful
works by Lax [14] in 1964 for general systems with two unknowns, and by
[13, 16, 17, 22] for general n × n systems. These results confirm that for
general strictly hyperbolic systems, if the initial datum is a generic small
smooth perturbation near a constant equilibrium, then the initial compres-
sion (negative spatial derivatives of gradient variables) in any truly nonlinear
(not weakly linearly degenerate [16]) characteristic field develops singularity
in finite time. Such lack of regularity is the major difficulty in analyzing
these systems. With enormous efforts, the well-posedness theories of small
total variation solutions for (1.9) including compressible Euler equations and
p-system are fairly well understood [1, 10, 12]. The next natural question
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is on the theory of large data, which is, however, widely open. Even for
some important physical systems, such as compressible Euler equations and
p-system, the basic question, like if singularity will form in finite time, is not
completely understood when the smallness condition on the initial data is
missing. We will address this open problem in this paper for p-system and
full compressible Euler equations.

The beautiful result of Lax [14] along with some expositions such as [11]
left readers an impression that, at least for p-system, for C1 initial data away
from vacuum, singularity will form in finite time if and only if there is some
compression (negative spatial derivatives of gradient variables, we refer the
readers to Remark 2.4 below for the definition) initially, without smallness
assumption. This, however, is not quite accurate. When adopting [14] to p-
system, the control on a crucial term 1

c(v) for the sound speed c(v) =
√−pv is

very important. This term is singular if density tends to zero. On the other
hand, the L∞ estimate through Riemann invariants offers an upper bound of
density, without control on the lower bound. In the case of small solutions,
one can actually choose the smallness of the perturbation carefully, so that
the perturbation remains small comparing to the positive lower bound of
initial density uniformly in time. Such choice of smallness gives a positive
constant lower bound (say one half of the lower bound of initial density) for
density. However, when initial data are large, this becomes a serious issue.
In general, it is not possible to have a positive constant lower bound for
density. Indeed, a Riemann problem connecting two extreme sides of two
interacting strong rarefaction waves generates vacuum instantaneously when
t > 0, [30]. Smoothing out this data implies the existence of a C1-solution
such that infx ρ(x, t) → 0 as t → +∞. An example of Lipschitz continuous
solutions can be found in the Section 82 in [9] using a method originally

discussed in [28], where the density decays in time at a rate of O(1)
1+t

. If one

looks into this problem more carefully, the argument in [14] is valid only for
p-system with large initial data and with pressure law (1.8) when γ ≥ 3,
which does not include the most practical case 1 < γ < 3 in gas dynamics.
In fact, when γ ≥ 3, the control of lower bound of density is not needed,
see also a generalization to full Euler equations by Chen, Young and Zhang
[7]. Therefore, the real matter of the open problem is to establish the finite
time singularity formation for both p-system and full compressible Euler
equations for the most physical case 1 < γ < 3. A more in-depth discussion
on Lax’s result [14] will be presented in section 2 of this paper.

The main purpose of this paper is to establish the finite time singularity
formation result for both p-system and full Euler equations without the
smallness assumption on initial data, when gases are in physical regime, i.e.,
1 < γ < 3. We introduce a brand new elementary and neat approach to
establish the time-dependent density lower bound, which is good enough
to achieve our characteristic analysis leading to the finite time singularity
formation results even when initial data are large.



4 G. CHEN, R. PAN, AND S. ZHU

For isentropic flow with γ-law pressure, our result shows that if the initial
datum is smooth with a positive lower bound for density, then the classical
solution of the Cauchy problem of p-system breaks down in finite time if
and only if there is an initial compression. The precise statement is in
Theorem 2.3, and the definitions of rarefaction and compression are given
in Remark 2.4. We emphasize that the approach introduced in the proof
of this theorem is neat and elementary, but also very powerful. The key
new estimates are given by Lemmas 2.5 and 2.6. Note the time dependent
lower bound we proved for density is not in the optimal order, but it is good
enough for the singularity formation problem. Furthermore, this approach
is applicable to the full Euler equations for non-isentropic flows.

We now make a brief remark on the time-dependent lower bound for
density. In many literatures, using Eulerian formulation, and mass equation,
the following estimate of density

inf
x
ρ0(x) exp{−

∫ t

0
‖ux′(·, σ)‖L∞ dσ} ≤ ρ(x, t),

has been obtained for x′ the Eulerian space variable, c.f. [15]. We note
that, since there is a possibility that the blowup of gradient of u and the
vanishing of density may happen at the same time, it is very difficult to
use this estimate in the argument of proving global regularity or singularity
formation. When initial data are purely rarefactive (see Remark 2.4 below
for definition), L. Lin [18] proved that the density of any Lipschitz solution
of p-system has a positive lower bound of order 1

1+t
through a relatively

complicated approximation generated by a polygonal scheme. This result,
however, does not apply to the case when initial data contain compression,
which is the mechanism for singularity formation. One of the main con-
tributions of this paper is to provide a good enough new time-dependent
estimate on the density lower bound for generic C1 initial data away from
vacuum, when 1 < γ < 3. The idea we developed here is simple and neat,
but does not offer the optimal rate 1

1+t
, which is achieved through a much

more complicated method in our preprint [4] for generic C1 initial data away
from vacuum.

From the discussion above, we see that for isentropic flow, the singularity
formation theory is not different no matter the data is small or large. One
may thus expect a similar picture for the non-isentropic flow. However, the
life is very complicated for non-isentropic flow. When initial data are small,
under a so-called nonlinear wave condition, [16, 17, 22] showed that if the
initial datum is a generic small smooth perturbation near a constant equilib-
rium, then the initial compression in any truly nonlinear (not weakly linearly
degenerate [16]) characteristic field develops singularity in finite time, like
in the p-system. When initial data are large, this expectation is not true
for full Euler equations. In Section 3.5, we will provide an explicit exam-
ple showing that for certain class of non-trivial initial data, which might
be even periodic in space variable with non-zero derivatives, global classical
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solutions exist. This is in a sharp contrast to the isentropic case, where the
non-trivial periodic initial data lead to finite time singularity formation of
classical solutions. We remark that this class of initial data do not satisfy
the so-called nonlinear wave condition in the blowup results of [22]. There-
fore, in order to prove finite time singularity formation results for full Euler
equations with large data, it is natural to impose some conditions to exclude
this class of initial data, see also some related discussion in [7]. In Section
3, we will identify such kind of conditions and successfully establish the fi-
nite time singularity formation results when initial compression is merely
stronger than a critical value, which can be attained by the global classical
solutions constructed in our example. More detailed discussion will also be
provided at the end of this paper. For full Euler system, singularity forma-
tion results were proved in [2, 7] for γ ≥ 3 when the density lower bound
is not needed, and for 1 < γ < 3 with the help of an a priori assumption
on the density lower bound. For small solutions, similar to isentropic case,
smallness conditions give a positive constant lower bound for density, say
one half of initial density lower bound. For large solutions, sufficiently good
time-dependent density lower bound estimate is needed for the proof of finite
time singularity formation, when 1 < γ < 3. Our idea introduced for isen-
tropic case can be generalized to full Euler system, and gives a good enough
estimate on density lower bound. The singularity formation for p-system
with general pressure law is discussed in the appendix.

When some restrictions, such as compactness of support of the initial
data near certain constant equilibrium, are imposed, there are some won-
derful results on the finite time singularity formation for compressible Euler
equations in higher space dimensions. We refer the readers to some of these
results, see [24, 27, 29] for classical compressible Euler equations, and see
[8, 26] for relativistic Euler equations. The results in this paper in one
space dimension offer more complete and clear pictures on the mechanism,
occurrence, and the type of singularity formations.

2. Singularity formation for p-system

In this section, we study singularity formation for p-system (1.6)∼(1.8).
The proof of our main theorem (Theorem 2.3) is based on the study of Lax’s
characteristic decomposition established first for general hyperbolic system
with two unknowns in [14]. For the readers’ convenience, in Subsection 2.1,
we first review this well-known result of Lax [14]. Then in Subsection 2.2,
we present a careful adoption of Lax’s method in [14] to p-system with γ-law
pressure. We will then explain why Lax’s result [14] for small smooth initial
data for general 2× 2 system actually offers the singularity formation result
for p-system without smallness restrictions on initial data for γ-law pressure
provided that γ ≥ 3. We will also spell out why his result does not include
the most physical cases when 1 < γ < 3. In the latter case, a careful study
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on the lower bound of density is needed, which is achieved in Subsection 2.3,
leading to the first main result of this paper Theorem 2.3.

2.1. Lax’s result for 2×2 systems. This part is basically taken from Lax’s
paper [14] in 1964. Consider a system of two first-order partial differential
equations

ut + fx = 0 ,

vt + gx = 0 ,
(2.1)

where f and g are functions of u and v. Carrying out the differentiation in
(2.1), we obtain

ut +Aux = 0 , (2.2)

where

u =

(
u

v

)
and A =

(
fu fv
gu gv

)
.

Suppose that this system is strictly hyperbolic, i.e. the matrix A has real
and distinct eigenvalues λ < µ for relevant values of u and v. Use lλ and lµ
to denote the left eigenvectors of A corresponding to eigenvalues λ and µ,
respectively.

Multiplying (2.2) by lλ and lµ respectively, we have

lλ · u′ = 0 , lµ · u8 = 0 ,

where we denote

′ = ∂t + λ∂x , 8 = ∂t + µ∂x .

Suppose there exist integrating factors φ and ψ such that φIλ = ∇(u,v)w(u, v),
and ψIµ = ∇(u,v)z(u, v), and therefore

w′ = φλ lλ · u′ = 0, z8 = 0. (2.3)

for some functions w(u, v) and z(u, v), which are called Riemann invariants
along characteristics with characteristic speeds λ and µ, respectively. There-
fore, the L∞ norms on w and z are bounded by the initial data. We remark
that such φ and ψ always exist at least locally. Thus, for general hyperbolic
systems with two unknowns, there always exist two Riemann invariants for
different families, if we restrict the initial data to be a small perturbation
near a constant equilibrium. This is also one of the reasons that Lax’s result
in [14] is a small data theory. For many general systems, such as p-system,
Riemann invariants are naturally well-defined globally, therefore, the small-
ness restriction is not an issue for this step.

We focus on w, the case on z can be treated in a similar manner. Differ-
entiating w′ = 0 in (2.3) on x, we have

wtx + λwxx + λww
2
x + λzwxzx = 0 . (2.4)

Also by (2.3), we observe from

0 = z8 = z′ − (λ− µ)zx ,
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that

zx =
z′

λ− µ
. (2.5)

Substituting (2.5) into (2.4) and denoting

α := wx ,

one finds

α′ + λwα
2 +

λz

λ− µ
z′α = 0 . (2.6)

Let h be a function of w and z satisfying

hz =
λz

λ− µ
.

Using w′ = 0 in (2.3), we have

h′ = hww
′ + hzz

′ =
λz

λ− µ
z′ .

This, together with (2.6), gives

α′ + λwα
2 + h′α = 0 . (2.7)

Multiplying (2.7) by eh and denoting

α̃ := ehα ,

we finally obtain

α̃′ = −aα̃2 (2.8)

with

a := e−hλw .

This Riccati type equation gives us a clear passage to study the singularity
formation and/or global existence of classical solutions for hyperbolic system
with two unknowns. In fact, we could formally solve gradient variable α̃
along a characteristic x(t) defined by

dx(t)

dt
= λ, x(0) = x0,

to obtain

1

α̃(x(t), t)
=

1

α̃(x0, 0)
+

∫ t

0
a(x(σ), σ) dσ

where the integral is taken along the characteristic curve x(t).
Note that a 6= 0 if λw 6= 0, which is corresponding to the nonlinearity of

the system. One does not expect singularity formation for linearly degen-
erate fields [22]. For simplicity, suppose that a is always non-zero, which
is also satisfied by the solution of p-system if initially a 6= 0. To fix the
idea, we only consider the case a > 0. If α̃(0) < 0, i.e. initial solution is
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compressive somewhere in the λ direction, then α̃(t) breaks down if there
exists a time t∗ > 0 such that

∫ t∗

0
a(x(σ), σ) dσ = − 1

α̃(x0, 0)
. (2.9)

which could be relaxed to∫ ∞

0
a(x(σ), σ) dσ = ∞ . (2.10)

In [14], Lax considered the hyperbolic system with uniformly strict hyper-
bolicity, i.e. characteristic speeds λ and µ are uniformly away from each
other. With the help of smallness condition on initial data, there is a posi-
tive constant ā such that a ≥ ā > 0, if the initial data are chosen so, hence
(2.10) is automatically justified.

When smallness condition on the initial data is lacking, in principle, one
expects the similar results following Lax [14] if the Riemann invariants are
defined globally, and (2.10) is satisfied. For p-system (1.6)∼(1.8), the Rie-
mann invariants are defined globally, it remains to check (2.10). We will
explain how far Lax’s theory can reach in the next subsection.

2.2. Lax’s large data theory on p-system: γ ≥ 3. We adopt Lax’s
theory on singularity formation to the following Cauchy problem of p-system
(1.6)∼(1.8), i.e.,





τt − ux = 0 ,

ut + px = 0 , p = K1 τ
−γ ,

τ(x, 0) = τ0(x), u(x, 0) = u0(x),

(2.11)

where, K1 > 0 and γ > 1 are constants. If the initial data are chosen to be
a small smooth perturbation near a constant state (τ̄ , ū) with τ̄ > 0, then
Lax’s theory in [14] applied directly. Our main concern in this subsection is
how far it could reach when initial data are not small.

From now on, we make the following assumption throughout the rest of
Section 2:

Assumption 2.1. Assume that (τ0(x), u0(x)) are C1 functions, and there
are uniform positive constants M1 and M2 such that

‖(τ0, u0)(x)‖C1 ≤M1, τ0 ≥M2.

A direct calculation shows that (2.11) has two characteristic speeds

λ = −µ = −c,
where c is the Lagrangian sound speed

c :=
√−pτ =

√
K1 γ τ

− γ+1
2 . (2.12)

The forward and backward characteristics are defined by

dx+

dt
= c and

dx−

dt
= −c ,
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respectively. We denote the corresponding directional derivatives along them
by

∂+ := ∂
∂t

+ c ∂
∂x

and ∂− := ∂
∂t

− c ∂
∂x
,

respectively. Furthermore, introducing the following useful quantity, c.f. [2],

η :=

∫ ∞

τ

c dτ = 2
√
K1γ

γ−1 τ−
γ−1
2 > 0 , (2.13)

the globally defined Riemann invariants of (2.11) are

r := u− η and s := u+ η , (2.14)

which satisfy
∂+s = 0 and ∂−r = 0 , (2.15)

respectively.
Since η, p and c all are functions of τ , their relations are as follows

τ = Kτ η
− 2

γ−1 , p = Kp η
2γ
γ−1 , c =

√
−pτ = Kc η

γ+1
γ−1 , (2.16)

where Kτ , Kp and Kc are positive constants given by

Kτ :=
(2

√
K1γ

γ − 1

) 2
γ−1

, Kp := K1K
−γ
τ , and Kc :=

√
K1γ K

− γ+1
2

τ .

(2.17)
Clearly, one has

Kp =
γ−1
2γ Kc and KτKc =

γ−1
2 . (2.18)

In this paper, we always use K with some subscripts to denote positive
constants. We will not alert the readers again if there is no ambiguity.

We observe from (2.15) that the L∞ norm of (r, s) are bounded by the
initial data, which leads to a uniform L∞ bounds on u and η(τ) with the
help of (2.14). From (2.13), one finds the uniform positive lower bound
on the specific volume τ , or equivalently, the uniform upper bound on the
density ρ = 1

τ
. However, we remark that, such estimates do not offer any

control on the lower bound of density ρ (or, upper bound of τ).
Following the procedure of last subsection in deriving (2.8), c.f. [2], the

good gradient variables are

y := η
γ+1

2(γ−1) sx and q := η
γ+1

2(γ−1) rx ,

which satisfy the following Riccati type equations:

∂+y = −a2 y2 , (2.19)

∂−q = −a2 q2 , (2.20)

where

a2 := Kc
γ+1

2(γ−1) η
3−γ

2(γ−1) . (2.21)

We note the behavior of a2 is purely determined by η. Since η has a
uniform upper bound, when γ ≥ 3, there exists a uniform constant ā2 > 0,
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such that a2 ≥ ā2. In this case (2.10) is justified, and Lax’s theory applies
without smallness condition.

Proposition 2.2. (A corollary from [14]) Assume that (τ0(x), u0(x)) satisfy
the conditions in Assumption 2.1. When γ ≥ 3, classical solution of (2.11)
breaks down if there is a point x∗ ∈ R such that

sx(x∗, 0) < 0 or rx(x∗, 0) < 0 . (2.22)

Proof. We will show that if sx(x, 0) < 0 or rx(x, 0) < 0 for some x, then
singularity forms in finite time. Without loss of generality, we assume that
sx(x

∗, 0) < 0, then y(x∗, 0) < 0 for some x∗. Denote the forward character-
istic passing (x∗, 0) as x+(t). By (2.19),

1

y(x+(t), t)
=

1

y(x∗, 0)
+

∫ t

0
a2(x

+(σ), σ) dσ , (2.23)

where a2 ≥ ā2 for some uniform constant ā2 > 0. Therefore, the right
hand side of (2.23) approaches zero in finite time, which means singularity
happens in finite time. �

However, for most physical gases where 1 < γ < 3, the positive lower
bound of the function a2 requires positive lower bound of density. We remark
that, for generic smooth initial data without initial vacuum, even for the
global smooth solutions of (2.11), the density does not have constant positive
lower bound in general. An example of Lipschitz continuous solutions can
be found in [28] and some detailed discussion in Section 82 of [9], where
the density decays in time at a rate of 1

1+t
. In view of (2.10), the lower

bound of a2 cannot decay too fast for possible singularity formation in finite
time. Therefore, a new idea is needed to obtain a sufficiently sharp control
on the time-dependent positive lower bound of density. This will be one of
our main contributions in this paper, which will be addressed in the next
subsection.

2.3. Singularity formation in p-system: γ > 1. In this section, for
all γ > 1, we prove the singularity formation for the Cauchy problem in
p-system when initial data contain some compression, and otherwise the
global existence of smooth solutions. This is achieved by establishing a
sharp enough time-dependent positive lower bound on density. The following
theorem is the first main result of this paper.

Theorem 2.3. For γ > 1, if (τ0(x), u0(x)) satisfy conditions in Assumption
2.1, then the Cauchy problem (2.11) has a unique global-in-time classical
solution if and only if

sx(x, 0) ≥ 0 and rx(x, 0) ≥ 0, for all x ∈ R . (2.24)

Remark 2.4. At a point (x, t), the solution of (2.11) is said to be forward
rarefactive (resp. compressive) if sx(x, t) ≥ 0 (resp. sx(x, t) < 0); the
solution is said to be backward rarefactive (resp. compressive) if rx(x, t) ≥ 0
(resp. rx(x, t) < 0).
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Hence this theorem can be understood as that classical global-in-time solu-
tion of p-system exists if and only if the initial data are nowhere compressive.

If (2.24) is not satisfied at any point, that is, if the initial data contain
some compression, then gradient blowup happens in finite time.

In order to prove Theorem 2.3, the following observation plays an impor-
tant role. From (2.19) and (2.20), using comparison principle for ODEs,
with the help of the following two non-negative constants Y and Q defined
by

Y = max
{
0, sup

x
{y(x, 0)}

}
, Q = max

{
0, sup

x
{q(x, 0)}

}
, (2.25)

it is easy to see the following lemma holds.

Lemma 2.5. If (τ0(x), u0(x)) satisfy Assumption 2.1, it holds for C1 solu-
tion (τ, u)(x, t) of (2.11) that

y(x, t) ≤ Y, and q(x, t) ≤ Q .

With the help of this Lemma 2.5, we are able to prove the following key
estimate on the lower bound of density (equivalently, upper bound of τ), for
1 < γ < 3, covering most physical cases for polytropic gases.

Lemma 2.6. Let (τ, u)(x, t) be a C1 solution of (2.11) defined on time
interval [0, T ] for some T > 0, with initial data (τ0(x), u0(x)) satisfying
conditions in Assumption 2.1. If 1 < γ < 3, then for any x ∈ R and
t ∈ [0, T ), there is a positive constant K0 depending only on γ, such that

τ(x, t) ≤
[
τ0

3−γ
4 (x) +K0(Y +Q)t

] 4
3−γ .

Proof. From the definition of y and q, it is clear that

y = sx

√
c

Kc
, q = rx

√
c

Kc
,

which implies that

(y + q) =

√
c

Kc
(rx + sx) = 2ux

√
c

Kc
.

Therefore, we read from the mass equation that

√
c τt =

1

2

√
Kc(y + q).

Using the formula of sound speed (2.12), Lemma 2.5, one finds

τ−
γ+1
4 τt ≤

1

2
(K1γ)

− 1
4

√
Kc(Y +Q). (2.26)

When 1 < γ < 3, γ+1
4 < 1, then for any x ∈ R, and t ∈ [0, T ), a simple

time integration shows that

τ(x, t) ≤
[
τ0

3−γ
4 (x) +K0(Y +Q)t

] 4
3−γ ,

where K0 =
3−γ
8 (K1γ)

− 1
4
√
Kc. This completes the proof of this lemma. �
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Remark 2.7. We remark that, for purely rarefactive initial data, i.e. the
initial data satisfying the conditions of Assumption 2.1 and (2.24), Lin [18]
proved that the density of any Lipschitz solution of (2.11) has a positive
lower bound of order 1

1+t
through a relatively complicated approximation

generated by a polygonal scheme. This Lemma 2.6 works for general data
as long as γ ∈ (1, 3). Although the time-dependent bound is not as sharp as
that in [18], the proof is much simpler and elementary. A generalization of

[18] with O(1)
1+t

bound on density to general initial data for all γ > 1 has been

carried out in our work [4]. This O(1)
1+t

rate is optimal for generic C1 initial

data due to the example in [9, 28].

We now give a proof for Theorem 2.3.

Proof of Theorem 2.3. 1) Sufficiency. In this part, we prove that un-

der Assumption 2.1, if the initial data satisfy the condition (2.24), then
problem (2.11) admits a unique global C1 solution. As a matter of fact, this
is a direct consequence of the result presented in [18]. We give an outline
here.

Recall that the local-in-time existence of C1 solutions for (2.11) can be
proved by classical method, c.f. Theorem 4.1 on page 66 of [32], see also
[15, 10], where the life-span of classical solution depends on the C1-norm
of the initial data and the positive lower bound of τ0. The main idea is to
use the standard continuity argument to extend the local classical solutions
to global with a priori estimates in L∞ and Lipschitz norms of (τ, u)(x, t).
Indeed, the uniform L∞ bounds of u(x, t) and the lower bound of τ(x, t)
follow from those of (r, s)(x, t) which are constant along their characteristics,
respectively; see (2.15). For Lipschitz norms, we know from (2.24), that
y(x, 0) ≥ 0 and q(x, 0) ≥ 0, and thus ‖y(x, t)‖L∞ ≤ Y , and ‖q(x, t)‖L∞ ≤ Q.
Now, the result of [18] offers that, for initial data satisfying Assumption 2.1
and (2.24), for any Lipschitz continuous solutions of (2.11), there is a positive
constant K̄0, independent of time, such that

τ ≤ K̄0(1 + t),

which gives the upper bound of τ(x, t). Furthermore, we deduce from the

definitions of y, q, and η that, there exists a function C̃(t) satisfying 1 ≤
C̃(t) <∞ for any positive finite time t that

‖(rx, sx, τx, ux)(x, t)‖L∞ ≤ C̃(t).

Now, if the maximal existence time T∗ of C1 solution is finite, then C̃(T∗) is
finite, so are L∞ norm of (τ, u)(x, T∗). One can then apply these estimates
and the local existence result to show there exists a positive time t̄ such
that the C1 solution can be further extended to the time interval [0, T∗ + t̄)
contradicting the fact that T∗ is maximal. Therefore, T∗ = ∞.
2) Necessity. In this part, we shall prove that under Assumption 2.1, if

the initial data fail to satisfy the condition (2.24) at one point x∗ ∈ R, the
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C1 solution of (2.11) must blow up in its derivatives in finite time. Without
loss of generality, we assume that sx(x

∗, 0) < 0, then y(x∗, 0) < 0. When
γ ≥ 3, this was shown in the last section. Here, we only have to consider the
case 1 < γ < 3, in which a2 vanishes when density goes to zero. We denote
the forward characteristic passing (x∗, 0) as x+(t). In view of (2.23),

1

y(x+(t), t)
=

1

y(x∗, 0)
+

∫ t

0
a2(x

+(σ), σ) dσ .

To show y blows up in finite time, it is enough to show that
∫ ∞

0
a2(x

+(t), t) dt = ∞ ,

where the integral is along characteristic x+(t). We read from Lemma 2.6,
and the definition of a2 that

a2(x
+(t), t) ≥ γ + 1

4
K

− γ+1
4

τ

[
M

3−γ
4

1 +K0(Y +Q)t
]−1

.

Hence, ∫ ∞

0
a2(x

+(t), t) dt = ∞ .

Therefore, y and sx blow up in finite time. The proof of the theorem is
completed. �

Remark 2.8. The method developed here can be applied to p-system with
general pressure laws. Under some mild structural conditions, a similar
result to Theorem 2.3 has been established in the section 2.4 of our preprint
arXiv:1408.6775v2.

3. Full compressible Euler equations

In this section, we consider the following Cauchy problem of full com-
pressible Euler equations





τt − ux = 0 ,

ut + px = 0 , p = Ke
S
cv τ−γ , γ > 1,

St = 0 ,

(τ, u, S)(x, 0) = (τ0, u0, S0)(x).

(3.1)

Here, we replaced the energy equation with entropy equation. For smooth
solutions, we see that S(x, t) = S0(x) := S(x). Throughout this section, we
require that the initial data (τ0, u0, S0)(x) satisfy conditions in the following
assumption.

Assumption 3.1. Assume that (τ0(x), u0(x)) ∈ C1(R), S0(x) ∈ C2(R),
and there are uniform positive constants M1 and M2 such that

‖(τ0, u0)(x)‖C1 + ‖S0(x)‖C2 ≤M1, τ0 ≥M2.

http://arxiv.org/abs/1408.6775
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For smooth solutions, it is often convenient to choose some new variables.
Define

m := e
S

2cv > 0, c :=
√−pτ =

√
K γ τ−

γ+1
2 e

S
2cv , (3.2)

and

η :=

∫ ∞

τ

c

m
dτ = 2

√
Kγ

γ−1 τ−
γ−1
2 > 0 , (3.3)

where c is the nonlinear Lagrangian sound speed. Direct calculations show
that (c.f. [2, 7])

τ = Kτ η
− 2

γ−1 ,

p = Kpm
2 η

2γ
γ−1 , (3.4)

c = c(η,m) = Kcmη
γ+1
γ−1 .

We remark that, we still use η, c, and many other functions appeared in
Section 2 for full Euler equations. These functions are natural extensions
from isentropic flows to adiabatic ones, in the sense that they are different
to each other only by a positive constant multiple when S is chosen as a
constant.

For C1 solutions, the problem (3.1) is equivalent to (c.f. [10, 30])





ηt +
c
m
ux = 0 ,

ut +mcηx + 2 p
m
mx = 0 ,

mt = 0 ,

(η, u,m)(x, 0) = (η0, u0,m0)(x) = (η(τ0(x)), u0(x),m(S0(x))).

(3.5)

Due to the linear degeneracy, in the regime of smooth solutions, m is
independent of time, we thus fixm = m(x) = m0(x) in the rest of this paper.
Therefore, formally, one can still treat (3.5) as a system of two (significant)
equations, with fluxes (pressure) depending on x explicitly. Like in the case
of isentropic flows, two truly nonlinear characteristic fields are

dx+

dt
= c and

dx−

dt
= −c , (3.6)

and we denote the corresponding directional derivatives along these by

∂+ := ∂
∂t

+ c ∂
∂x

and ∂− := ∂
∂t

− c ∂
∂x
,

respectively. Comparing with p-system, one of significant differences for
full Euler system is the disappearance of Riemann invariances, in fact, the
Riemann variables are

r := u−mη , s := u+mη . (3.7)
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which vary along characteristics

∂+s =
1

2γ

cmx

m
(s− r) , (3.8)

∂−r =
1

2γ

cmx

m
(s− r) . (3.9)

Therefore, without smallness assumption of the solutions, the first non-
trivial question one encounters is how to achieve L∞ estimates on the so-
lutions. We remark that this question is trivial for isentropic case since r
and s are invariant along their characteristics. Fortunately, this question
is answered recently by G. Chen, R. Young and Q. Zhang in [7] under the
following additional condition:

Assumption 3.2. Assume that the initial entropy S0(x) has finite total
variation, so that

V :=
1

2cv

∫ +∞

−∞
|S′(x)| dx =

∫ +∞

−∞

|m′(x)|
m(x)

dx <∞ , (3.10)

From Assumption 3.1, it is clear that there are positive constants ML,
MU , Ms and Mr such that

0 < ML < m(x) < MU , |s0(x)| < Ms, |r0(x)| < Mr . (3.11)

For V = V
2γ , we now define

N1 := Ms + V Mr + V (V Ms + V
2
Mr) e

V
2

,

N2 := Mr + V Ms + V (V Mr + V
2
Ms) e

V
2

.

The following proposition is proved in [7] by a highly non-trivial charac-
teristic method.

Proposition 3.3. [7] Assume the initial data (τ0, u0, S0)(x) satisfy the con-
ditions in Assumptions 3.1 and 3.2. If (τ(x, t), u(x, t), S(x)) is a C1 solution
of (3.1) for t ∈ [0, T ) for some positive T , then it holds that

|s(x, t)| ≤ N1MU

1
2γ , |r(x, t)| ≤ N2MU

1
2γ , (3.12)

|u(x, t)| ≤ N1 +N2

2
MU

1
2γ , η(x, t) ≤ N1 +N2

2
ML

1
2γ

−1
:= EU . (3.13)

Therefore, there are positive constants Mρ such that

ρ ≤Mρ, τ ≥ 1

Mρ
. (3.14)

The second major obstacle appears in the equations of gradient variables.
Like in p-system, following the wisdoms of many previous works, c.f. [2, 14,
21], a good choice is

y := m
− 3(3−γ)

2(3γ−1) η
γ+1

2(γ−1) (sx − 2
3γ−1 mx η),

q := m
− 3(3−γ)

2(3γ−1) η
γ+1

2(γ−1) (rx +
2

3γ−1 mx η) , (3.15)
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which satisfy

∂+y = a0 − a2 y
2,

∂−q = a0 − a2 q
2, (3.16)

where

a0 :=
Kc

γ

[
γ−1
3γ−1 mmxx − (3γ+1)(γ−1)

(3γ−1)2
m2

x

]
m

− 3(3−γ)
2(3γ−1) η

3(γ+1)
2(γ−1)

+1
,

a2 := Kc
γ+1

2(γ−1) m
3(3−γ)
2(3γ−1) η

3−γ
2(γ−1) . (3.17)

Clearly, a0 = 0 if S0(x) (thus m(x)) is a constant. For general adiabatic
flows, a0 is not constant zero. (3.16) are not in Riccati type, and these
different ODE structures lead to different behaviors of solutions, this is more
crucial when initial data are not small perturbation around a constant state.
Indeed, the classical theory of [16, 17, 22] confirms that, when initial data
are arbitrarily small near a constant sate away from vacuum, y and/or q
blows up in finite time if there is some nonlinear compression (under their
notations) at some point x ∈ R, under a so-called nonlinear wave condition
[22]. We also note that the choice of gradient variables in [16, 17, 22] is
slightly different from our choices here. Our choices of y and q seem better
for large solutions. From now on, we adapt the notions to call the initial
data are compressive at x if y(x, 0) < 0 or q(x, 0) < 0, and rarefactive at x
if y(x, 0) ≥ 0 or q(x, 0) ≥ 0. We first present an example to show that weak
initial compression does not necessary develop finite time gradient blowup.

Example 3.4. For any C1 functions S(x) and τ(x) > 0,

u = 0, S = S(x) and τ = τ(x)

is a global C1 (stationary) solution of (3.1) if in the initial data S and τ
are chosen such that

px(τ(x), S(x)) = 0. (3.18)

Therefore, if we choose a smooth non-constant function S(x), then choose

τ(x) = Kτ,S exp

{
S(x)

γcv

}
, (3.19)

for any positive constant Kτ,S, (τ(x), 0, S(x)) is a smooth stationary solution
of (3.1). In particular, if one chooses S(x) to be a non-constant periodic
function, so is τ , this gives a non-constant solution of (3.1) which is periodic
in both space and time. In order to fulfill the condition in Assumption 3.2,
a choice of S(x) is 1

x2+1
.

For such class of solutions (τ(x), 0, S(x)), a direct calculation shows

− q(x) = y(x) = γ−1
γ(3γ−1)mxm

3(γ−3)
2(3γ−1) η

3γ−1
2(γ−1) . (3.20)

which is non-zero at point x if S′(x) 6= 0. Therefore, either q(x) < 0 or
y(x) < 0, but no singularity forms in the solution.
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Remark 3.5. At first glance, it seems that this example contradicts to Liu’s
result [22]. We remark that this class of stationary solutions does not satisfy
the nonlinear wave condition in [22] for singularity formation, and therefore
there is no contradiction.

This example shows that weak nonlinear compression in initial data does
not necessarily lead to finite time singularity formation especially when data
could be large, see also some related discussion in [7]. This motivates our
search for a critical strength of the nonlinear compression which offers finite
time gradient blowup, which will be carried out in the next two subsections.
In particular, the Section 3.1 is for the case when initial entropy has finite
total variation, c.f. Assumption 3.2; while the Section 3.2 contains results
without this condition. In addition to these obstacles, like in the case of
isentropic flows, we still need to further generalize our method in p-system
to non-isentropic case to find a sharp enough time-dependent density lower
bound.

3.1. Singularity formation: ‖S0(x)‖BV < ∞. In this subsection, we as-
sume that the initial data (τ0(x), u0(x), S0(x)) satisfy the conditions in As-
sumptions 3.1 and 3.2, so the estimates in Proposition 3.3 hold.

The structure of (3.16) leads us to study the ratio a0
a2

which dominates

behaviors of solutions to (3.16). A direct calculation is carried out as follows

a0

a2
= 2(γ−1)2

γ(γ+1)(3γ−1)

(
mmxx − 3γ+1

3γ−1 m
2
x

)
η

3γ−1
(γ−1) m

− 3(3−γ)
(3γ−1) . (3.21)

We define

b(x) = Sxx −
1

cv(3γ − 1)
S2
x, (3.22)

and it is easy to see that

m2b(x) = 2cv
(
mmxx − 3γ+1

3γ−1 m
2
x

)
. (3.23)

Therefore, b(x) has the same sign as a0. Also, we note from the definition
of m that there is a positive constant M3 such that

|mmxx − 3γ+1
3γ−1 m

2
x| ≤M3. (3.24)

If we define a positive constant N by

N :=





√
2(γ−1)2

γ(γ+1)(3γ−1) M3 E
3γ−1
2(γ−1)

U M
− 3(3−γ)

2(3γ−1)

L , 1 < γ < 3 ,
√

2(γ−1)2

γ(γ+1)(3γ−1) M3E
3γ−1
2(γ−1)

U M
− 3(3−γ)

2(3γ−1)

U , γ ≥ 3 ,

(3.25)

we see
a0

a2
≤ N2. (3.26)
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Remark 3.6. We remark that a2 is positive, while a0 usually changes sign
for physical flows. In fact, for physical initial conditions of non-constant
S(x), the case for b ≤ 0 for all x ∈ R cannot happen. Actually, from the

relation (3.23), one finds that b ≤ 0 is equivalent to mmxx − 3γ+1
3γ−1m

2
x ≤ 0,

which is equivalent to (
m

− 2
3γ−1

)
xx

≥ 0.

Therefore, m− 2
3γ−1 is a convex function over R if b ≤ 0 for all x ∈ R. This

contradicts the fact that 0 < ML ≤ m(x) ≤ MU . Similar argument shows
that the case for b ≥ 0 for all x cannot happen either.

Like Lemma 2.5, we are able to find uniform upper bounds for y and q.
Since it is a little more complicated than Riccati equation, we can simply
compare (3.16) with the following ones

∂+ỹ = a2(N
2 − ỹ2), ∂−q̃ = a2(N

2 − q̃2). (3.27)

Therefore, it is easy to see the following lemma.

Lemma 3.7. If (τ0, u0, S0)(x) satisfy conditions in Assumptions 3.1 and
3.2, it holds for C1 solution (τ(x, t), u(x, t), S(x)) of (3.1) that

y(x, t) ≤ max
{
N, sup

x
{y(x, 0)}

}
=: Ȳ ,

q(x, t) ≤ max
{
N, sup

x
{q(x, 0)}

}
=: Q̄ .

The following lemma contains density lower bound estimate.

Lemma 3.8. Let (τ(x, t), u(x, t), S(x)) be a C1 solution of (3.1) defined on
time interval [0, T ] for some T > 0, with initial data (τ0(x), u0(x), S0(x))
satisfying conditions in Assumptions 3.1 and 3.2. If 1 < γ < 3, then for
any x ∈ R and t ∈ [0, T ), there is a positive constant K6 depending only on
γ and MU , such that

τ(x, t) ≤
[
τ0

3−γ
4 (x) +K6(Ȳ + Q̄)t

] 4
3−γ .

Proof. From the mass equation in (3.1), (3.7), and (3.15), it is clear that

τt = ux =
1

2
(rx + sx)

= m
3(3−γ)
2(3γ−1) η

− γ+1
2(γ−1) (q + y)

≤M
3(3−γ)
2(3γ−1)

U η
− γ+1

2(γ−1) (Ȳ + Q̄),

(3.28)

where we have used Lemma 3.7. With the help of (3.3), we thus have

τ−
γ+1
4 τt ≤M

3(3−γ)
2(3γ−1)

U (2
√
Kγ

γ−1 )
− γ+1

2(γ−1) (Ȳ + Q̄), (3.29)

which implies that

τ(x, t) ≤
[
τ0(x) +K6(Ȳ + Q̄)t

] 4
3−γ , (3.30)
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where

K6 =
3− γ

4
M

3(3−γ)
2(3γ−1)

U (2
√
Kγ

γ−1 )
− γ+1

2(γ−1) .

�

In the following theorem, we show that N is a critical measurement for the
strength of initial nonlinear compression, which leads to finite time gradient
blowup of solutions.

Theorem 3.9. For γ > 1, if (τ0(x), u0(x), S0(x)) satisfy conditions in As-
sumption 3.1 and 3.2, and if for N defined in (3.25), it holds that

inf
x

{
y(x, 0), q(x, 0)

}
< −N , (3.31)

then for the C1 solutions (τ(x, t), u(x, t), S(x)) of (3.1), |ux| and/or |τx|
blows up in finite time.

Remark 3.10. The case when γ ≥ 3 was carried out in [7], where density
lower bound is not needed. [7] also mentioned a similar result of this Theorem
with the a priori assumption of a positive constant lower bound on density.
See Theorem 2.4 of [7] for details.

Proof. Suppose that (3.31) holds. Without loss of generality, we can assume
that infx y(x, 0) < −N , the case when infx q(x, 0) < −N is similar. Then
there exist ε > 0 and x0 ∈ R such that

y(x0, 0) < −(1 + ε)N . (3.32)

We denote the forward characteristic passing (x0, 0) as x+(t). Along this
characteristic x+(t), from the definition of N , we have for any t ≥ 0 such
that x+(t) is well-defined,

∂+y(x
+(t), t) = a2(

a0

a2
−y2) < 0, and y(x+(t), t) ≤ y(x0, 0) < −(1+ε)N.

Therefore,
y2(x+(t), t)

(1 + ε)2
> N2 ≥ a0

a2
,

which implies that

∂+y(x
+(t), t) = a2(

a0

a2
− y2(x+(t), t)) < − ε(2+ε)

(1+ε)2
a2 y

2(x+(t), t) .

Integrating it in time, we get

1

y(x+(t), t))
≥ 1

y(x0, 0)
+ ε(2+ε)

(1+ε)2

∫ t

0
a2(x

+(σ), σ) dσ , (3.33)

where the integral is along the forward characteristic. To show y blows up
in finite time, it is enough to show that

∫ ∞

0
a2(x

+(t), t) dt = ∞ . (3.34)
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When γ ≥ 3, from the definition of a2 in (3.17), we see that

a2 ≥ Kc
γ+1

2(γ−1) M
3(3−γ)
2(3γ−1)

L E
3−γ

2(γ−1)

U ,

thus (3.34) follows.
When 1 < γ < 3, we read from Lemma 3.8, and the definition of a2 in

(3.17) that

a2(x
+(t), t) ≥ Kc

γ+1
2(γ−1) M

3(3−γ)
2(3γ−1)

L (2
√
Kγ

γ−1 )
3−γ

2(γ−1)
[
M

3−γ
4

1 +K6(Ȳ + Q̄)t
]−1

,

therefore, (3.34) also follows.
Therefore, for any γ > 1, y and sx blow up in finite time. The proof of

the theorem is completed.
�

3.2. Singularity formation for general entropy function. We remark
that singularity formation in Euler equations is a local behavior. We will
remove several global constraints on entropy functions imposed in last sub-
section to include physically interesting cases such as spatially periodic so-
lutions. For this purpose, in this subsection, we only impose conditions in
Assumption 3.1 for the initial data, but not Assumption 3.2.

Without Assumption 3.2, we do not have the global uniform L∞ esti-
mates in Proposition 3.3. However, we note that this result is proved by
characteristic method, we thus could follow the same argument as in [7] to
establish a local version.

For this purpose, we fix two initial points α < β ∈ R, denote the forward
characteristic starting from (α, 0) by x+α (t) and the backward characteristic
starting from (β, 0) by x−β (t). Assume that (τ(x, t), u(x, t), S(x)) is a C1

solution of (3.1) on the time interval [0, T1] for some positive T1. In the
trapezoid showed in figure 2 below, the top edge t = T ≤ T1 can shrink into
one point, if x+α (T ) = x−β (T ). We denote this trapezoid domain by Ωα,β,T ,

which is determined by the initial interval [α, β], x+α (t), x
−
β (t), and t = T .

t

x

T

0

Figure 1. A domain of determination Ωα,β,T
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With the help of Assumption 3.1, on the interval [α, β], one has

Vα,β :=
1

2cv

∫ β

α

|S′(ξ)| dξ ≤ 1

2cv
M1|β − α|. (3.35)

Therefore, if we define V̄α,β :=
Vα,β

2γ , and

N1α,β := Ms + V̄α,βMr + V̄α,β (V̄α,β Ms + V̄ 2
α,βMr) e

V̄ 2
α,β ,

N2α,β := Mr + V̄α,βMs + V̄α,β (V̄α,β Mr + V̄ 2
α,β Ms) e

V̄ 2
α,β ,

the same proof in [7] gives

Proposition 3.11. Assume the initial data (τ0, u0, S0)(x) satisfy the con-
ditions in Assumption 3.1. If (τ(x, t), u(x, t), S0(x)) is a C1 solution of
(3.1) for t ∈ [0, T1) for some positive T1, then it holds, for every point
(x, t) ∈ Ωα,β,T and T ≤ T1, that

|s(x, t)| ≤ N1α,βMU

1
2γ , |r(x, t)| ≤ N2α,βMU

1
2γ

|u(x, t)| ≤ N1α,β +N2α,β

2
MU

1
2γ ,

η(x, t) ≤ N1α,β +N2α,β

2
ML

1
2γ

−1
:= ẼU .

(3.36)

Therefore, there are positive constants M̃ρ such that

ρ ≤ M̃ρ, τ ≥ 1

M̃ρ

. (3.37)

For later use, we give an estimate on the expected time Tα,β where x+α (t)

and x−β (t) intersect if no singularity develops before this time. Using (3.6),

a simple calculation shows that

Tα,β ≥ β − α

2
M−1

U Ẽ
− γ+1

γ−1

U .

Using the definition of M3 in (3.24), we define

Nα,β :=





√
2(γ−1)2

γ(γ+1)(3γ−1) M3 Ẽ
3γ−1
2(γ−1)

U M
− 3(3−γ)

2(3γ−1)

L , 1 < γ < 3 ,
√

2(γ−1)2

γ(γ+1)(3γ−1) M3 Ẽ
3γ−1
2(γ−1)

U M
− 3(3−γ)

2(3γ−1)

U , γ ≥ 3 .

(3.38)

Therefore,
a0

a2
(x, t) ≤ N2

α,β, ∀(x, t) ∈ Ωα,β,T . (3.39)

Furthermore, we define

Ỹ := max
{
Nα,β, sup

x∈[α,β]
{y(x, 0)}

}
,

Q̃ := max
{
Nα,β, sup

x∈[α,β]
{q(x, 0)}

}
.

(3.40)

It is now clear that, the same method used in the proof of Lemma 3.8 gives
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Lemma 3.12. Let (τ(x, t), u(x, t), S(x)) be a C1 solution of (3.1) defined
in Ωα,β,T , with initial data (τ0(x), u0(x), S0(x)) satisfying conditions in As-
sumption 3.1. If 1 < γ < 3, then for any (x, t) ∈ Ωα,β,T , there is a positive

constant K̃6 depending only on γ and MU , such that

τ(x, t) ≤
[
τ0

3−γ
4 (x) + K̃6(Ỹ + Q̃)t

] 4
3−γ .

Therefore, we have the following estimate on a2 for any (x, t) ∈ Ωα,β,T

a2(x, t) ≥




Kc

γ+1
2(γ−1) M

3(3−γ)
2(3γ−1)

L Ẽ
3−γ

2(γ−1)

U := K8, if γ ≥ 3,

K7

[
M

3−γ
4

2 + K̃6(Ỹ + Q̃)t
]−1

, if 1 < γ < 3.
(3.41)

where

K7 = Kc
γ+1

2(γ−1) M
3(3−γ)
2(3γ−1)

L (2
√
Kγ

γ−1 )
3−γ

2(γ−1) .

We further introduce the following constants K9 and K10 by

K9 = K̃6(Ỹ + Q̃)M
γ−3
4

2 , K10 = K7M
γ−3
4

2 , (3.42)

so that

a2 ≥ K10[1 +K9t]
−1, if 1 < γ < 3. (3.43)

We introduce another below constant to assist the measurement on the non-
linear compression. Let positive constant Bα,β be a solution of

Bα,β(2 +Bα,β)

(1 +Bα,β)
≥




(K8Nα,βTα,β)

−1 , γ ≥ 3 ,
(
K10
K9

Nα,β ln(1 +K9Tα,β)
)−1

, 1 < γ < 3 .
(3.44)

Theorem 3.13. Assume the initial data (τ0, u0, S0)(x) satisfy conditions
in Assumption 3.1. If there exists some interval (α, β) such that the initial
data satisfy

inf
x∈[α,β]

{y(x, 0), q(x, 0)} < −Nα,β(1 +Bα,β) , (3.45)

then |ux| and/or |τx| blow up in finite time.

Remark 3.14. The right hand side of (3.44) only depends on the initial
data. For any given entropy function satisfying conditions in Assumption
3.1, condition (3.44) will be satisfied when Bα,β is large enough, i.e. y(x, 0)
or q(x, 0) is negative enough. This means that singularity forms in finite
time when the initial compression is strong enough somewhere.

One good choice of Bα,β is

Bα,β =




(K8Nα,βTα,β)

−1 , γ ≥ 3 ,
(
K10
K9

Nα,β ln(1 +K9Tα,β)
)−1

, 1 < γ < 3 ,
(3.46)

This result is consistent with Theorem 3.9. In fact, when the initial en-
tropy has finite total variation, Tx,∞ = ∞ while Nx,∞, K8 and K9, K10 are
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all finite, so Bx,∞ can be arbitrarily small. Hence, if y(x, 0) < −Nx,∞ or
q(x, 0) < −Nx,∞ for some x, then blowup happens in finite time.

Proof. We only consider the solution in Ωα,β,Tα,β
, and prove that singularity

formation happens in this region. Without loss of generality, we assume
that there is a point x∗ ∈ [α, β] such that y(x∗, 0) < −Nα,β(1 + Bα,β), the
case for q is similar. Denote the forward characteristic starting from (x∗, 0)
by x+(t). We will show that y goes to negative infinity along x+(t) before
time Tα,β.

From (3.16), and the definition of Nα,β in (3.38), it is clear that, along
x+(t), for t ∈ [0, Tα,β ] and as long as solution is C1, it holds that

∂+y(x
+(t), t) = a2(

a0

a2
− y2) < 0, and y(x+(t), t) < −Nα,β(1 +Bα,β).

Therefore,

y2(x+(t), t)

(1 +Bα,β)2
> N2

α,β ≥ a0

a2
,

which implies that

∂+y(x
+(t), t) = a2(

a0

a2
− y2(x+(t), t)) < −Bα,β(2+Bα,β)

(1+Bα,β)2
a2 y

2(x+(t), t) .

Integrating it in time, we get

1

y(x+(t), t)
≥ 1

y(x∗, 0)
+
Bα,β(2 +Bα,β)

(1 +Bα,β)2

∫ t

0
a2(x

+(σ), σ) dσ . (3.47)

where the integral is along the forward characteristic.
Hence the blowup happens at a time t1 when the right hand side of (3.47)

equals to zero, i.e. when

− 1

y(x∗, 0)
=
Bα,β(2 +Bα,β)

(1 +Bα,β)2

∫ t1

0
a2(x

+(σ), σ) dσ . (3.48)

It is clear from the estimates on a2 in (3.41) that such a finite t1 exists.
However, we still need to show that t1 < Tα,β . From (3.45), we only need
to show that

1

Nα,β
≤ Bα,β(2 +Bα,β)

(1 +Bα,β)

∫ Tα,β

0
a2(x

+(t), t) dt . (3.49)

When γ ≥ 3, we read from (3.41) that a2 ≥ K8, (3.49) follows directly
from (3.44).

When 1 < γ < 3, we read from (3.43) that

a2 ≥ K10[1 +K9t]
−1,
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therefore

Bα,β(2 +Bα,β)

(1 +Bα,β)

∫ Tα,β

0
a2(x

+(t), t) dt

≥ Bα,β(2 +Bα,β)

(1 +Bα,β)

∫ Tα,β

0
K10[1 +K9t]

−1 dt

=
Bα,β(2 +Bα,β)

(1 +Bα,β)

K10

K9
ln(1 +K9Tα,β),

(3.50)

which, together with (3.44), implies (3.49). Hence we complete the proof of
this theorem.

�

3.3. Further discussion. In Subsections 3.1-3.2, we showed that if the
initial compression is strong enough, singularity develops in finite time for
solutions of (3.1). It is also evident by the Example 3.4 that relatively strong
compression is necessary to guaranty finite time blowup occurs. One of the
questions would be, say in Theorem 3.9, does the constant N measures
the critical strength efficiently? We now show this N is the arguably best
possible one.

We now revisit the stationary solutions

(τ(x), u(x), S(x)) = (Kτ,S exp

{
S(x)

γcv

}
, 0, S(x)), (3.51)

for any smooth function S(x) satisfying Assumptions 3.1-3.2, and any posi-
tive constant Kτ,S , constructed in Example 3.4 . We also recall (3.20)

− q(x) = y(x) = γ−1
γ(3γ−1)mxm

3(γ−3)
2(3γ−1) η

3γ−1
2(γ−1) . (3.52)

We remark that now everything is fixed except the choice of S(x). m, η are

both fucntions of S(x). For convenience, we will use m(x) = e
S

2cv for our
argument below.

Note from (3.21) that if

mmxx − 3γ+1
3γ−1 m

2
x ≥ 0, (3.53)

N is the best possible upper bound of
√

a0
a2

=
√

2(γ−1)2

γ(γ+1)(3γ−1)

(
mmxx − 3γ+1

3γ−1 m
2
x

)
η

3γ−1
2(γ−1) m

− 3(3−γ)
2(3γ−1) . (3.54)

We now show that there exists some S(x) (or equivalently m(x)) so that

initially |y(x)| = |q(x)| =
√

a0
a2

at some x. Comparing (3.52) with (3.54), we

see this happens when

( γ−1
γ(3γ−1) )

2m2
x = 2(γ−1)2

γ(γ+1)(3γ−1)

(
mmxx − 3γ+1

3γ−1 m
2
x

)
,

which is equivalent to

mmxx − 3γ+1
3γ−1 m

2
x − γ+1

2γ(3γ−1)m
2
x = 0. (3.55)
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It is clear that if m(x) satisfies (3.55), it satisfies (3.53). A direct calcula-
tion shows that for positive m (or equivalently a bounded S(x)), (3.55) is
equivalent to

(mθ)xx = 0, for θ = 1− 6γ2 + 3γ + 1

2γ(3γ − 1)
. (3.56)

Clearly, for any point x̄ ∈ R, we are able to choose a smooth function m(x)
such that mθ(x) reaches its inflection point at x̄ and m′(x̄) 6= 0. Indeed,

using the formula τ = Kτ,S exp
{

S
γcv

}
along with (3.52),

−q(x) = y(x) = K
− 3γ−1

4
τ,S

γ − 1

θγ(3γ − 1)
(mθ)x.

Thus it confirms that x̄ is exactly the (local) maximum of |q(x)| = |y(x)|,
which can be easily chosen as the global maximum for a class of m(x).

From the analysis above, it is clear that the constant N is almost an opti-
mal measurement on the strength of compression for finite time singularity
formation in general, because, if the condition (3.31) fails in Theorem 3.9,
then there exists a class of initial data admitting global stationary solutions
of the form (3.51), such that

inf
x

{
y(x, 0), q(x, 0)

}
= −N . (3.57)

In these examples, the maximum strength of compression N is attained.

Appendix A. p-system with general pressure law

In this subsection, we generalize the method developed in previous section
to the following Cauchy problem for p-system,





τt − ux = 0 ,

ut + px = 0 ,

τ(x, 0) = τ0(x), u(x, 0) = u0(x),

(A.1)

with general pressure law p(τ) ∈ C3(0,∞) satisfying

pτ < 0, pττ > 0 (A.2)

and

lim
τ→0

p(τ) = ∞, lim
τ→∞

p(τ) = 0 and

∫ ∞

1

√−pτ dτ <∞. (A.3)

Here condition (A.2) is dictated by physics when one uses p-system to model
gas dynamics, c.f. [25]. Furthermore, we assume that

∫ 1

0

√−pτ dτ = ∞ (A.4)

which includes the γ-law pressure case. We also identified the following
condition:
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Assumption A.1. There exists some positive constant A, such that for any
τ > 0,

(5 +A)(pττ )
2 − 4pτpτττ ≥ 0 . (A.5)

Remark A.2. This Condition (A.5) is fairly mild because the constant A
can be arbitrarily large. For example, the γ-law pressure p = kτ−γ with
γ > 0 satisfies conditions (A.5) and (A.2), and the pressure p = kτ−γ with
γ > 1 satisfies conditions (A.5) and (A.2)∼(A.4).

Applying Lax’s method in Sections 2.1-2.2 to this case (the detailed cal-
culations can be found in [5]), it is not hard to find the Lagrangian sound
speed is

c ≡ c(τ) =
√−pτ ,

and Riemann invariants

s := u+

∫ 1

τ

c(τ)dτ and r := u−
∫ 1

τ

c(τ)dτ,

which satisfy

∂+s = 0 and ∂−r = 0 , ∂± = ∂t ± c∂x. (A.6)

If we define
y :=

√
c sx, q :=

√
c rx, (A.7)

then

∂+y = −a(τ)y2, (A.8)

∂−q = −a(τ)q2, (A.9)

where

a(τ) :=
pττ

4(−pτ )
5
4

> 0. (A.10)

Similar to Lemma 2.5, define non-negative constants

Y = max
{
0, sup

x
{y(x, 0)}

}
, Q = max

{
0, sup

x
{q(x, 0)}

}
,

we have

Lemma A.3. If (τ0(x), u0(x)) satisfy Assumption 2.1, then it holds for C1

solution (τ, u)(x, t) of (A.1) that

y(x, t) ≤ Y, and q(x, t) ≤ Q .

Then we could state our theorem for the general pressure law case.

Theorem A.4. Assume that initial data (τ0(x), u0(x)) satisfy Assumption
2.1. The pressure satisfies (A.2)∼(A.4) and the Assumption 2.9. Then
global-in-time classical solution of (A.1) exists if and only if

sx(x, 0) ≥ 0 and rx(x, 0) ≥ 0, for all x ∈ R . (A.11)

Remark A.5. It is clear from our proof below that for the singularity for-
mation, conditions (A.3)∼(A.4) are not necessary.
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Proof. As usual, one reads from (A.6) that ‖(r, s)(x, t)‖L∞ ≤ ‖(r, s)(x, 0)‖L∞ .

Therefore, on finds uniform L∞ bounds for u(x, t) and

∫ 1

τ

c(τ)dτ . It then

follows from (A.4) that there are positive constant τmin and cmax depending
only on the initial data such that

τ(x, t) ≥ τmin, c(x, t) ≤ cmax.

If condition (A.11) holds, the global existence could be proved in an ex-
actly same way as in the first part of the proof of Theorem 2.3 together with
the positive lower bound on density provided in [18].

If condition (A.11) fails, by a similar argument as in the second part of
the proof of Theorem 2.3, in order to prove singularity formation in finite
time, it is sufficient to show

∫ ∞

0
a(τ(x(t), t) dt = ∞ , (A.12)

which is true if we can prove

1

a(τ(x, t))
=

4(−pτ )
5
4

pττ
≤ K2 +K3t (A.13)

for some positive constants K2 and K3. Indeed, a direct computation gives

1

2
(y + q) =

1

2

√
c(sx + rx) =

√
c ux =

√
c τt.

Then by Lemma A.3, we have
( ∫ τ

τmin

(−pτ (τ))
1
4 dτ

)
t
=

(∫ τ

τmin

√
c(τ) dτ

)
t
=

1

2
(y + q) ≤ 1

2
(Y +Q).

Hence
∫ τ(x,t)

τmin

(−pτ (τ))
1
4 dτ ≤

∫ τ(x,0)

τmin

(−pτ (τ))
1
4 dτ +

1

2
(Y +Q)t ≤ K4 +K5t

(A.14)
for some positive constants K4 and K5.

Using the fact τ > τmin > 0 and (A.14), (A.13) follows if we can show
that

(4(−pτ )
5
4

pττ

)
τ
≤ A(−pτ (τ))

1
4 , (A.15)

for some positive constant A. Since (A.15) follows from (A.5) in Assumption
2.9, we finish the proof of this theorem. �
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