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Abstract

We study the Heston–Cox–Ingersoll–Ross++ stochastic-local volatility model in the context of
foreign exchange markets and propose a Monte Carlo simulation scheme which combines the
full truncation Euler scheme for the stochastic volatility component and the stochastic domestic
and foreign short interest rates with the log-Euler scheme for the exchange rate. We establish
the exponential integrability of full truncation Euler approximations for the Cox–Ingersoll–Ross
process and find a lower bound on the explosion time of these exponential moments. Under a
full correlation structure and a realistic set of assumptions on the so-called leverage function, we
prove the strong convergence of the exchange rate approximations and deduce the convergence of
Monte Carlo estimators for a number of vanilla and path-dependent options. Then, we perform
a series of numerical experiments for an autocallable barrier dual currency note.
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1 Introduction

The class of stochastic-local volatility (SLV) models have become very popular in the financial
sector in recent years. They contain a stochastic volatility component as well as a local volatility
component (called the leverage function) and combine advantages of the two. According to Ren et
al. [35], Tian et al. [37] and van der Stoep et al. [38], the general SLV model allows for a better
calibration to European options and improves the pricing and risk-management performance when
compared to pure local volatility (LV) or pure stochastic volatility (SV) models. We focus on the
Heston SLV model because the Cox–Ingersoll–Ross (CIR) process for the variance is widely used in
the industry due to its desirable properties, such as mean-reversion and non-negativity, and since
semi-analytic formulae are available for calls and puts under Heston’s model and can help calibrate
the parameters easily. The local volatility component allows a perfect calibration to the market
prices of vanilla options. At the same time, the stochastic volatility component already provides
built-in smiles and skews which give a rough calibration, so that a relatively flat leverage function
suffices for a perfect calibration.

In order to improve the pricing and hedging of foreign exchange (FX) options, we introduce
stochastic domestic and foreign short interest rates into the model. Assuming constant interest
rates is appealing due to its simplicity and does not lead to a serious mispricing of options with
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short maturities. However, empirical results [40] have confirmed that the constant interest rate
assumption is inappropriate for long-dated FX products, and the effect of interest rate volatility
can be as relevant as that of the FX rate volatility for longer maturities. There has been a great
deal of research carried out in the area of option pricing with stochastic volatility and interest rates
in the past couple of years. For instance, Van Haastrecht et al. [40] extended the model of Schöbel
and Zhu [36] to currency derivatives by including stochastic interest rates, a model that benefits
from analytical tractability even in a full correlation setting due to the processes being Gaussian,
whereas Ahlip and Rutkowski [1], Grzelak and Oosterlee [18] and Van Haastrecht and Pelsser [41]
examined the Heston–2CIR/Vasicek hybrid models and concluded that a full correlation structure
gives rise to a non-affine model even under a partial correlation of the driving Brownian motions.

There has also been an increasing interest in the calibration to vanilla options of models with
stochastic and local volatility and stochastic interest rate dynamics. For instance, Guyon and
Labordére [20] examined Monte Carlo-based calibration methods for a 3-factor SLV equity model
with a stochastic domestic rate and discrete dividends, while Cozma, Mariapragassam and Reisinger
[11] and Deelstra and Rayee [13] examined 4-factor hybrid SLV models with stochastic domestic
and foreign rates and proposed different approaches to calibrate the leverage function. Hambly,
Mariapragassam and Reisinger [21] took a different path and discussed the calibration of a 2-factor
SLV model to barriers. As an aside, in this paper, the spot FX rate is defined as the number of
units of domestic currency per unit of foreign currency.

The model of Cox et al. [10] is very popular when modeling short rates because the square-
root (CIR) process admits a unique strong solution, is mean-reverting and analytically tractable.
Cox et al. found the conditional distribution to be noncentral chi-squared and Broadie and Kaya
[8] proposed an efficient exact simulation scheme for the square-root process based on acceptance-
rejection sampling. However, their algorithm presents a number of disadvantages such as complexity
and lack of speed, and it is not fit to price strongly path-dependent options that require the value
of the FX rate at a large number of time points. Furthermore, in the context of a stochastic-local
volatility model, the correlations between the underlying processes make it difficult to simulate a
noncentral chi-squared increment together with a correlated increment for the FX rate and the
short rates, if applicable.

As of late, the non-negativity of the CIR process is considered to be less desirable when modeling
short rates. On the one hand, the central banks have significantly reduced the interest rates since
the 2008 financial crisis and it is now commonly accepted that interest rates need not be positive.
On the other hand, if interest rates dropped too far below zero, then large amounts of money would
be withdrawn from banks and government bonds, putting a severe squeeze on deposits. Hence, we
model the domestic and foreign short rates using the shifted CIR (CIR++) process of Brigo and
Mercurio [7]. The CIR++ model allows the short rates to become negative and can fit any observed
term structure exactly while preserving the analytical tractability of the original model for bonds,
caps, swaptions and other basic interest rate products.

In the present work, we put forward the Heston–Cox–Ingersoll–Ross++ stochastic-local volatil-
ity (Heston–2CIR++ SLV) model to price FX options. Independent of the correlation structure,
the model is non-affine and hence a closed-form solution to the European option valuation problem
is not available. Finite-difference methods are popular in finance and when the evolution of the
exchange rate is governed by a complex system of stochastic differential equations (SDEs), it all
comes down to solving a higher-dimensional partial differential equation (PDE). This can prove
to be difficult due to the curse of dimensionality, because the number of grid points required in-
creases exponentially with the number of dimensions. Monte Carlo algorithms are often preferred
due to their ability to handle path-dependent features easily and there are numerous discretization
schemes available, like the simple Euler–Maruyama scheme, see, e.g., Glasserman [17]. However,

2



there are several disadvantages of this discretization, such as the fact that the approximation pro-
cess can become negative with non-zero probability. In practice, one can set the process equal to
zero when it turns negative – called an absorption fix – or reflect it in the origin – referred to as a
reflection fix. An overview of the Euler schemes considered thus far in the literature, including the
full truncation scheme, can be found in Lord et al. [32].

The usual theorems in Kloeden and Platen [31] on the convergence of numerical simulations
require the drift and diffusion coefficients to be globally Lipschitz and satisfy a linear growth
condition, whereas Higham et al. [23] extended the analysis to a simple Euler scheme for a locally
Lipschitz SDE. The standard convergence theory does not apply to the CIR process since the square-
root is not locally Lipschitz around zero. Consequently, alternative approaches have been employed
to prove the weak or strong convergence of various discretizations for the square-root process.
Deelstra and Delbaen [12], Alfonsi [2], Higham and Mao [22] and Lord et al. [32] examined the
strong global approximation and found either a logarithmic convergence rate or none at all. Strong
convergence of order 1/2 of the symmetrized and the backward (drift-implicit) Euler–Maruyama
(BEM) schemes was established in Berkaoui et al. [6] and Dereich et al. [14], respectively, albeit
in a very restricted parameter regime for the symmetrized scheme. Alfonsi [3] and Neuenkirch
and Szpruch [33] recently showed that the BEM scheme for the SDE obtained through a Lamperti
transformation is strongly convergent with rate one in the case of an inaccessible boundary point,
while Hutzenthaler et al. [27] established a positive strong order of convergence in the case of an
accessible boundary point.

Hutzenthaler et al. [28] identified a class of stopped increment-tamed Euler approximations for
nonlinear systems of SDEs with locally Lipschitz drift and diffusion coefficients and proved that
they preserve the exponential integrability of the exact solution under some mild assumptions,
unlike the explicit, the linear-implicit or some tamed Euler schemes, which rarely do. However, the
results of Hutzenthaler et al. do not apply to the present work beacuse the diffusion coefficient in
the square-root model is not locally Lipschitz. In this work, we first prove that an explicit Euler
scheme for the CIR process retains exponential integrability properties, which plays a key role
in establishing the boundedness of moments of Euler approximations for SDE systems with CIR
dynamics in one or more dimensions.

To the best of our knowledge, the convergence of Monte Carlo algorithms in a stochastic-local
volatility context has yet to be established. Higham and Mao [22] considered an Euler simulation
of the Heston model with a reflection fix in the diffusion coefficient to avoid negative values. They
studied convergence properties of the stopped approximation process and used the boundedness of
payoffs to prove weak convergence for a European put and an up-and-out call option. However,
Higham and Mao mentioned that the arguments cannot be extended to cope with unbounded pay-
offs. We work under a different Euler scheme and overcome this problem by proving the uniform
boundedness of moments of the true solution and its approximation, and then the strong conver-
gence of the latter. The existence of moment bounds for Euler approximations of the Heston model
is important for deriving strong convergence [23] and it has been a long-standing open problem
until now. Furthermore, the existence of moment bounds for hybrid Heston-type stochastic-local
volatility models plays an important role in the calibration routine [11].

In this paper, we focus on the Heston stochastic-local volatility model with CIR++ short interest
rates and examine convergence properties of the Monte Carlo algorithm with the full truncation
Euler (FTE) discretization for the squared volatility and the two short rates, and the log-Euler
discretization for the exchange rate. We prefer the full truncation scheme introduced by Lord et
al. [32] because it preserves the positivity of the original process, is easy to implement and is found
empirically to produce the smallest bias of all explicit Euler schemes and to outperform the quasi-
second order schemes of Kahl and Jäckel [29] and Ninomiya and Victoir [34]. We also choose the
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FTE scheme over the BEM scheme since the latter works only in a restricted parameter regime that
is often unrealistic, since the BEM scheme is equivalent to the implicit Milstein method employed
by Kahl and Jäckel to first order in the time step, and since the quanto correction term in the
dynamics of the foreign short rate would lead to technical challenges in the convergence analysis.

The quadratic exponential (QE) scheme of Andersen [4] uses moment-matching techniques to
approximate the noncentral chi-squared distributed square-root process and is an efficient alterna-
tive to the FTE scheme that typically produces a smaller bias at the expense of a more complex
implementation. Empirical results suggest that the QE scheme outperforms the FTE scheme in
the case of a severely violated Feller condition [39], whereas when the Feller condition is satisfied,
the two schemes perform comparably well because the bias with the FTE scheme is small even
when only a few number of time steps are used per year. Since there is no natural extension to the
QE scheme to multi-dimensional Heston-type models that involve several correlated square-root
processes such as the ones studied here, we prefer the FTE scheme in the subsequent convergence
analysis.

In summary, to the best of our knowledge, this paper is the first to establish: (1) the exponential
integrability of the FTE scheme for the CIR process; (2) the boundedness of moments of order
greater than 1 of approximation schemes for Heston-type models; (3) the strong convergence of
approximation schemes for models with stochastic-local volatility (with a bounded and Lipschitz
leverage function) and stochastic CIR++ short rates; (4) the weak convergence for options with
unbounded payoffs, in particular, for European, Asian and barrier contracts (up to a critical time).

The remainder of this paper is structured as follows. In Section 2, we introduce the model and
discuss the postulated assumptions and an efficient calibration. In Section 3, we first define the
simulation scheme and discuss the main theorem. Then, we investigate the uniform exponential
integrability of the full truncation scheme for the square-root process and prove convergence of the
exchange rate approximations. We conclude the section by establishing the convergence of Monte
Carlo simulations for computing the expected discounted payoffs of European, Asian and barrier
options. In Section 4, we carry out numerical experiments to justify our choice of model and to
demonstrate convergence. Finally, Section 5 contains a short discussion.

2 Preliminaries

2.1 Model definition

In its most general form, we have in mind a model in an FX market, for the spot FX rate S, the
squared volatility of the FX rate v, the domestic short interest rate rd and the foreign short interest
rate rf . Unless otherwise stated, in this paper, the subscripts and superscripts “d” and “f” indicate
domestic and foreign, respectively. Consider a filtered probability space (Ω,F ,P) and suppose that
the dynamics of the underlying processes are governed by the following system of SDEs under the
domestic risk-neutral measure Q:

dSt =
(
rdt − r

f
t

)
Stdt+ σ(t, St)

√
vtStdW

s
t , S0 > 0,

dvt = k(θ − vt)dt+ ξ
√
vt dW

v
t , v0 > 0,

rdt = gdt + hd(t),

dgdt = kd(θd − gdt )dt+ ξd

√
gdt dW

d
t , gd0 > 0,

rft = gft + hf (t),

dgft =
(
kfθf − kfgft − ρsfξfσ(t, St)

√
vtg

f
t

)
dt+ ξf

√
gft dW

f
t , gf0 > 0,

(2.1)
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where {W s,W v,W d,W f} are standard Brownian motions, σ is the leverage function and hd and
hf are deterministic functions of time. The mean-reversion parameters k, kd and kf , the long-term
mean parameters θ, θd and θf , and the volatility parameters ξ, ξd and ξf are positive real numbers.
The quanto correction term in the drift of the foreign short rate in (2.1) comes from changing
from the foreign to the domestic risk-neutral measure [9]. As an aside, for Hull–White short rate
processes, changing from the domestic spot measure to the domestic T -forward measure leads to
a dimension reduction of the problem because the diffusion coefficients of the short rates do not
depend on the level of the rates [19]. Since this is not the case for CIR short rate processes, we
prefer to work under the domestic spot measure. Note that the above system can collapse to the
Heston–2CIR++ model if we set σ = 1, or to a local volatility model with stochastic short rates if
we set k = ξ = 0. The standard Heston SLV model is the special case kd = ξd = kf = ξf = hd,f = 0.
We can also think of (2.1) as a model in an equity market with stock price process S, stochastic
interest rate rd and stochastic dividend yield rf , in which case the quanto correction term vanishes.
We consider a full correlation structure between the Brownian drivers {W s,W v,W d,W f}, i.e., no
assumptions on the constant correlation matrix Σ are made, where

Σ =


1 ρsv ρsd ρsf
ρsv 1 ρvd ρvf
ρsd ρvd 1 ρdf
ρsf ρvf ρdf 1

 . (2.2)

Furthermore, we work under the following assumptions:

(A1) The leverage function is bounded, i.e., there exists a non-negative constant σmax such that,
for all t ∈ [0, T ] and x ∈ [0,∞), we have

0 ≤ σ(t, x) ≤ σmax . (2.3)

(A2) There exist non-negative constants A, B and a positive real number α such that, for all
t, u ∈ [0, T ] and x, y ∈ [0,∞), we have

|σ(t, x)− σ(u, y)| ≤ A |t− u|α +B |x− y| . (2.4)

(A3) There exists a non-negative constant hmax such that, for all t ∈ [0, T ] and i ∈ {d, f}, we have

|hi(t)| ≤ hmax . (2.5)

Hence, we assume that σ is bounded, Hölder continuous in t and Lipschitz in St. According
to [11], for the leverage function to be consistent with call and put prices, it has to be given by
the formula (2.9), which depends on the calibrated Dupire local volatility. In practice, the local
volatility function usually arises as the interpolation of discrete values obtained from a discretized
version of Dupire’s formula. Hence, there is no loss of generality from a practical point of view in
assuming that the leverage function is Lipschitz continuous and bounded on a compact subset of
R2

+ of the form [0, T ]× [xmin, xmax], and furthermore that

σ(t, x) = σ
(
t ∧ T, xmin 1x≤xmin + x1x∈(xmin,xmax) + xmax 1x≥xmax

)
. (2.6)

Then σ is globally Lipschitz continuous and the second assumption holds with α = 1. We also
assume that hd,f are bounded. According to [7], for a perfect fit to the initial term structure of
interest rates, each of the two shift functions must be given by the difference between the (flat-
forward) market instantaneous forward rate and a continuous function of time. Then hd,f are
piecewise continuous and the third assumption holds.
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2.2 Model calibration

The calibration of the 4-factor Heston–2CIR++ SLV model (2.1) is of paramount importance and
represents a mandatory step for the efficient pricing of derivative contracts. In [11], we consider the
4-factor SLV model and propose a new calibration approach that builds on the particle method of
[20], combined with a novel and efficient variance reduction technique that takes advantage of PDE
calibration to increase its stability and accuracy. The numerical experiments in [11] suggest that
this method almost recovers the calibration speed from the associated 2-factor SLV model with
deterministic rates. We assume here a partial correlation structure where only ρsv, ρsd and ρsf may
be non-zero, and denote by Dd and Df the domestic and foreign discount factors associated with
their respective money market accounts, i.e., for any t ∈ [0, T ],

Dd
t = e−

∫ t
0 r

d
udu and Df

t = e−
∫ t
0 r

f
udu. (2.7)

In addition to (2.1), we consider a pure local volatility (LV) model,

dSLV
t =

(
fdt − f

f
t

)
SLV
t dt+ σLV

(
t, SLV

t

)
SLV
t dW s

t , SLV
0 = S0, (2.8)

where for i ∈ {d, f}, f it = − ∂
∂t logP i(0, t) is the market instantaneous forward rate at time 0 for a

maturity t and P i(0, t) is the market zero-coupon bond price at time 0 for a maturity t.
Suppose that the LV model (2.8) has been calibrated and that σLV has been determined. The

main building block of the calibration routine is expressing the leverage function σ in terms of the
local volatility function σLV. We state the necessary and sufficient condition for a perfect calibration
to vanilla options in the following theorem, proved in [11].

Theorem 2.1 (Theorem 1 in [11]). If the spot process marginal density function under model (2.1)
is continuous in space and under assumptions (A1) and (A3), the call price under model (2.1)
matches the market quote for any strike K and maturity T < T ∗ if and only if

σ2(T,K) =
E
[
Dd
T |ST = K

]
E
[
Dd
T vT |ST = K

]{σ2
LV(T,K) +

2

K2 ∂2CLV
∂K2

(
E
[
Dd
T

(
rfT − f

f
T

)(
ST −K

)+]
−K E

[
Dd
T

(
rdT − fdT

)
1ST≥K

]
+K E

[
Dd
T

(
rfT − f

f
T

)
1ST≥K

])}
, (2.9)

where CLV is the call price under model (2.8), all expectations are under the domestic risk-neutral
measure, ϕ = 2 +

√
2, ζ = ξσmax and T ∗ is as given below.

(1) When k < ϕζ,

T ∗ =
2√

ϕ2ζ2 − k2

[
π

2
+ arctan

(
k√

ϕ2ζ2 − k2

)]
. (2.10)

(2) When k ≥ ϕζ,
T ∗ =∞. (2.11)

This result generalizes the formula in [20] to a stochastic foreign short rate. Deelstra and Rayee
[13] obtained a similar formula for a 4-factor SLV model with Hull–White short rate processes. An
important step in the derivation is that the stochastic integral∫ T

0
1St≥K σ(t, St)

√
vtD

d
t StdW

s
t
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is a true martingale. On the one hand, T ∗ is a lower bound on the explosion time of the second
moment of the discounted spot process Dd

t St (see Proposition 3.12). On the other hand, moments
of the Heston model can explode in finite time [5], a property that is inherited by the Heston-
type model (2.1). Note also Theorems 3.1 and 3.6 for possible moment explosions of the numerical
approximations. Therefore, the formula (2.9) may not hold for some values of the model parameters
and for large maturities T . However, in practice, T ∗ is very large. For instance, following our
calibration routine to EURUSD market data from [11], we found T ∗ = 28.6.

As an aside, note that if the volatility in model (2.1) is purely local, i.e., if v = 1, we recover
the formula in [9], whereas if the two short rates are deterministic, i.e., if gd = gf = 0, we recover
the formula in [20, 35], i.e.,

σ(T,K) =
σLV(T,K)√
E[vT |ST = K]

. (2.12)

In the computations in Section 4, we assume a simple correlation structure where only ρsv may
be non-zero. We use a five-step calibration routine which is explained in detail in [11]. First, we
calibrate the LV model (2.8) and find σLV. We also calibrate the associated 2-factor SLV model with
deterministic rates via PDE methods, using formula (2.12) and results from the literature [9, 35].
Independently, we calibrate the two CIR++ processes under their respective markets. Then, we find
the Heston parameters by calibrating the associated 4-factor SV model, i.e., the Heston–2CIR++

SV model, using the closed-form solution for the call price in [1], extended to CIR++ processes,
with other parameters from the above calibration. Finally, we calibrate σ in the Heston–2CIR++

SLV model (2.1) by working with the particle method of [20] and extending it using the calibrated
2-factor SLV model with deterministic rates as a control variate. For a partial correlation structure
with possibly non-zero ρsd and ρsf , we may use the historical values of the correlations between
the spot FX rate and the short-term zero-coupon bonds, and extend the approximation formulae
of [18] for the call price from a 3-factor Heston–CIR model to a 4-factor Heston–2CIR++ model.

3 Convergence analysis

3.1 The simulation scheme

We employ the full truncation Euler (FTE) scheme from [32] to discretize the variance and the two
short rate processes. Consider the CIR process

dyt = ky(θy − yt)dt+ ξy
√
yt dW

y
t . (3.1)

Let T be the maturity of the option under consideration and create an evenly spaced grid

T = Nδt, tn = nδt, ∀n ∈ {0, 1, ..., N}.

First, we introduce the discrete-time auxiliary process

ỹtn+1 = ỹtn + ky(θy − ỹ+
tn)δt+ ξy

√
ỹ+
tn δW

y
tn , (3.2)

where y+ = max (0, y) and δW y
tn = W y

tn+1
−W y

tn , and its continuous-time interpolation

ỹt = ỹtn + ky(θy − ỹ+
tn)(t− tn) + ξy

√
ỹ+
tn

(
W y
t −W

y
tn

)
, (3.3)
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for any t ∈ [tn, tn+1), as suggested in [22]. Then, we define the non-negative processes{
ŷt = ỹ+

t (3.4)

ȳt = ỹ+
tn (3.5)

whenever t ∈ [tn, tn+1). Let v̄ and ḡd be the FTE discretizations of v and gd, respectively. Taking
into account the presence of the quanto correction term in the drift of the foreign short rate, we
similarly define

g̃ft = g̃ftn +
[
kfθf −kf

(
g̃ftn
)+−ρsfξfσ(tn, S̄tn)√ṽ+

tn

(
g̃ftn
)+ ]

(t− tn) + ξf

√(
g̃ftn
)+(

W f
t −W

f
tn

)
, (3.6)

where S̄ is the continuous-time approximation of S defined below, as well as{
ĝft =

(
g̃ft
)+

(3.7)

ḡft =
(
g̃ftn
)+

(3.8)

whenever t ∈ [tn, tn+1). For i ∈ {d, f}, the domestic and foreign short rate discretizations are

r̄it = ḡit + hi(t). (3.9)

Finally, we use an Euler–Maruyama scheme to discretize the log-exchange rate. Let x and x̄ be the
actual and the approximated log-processes, and let S̄ = ex̄ be the continuous-time approximation
of S. Moreover, define h = hd − hf . Then the discrete method reads:

x̄tn+1 = x̄tn +

∫ tn+1

tn

h(u)du+
(
ḡdtn − ḡ

f
tn −

1

2
σ2
(
tn, S̄tn

)
v̄tn

)
δt+ σ

(
tn, S̄tn

)√
v̄tn δW

s
tn . (3.10)

However, we find it convenient to work with the continuous-time approximation

x̄t = x̄tn +

∫ t

tn

h(u)du+
(
ḡdt − ḡ

f
t −

1

2
σ̄2
(
t, S̄t

)
v̄t

)(
t− tn

)
+ σ̄

(
t, S̄t

)√
v̄t ∆W s

t , (3.11)

where ∆W s
t = W s

t −W s
tn and σ̄

(
t, S̄t

)
= σ

(
tn, S̄tn

)
whenever t ∈ [tn, tn+1). Hence,

x̄t = x0 +

∫ t

0

(
r̄du − r̄fu −

1

2
σ̄2
(
u, S̄u

)
v̄u

)
du+

∫ t

0
σ̄
(
u, S̄u

)√
v̄u dW

s
u . (3.12)

Note that the convergence of the continuous-time approximation ensures that the discrete method
approximates the true solution accurately at the gridpoints. Using Itô’s formula, we obtain

S̄t = S0 +

∫ t

0

(
r̄du − r̄fu

)
S̄udu+

∫ t

0
σ̄
(
u, S̄u

)√
v̄u S̄u dW

s
u . (3.13)

We prefer the log-Euler scheme to the standard Euler scheme to discretize the exchange rate process
because the former preserves positivity and produces no discretization bias in the S-direction when
σ is constant. Furthermore, if v, gd and gf are also constant, then the log-Euler scheme is exact.
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3.2 The main theorem

Define the arbitrage-free price of an option and its approximation under (3.13),

U = E
[
e−

∫ T
0 rdt dtf(S )

]
, (3.14)

Ū = E
[
e−

∫ T
0 r̄dt dtf(S̄ )

]
. (3.15)

The payoff function f may depend on the entire path of the underlying process and the expectation
is under the domestic risk-neutral measure.

Theorem 3.1. If 2kfθf > ξ2
f and under assumptions (A1) to (A3), the following statements hold.

(1) The approximations to the values of the European put, the up-and-out barrier call and any
barrier put option defined in (3.15) converge as δt→ 0.

(2) If ζ = ξσmax and

T < T ∗ ≡ 4k

ζ2
1ζ<2k +

1

ζ − k
1ζ≥2k , (3.16)

then the approximations to the values of the European call, Asian options, the down-and-in/out
and the up-and-in barrier call option defined in (3.15) converge as δt→ 0.

Remark 3.2. If assumption (A1) holds, then for the purpose of this paper we choose the smallest
upper bound on the leverage function, namely

σmax = sup
{
σ(t, x) | t ∈ [0, T ], x ∈ [0,∞)

}
. (3.17)

Remark 3.3. If the exchange rate and the foreign short rate dynamics are independent of each
other, i.e., if ρsf = 0, then the quanto correction term in the drift of the foreign short rate vanishes
and Theorem 3.1 holds independent of the Feller condition 2kfθf > ξ2

f , albeit with a simpler proof.
If the domestic and foreign short rates are constant throughout the lifetime of the option and if,
moreover, σ(t, x) = 1 for all t ∈ [0, T ] and x ∈ [0,∞), then the system of equations (2.1) collapses
to the Heston model and Theorem 3.1 applies with ζ = ξ. This extends the convergence results of
Higham and Mao [22] to options with unbounded payoffs.

Remark 3.4. Tian et al. [37] calibrated the term-structure Heston SLV model parameters to the
market implied volatility data on EURUSD using 10 term structures and maturities up to 5 years.
The data in Table 1 suggest that the condition in (3.16) is typically satisfied in practice, both for
shorter and longer maturities.

Table 1: The calibrated Heston SLV parameters for EURUSD market data from August 23, 2012 [37].

T k ξ σmax ζ T ∗

1 month 0.885 0.342 1.600 0.547 11.8 years

5 years 0.978 0.499 1.300 0.649 9.3 years

In [11], the Heston–2CIR++ SLV model is calibrated to the EURUSD market data from March
18, 2016, for maturities up to 5 years. The data in Table 2 indicate that the condition in (3.16) is
satisfied even for very long maturities. Furthermore, the following parameter values for the foreign

9



Table 2: The calibrated Heston–2CIR++ SLV parameters for EURUSD market data from March 18, 2016
[11].

T k ξ σmax ζ T ∗

5 years 1.412 0.299 1.399 0.418 32.3 years

short rate process are recovered: kf = 0.011, θf = 1.166, ξf = 0.037, so that the Feller condition
also holds, i.e., 2kfθf = 0.0257� 0.0014 = ξ2

f .
In equity markets, the mean-reversion speed is usually several times greater than the volatility

of volatility. For instance, Hurn et al. [25] calibrated the Heston model for the S&P 500 index from
January 1990 to December 2011 using a combination of two out-of-the-money options, and found
that k = 1.977� 0.456 = ξ. Furthermore, we typically have ζ < 1, so that the condition in (3.16)
holds even for longer maturities.

3.3 The square-root process

In order to prove the convergence of the approximation scheme in (3.13), we first need to examine
the stability of the moments of order higher than 1 of the actual and the discretized processes.
However, this problem is directly related to the exponential integrability of the CIR process and its
approximation. Let y be the CIR process in (3.1) and ȳ be the piecewise constant FTE interpolant
as per (3.5).

Proposition 3.5. Let λ > 0 and define the stochastic process

Θt ≡ exp

{
λ

∫ t

0
yu du

}
, ∀t ≥ 0. (3.18)

If T < T ∗, then the first moment of ΘT is bounded, i.e.,

E
[
ΘT

]
<∞, (3.19)

where T ∗ is as given below.

(1) When ky <
√

2λξy,

T ∗ =
2√

2λξ2
y − k2

y

[
π

2
+ arctan

(
ky√

2λξ2
y − k2

y

)]
. (3.20)

(2) When ky ≥
√

2λξy,
T ∗ =∞. (3.21)

Proof. Follows directly from Proposition 3.1 in [5].

Theorem 3.6. Let λ > 0 and define the stochastic process

Θ̄t ≡ exp

{
λ

∫ t

0
ȳu du

}
, ∀t ≥ 0. (3.22)

If T ≤ T ∗ and δT < k−1
y , then the first moment of Θ̄T is uniformly bounded, i.e.,

sup
δt∈(0,δT )

E
[
Θ̄T

]
<∞, (3.23)

where T ∗ is as given below.
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(1) When ky ≤
√

0.5λξy,

T ∗ =
1√

2λξy − ky
. (3.24)

(2) When ky >
√

0.5λξy,

T ∗ =
2ky
λξ2

y

. (3.25)

Proof. First, we prove that there exists η ≥ 1 independent of δt such that, for all ω ∈ [0, 1],

η2ω2λξ2
yT

2 − 2ηωkyT − 2η + 2 ≤ 0. (3.26)

Fix any η ≥ 1 and define the polynomial

fη(ω) = ω2η2λξ2
yT

2 − 2ωηkyT − 2(η − 1), (3.27)

with two distinct real roots

ω± =
ky ±

√
k2
y + 2(η − 1)λξ2

y

ηλξ2
yT

. (3.28)

Since ω− ≤ 0 < ω+, we have that fη([0, 1]) ≤ 0 if and only if fη(1) ≤ 0, i.e.,

η2λξ2
yT

2 − 2η(1 + kyT ) + 2 ≤ 0. (3.29)

This holds for some η ≥ 1 if and only if the quadratic polynomial in η on the left-hand side has a
real root greater or equal to one. Hence, we find the necessary and sufficient conditions:(√

2λξy − ky
)
T ≤ 1, and 2λξ2

yT ≤ ky +
√
k2
y + 4λξ2

y or ky +
√
k2
y + 4λξ2

y < 2λξ2
yT ≤ 4ky,

which are equivalent to T ≤ T ∗, with T ∗ defined in (3.24) – (3.25). Fix any η satisfying (3.26).
Next, we prove by induction on 0≤m≤N that, for all δt < δT ,

E
[
Θ̄T

]
≤ exp

{
η

2

(
kyθy + νyξy

)
λ(δt)2(m− 1)m

}
E
[

exp

{
λδt

N−m−1∑
i=0

ȳti + ηmλδtȳtN−m

}]
, (3.30)

where

νy =

√√√√ ξ2
y

4π(1− kyδT )2
+

1

2π

√
ξ4
y

4(1− kyδT )4
+

k2
yθ

2
y

(1− kyδT )2
. (3.31)

Let {Gyt , 0≤ t≤ T} be the natural filtration generated by the Brownian motion W y and consider
the shorthand notation Eyt

[
·
]

= E
[
· |Gyt

]
for the conditional expectation. Note that (3.30) clearly

holds when m ∈ {0, 1}. Next, let us assume that (3.30) holds for 1≤m<N and prove the inductive
step. Conditioning on the σ-algebra GytN−m−1

, we obtain

E
[
Θ̄T

]
≤ exp

{
1

2
η
(
kyθy + νyξy

)
λ(δt)2(m− 1)m

}
× E

[
exp

{
λδt

N−m−1∑
i=0

ȳti

}
EytN−m−1

[
exp

{
ηmλδtȳtN−m

}]]
. (3.32)
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For convenience, define w = ȳtN−m−1 . If Z ∼ N (0, 1), then GytN−m−1
⊥⊥ δW y

tN−m−1

law
=
√
δtZ. Let I

be the inner expectation in (3.32), then

I ≤ E0,w

[
exp

{
ηmλδt max

[
0, w + ky(θy − w)δt+ ξy

√
wδtZ

]}]
.

There are two possible outcomes, namely w = 0, in which case

I ≤ exp
{
ηmkyθyλ(δt)2

}
, (3.33)

and w > 0, which is treated now:

I ≤
∫ ∞
z0

1√
2π

exp

{
−1

2
z2 + ηmξyλ

√
w (δt)3/2z + ηmλδt

[
w + ky(θy − w)δt

]}
dz

+

∫ z0

−∞

1√
2π

exp

{
−1

2
z2

}
dz, (3.34)

where

z0 = −kyθyδt+ (1− kyδt)w
ξy
√
wδt

. (3.35)

Recall that δT < k−1
y and define

z1 = z0 − ηmξyλ
√
w (δt)3/2. (3.36)

Then z1 < z0 < 0. If φ and Φ are the standard normal PDF and CDF, then

I ≤ Φ (z0) + exp

{
ηmλδt

[
kyθyδt+ (1− kyδt)w

]
+

1

2
η2m2ξ2

yλ
2w(δt)3

}{
1− Φ (z1)

}
,

and hence

I ≤ exp

{
ηmkyθyλ(δt)2 +

1

2
aλwδt

}{
1 + Φ (z0)− Φ (z1)

}
, (3.37)

where
a = 2ηm(1− kyδt) + η2m2ξ2

yλ(δt)2 > 0. (3.38)

Applying the mean value theorem to Φ ∈ C1, we can find z ∈ [z1, z0] such that

Φ(z0)− Φ(z1) = (z0 − z1)φ (z) ≤ (z0 − z1)φ (z0) .

Hence, from (3.35) and (3.36),

Φ(z0)− Φ(z1) ≤ 1√
2π

ηmξyλ(δt)3/2︸ ︷︷ ︸
= b, constant w.r.t. w

·
√
w exp

{
−
[
kyθyδt+ (1− kyδt)w

]2
2ξ2

ywδt

}
. (3.39)

We can think of the right-hand side as a function of w, say f : (0,∞) 7→ R. Next, we show that

f(w) ≤ ηmνyξyλ(δt)2, ∀w > 0. (3.40)
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In order to find its global maximum, we need to compute the first derivative.

f ′(w) = be−z
2
0/2

{
1

2
√
w

+
√
w

[
k2
yθ

2
yδt

2ξ2
yw

2
− (1− kyδt)2

2ξ2
yδt

]}
.

Therefore,
f ′(w) = 0 ⇔ −(1− kyδt)2w2 + ξ2

ywδt+ k2
yθ

2
y (δt)2 = 0.

To solve this quadratic, we divide throughout by (δt)2 and introduce a new variable, ŵ = w/δt.
Then there exists a unique, positive solution ŵ0 for which the derivative is zero, namely

ŵ0 =
ξ2
y

2(1− kyδt)2
+

√
ξ4
y

4(1− kyδt)4
+

k2
yθ

2
y

(1− kyδt)2
.

From (3.31), we have that
ŵ0 < 2πν2

y ⇒ w0 < 2πν2
yδt.

Since the second root is negative, f(w) must be increasing up to w0 and decreasing after this point,
so the function attains its global maximum at w0. Hence,

f(w) ≤ f(w0) = b
√
w0e

−z20/2 ≤ b
√

2πν2
yδt = ηmνyξyλ(δt)2.

Making use of the upper bound in (3.40), we derive the following inequality:

1 + Φ(z0)− Φ(z1) ≤ exp
{
ηmνyξyλ(δt)2

}
. (3.41)

Substituting back into (3.37) with (3.41), we get

I ≤ exp

{
ηm
(
kyθy + νyξy

)
λ(δt)2 +

1

2
aλwδt

}
.

Note from (3.33) that this holds when w = 0 as well. Applying (3.26) with ω = m
N leads to

η2m2ξ2
yλ(δt)2 − 2ηmkyδt− 2η + 2 ≤ 0.

Hence, from (3.38),
a ≤ 2η(m+ 1)− 2.

Therefore,

I ≤ exp

{
ηm
(
kyθy + νyξy

)
λ(δt)2 − λwδt+ η(m+ 1)λwδt

}
.

Substituting back into (3.32) gives the inductive step. Finally, taking m = N in (3.30) leads to

E
[
Θ̄T

]
< exp

{
1

2
ηλT 2

(
kyθy + νyξy

)
+ ηλTy0

}
. (3.42)

The right-hand side is finite and independent of δt and the conclusion follows.

The next two results establish uniform moment bounds for both the original and the discretized
variance and short rate processes. Note that under assumption (A3), the moment boundedness of
gi and ĝi, for i ∈ {d, f}, extends naturally to |ri| and |r̄i|.
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Proposition 3.7. The following two statements hold.

(1) The square-root process in (3.1) has uniformly bounded moments, i.e.,

E
[

sup
t∈[0,T ]

ypt

]
<∞, ∀p ≥ 1. (3.43)

(2) The FTE scheme in (3.4) for the square-root process has uniformly bounded moments, i.e.,

sup
δt∈(0,δT )

E
[

sup
t∈[0,T ]

ŷpt

]
<∞, ∀p ≥ 1, ∀δT > 0. (3.44)

Proof. (1) The polynomial moments of the square-root process can be expressed in terms of the con-
fluent hypergeometric function and, according to Theorem 3.1 in [24] or to [14], they are uniformly
bounded, i.e.,

sup
t∈[0,T ]

E
[
ypt
]
<∞, ∀p > − 2kyθy

ξ2
y

. (3.45)

On the other hand, using Hölder’s inequality, we deduce that

sup
t∈[0,T ]

ypt ≤ 3p−1
(
y0 + kyθyT

)p
+ 3p−1kpyT

p−1

∫ T

0
ypu du+ 3p−1ξpy sup

t∈[0,T ]

∣∣∣∣ ∫ t

0

√
yu dW

y
u

∣∣∣∣p. (3.46)

Using the Burkholder–Davis–Gundy (BDG) inequality, we can find a constant Cp > 0 such that

E
[

sup
t∈[0,T ]

∣∣∣∣ ∫ t

0

√
yu dW

y
u

∣∣∣∣p] ≤ Cp E [(∫ T

0
yu du

)p/2]
≤ 1

2
Cp +

1

2
CpT

p−1 E
[ ∫ T

0
ypu du

]
. (3.47)

Taking expectations in (3.46) and employing Fubini’s theorem, we get

E
[

sup
t∈[0,T ]

ypt

]
≤ 3p−1

(
y0 + kyθyT

)p
+

1

2
3p−1ξpyCp + 3p−1

(
kpy + 0.5ξpyCp

)
T p sup

t∈[0,T ]
E
[
ypt
]
. (3.48)

The right-hand side is finite by (3.45), whence the conclusion.
(2) Integrating the auxiliary process ỹ defined in (3.3), we deduce that

ỹt = y0 + ky

∫ t

0
(θy − ȳu) du+ ξy

∫ t

0

√
ȳu dW

y
u . (3.49)

For any p, ε > 0, there exists a constant c(p, ε) > 0 such that max(0, x)p ≤ c(p, ε)eεx for all x ∈ R.
In particular, this implies that ŷpt ≤ c(p, ε)eεỹt for all t ∈ [0, T ]. Hence,

sup
t∈[0,T ]

E
[
ŷpt
]
≤ c(p, ε)eε(y0+kyθyT ) sup

t∈[0,T ]
E
[
Γt
]
, (3.50)

where

Γt ≡ exp

{
− εky

∫ t

0
ȳu du+ εξy

∫ t

0

√
ȳu dW

y
u

}
. (3.51)

Assuming that t ∈ [tn, tn+1] and conditioning on the σ-algebra Gytn , we get

Eytn
[
Γt
]

= Γtn exp
{(

0.5ε2ξ2
y − εky

)(
t− tn

)
ȳtn

}
. (3.52)
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However, we can find ε sufficiently small such that ky ≥ 0.5εξ2
y . Then Eytn

[
Γt
]
≤ Eytn

[
Γtn
]

and the
law of iterated expectations ensures that

E
[
Γt
]
≤ E

[
Γtn
]
≤ E

[
Γtn−1

]
≤ . . . ≤ E

[
Γ0

]
⇒ sup

t∈[0,T ]
E
[
Γt
]

= 1.

Substituting back into (3.50), we deduce that

sup
t∈[0,T ]

E
[
ŷpt
]
≤ c(p, ε)eε(y0+kyθyT ), (3.53)

which is independent of δt. On the other hand, since ŷt ≤ |ỹt| and using Hölder’s inequality, we get

sup
t∈[0,T ]

ŷpt ≤ 3p−1
(
y0 + kyθyT

)p
+ 3p−1kpyT

p−1

∫ T

0
ȳpu du+ 3p−1ξpy sup

t∈[0,T ]

∣∣∣∣ ∫ t

0

√
ȳu dW

y
u

∣∣∣∣p. (3.54)

Taking expectations on both sides and using the BDG inequality as in (3.47) leads to

E
[

sup
t∈[0,T ]

ŷpt

]
≤ 3p−1

(
y0 + kyθyT

)p
+

1

2
3p−1ξpyCp + 3p−1

(
kpy + 0.5ξpyCp

)
T p sup

t∈[0,T ]
E
[
ŷpt
]
, (3.55)

for some constant Cp > 0. However, supt∈[0,T ] E
[
ȳpt
]
≤ supt∈[0,T ] E

[
ŷpt
]
, and the conclusion follows

from (3.53).

Proposition 3.8. Under assumption (A1), the following two statements hold.

(1) The process gf has uniformly bounded moments, i.e.,

E
[

sup
t∈[0,T ]

(
gft
)p]

<∞, ∀p ≥ 1. (3.56)

(2) The process ĝf from (3.7) has uniformly bounded moments, i.e.,

sup
δt∈(0,δT )

E
[

sup
t∈[0,T ]

(
ĝft
)p]

<∞, ∀p ≥ 1, ∀δT > 0. (3.57)

Proof. (1) From (2.1), we know that

gft = gf0 + kfθf t− kf
∫ t

0
gfu du− ρsfξf

∫ t

0
σ(u, Su)

√
vug

f
u du+ ξf

∫ t

0

√
gfu dW

f
u . (3.58)

Since gf is non-negative and using the fact that 2
√
|ab| ≤ |a|+ |b|, we find an upper bound

gft ≤ g
f
0 + kfθf t+

1

2
|ρsf |ξfσmax

∫ t

0
vu du+

1

2

(
2kf + |ρsf |ξfσmax

) ∫ t

0
gfu du+ ξf

∣∣∣∣ ∫ t

0

√
gfu dW

f
u

∣∣∣∣.
Fix t ∈ [0, T ]. Using Hölder’s inequality, we get

sup
s∈[0,t]

(
gfs
)p ≤ 4p−1

(
gf0 + kfθfT

)p
+ 2p−2|ρsf |pξpfσ

p
maxT

p−1

∫ T

0
vpu du

+ 2p−2
(
2kf + |ρsf |ξfσmax

)p
T p−1

∫ t

0

(
gfu
)p
du+ 4p−1ξpf sup

s∈[0,t]

∣∣∣∣ ∫ s

0

√
gfu dW

f
u

∣∣∣∣p. (3.59)
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Taking expectations on both sides and using the BDG inequality as in (3.47) leads to

E
[

sup
s∈[0,t]

(
gfs
)p] ≤ 4p−1

(
gf0 + kfθfT

)p
+ 22p−3ξpfCp + 2p−2|ρsf |pξpfσ

p
maxT

p sup
u∈[0,T ]

E
[
vpu
]

+
(

2p−2
(
2kf + |ρsf |ξfσmax

)p
T p−1 + 22p−3ξpfCpT

p−1
)∫ t

0
E
[

sup
s∈[0,u]

(
gfs
)p]

du, (3.60)

for some constant Cp > 0. Applying Gronwall’s inequality (see [15]), we get

E
[

sup
t∈[0,T ]

(
gft
)p] ≤ (4p−1

(
gf0 + kfθfT

)p
+ 22p−3ξpfCp + 2p−2|ρsf |pξpfσ

p
maxT

p sup
u∈[0,T ]

E
[
vpu
])

× exp
{

2p−2
(
2kf + |ρsf |ξfσmax

)p
T p + 22p−3ξpfCpT

p
}
. (3.61)

The conclusion follows from Proposition 3.7.
(2) Integrating the auxiliary process g̃f defined in (3.6), we deduce that

g̃ft = gf0 + kfθf t− kf
∫ t

0
ḡfu du− ρsfξf

∫ t

0
σ̄
(
u, S̄u

)√
v̄uḡ

f
u du+ ξf

∫ t

0

√
ḡfu dW

f
u . (3.62)

Since ĝft ≤ |g̃
f
t |, following the previous argument, we deduce that

E
[

sup
s∈[0,t]

(
ĝfs
)p] ≤ 4p−1

(
gf0 + kfθfT

)p
+ 22p−3ξpfCp + 2p−2|ρsf |pξpfσ

p
maxT

p sup
u∈[0,T ]

E
[
v̄pu
]

+
(

2p−2
(
2kf + |ρsf |ξfσmax

)p
T p−1 + 22p−3ξpfCpT

p−1
)∫ t

0
E
[(
ḡfu
)p]

du. (3.63)

Since supu∈[0,T ] E
[
v̄pu
]
≤ supu∈[0,T ] E

[
v̂pu
]

and ḡfu ≤ sups∈[0,u] ĝ
f
s , using Gronwall’s inequality, we get

E
[

sup
t∈[0,T ]

(
ĝft
)p] ≤ (4p−1

(
gf0 + kfθfT

)p
+ 22p−3ξpfCp + 2p−2|ρsf |pξpfσ

p
maxT

p sup
u∈[0,T ]

E
[
v̂pu
])

× exp
{

2p−2
(
2kf + |ρsf |ξfσmax

)p
T p + 22p−3ξpfCpT

p
}
. (3.64)

The conclusion follows from Proposition 3.7.

Next, we establish the strong mean square convergence of the discretized variance and domestic
short rate processes. Unlike in [32], where the focus was on the continuous-time approximation ŷ,
we are rather interested in the behaviour of ȳ in the limit as the time step goes to zero. Note that
the convergence of ḡd extends naturally to r̄d.

Proposition 3.9. The full truncation scheme in (3.5) for the square-root process converges strongly
in the L2 sense, i.e.,

lim
δt→0

sup
t∈[0,T ]

E
[
|yt − ȳt|2

]
= 0. (3.65)

Proof. First, fix t ∈ [0, T ]. Since |yt − ŷt| ≤ |yt − ỹt|, using Cauchy’s inequality, we get

sup
s∈[0,t]

|ys − ŷs|2 ≤ 2k2
yt

∫ t

0
(yu − ȳu)2du+ 2ξ2

y sup
s∈[0,t]

∣∣∣∣ ∫ s

0

(√
yu −

√
ȳu
)
dW y

u

∣∣∣∣2. (3.66)
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Taking expectations and then using Doob’s martingale inequality and Fubini’s theorem leads to

E
[

sup
s∈[0,t]

|ys − ŷs|2
]
≤ 4k2

yT

∫ t

0
E
[

sup
s∈[0,u]

|ys − ŷs|2
]
du+ 4k2

yT
2 sup
u∈[0,T ]

E
[
|ŷu − ȳu|2

]
+ 8ξ2

yT sup
u∈[0,T ]

E
[
|yu − ŷu|

]
+ 8ξ2

yT sup
u∈[0,T ]

E
[
|ŷu − ȳu|

]
. (3.67)

Applying Gronwall’s inequality, we get

E
[

sup
t∈[0,T ]

|yt − ŷt|2
]
≤ e4k2yT

2

(
4k2

yT
2 sup
t∈[0,T ]

E
[
|ŷt − ȳt|2

]
+ 8ξ2

yT sup
t∈[0,T ]

E
[
|ŷt − ȳt|

]
+ 8ξ2

yT sup
t∈[0,T ]

E
[
|yt − ŷt|

])
. (3.68)

On the other hand, we know that

sup
t∈[0,T ]

E
[
|yt − ȳt|2

]
≤ 2 sup

t∈[0,T ]
E
[
|yt − ŷt|2

]
+ 2 sup

t∈[0,T ]
E
[
|ŷt − ȳt|2

]
. (3.69)

Substituting into (3.69) with the upper bound in (3.68), we get

sup
t∈[0,T ]

E
[
|yt − ȳt|2

]
≤ 2
(

1 + 4k2
yT

2e4k2yT
2
)

sup
t∈[0,T ]

E
[
|ŷt − ȳt|2

]
+ 16ξ2

yTe
4k2yT

2
sup
t∈[0,T ]

E
[
|ŷt − ȳt|

]
+ 16ξ2

yTe
4k2yT

2
sup
t∈[0,T ]

E
[
|yt − ŷt|

]
. (3.70)

The convergence of the three terms on the right-hand side of (3.70) is a consequence of Lemma A.3
and Theorem 4.2 in [32], which concludes the proof.

3.4 The four-dimensional system

Even though weak convergence is important when estimating expectations of payoffs, strong con-
vergence plays a crucial role in multilevel Monte Carlo methods and may be required for complex
path-dependent derivatives. First, we prove the uniform mean square convergence of the stopped
discretized spot FX rate process in (3.13).

Proposition 3.10. Let Ls > S0, Lv > v0, Ld > gd0 , Lf > gf0 > κ−1, and define the stopping time

τ = inf
{
t ≥ 0 : St ≥ Ls or vt ≥ Lv or v̂t ≥ Lv or ĝdt ≥ Ld or ĝft ≥ Lf or gft ≤ κ−1

}
. (3.71)

Under assumptions (A1) to (A3), the stopped process converges uniformly in L2, i.e.,

lim
δt→0

E
[

sup
t∈[0,T ]

∣∣St∧τ − S̄t∧τ ∣∣2 ] = 0. (3.72)

Proof. The absolute difference between the original and the discretized stopped processes can be
bounded from above as follows,

∣∣St∧τ − S̄t∧τ ∣∣ ≤ ∣∣∣∣ ∫ t∧τ

0
h(u)

(
Su − S̄u

)
du

∣∣∣∣+

∣∣∣∣ ∫ t∧τ

0

(
gdu − ḡdu

)
Su du

∣∣∣∣+

∣∣∣∣ ∫ t∧τ

0
ḡdu
(
Su − S̄u

)
du

∣∣∣∣
17



+

∣∣∣∣ ∫ t∧τ

0

(
gfu − ḡfu

)
Su du

∣∣∣∣+

∣∣∣∣ ∫ t∧τ

0
ḡfu
(
Su − S̄u

)
du

∣∣∣∣+

∣∣∣∣ ∫ t∧τ

0
σ̄
(
u, S̄u

)√
v̄u
(
Su − S̄u

)
dW s

u

∣∣∣∣
+

∣∣∣∣ ∫ t∧τ

0

(
σ
(
u, Su

)
− σ̄

(
u, S̄u

))√
v̄u Su dW

s
u

∣∣∣∣+

∣∣∣∣ ∫ t∧τ

0
σ
(
u, Su

)(√
vu −

√
v̄u

)
Su dW

s
u

∣∣∣∣.
Squaring both sides, taking the supremum over all t ∈ [0, s], where 0 ≤ s ≤ T , and then employing
the Cauchy–Schwarz inequality leads to the upper bound

sup
t∈[0,s]

∣∣St∧τ − S̄t∧τ ∣∣2 ≤ 8
(
L2
d + L2

f + 4h2
max

)
T

∫ s∧τ

0

(
Su − S̄u

)2
du+ 8L2

sT

∫ T

0

(
gdu − ḡdu

)2
du

+ 8 sup
t∈[0,s]

∣∣∣∣ ∫ t∧τ

0
σ
(
u, Su

)(√
vu −

√
v̄u

)
Su dW

s
u

∣∣∣∣2 + 16L2
sT

∫ T

0

(
ĝfu − ḡfu

)2
du

+ 8 sup
t∈[0,s]

∣∣∣∣ ∫ t∧τ

0
σ̄
(
u, S̄u

)√
v̄u
(
Su − S̄u

)
dW s

u

∣∣∣∣2 + 16L2
sT

∫ s∧τ

0

(
gfu − ĝfu

)2
du

+ 8 sup
t∈[0,s]

∣∣∣∣ ∫ t∧τ

0

(
σ
(
u, Su

)
− σ̄

(
u, S̄u

))√
v̄u Su dW

s
u

∣∣∣∣2. (3.73)

Note that ∫ s∧τ

0

(
gfu − ĝfu

)2
du ≤

∫ s

0

(
gfu∧τ − ĝ

f
u∧τ
)2
du ≤ T sup

t∈[0,s]

∣∣gft∧τ − ĝft∧τ ∣∣2. (3.74)

Hence, taking expectations in (3.73), using Fubini’s theorem, Doob’s martingale inequality and the
Itô isometry, and upon noticing that a stopped martingale is also a martingale, we obtain

E
[

sup
t∈[0,s]

∣∣St∧τ − S̄t∧τ ∣∣2] ≤ 8L2
sT

2 sup
t∈[0,T ]

E
[∣∣gdt − ḡdt ∣∣2]+ 32σ2

maxL
2
sT sup

t∈[0,T ]
E
[∣∣vt − v̄t∣∣]

+ 16L2
sT

2 sup
t∈[0,T ]

E
[∣∣ĝft − ḡft ∣∣2]+

[
8
(
L2
d + L2

f + 4h2
max

)
T + 32σ2

maxLv

]
E
[ ∫ s∧τ

0

∣∣Su − S̄u∣∣2du]
+ 32L2

sLv E
[ ∫ s∧τ

0

∣∣σ(u, Su)− σ̄(u, S̄u)∣∣2du]+ 16L2
sT

2 E
[

sup
t∈[0,s]

∣∣gft∧τ − ĝft∧τ ∣∣2]. (3.75)

First, we bound the last expectation on the right-hand side of (3.75) from above. From (3.58) and

(3.62), since |gft∧τ − ĝ
f
t∧τ | ≤ |g

f
t∧τ − g̃

f
t∧τ |, we get

∣∣gft∧τ − ĝft∧τ ∣∣ ≤ ∣∣∣∣− kf ∫ t∧τ

0

(
gfu − ĝfu

)
du− kf

∫ t∧τ

0

(
ĝfu − ḡfu

)
du+ ξf

∫ t∧τ

0

(√
gfu −

√
ĝfu
)
dW f

u

+ ξf

∫ t∧τ

0

(√
ĝfu −

√
ḡfu
)
dW f

u − ρsfξf
∫ t∧τ

0
σ
(
u, Su

)√
vu

(√
gfu −

√
ĝfu
)
du

− ρsfξf
∫ t∧τ

0
σ
(
u, Su

)√
vu

(√
ĝfu −

√
ḡfu
)
du− ρsfξf

∫ t∧τ

0
σ
(
u, Su

)√
ḡfu
(√

vu −
√
v̄u

)
du

− ρsfξf
∫ t∧τ

0

√
v̄uḡ

f
u

(
σ
(
u, Su

)
− σ̄

(
u, S̄u

))
du

∣∣∣∣. (3.76)

Squaring both sides, taking the supremum over all t ∈ [0, s′], where 0 ≤ s′ ≤ s, and employing the
Cauchy–Schwarz inequality, then taking expectations and using Doob’s martingale inequality and
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Fubini’s theorem, we deduce that

E
[

sup
t∈[0,s′]

∣∣gft∧τ − ĝft∧τ ∣∣2] ≤ 8k2
fT

∫ s′

0
E
[(
gfu − ĝfu

)2
1u<τ

]
du+ 8k2

fT

∫ T

0
E
[(
ĝfu − ḡfu

)2]
du

+ 32ξ2
f

∫ s′

0
E
[(√

gfu −
√
ĝfu
)2
1u<τ

]
du+ 32ξ2

f

∫ T

0
E
[∣∣ĝfu − ḡfu∣∣]du

+ 8ρ2
sfξ

2
fσ

2
maxLvT

∫ s′

0
E
[(√

gfu −
√
ĝfu
)2
1u<τ

]
du+ 8ρ2

sfξ
2
fσ

2
maxLvT

∫ T

0
E
[∣∣ĝfu − ḡfu∣∣]du

+ 8ρ2
sfξ

2
fσ

2
maxLfT

∫ T

0
E
[∣∣vu − v̄u∣∣]du+ 8ρ2

sfξ
2
fLvLfT E

[ ∫ s′∧τ

0

∣∣σ(u, Su)− σ̄(u, S̄u)∣∣2du].
However, (√

gfu −
√
ĝfu
)2
1u<τ ≤

(√
gfu∧τ −

√
ĝfu∧τ

)2
≤ κ

(
gfu∧τ − ĝ

f
u∧τ
)2
, (3.77)

and hence, since s′ ≤ s,

E
[

sup
t∈[0,s′]

∣∣gft∧τ − ĝft∧τ ∣∣2] ≤ (8k2
fT + 32ξ2

fκ+ 8ρ2
sfξ

2
fσ

2
maxLvκT

) ∫ s′

0
E
[

sup
t∈[0,u]

∣∣gft∧τ − ĝft∧τ ∣∣2]du
+ 8ρ2

sfξ
2
fLvLfT E

[ ∫ s∧τ

0

∣∣σ(u, Su)− σ̄(u, S̄u)∣∣2du]+ 8ρ2
sfξ

2
fσ

2
maxLfT

2 sup
t∈[0,T ]

E
[∣∣vt − v̄t∣∣]

+
(
32ξ2

fT + 8ρ2
sfξ

2
fσ

2
maxLvT

2
)

sup
t∈[0,T ]

E
[∣∣ĝft − ḡft ∣∣]+ 8k2

fT
2 sup
t∈[0,T ]

E
[(
ĝft − ḡ

f
t

)2]
. (3.78)

Therefore, applying Gronwall’s inequality to (3.78), since s ≤ T , we get

E
[

sup
t∈[0,s]

∣∣gft∧τ − ĝft∧τ ∣∣2] ≤ eβ1T{8ρ2
sfξ

2
fLvLfT E

[ ∫ s∧τ

0

∣∣σ(u, Su)− σ̄(u, S̄u)∣∣2du]
+ 8ρ2

sfξ
2
fσ

2
maxLfT

2 sup
t∈[0,T ]

E
[∣∣vt − v̄t∣∣]+ 8k2

fT
2 sup
t∈[0,T ]

E
[(
ĝft − ḡ

f
t

)2]
+
(
32ξ2

fT + 8ρ2
sfξ

2
fσ

2
maxLvT

2
)

sup
t∈[0,T ]

E
[∣∣ĝft − ḡft ∣∣]}, (3.79)

where
β1 = 8k2

fT + 32ξ2
fκ+ 8ρ2

sfξ
2
fσ

2
maxLvκT.

Second, assumption (A2) on the leverage function ensures that

E
[ ∫ s∧τ

0

∣∣σ(u, Su)− σ̄(u, S̄u)∣∣2du] ≤ 3A2T (δt)2α + 3B2 E
[ ∫ T

0

∣∣St − St̄∣∣2 1t<τ dt]
+ 3B2 E

[ ∫ s∧τ

0
sup
t∈[0,u]

∣∣St − S̄t∣∣2du], (3.80)

where t̄ = δt
⌊
t
δt

⌋
. Furthermore, we know that∫ s∧τ

0

∣∣Su − S̄u∣∣2du ≤ ∫ s∧τ

0
sup
t∈[0,u]

∣∣St − S̄t∣∣2 du ≤ ∫ s

0
sup
t∈[0,u]

∣∣St∧τ − S̄t∧τ ∣∣2 du. (3.81)
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Substituting back into (3.75) with (3.79) – (3.81), we deduce that

E
[

sup
t∈[0,s]

∣∣St∧τ − S̄t∧τ ∣∣2] ≤ β2

∫ s

0
E
[

sup
t∈[0,u]

∣∣St∧τ − S̄t∧τ ∣∣2]du+ β3(δt)2α + β4 sup
t∈[0,T ]

E
[∣∣vt − v̄t∣∣]

+ β5 sup
t∈[0,T ]

E
[∣∣gdt − ḡdt ∣∣2]+ β6 sup

t∈[0,T ]
E
[∣∣ĝft − ḡft ∣∣]+ β7 sup

t∈[0,T ]
E
[∣∣ĝft − ḡft ∣∣2]

+ β8

∫ T

0
E
[∣∣St − St̄∣∣2 1t<τ ]dt, (3.82)

where the constants βi, for 2 ≤ i ≤ 8, are defined below.

β2 = 32σ2
maxLv + 8

(
L2
d + L2

f + 4h2
max

)
T + 96B2L2

sLv
(
1 + 4ρ2

sfξ
2
fLfT

3eβ1T
)
,

β3 = 96A2L2
sLv
(
1 + 4ρ2

sfξ
2
fLfT

3eβ1T
)
T, β4 = 32σ2

maxL
2
sT
(
1 + 4ρ2

sfξ
2
fLfT

3eβ1T
)
,

β5 = 8L2
sT

2, β6 = 128ξ2
fL

2
s

(
4 + ρ2

sfσ
2
maxLvT

)
T 3eβ1T , β7 = 16L2

sT
2
(
1 + 8k2

fT
2eβ1T

)
,

β8 = 96B2L2
sLv
(
1 + 4ρ2

sfξ
2
fLfT

3eβ1T
)
.

Therefore, applying Gronwall’s inequality to (3.82), we obtain

E
[

sup
t∈[0,T ]

∣∣St∧τ − S̄t∧τ ∣∣2] ≤ eβ2T{β3(δt)2α + β4 sup
t∈[0,T ]

E
[∣∣vt − v̄t∣∣]+ β5 sup

t∈[0,T ]
E
[∣∣gdt − ḡdt ∣∣2]

+ β6 sup
t∈[0,T ]

E
[∣∣ĝft − ḡft ∣∣]+ β7 sup

t∈[0,T ]
E
[∣∣ĝft − ḡft ∣∣2]+ β8

∫ T

0
E
[∣∣St − St̄∣∣2 1t<τ ]dt}. (3.83)

The convergence of the first term on the right-hand side as δt→0 is trivial, whereas the convergence
of the next two terms is a consequence of Proposition 3.9. We now show the convergence of the L2

difference between ĝf and ḡf .
Suppose that t ∈ [tn, tn+1). Since |ĝft − ḡ

f
t | ≤ |g̃

f
t − g̃

f
tn | and using the fact that 2

√
|ab| ≤ |a|+ |b|,

we can bound the L2 difference from above as follows:∣∣ĝft − ḡft ∣∣2 ≤ (kfθfδt+ 0.5|ρsf |ξfσmaxδtv̂tn +
(
kf + 0.5|ρsf |ξfσmax

)
δtĝftn + ξf

√
ĝftn
∣∣W f

t −W
f
tn

∣∣)2

≤ 4k2
fθ

2
f (δt)2 + ρ2

sfξ
2
fσ

2
max(δt)2v̂2

tn +
(
2kf + |ρsf |ξfσmax

)2
(δt)2

(
ĝftn
)2

+ 4ξ2
f ĝ
f
tn

(
W f
t −W

f
tn

)2
.

Hence,

sup
t∈[0,T ]

E
[∣∣ĝft − ḡft ∣∣2] ≤ 4k2

fθ
2
f (δt)2 + ρ2

sfξ
2
fσ

2
max(δt)2 sup

0≤n≤N
E
[
v̂2
tn

]
+ 4ξ2

fδt sup
0≤n≤N

E
[
ĝftn
]

+
(
2kf + |ρsf |ξfσmax

)2
(δt)2 sup

0≤n≤N
E
[(
ĝftn
)2]

. (3.84)

The convergence of the term on the left-hand side follows from Propositions 3.7 and 3.8.
Finally, the integrand in the last term in (3.83) can be bounded from above as follows:

E
[∣∣St − St̄∣∣2 1t<τ ] = E

[∣∣∣∣ ∫ t

t̄

[
gdu − gfu + h(u)

]
Sudu+

∫ t

t̄
σ(u, Su)

√
vuSudW

s
u

∣∣∣∣2 1t<τ
]

≤ 4δtE
[∫ t

t̄

[(
gdu
)2

+
(
gfu
)2

+ h(u)2
]
S2
u 1u<τ du

]
+ 4E

[∣∣∣∣ ∫ t

t̄
σ(u, Su)

√
vuSu 1u<τ dW

s
u

∣∣∣∣2
]
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≤ 4L2
s(δt)

2

{
sup

u∈[0,T ]
E
[(
gdu
)2]

+ sup
u∈[0,T ]

E
[(
gfu
)2]

+ 4h2
max

}
+ 4σ2

maxL
2
sLvδt. (3.85)

The right-hand side is independent of the time t and tends to zero as δt→0 from Propositions 3.7
and 3.8, which concludes the proof.

Next, we prove the uniform convergence in probability of the discretized spot FX rate process.

Proposition 3.11. If 2kfθf > ξ2
f and under assumptions (A1) to (A3), S̄ converges uniformly in

probability, i.e.,

lim
δt→0

P
(

sup
t∈[0,T ]

∣∣St − S̄t∣∣ > ε

)
= 0 , ∀ε > 0. (3.86)

Proof. Fix ε > 0 and note that we have the following inclusion of events,{
ω : sup

t∈[0,T ]

∣∣St(ω)− S̄t(ω)
∣∣ > ε

}
⊆
{
ω : sup

t∈[0,T ]

∣∣St(ω)− S̄t(ω)
∣∣ > ε, τ(ω) ≥ T

}
∪
{
ω : sup

t∈[0,T ]

∣∣St(ω)− S̄t(ω)
∣∣ > ε, τ(ω) < T

}
.

Hence, {
sup
t∈0,T ]

∣∣St − S̄t∣∣ > ε

}
⊆
{

sup
t∈[0,T ]

∣∣St∧τ − S̄t∧τ ∣∣ > ε

}
∪
{
τ < T

}
. (3.87)

In terms of probabilities of events, the previous inclusion implies that

P
(

sup
t∈[0,T ]

∣∣St − S̄t∣∣ > ε

)
≤ P

(
sup
t∈[0,T ]

∣∣St∧τ − S̄t∧τ ∣∣ > ε

)
+ P

(
τ < T

)
. (3.88)

The convergence in probability of the stopped process is an immediate consequence of Proposition
3.10 and Markov’s inequality. Moreover, from the definition of the stopping time in (3.71), we get

{
τ < T

}
⊆
{

sup
t∈[0,T ]

vt ≥ Lv
}
∪
{

sup
t∈[0,T ]

v̂t ≥ Lv
}
∪
{

sup
t∈[0,T ]

ĝdt ≥ Ld
}
∪
{

sup
t∈[0,T ]

ĝft ≥ Lf
}

∪
{

sup
t∈[0,T ]

St ≥ Ls
}
∪
{
τκ < T

}
, (3.89)

where we define
τκ = inf

{
t ≥ 0 : gft ≤ κ−1

}
. (3.90)

However, assuming that Ls > 1, we have that{
sup
t∈[0,T ]

St ≥ Ls
}

=

{
sup
t∈[0,T ]

xt ≥ logLs

}
⊆
{

sup
t∈[0,T ]

|xt| ≥ logLs

}
. (3.91)

Therefore, using (3.89), (3.91) and Markov’s inequality, we find an upper bound

P
(
τ < T

)
≤ L−1

v E
[

sup
t∈[0,T ]

vt

]
+ L−1

v E
[

sup
t∈[0,T ]

v̂t

]
+ L−1

d E
[

sup
t∈[0,T ]

ĝdt

]
+ L−1

f E
[

sup
t∈[0,T ]

ĝft

]
+
(

logLs
)−1 E

[
sup
t∈[0,T ]

|xt|
]

+ P
(
τκ < T

)
. (3.92)
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First, recall the formula for the logarithm of the spot FX rate process,

xt = x0 +

∫ t

0

(
gdu − gfu + h(u)− 1

2
σ2
(
u, Su

)
vu

)
du+

∫ t

0
σ
(
u, Su

)√
vu dW

s
u . (3.93)

Taking the supremum over all t ∈ [0, T ] and using the fact that a < a2 +1, then taking expectations
and employing Doob’s martingale inequality and the Itô isometry, we get

E
[

sup
t∈[0,T ]

|xt|
]
≤ 1+|x0|+2hmaxT+TE

[
sup
t∈[0,T ]

gdt

]
+TE

[
sup
t∈[0,T ]

gft

]
+4.5σ2

maxTE
[

sup
t∈[0,T ]

vt

]
. (3.94)

Second, we prove the almost sure positivity of the process gf under the Feller condition, i.e., when
2kfθf > ξ2

f . To this end, let α = (2kfθf − ξ2
f )/2ξ2

f and define the function F : (0,∞) 7→ R by

F (x) = x−α. Using Itô’s formula, we have that

E
[
F
(
gfT∧τκ

)]
= F

(
gf0
)
− E

∫ T∧τκ

0
α
(
gfu
)−(1+α)(

kfθf − kfgfu − ρsfξfσ
(
u, Su

)√
vug

f
u

)
du

+
1

2
E
∫ T∧τκ

0
α(1 + α)ξ2

f

(
gfu
)−(1+α)

du− E
∫ T∧τκ

0
αξf
(
gfu
)−(0.5+α)

dW f
u . (3.95)

Note that

αkfθf −
1

2
α(1 + α)ξ2

f =
1

4
α
[
4kfθf − 2ξ2

f − 2αξ2
f

]
=

1

2
α2ξ2

f ,

and also that

E
∫ T

0
α2ξ2

f

(
gfu
)−(1+2α)

1u<τκ du ≤ α2ξ2
fκ

1+2αT <∞,

so the stochastic integral on the right-hand side of (3.95) is a true martingale. Hence,

E
[
F
(
gfT∧τκ

)]
≤ F

(
gf0
)
− 1

2
α2ξ2

f E
∫ T

0

(
gfu
)−(1+α)

1u<τκ du+ αkf E
∫ T

0

(
gfu
)−α

1u<τκ du

+ α|ρsf |ξfσmax E
∫ T

0
v0.5
u

(
gfu
)−(0.5+α)

1u<τκ du. (3.96)

Employing Fubini’s theorem and Hölder’s inequality, we deduce that

E
[
F
(
gfT∧τκ

)]
≤ F

(
gf0
)
− 1

2
α2ξ2

f

∫ T

0

(
E
[(
gfu
)−(1+α)

1u<τκ

]
− 2α−1kfξ

−2
f E

[(
gfu
)−(1+α)

1u<τκ

] α
1+α

− 2α−1|ρsf |ξ−1
f σmax sup

t∈[0,T ]
E
[
v1+α
t

] 1
2(1+α) E

[(
gfu
)−(1+α)

1u<τκ

] 1+2α
2(1+α)

)
du. (3.97)

However, the moments of the square-root process are bounded by Proposition 3.7. Furthermore, if
p, q ∈ (0, 1), cp,q ≥ 0 and c = cp + cq > 0, then for all x ≥ 0 we have

x− cpxp − cqxq =
cp
c

(
x− cxp

)
+
cq
c

(
x− cxq

)
= cpc

p
1−p
[
c
− 1

1−px−
(
c
− 1

1−px
)p]

+ cqc
q

1−q
[
c
− 1

1−q x−
(
c
− 1

1−q x
)q ]

≥ −cpc
p

1−p − cqc
q

1−q .
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Therefore, the integrand in (3.97) is bounded from below by a constant and thus

E
[
F
(
gfT∧τκ

)]
≤ C, (3.98)

for some constant C independent of κ. Since gf has continuous paths, gfτκ = κ−1 and F (gfτκ) = κα.
Hence, from (3.98) and the positivity of F , we deduce that

P
(
τκ < T

)
= κ−α E

[
F
(
gfτκ
)
1τκ<T

]
≤ κ−α E

[
F
(
gfT∧τκ

)]
≤ Cκ−α. (3.99)

Taking the limit as δt→0 in (3.88), using the upper bounds derived in (3.92), (3.94) and (3.99), and
then employing Propositions 3.7 and 3.8, the conclusion follows from the fact that we can choose
Ls, Lv, Ld, Lf and κ arbitrarily large.

Many models with stochastic volatility dynamics, including the Heston model, have the unde-
sirable feature of moment instability, i.e., moments of order higher than 1 can explode in finite time
[5]. This can cause problems in practice, for instance when computing the arbitrage-free price of
an option with a superlinear payoff. Furthermore, establishing the existence of moments of order
higher than 1 of the process and its approximation is an important ingredient in the convergence
analysis (see [23]). Since the most popular FX contracts grow at most linearly in the FX rate and
their risk-neutral valuation involves computing the expected discounted payoff, it is useful to study
the finiteness of moments under discounting. Define R to be the discounted exchange rate process,

Rt = S0 exp

{
−
∫ t

0
rfu du−

1

2

∫ t

0
σ2(u, Su)vu du+

∫ t

0
σ(u, Su)

√
vu dW

s
u

}
, (3.100)

and let R̄ be its continuous-time approximation,

R̄t = S0 exp

{
−
∫ t

0
r̄fu du−

1

2

∫ t

0
σ̄2
(
u, S̄u

)
v̄u du+

∫ t

0
σ̄
(
u, S̄u

)√
v̄u dW

s
u

}
. (3.101)

The next result establishes a lower bound on the explosion time of moments of order higher than
1 of the discounted process and is an important step in proving Theorem 2.1 (Theorem 1 in [11]),
which, in turn, plays a key role in the calibration of the model.

Proposition 3.12. Let α ≥ 1. Under assumptions (A1) and (A3), if T < T ∗, there exists ω1 > α
such that, for all ω ∈ [1, ω1), the following holds:

sup
t∈[0,T ]

E
[
Rω
t

]
<∞, (3.102)

where ϕ(α) = α+
√

(α− 1)α , ζ = ξσmax and T ∗ is as given below.

(1) When k < ϕ(α)ζ,

T ∗ =
2√

ϕ(α)2ζ2 − k2

[
π

2
+ arctan

(
k√

ϕ(α)2ζ2 − k2

)]
. (3.103)

(2) When k ≥ ϕ(α)ζ,
T ∗ =∞. (3.104)
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Proof. First, we find it convenient to define a new stochastic process L by

Lt ≡ S0 exp

{
hmaxt−

1

2

∫ t

0
σ2(u, Su)vu du+

∫ t

0
σ(u, Su)

√
vu dW

s
u

}
. (3.105)

As Rt ≤ Lt for all t ∈ [0, T ], it suffices to prove the finiteness of the supremum over t of

E
[
Lωt
]

= Sω0 E
[

exp

{
ωhmaxt+ ω

∫ t

0
σ(u, Su)

√
vu dW

s
u −

ω

2

∫ t

0
σ2(u, Su)vu du

}]
. (3.106)

Second, suppose that T < T ∗, with T ∗ defined in (3.103) – (3.104). If k < ϕ(α)ζ, since ϕ(·) is
increasing on [1,∞) and by a continuity argument, we can find ω1 > α such that, for all ω ∈ (α, ω1),

k < ϕ(ω)ζ and T <
2√

ϕ(ω)2ζ2 − k2

[
π

2
+ arctan

(
k√

ϕ(ω)2ζ2 − k2

)]
. (3.107)

If k = ϕ(α)ζ, since ϕ(·) is strictly increasing on [1,∞) and

lim
ω ↓α+

2√
ϕ(ω)2ζ2 − k2

[
π

2
+ arctan

(
k√

ϕ(ω)2ζ2 − k2

)]
=∞,

we can find ω1 > α such that (3.107) holds for all ω ∈ (α, ω1). Finally, if k > ϕ(α)ζ, by a continuity
argument, we can find ω1 > α such that, for all ω ∈ (α, ω1),

k > ϕ(ω)ζ. (3.108)

Third, fix ω ∈ (α, ω1) and let the functions fω, gω : (1,∞) 7→ (1,∞) be defined by

fω(x) = ω2x2

and

gω(x) =
ωx

x− 1

(
ωx− 1

)
=
(
ω +

√
(ω − 1)ω

)2
+

ω2

x− 1

(
x− 1−

√
1− 1/ω

)2
.

The first function is strictly increasing, whereas the second function attains a global minimum at
x∗ = 1 +

√
1− 1/ω . Furthermore, they are equal at x∗, so

inf
x>1

max
{
fω(x) , gω(x)

}
= gω(x∗) =

(
ω +

√
(ω − 1)ω

)2
. (3.109)

Consider the Hölder pair (p, q) satisfying q = p/(p− 1) such that

p = 1 +

√
ω − 1

ω
and q = 1 +

√
ω

ω − 1
. (3.110)

This particular Hölder pair ensures an optimal lower bound T ∗ on the explosion time. Next, define
the quantity a = pω2 − ω and introduce the stochastic process

Mt = pω

∫ t

0
σ(u, Su)

√
vu dW

s
u

with quadratic variation

〈M〉t = p2ω2

∫ t

0
σ2(u, Su)vu du.
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Then we can rewrite (3.106) as follows:

E
[
Lωt
]

= Sω0 e
ωhmaxt E

[
exp

{
1

p

[
Mt −

1

2
〈M〉t

]
+
a

2

∫ t

0
σ2(u, Su)vu du

}]
. (3.111)

Applying Hölder’s inequality with the pair (p, q) from (3.110) and taking the supremum over [0, T ],

sup
t∈[0,T ]

E
[
Lωt
]
≤ Sω0 eωhmaxT sup

t∈[0,T ]
E
[

exp

{
Mt −

1

2
〈M〉t

}] 1
p

× E
[

exp

{
1

2
qω
(
pω − 1

)
σ2
max

∫ T

0
vu du

}] 1
q

. (3.112)

The stochastic exponential is a martingale if Novikov’s condition is satisfied, i.e.,

E
[

exp

{
1

2
〈M〉T

}]
≤ E

[
exp

{
1

2
p2ω2σ2

max

∫ T

0
vu du

}]
<∞.

The finiteness of the two expectations in (3.112) follows from (3.107) – (3.110) and Proposition 3.5.
The extension to the interval [1, ω1) follows from Jensen’s inequality.

Proposition 3.13. Let α ≥ 1. Under assumptions (A1) and (A3), if T < T ∗, there exists ω2 > α
such that, for all ω ∈ [1, ω2) and δT < k−1, the following holds:

sup
δt∈(0,δT )

sup
t∈[0,T ]

E
[
(R̄t)

ω
]
<∞, (3.113)

where ϕ(α) = α+
√

(α− 1)α , ζ = ξσmax and T ∗ is as given below.

(1) When k ≤ 1
2 ϕ(α)ζ,

T ∗ =
1

ϕ(α)ζ − k
. (3.114)

(2) When k > 1
2 ϕ(α)ζ,

T ∗ =
4k

ϕ(α)2ζ2
. (3.115)

Proof. For convenience, define a new stochastic process L̄ by

L̄t ≡ S0 exp

{
hmaxt−

1

2

∫ t

0
σ̄2
(
u, S̄u

)
v̄u du+

∫ t

0
σ̄
(
u, S̄u

)√
v̄u dW

s
u

}
. (3.116)

Since R̄t ≤ L̄t for all t ∈ [0, T ], it suffices to prove the finiteness of the supremum over t and δt of

E
[
(L̄t)

ω
]

= Sω0 E
[

exp

{
ωhmaxt+ ω

∫ t

0
σ̄
(
u, S̄u

)√
v̄u dW

s
u −

ω

2

∫ t

0
σ̄2
(
u, S̄u

)
v̄u du

}]
. (3.117)

Suppose that T < T ∗, with T ∗ from (3.114) – (3.115). If k ≤ 1
2 ϕ(α)ζ, by a continuity argument,

we can find ω2 > α such that, for all ω ∈ (α, ω2),

k <
1

2
ϕ(ω)ζ and T <

1

ϕ(ω)ζ − k
. (3.118)
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On the other hand, if k > 1
2 ϕ(α)ζ, by a continuity argument, we can find ω2 > α such that, for all

ω ∈ (α, ω2),

k >
1

2
ϕ(ω)ζ and T <

4k

ϕ(ω)2ζ2
. (3.119)

Henceforth, we argue as in Proposition 3.12 and use Theorem 3.6 to deduce the finiteness of the
supremum over t and δt of (3.117).

Higham et al. [23] proved that for a locally Lipschitz SDE, the boundedness of the pth moments
of the exact and numerical solutions, for some p > 2, ensures the strong mean square convergence of
the Euler–Maruyama method. The existence of moment bounds for explicit Euler approximations,
however, remained an open problem. Recently, Hutzenthaler et al. [26] studied SDEs with super-
linearly growing coefficients and proved strong and weak divergence in Lp for all p ≥ 1, and hence
that the moment-bound assumption is not satisfied. To the best of our knowledge, the uniform
boundedness of moments of order greater than 1 of discretization schemes for the Heston model
and extensions thereof has not yet been established – this gap in the literature was also identified
in Kloeden and Neuenkirch [30] – and our Proposition 3.13 is the first result to address this issue.

Since the typical payoff of a FX contract grows at most linearly in the exchange rate, it suffices
to know the strong convergence of the discounted process in L1 to deduce the convergence of the
time-discretization error to zero. The following theorem can be generalized to the Lα case relatively
easily for all α ≥ 1, upon noticing that the critical time T ∗ from (3.103) – (3.104) is always greater
than the one from (3.114) – (3.115).

Theorem 3.14. Under assumptions (A1) to (A3), if 2kfθf > ξ2
f and T < T ∗, where ζ = ξσmax

and

T ∗ ≡ 4k

ζ2
1ζ<2k +

1

ζ − k
1ζ≥2k , (3.120)

the discounted process converges strongly in L1, i.e.,

lim
δt→0

sup
t∈[0,T ]

E
[∣∣Rt − R̄t∣∣] = 0. (3.121)

Proof. Fix ε > 0 and define the event A =
{∣∣Rt − R̄t∣∣ > ε

}
, then

sup
t∈[0,T ]

E
[∣∣Rt − R̄t∣∣] ≤ sup

t∈[0,T ]
E
[∣∣Rt − R̄t∣∣1Ac ]+ sup

t∈[0,T ]
E
[∣∣Rt − R̄t∣∣1A ].

Hence,

sup
t∈[0,T ]

E
[∣∣Rt − R̄t∣∣] ≤ ε+ sup

t∈[0,T ]
E
[
Rt 1A

]
+ sup
t∈[0,T ]

E
[
R̄t 1A

]
.

Choosing some 1< ω < min {ω1, ω2} and applying Hölder’s inequality to the two expectations on
the right-hand side with the pair (p, q) =

(
ω, ω

ω−1

)
returns the following upper bound:

sup
t∈[0,T ]

E
[∣∣Rt − R̄t∣∣] ≤ ε+

{
sup
t∈[0,T ]

E
[
Rω
t

] 1
ω + sup

t∈[0,T ]
E
[
(R̄t)

ω
] 1
ω

}
sup
t∈[0,T ]

P
(∣∣Rt − R̄t∣∣ > ε

)1− 1
ω
.

Note that if ζ ≥ 2k, then

2√
ζ2 − k2

[
π

2
+ arctan

(
k√

ζ2 − k2

)]
>

√
3√

ζ2 − k2
≥ 1√

ζ2 − k2

√
ζ + k

ζ − k
=

1

ζ − k
.
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Moreover, if k < ζ < 2k, then

2√
ζ2 − k2

[
π

2
+ arctan

(
k√

ζ2 − k2

)]
>

2√
ζ2 − k2

≥ 4√
ζ2 − k2

√
k2

ζ2

(
1− k2

ζ2

)
=

4k

ζ2
.

Therefore, Propositions 3.12 and 3.13 (with α = 1) ensure the boundedness of moments of order
ω of the discounted process and its approximation. Furthermore, the convergence in probability of
the discounted process is a simple consequence of Proposition 3.11, by taking the domestic short
rate to be zero. Finally, taking ε sufficiently small leads to the conclusion.

3.5 Option valuation

We now examine the convergence of Monte Carlo estimators for computing FX option prices when
the dynamics of the exchange rate are governed by the Heston–2CIR++ SLV model and assumptions
(A1) to (A3) are satisfied. As an aside, note that we discussed in Section 2 how other derivative
pricing models, including popular models in equity markets, can be formulated as special cases.
First, we consider European options.

Theorem 3.15. Let P = E
[
e−

∫ T
0 rdt dt

(
K − ST

)+]
be the arbitrage-free price of a European put

option and P̄ = E
[
e−

∫ T
0 r̄dt dt

(
K − S̄T

)+]
its approximation. If 2kfθf > ξ2

f , then

lim
δt→0

∣∣P − P̄ ∣∣ = 0. (3.122)

Proof. A simple string of inequalities gives the following upper bound:∣∣P − P̄ ∣∣ ≤ E
[∣∣{e− ∫ T

0 rdt dt − e−
∫ T
0 r̄dt dt

}(
K − ST

)+
+ e−

∫ T
0 r̄dt dt

{(
K − ST

)+ − (K − S̄T )+}∣∣]
≤ KehmaxT E

[∣∣e− ∫ T
0 gdt dt − e−

∫ T
0 ḡdt dt

∣∣]+ ehmaxT E
[∣∣(K − ST )+ − (K − S̄T )+∣∣] . (3.123)

However, for any non-negative numbers x and y, |e−x − e−y| ≤ |x− y|, and so we can use Fubini’s
theorem to obtain an upper bound for the first expectation,

sup
t∈[0,T ]

E
[∣∣e− ∫ T

t gdudu − e−
∫ T
t ḡdudu

∣∣] ≤ sup
t∈[0,T ]

∫ T

t
E
[
|gdu − ḡdu|

]
du ≤ T sup

t∈[0,T ]
E
[
|gdt − ḡdt |

]
. (3.124)

The right-hand side tends to zero by Proposition 3.9. Define the two events A =
{
ST < K

}
and

Ā =
{
S̄T < K

}
, and denote the last expectation in (3.123) by J. Then

J = E
[∣∣(K − ST )+ − (K − S̄T )+∣∣(1A∩Ā +1A∩Āc +1Ac∩Ā +1Ac∩Āc

)]
.

Therefore,

J ≤ E
[∣∣ST − S̄T ∣∣1A∩Ā ]+ E

[(
K − ST

)
1A∩Āc

]
+ E

[(
K − S̄T

)
1Ac∩Ā

]
≤ E

[∣∣ST − S̄T ∣∣1A∩Ā ]+K P
(
A ∩ Āc

)
+K P

(
Ac ∩ Ā

)
. (3.125)

Let δ be an arbitrary positive number, then we have the following inclusion of events:

A ∩ Āc =
({
ST ≤ K − δ

}
∪
{
K − δ < ST < K

})
∩
{
S̄T ≥ K

}
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⊆
({
ST ≤ K − δ

}
∩
{
S̄T ≥ K

})
∪
{
K − δ < ST < K

}
⊆
{∣∣ST − S̄T ∣∣ ≥ δ} ∪ {K − δ < ST < K

}
.

In terms of probabilities of events, we have

P
(
A ∩ Āc

)
≤ P

(∣∣ST − S̄T ∣∣ ≥ δ)+ P
(
K − δ < ST < K

)
, ∀δ > 0. (3.126)

We can bound the second probability from above in a similar fashion,

Ac ∩ Ā ⊆
{∣∣ST − S̄T ∣∣ ≥ δ} ∪ {K ≤ ST < K + δ

}
⇒ P

(
Ac ∩ Ā

)
≤ P

(∣∣ST − S̄T ∣∣ ≥ δ)+ P
(
K ≤ ST < K + δ

)
, ∀δ > 0. (3.127)

For a suitable choice of δ, the last terms on the right-hand side of (3.126) and (3.127) can be made
arbitrarily small, whereas the first terms tend to zero by Proposition 3.11. Therefore, the two
probabilities in (3.125) converge to zero as δt→ 0. Finally, fix ε > 0 and let B =

{
|ST − S̄T | > ε

}
.

We can bound the expectation on the right-hand side of (3.125) as follows:

E
[∣∣ST − S̄T ∣∣1A∩Ā ] ≤ E

[∣∣ST − S̄T ∣∣1A∩Ā 1Bc ]+ E
[∣∣ST − S̄T ∣∣1A∩Ā 1B ]

≤ K P
(∣∣ST − S̄T ∣∣ > ε

)
+ ε. (3.128)

Taking the limit as δt → 0, employing Proposition 3.11 and making use of the fact that ε can be
made arbitrarily small leads to the conclusion.

Theorem 3.16. Let C = E
[
e−

∫ T
0 rdt dt

(
ST − K

)+]
be the arbitrage-free price of a European call

and C̄ = E
[
e−

∫ T
0 r̄dt dt

(
S̄T − K

)+]
its approximation. If 2kfθf > ξ2

f and T < T ∗, with T ∗ from

(3.120), then
lim
δt→0

∣∣C − C̄∣∣ = 0. (3.129)

Proof. A simple string of inequalities gives the following upper bound:∣∣C − C̄∣∣ ≤ E
[∣∣(RT −Ke− ∫ T

0 rdt dt
)+ − (R̄T −Ke− ∫ T

0 r̄dt dt
)+∣∣]

≤ KehmaxT E
[∣∣e− ∫ T

0 gdt dt − e−
∫ T
0 ḡdt dt

∣∣]+ E
[∣∣RT − R̄T ∣∣]. (3.130)

The two expectations on the right-hand side tend to zero as δt → 0 from (3.124) and Theorem
3.14, respectively.

Asian options depend on the average exchange rate over a predetermined time period. Because
the average is less volatile than the underlying rate, Asian options are usually less expensive than
their European counterparts and are commonly used in currency and commodity markets, for
instance, to reduce the foreign currency exposure of a corporation expecting payments in foreign
currency. For any 0 ≤ s ≤ t ≤ T , define the discount factors:

Ds, t = e−
∫ t
s r

d
udu and D̄s, t = e−

∫ t
s r̄

d
udu. (3.131)
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Theorem 3.17. Consider a fixed strike Asian option with arbitrage-free price

U = E
[
e−

∫ T
0 rdt dt

[
ψ(A(0, T )−K)

]+]
,

Ū = E
[
e−

∫ T
0 r̄dt dt

[
ψ(Ā(0, T )−K)

]+]
.

If 2kfθf > ξ2
f and T < T ∗, with T ∗ from (3.120), then

lim
δt→0

∣∣U − Ū ∣∣ = 0. (3.132)

Here, A(0, T ) represents the arithmetic average and ψ = ±1 depending on the payoff (call or put).

For continuous monitoring, A(0, T ) = 1
T

∫ T
0 Stdt and Ā(0, T ) = 1

T

∫ T
0 S̄tdt.

Proof. The absolute difference can be bounded from above by∣∣U − Ū ∣∣ ≤ E
[∣∣[ψ(D0,TA(0, T )−KD0,T )

]+ − [ψ(D̄0,T Ā(0, T )−KD̄0,T )
]+∣∣].

Therefore, we end up with the following upper bound:∣∣U − Ū ∣∣ ≤ KehmaxT E
[∣∣e− ∫ T

0 gdt dt − e−
∫ T
0 ḡdt dt

∣∣]+ E
[∣∣D0,TA(0, T )− D̄0,T Ā(0, T )

∣∣]. (3.133)

We deduced the convergence of the first expectation in (3.124). Using Fubini’s theorem,

E
[∣∣D0,TA(0, T )− D̄0,T Ā(0, T )

∣∣] ≤ 1

T
E
[ ∫ T

0

∣∣D0,TSt − D̄0,T S̄t
∣∣dt]

≤ sup
t∈[0,T ]

E
[∣∣Dt,TRt − D̄t,T R̄t

∣∣].
The triangle inequality leads to the following upper bound:

sup
t∈[0,T ]

E
[∣∣Dt,TRt − D̄t,T R̄t

∣∣] ≤ ehmaxT sup
t∈[0,T ]

E
[
Rt
∣∣e− ∫ T

t gdudu − e−
∫ T
t ḡdudu

∣∣]
+ ehmaxT sup

t∈[0,T ]
E
[∣∣Rt − R̄t∣∣]. (3.134)

Since both gd and ḡd are non-negative processes, for any γ greater than one we have∣∣e− ∫ T
t gdudu − e−

∫ T
t ḡdudu

∣∣γ ≤ ∣∣e− ∫ T
t gdudu − e−

∫ T
t ḡdudu

∣∣ , ∀t ∈ [0, T ].

Applying Hölder’s inequality to the first expectation on the right-hand side of (3.134) with the pair
(ω, γ), where 1 < ω < ω1 and γ = ω/(ω−1), and using the last inequality, we find that

sup
t∈[0,T ]

E
[
Rt
∣∣e− ∫ T

t gdudu − e−
∫ T
t ḡdudu

∣∣] ≤ sup
t∈[0,T ]

E
[
Rωt
] 1
ω sup
t∈[0,T ]

E
[∣∣e− ∫ T

t gdudu − e−
∫ T
t ḡdudu

∣∣] 1
γ
. (3.135)

The convergence of the first term on the right-hand side of (3.134) is a consequence of (3.124) and
Proposition 3.12 (with α = 1), whereas the convergence of the second term is due to Theorem 3.14.
In case of discrete monitoring or a floating strike, we follow the exact same steps.
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Barrier options continue to gain popularity in many over-the-counter markets, including the FX
market. Their popularity can be explained by two key factors. First, barrier options are useful in
limiting the risk exposure of an investor in the FX market. Second, they offer additional flexibility
and can match an investor’s view on the market for a lower price than a vanilla option.

Theorem 3.18. Consider an up-and-out barrier call with arbitrage-free price

U = E
[
e−

∫ T
0 rdt dt

(
ST −K

)+
1{supt∈[0,T ] St≤B}

]
,

Ū = E
[
e−

∫ T
0 r̄dt dt

(
S̄T −K

)+
1{

supt∈[0,T ] S̄t≤B
} ],

where K is the strike price and B is the barrier. If 2kfθf > ξ2
f , then

lim
δt→0

∣∣U − Ū ∣∣ = 0. (3.136)

Proof. Define the events A =
{

supt∈[0,T ] St ≤ B
}

and Ā =
{

supt∈[0,T ] S̄t ≤ B
}

, then∣∣U − Ū ∣∣ ≤ E
[∣∣(D0,T − D̄0,T

)(
ST −K

)+
1A +D̄0,T

{(
ST −K

)+
1A−

(
S̄T −K

)+
1Ā
}∣∣]

≤
(
B −K

)+
ehmaxT E

[∣∣e− ∫ T
0 gdt dt − e−

∫ T
0 ḡdt dt

∣∣]+ ehmaxT E
[∣∣(ST −K)+ 1A−(S̄T −K)+ 1Ā ∣∣] .

The first term tends to zero by (3.124) and we can rewrite the second term as follows:

E
[∣∣(ST −K)+(1A∩Āc +1A∩Ā

)
−
(
S̄T −K

)+(
1A∩Ā +1Ac∩Ā

)∣∣]
≤ E

[(
ST −K

)+
1A∩Āc

]
+ E

[(
S̄T −K

)+
1Ac∩Ā

]
+ E

[∣∣ST − S̄T ∣∣1A∩Ā ]
≤
(
B −K

)+{P
(
A ∩ Āc

)
+ P

(
Ac ∩ Ā

)}
+ E

[∣∣ST − S̄T ∣∣1A∩Ā ]. (3.137)

We can bound the last expectation from above just as in (3.128) to find

E
[∣∣ST − S̄T ∣∣1A∩Ā ] ≤ B P

(∣∣ST − S̄T ∣∣ > ε
)

+ ε, ∀ε > 0. (3.138)

Therefore, the expectation converges to zero with the time step by Proposition 3.11. Fixing δ > 0
and following the argument of Theorem 6.2 in [22] leads to

A ∩ Āc ⊆
{

sup
t∈[0,T ]

∣∣St − S̄t∣∣ ≥ δ} ∪{B − δ < sup
t∈[0,T ]

St ≤ B
}
.

In terms of probabilities of events, we have

P
(
A ∩ Āc

)
≤ P

(
sup
t∈[0,T ]

∣∣St − S̄t∣∣ ≥ δ)+ P
(
B − δ < sup

t∈[0,T ]
St ≤ B

)
. (3.139)

We can bound the second probability in (3.137) from above in a similar fashion,

P
(
Ac ∩ Ā

)
≤ P

(
sup
t∈[0,T ]

∣∣St − S̄t∣∣ ≥ δ)+ P
(
B < sup

t∈[0,T ]
St < B + δ

)
. (3.140)

The conclusion follows from Proposition 3.11 since δ can be arbitrarily small.
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Theorem 3.19. Consider any type of barrier put option with arbitrage-free price

U = E
[
e−

∫ T
0 rdt dt

(
K − ST

)+
1A

]
,

Ū = E
[
e−

∫ T
0 r̄dt dt

(
K − S̄T

)+
1Ā

]
,

where the events A and Ā depend on the type of barrier. If 2kfθf > ξ2
f , then

lim
δt→0

∣∣U − Ū ∣∣ = 0. (3.141)

For instance, a down-and-in barrier is associated with the set A =
{

inft∈[0,T ] St ≤ B
}

.

Proof. An upper bound for the absolute difference can be obtained as follows:∣∣U − Ū ∣∣ ≤ E
[∣∣(D0,T − D̄0,T

)(
K −ST

)+
1A + D̄0,T

{(
K −ST

)+
1A−

(
K − S̄T

)+
1Ā
}∣∣]

≤ KehmaxT E
[∣∣e− ∫ T

0 gdt dt − e−
∫ T
0 ḡdt dt

∣∣]+ ehmaxT E
[∣∣(K − ST )+ 1A−(K − S̄T )+ 1Ā ∣∣] .

The first term tends to zero by (3.124) and we can bound the second term as in (3.137):

E
[∣∣(K − ST )+ 1A−(K − S̄T )+ 1Ā ∣∣] ≤ K{P

(
A ∩ Āc

)
+ P

(
Ac ∩ Ā

)}
+ E

[∣∣(K − ST )+ − (K − S̄T )+∣∣] . (3.142)

The events A and Ā differ with the barrier (down-and-in, down-and-out, up-and-in, up-and-out),
however one can show in a similar way to (3.139) and (3.140) that

lim
δt→0

P
(
A ∩ Āc

)
= 0 and lim

δt→0
P
(
Ac ∩ Ā

)
= 0 (3.143)

for any type of barrier. Finally, the convergence of the last term on the right-hand side of (3.142)
was derived in Theorem 3.15, which concludes the proof.

Theorem 3.20. Consider a down-and-in/out or up-and-in barrier call option with arbitrage-free
price

U = E
[
e−

∫ T
0 rdt dt

(
ST −K

)+
1A

]
,

Ū = E
[
e−

∫ T
0 r̄dt dt

(
S̄T −K

)+
1Ā

]
,

where the events A and Ā depend on the type of barrier. If 2kfθf > ξ2
f and T < T ∗, with T ∗ from

(3.120), then
lim
δt→0

∣∣U − Ū ∣∣ = 0. (3.144)

Proof. An upper bound for the absolute difference can be obtained as follows:∣∣U − Ū ∣∣ ≤ E
[∣∣(RT −KD0,T

)+ − (R̄T −KD̄0,T

)+∣∣1A∩Ā ]
+ E

[(
RT −KD0,T

)+
1A∩Āc

]
+ E

[(
R̄T −KD̄0,T

)+
1Ac∩Ā

]
.
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Therefore, we end up with∣∣U − Ū ∣∣ ≤ E
[∣∣RT − R̄T ∣∣]+KehmaxT E

[∣∣e− ∫ T
0 gdt dt − e−

∫ T
0 ḡdt dt

∣∣]+ E
[
RT 1A∩Āc

]
+ E

[
R̄T 1Ac∩Ā

]
.

The convergence of the first two terms on the right-hand side is a consequence of Theorem 3.14
and (3.124), respectively. Applying Hölder’s inequality with the pair (ω, γ) to the last two terms,
where 1 < ω < min{ω1, ω2}, we find that:

E
[
RT 1A∩Āc

]
≤ E

[(
RT
)ω] 1

ω P
(
A ∩ Āc

) 1
γ

and

E
[
R̄T 1Ac∩Ā

]
≤ E

[(
R̄T
)ω] 1

ω P
(
Ac ∩ Ā

) 1
γ .

Using Propositions 3.12 and 3.13 (with α = 1) and the limits in (3.143) concludes the proof.

Among the most developed exotic derivatives in the FX market are the double barrier options.

Theorem 3.21. Consider a double knock-out call option with arbitrage-free price

U = E
[
e−

∫ T
0 rdt dt

(
ST −K

)+
1{inft∈[0,T ] St≥L, supt∈[0,T ] St≤B}

]
,

Ū = E
[
e−

∫ T
0 r̄dt dt

(
S̄T −K

)+
1{

inft∈[0,T ] S̄t≥L, supt∈[0,T ] S̄t≤B
} ],

where K is the strike and L, B are the lower and upper barriers, respectively. If 2kfθf > ξ2
f , then

lim
δt→0

∣∣U − Ū ∣∣ = 0. (3.145)

Proof. First, note that we have the following inclusion of events:{
inf

t∈[0,T ]
St ≥ L, sup

t∈[0,T ]
St ≤ B

}
∩
{

inf
t∈[0,T ]

S̄t ≥ L, sup
t∈[0,T ]

S̄t ≤ B
}c

⊆
({

sup
t∈[0,T ]

St ≤ B
}
∩
{

sup
t∈[0,T ]

S̄t > B
})
∪
({

inf
t∈[0,T ]

St ≥ L
}
∩
{

inf
t∈[0,T ]

S̄t < L
})
.

The rest of the argument follows closely that of Theorem 3.18 and is thus omitted.

4 Numerical results

In this section, we consider the pricing problem for exotic products, in particular, for structured
notes embedding barrier features. Popular FX exotic products include the power reverse dual
currency note (PRDC) [9], especially long-term (e.g., 30 years), and the forward accumulator [42].
Adding stochastic rates improves the pricing of both contracts for mid- to long-term expiries.
Moreover, while the plain PRDC can be seen as a strip of vanilla options, adding stochastic-local
volatility dynamics improves the pricing of some variations of the contract, like the trigger PRDC
(a PRDC with a knock-out feature).

Henceforth, we consider an autocallable barrier dual currency note (ABDC) that is indexed on
the EURUSD currency pair, with USD as the domestic currency and EUR as the foreign currency,
with quarterly coupon payments. While barrier dual currency notes are typically short-term invest-
ments, we examine instead a mid-term alternative with an embedded autocallable note structure.
For a nominal N (in USD), a rate (strike) K and an expiry T , the life cycle of the contract is
described below.
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(1) A monthly fixing schedule is defined for the exchange rate S such that:

• If S crosses the up barrier BUO, the contract is redeemed early and a coupon CER is paid.
The early redemption time is denoted by τER and can be infinite in case of no knock-out
event.

• If S crosses the down barrier BDI, a short put contract is activated at expiry. The knock-in
time is denoted by τKI.

(2) If S is above BDI, a coupon C (in USD, in % of the nominal) is paid quarterly at coupon dates
{ti , i = 1, . . . ,M}, for a total of M periods, such that the accumulated coupon (in USD) at
expiry is

N

M∑
i=1

Dd
ti

Dd
T

C 1ti<τER 1Sti>BDI
+N

Dd
τER

Dd
T

CER 1τER≤T . (4.1)

(3) At expiry, if S is below K, the down barrier has been activated and early redemption has not
occurred, then the nominal is converted to EUR at the rate K.

This product would suit an investor who wants to outperform the money market account by taking
the risk of conversion of the nominal value to the foreign currency. The autocall feature lowers
the price of the product due to early termination in case the exchange rate crosses the up-and-out
barrier, whereas the down-and-in barrier feature provides protection against the conversion risk at
the expense of increasing the net present value (NPV). Hence, an investor would find this product
attractive under the current volatile market conditions if they expected a less volatile market in
the future, which would imply a lower NPV due to the increased chance of early redemption and
conversion. Over a longer time horizon, a very stable market would be the best outcome for the
investor, since they would get all the coupons without converting the nominal at maturity. If
conversion occurs at expiry, the investor receives N/K in EUR in exchange for the nominal N in
USD. If the investor converts this amount to USD, the loss becomes N

(
ST /K − 1

)
. Hence, the

profit-and-loss (PnL) of the product is

N
M∑
i=1

Dd
ti

Dd
T

C 1ti<τER 1Sti>BDI
+N

Dd
τER

Dd
T

CER 1τER≤T −
N

K
(K − ST )+ 1τKI≤T<τER

. (4.2)

Hence, this product is a yield enhancement contract with no capital guarantee. The accrued coupon
is sometimes converted at expiry with the nominal at the rate K. Finally, the NPV of the contract
(in % of the nominal) is

NPV = E

[
M∑
i=1

Dd
tiC 1ti<τER 1Sti>BDI

+Dd
τER
CER 1τER≤T −

Dd
T

K
(K − ST )+

1τKI≤T<τER

]
, (4.3)

where the expectation is taken under the risk-neutral measure. We assume the dynamics of S under
this measure as specified in (2.1).

Next, consider the contract parameters from Table 3 as well as the calibrated model parameters
and leverage function – to the EURUSD market data from March 18, 2016 – from [11]. Suppose
that barriers are monitored monthly, at the fixing dates, and coupons are paid quarterly.

We employ the Monte Carlo simulation scheme defined in Section 3 with 5×107 sample paths
and 376 time steps per year to price this contract, and the numerical results are displayed in Table
4. Note that we computed the percentage change in premium (NPV) with respect to the reference
model, i.e., the Heston–2CIR++ SLV model.
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Table 3: The contract parameters of an autocallable barrier dual currency note, where the nominal N is in
USD, the expiry T is in years, the strike K and the barriers BUO and BDI are in % of S0, and the coupons
C and CER are in USD, in % of N .

N T S0 K BUO BDI C CER

100000 5Y 1.1271 105% 100% 95% 2.5% 1.5%

Table 4: The NPV of the contract in % of N , the 95% Monte Carlo confidence interval, the early redemption
and knock-in probabilities and the percentage change in NPV, for the autocallable barrier dual currency note
specified in Table 3 under the 4-factor hybrid SLV model (2.1), the 2-factor SLV model with deterministic
rates and the LV model (2.8).

Model NPV 95% CI ER prob. KI prob. Change

Hybrid SLV 1.7247 (1.7228, 1.7265) 95.1% 19.5% –

SLV 1.7456 (1.7438, 1.7474) 95.1% 19.5% +1.21%

LV 1.2079 (1.2062, 1.2097) 95.9% 19.5% −29.96%

We infer from Table 4 that the price of the contract under the 2-factor SLV model is 1.21% higher
than under the 4-factor SLV model, whereas the early redemption and the knock-in probabilities
are the same under the two models. This suggests that the stochastic rates have a significant impact
on the price of the contract even for a 5-year expiry. We also infer from Table 4 that the contract is
highly underpriced and the early redemption probability is overestimated under the LV model (2.8).
Furthermore, we calibrated in [11] the 4-factor SLV and SV models to EURUSD market data from
March 18, 2016, and observed an almost perfect fit to vanilla options with the former as opposed
to a poor fit with the latter. In conclusion, we notice two things. First, pricing exotic products
with barrier features under stochastic-local volatility dynamics is of paramount importance. It is
a well-known fact that pure SV models underestimate the knock-out probability whereas pure LV
models overestimate it, and the true price of the contract is believed to lie in between pure SV and
pure LV model prices. In our case, a small difference in the probability of no knock-out, which is
leveraged by the number of coupons detached during the life cycle of the contract, can lead to a
big difference in the NPV, and this explains the need to use SLV models to improve the pricing
performance. Second, adding stochastic rates to an SLV model is only relevant when pricing mid-
to long-term structured notes, where the effect of the stochastic rates is accentuated. The impact of
stochastic rates on the contract price is expected to increase in the presence of non-zero correlations
between the spot FX rate and the short rates.

A small difference in the probability of no knock-out gives rise to a big difference in the NPV
since it is leveraged by the number of coupons detached during the lifecycle of the contract.

We could extend the model (2.1) to multi-factor short rates when pricing exotic products where
the rates appear explicitly in the payoff, for example, a spread option with the payoff[(

ST − S0

S0

)
− LT −K

]+

, (4.4)

where LT the Libor rate at the fixing date T . In this case, the calibration algorithm described in
Section 2 can still be applied, with a higher computational cost due to the more complex simulation
scheme.
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We conclude this section with an empirical convergence analysis of our Monte Carlo simulation
scheme. Since the product can be decomposed into a linear combination of first-order exotics, the
theoretical convergence (without a rate) of Monte Carlo estimators follows automatically from the
analysis in Section 3. The data in Table 5 suggest a first-order convergence of the time-discretization
error. As an aside, note that in the case of continuously monitored barriers, we could use Brownian
bridge techniques to recover the first-order convergence.

Table 5: The Monte Carlo estimates of the NPV of the contract specified in Table 3 for different numbers
of time steps (per year) and 5×107 sample paths (for a standard deviation of 9.29×10−4), the difference
from the previous NPV estimate and the empirical convergence order.

Time steps NPV Difference Order

12 1.9081 – –
24 1.8110 0.0971 –
48 1.7623 0.0487 0.996
96 1.7388 0.0234 1.057

192 1.7285 0.0103 1.184

The empirical findings of this section demonstrate the importance of stochastic-local volatility
dynamics as well as stochastic short rate dynamics for the pricing of long-dated exotic FX prod-
ucts. Furthermore, we verified the convergence of our Monte Carlo simulation scheme for one such
product.

5 Conclusions

Our aim was to establish the strong convergence of an Euler scheme for a hybrid stochastic-local
volatility model. The only previous published work related to this problem that we are aware of
is [22], which proves the convergence of an Euler discretization with a reflection fix in the context
of Heston’s model and options with bounded payoffs. We established the strong L1-convergence
(without a rate) of the discounted exchange rate approximation, a result which can be generalized
to the Lp case relatively easily, for all p ≥ 1, albeit under a stronger condition on the maturity, and
which is particularly useful when proving the convergence of Monte Carlo simulations for valuing
options with unbounded payoffs.

The analysis carried out in this paper can be extended to other financial derivatives, including
digital options, forward-start options and also double-no-touch binary options, to name just a few.
Furthermore, we may consider a multi-factor extension of the short rate model, in which case the
convergence analysis applies with some slight modifications of the proofs.

However, several unsettled questions remain, like the exact strong convergence rate of the full
truncation scheme for the CIR process, or the strong convergence rate of schemes for the type of
SDEs studied in this paper. On top of these being interesting and practically relevant questions in
their own right, a sufficiently high order enables the use of multi-level simulation, as in [16], with
substantial efficiency improvements for the estimation of expected financial payoffs.

References

[1] R. Ahlip and M. Rutkowski, Pricing of foreign exchange options under the Heston stochas-

35



tic volatility model and CIR interest rates, Quantitative Finance, 13 (2013), pp. 955–966.

[2] A. Alfonsi, On the discretization schemes for the CIR (and Bessel squared) processes, Monte
Carlo Methods and Applications, 11 (2005), pp. 355–384.

[3] A. Alfonsi, Strong order one convergence of a drift implicit Euler scheme: application to the
CIR process, Statistics and Probability Letters, 83 (2013), pp. 602–607.

[4] L. Andersen, Simple and efficient simulation of the Heston stochastic volatility model, The
Journal of Computational Finance, 11 (2008), pp. 1–42.

[5] L. Andersen and V. Piterbarg, Moment explosions in stochastic volatility models, Finance
and Stochastics, 11 (2007), pp. 29–50.

[6] A. Berkaoui, M. Bossy, and A. Diop, Euler scheme for SDEs with non-Lipschitz diffusion
coefficient: strong convergence, ESAIM: Probability and Statistics, 12 (2008), pp. 1–11.

[7] D. Brigo and F. Mercurio, A deterministic-shift extension of analytically-tractable and
time-homogeneous short-rate models, Finance and Stochastics, 5 (2001), pp. 369–387.

[8] M. Broadie and O. Kaya, Exact simulation of stochastic volatility and other affine jump
diffusion processes, Operations Research, 54 (2006), pp. 217–231.

[9] I. J. Clark, Foreign Exchange Option Pricing: A Practitioner’s Guide, Wiley, 2011.

[10] J. Cox, J. Ingersoll, and S. Ross, A theory of the term structure of interest rates, Econo-
metrica, 53 (1985), pp. 385–407.

[11] A. Cozma, M. Mariapragassam, and C. Reisinger, Calibration of a 4-factor hybrid
local-stochastic volatility model with a new control variate particle method. Working paper,
2016.

[12] G. Deelstra and F. Delbaen, Convergence of discretized stochastic (interest rate) processes
with stochastic drift term, Applied Stochastic Models and Data Analysis, 14 (1998), pp. 77–84.

[13] G. Deelstra and G. Rayee, Local volatility pricing models for long-dated FX derivatives,
Applied Mathematical Finance, 20 (2013), pp. 380–402.

[14] S. Dereich, A. Neuenkirch, and L. Szpruch, An Euler-type method for the strong ap-
proximation of the Cox–Ingersoll–Ross process, Proceedings of the Royal Society of London A,
468 (2012), pp. 1105–1115.

[15] S. S. Dragomir, Some Gronwall Type Inequalities and Applications, Nova Science Publishers,
2003.

[16] M. B. Giles, D. J. Higham, and X. Mao, Analysing multi-level Monte Carlo for options
with non-globally Lipschitz payoff, Finance and Stochastics, 13 (2009), pp. 403–413.

[17] P. Glasserman, Monte Carlo Methods in Financial Engineering, vol. 53 of Stochastic Mod-
elling and Applied Probability, Springer, 2003.

[18] L. A. Grzelak and C. W. Oosterlee, On the Heston model with stochastic interest rates,
SIAM Journal on Financial Mathematics, 2 (2011), pp. 255–286.

36



[19] L. A. Grzelak and C. W. Oosterlee, On cross-currency models with stochastic volatility
and correlated interest rates, Applied Mathematical Finance, 19 (2012), pp. 1–35.
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