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DUALITY AND GENERAL EQUILIBRIUM THEORY UNDER
KNIGHTIAN UNCERTAINTY∗

PATRICK BEISSNER† AND LAURENT DENIS‡

Abstract. Any dynamic or stochastic notion of a general equilibrium relies on the underlying
commodity space. Under sole risk and without multiple–prior uncertainty the usual choice is a
Lebesgue space from standard measure theory. In the case of volatility uncertainty it turns out that
such a type of function space is no longer appropriate. For this reason we introduce and discuss a
new natural commodity space, which can be constructed in three independent and equivalent ways.
Each approach departs from one possible way to construct Lebesgue spaces.

Moreover, we give a complete representation of the resulting topological dual space. This extends
the classic Riesz representation in a natural way. Elements therein are the candidates for a linear
equilibrium price system. This representation result has direct implications for the microeconomic
foundation of finance under Knightian uncertainty.

Key words. Asset pricing, general equilibrium under uncertainty, space of contingent claims,
volatility uncertainty, dual space, mutually singular probability measures

AMS subject classifications. 91B51, 91G80

1. Introduction. The modern approach to neoclassic asset pricing and mathe-
matical finance relies on the general equilibrium foundation in which risk, quantified
by a single objective probability measure, is identified with uncertainty. By breaking
such traditionally strong ties, the goal of the present paper is to analyze the basic
link between absence of arbitrage and linear prices under volatility uncertainty in
continuous time. Under multiple prior uncertainty, in the sense of [?], this usually
strong link stops to work in the usual way. In order to understand this conceptually
important issue we go back to the fundamentals and start from scratch.

From an empirical perspective, we consider a fairly general form of volatility
uncertainty. However, we restrict our discussion to sets of priors P that are weakly
compact. This covers any collection of stochastic volatility models that is bounded
above by some Hölder continuous function. With regard to observed volatility patterns
in financial markets, this is a rather weak assumption since any observed volatility (per
annum) is contained in a bounded interval, say [1%, 200%]. Note that this includes
volatility patterns during the peak of the last financial crisis, see [?].

Under volatility uncertainty, the central arbitrage concept and the connection to
competitive equilibria (with linear prices) goes against usual wisdom, see [?] for a
detailed account of the usual connection. To understand the main differences, it is
enlightening to consider related questions of pricing derivatives. In particular, volatil-
ity uncertainty creates an “intrinsically incomplete” market, see [?] for superhedging
prices of standard European options. However, in the present framework it is also
important to understand the pricing of volatility derivatives, see [?] for an overview
of this rather new class of financial products. We show in a simple example that in a
non–pathological Arrow–Debreu equilibrium one can construct a whole family of pos-
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2 P. BEISSNER AND L. DENIS

itive (digital) volatility derivatives which are costless when priced by the equilibrium
pricing measure.

From a theoretical perspective, it is important to recognize that the foundation
of modern asset pricing has its origins within the conceptual building block of a
general equilibrium theory à la Arrow–Debreu. Following this perspective, the present
type of model uncertainty requires a new commodity space of all contingent claims
within the model. As a conceptional point on the wishlist, the new commodity space
of contingent claims (or random variables) should to some extent be a canonical
extension of the classic Lebesgue space, see [?]. In finance models it is common to take
the L2(P )–space of square–integrable random variables under some given “objective”
probability space P . When moving to a multiple–prior setting, one may hope to find
a new space of random variables that shares many properties with the usual L2–space.
This is of particular importance when it comes to asset pricing. Price functionals are
usually elements of the dual space which is determined by the (norm of the) primal
space. An intuitive and explicit representation of any dual element plays a pivotal
role in developing a theory of finance with a microeconomic foundation.

A natural generalization of Lebesgue spaces when moving to a set of probability
measures P is achieved in Theorem 1. We depart from [?] and present three indepen-
dent methods to construct a Lebesgue–type space and show that all these construc-
tions result in the same Banach lattice of random variables, denoted by L2(P). With
this robust generalization of a space of square integrable random variables, we turn
to its topological dual and achieve a generalized version of the Riesz representation
theorem in Theorem 2. It states that any linear and norm–continuous functional Π on
L2(P) can be represented as Π(·) = EP [ψ·] for some P ∈P and some ψ ∈ L2(P ). In
macro finance applications ψ is directly linked to the stochastic discount factor and
play a pivotal role in most asset pricing models.

This established commodity–price duality under Knightian uncertainty allows
then to analyze a related class of general equilibrium models under uncertainty. Here,
the relation between an equilibrium price system and a (risk neutral) pricing measure
requires a careful reconsideration. Under the present type of volatility uncertainty,
a set of possibly mutually singular probability measures P emerges. Usually, such
probability measures live on disjoint domains. This has direct implications for the
meaning of an “equivalent” pricing measure. For instance, the first introduction of
an equivalent–martingale measure appeared in [?] and is deduced from a (single–
agent) equilibrium notion of viability. In such a frictionless model of competition, the
resulting price system (a functional on the space of all possible contingent claims) is
usually assumed to be linear and positive. From our Theorem 2 on the representation
of any linear and continuous functional we can then infer that such price systems are
stuck to the domain of a particular measure P ∈P. This in turn opens the door to
arbitrage opportunities outside the domain of the representing P .

Related Literature. First models of uncertain volatility for financial market mod-
els can be found in [?] and [?]. In the same vein, [?] initiated a stochastic calculus
under uncertain volatility. Recently, [?, ?] introduces a dynamic single–agent equilib-
rium notion under uncertain volatility. Robust utility maximization is considered in
[?]. [?] presents no–arbitrage considerations under volatility uncertainty.

The paper is organized as follows. In Section 2 we introduce the uncertainty model.
Section 3 establishes the commodity space via three independent construction meth-
ods. Section 4 gives an explicit representation of the topological dual. With these
rather mathematical preparations, we discuss in Section 5 the implication for Arrow–
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Debreu equilbira and present several examples. Section 6 discusses some inconsis-
tencies with linear–price system and no arbitrage. In Section 7 we conclude. The
Appendix A prepares the proofs of the main results. Appendix B presents the proofs.

2. Knightian Uncertainty about Volatility. The construction of priors re-
quires some structure on the state space Ω. Assume Ω = {ω ∈ C([0, T ];R) : ω0 = 0}
to be the space of continuous sample paths starting at zero, equipped with the sup–
norm. More generally it suffices to assume that Ω is a polish space. The Borel σ-field
of Ω is denoted by F = B(Ω). Let ∆(Ω) be the set of all probability measures on
(Ω,F).

2.1. Construction of Probability Measures. Under the Wiener measure P0,
the canonical process Bt(ω) = ωt becomes a Brownian motion. Denote by F =
(Ft)t∈[0,T ], with Ft = σ(Bs, s ∈ [0, t]), the information flow of the state process.
Ambiguous volatility is based upon martingale laws of the form Pσ = P0 ◦ (Bσ)−1,

where Bσt =
∫ t

0
σsdBs is a Brownian martingale under P0 with quadratic variation

〈Bσ〉t =
∫ t

0
σ2
sds. Each adapted stochastic volatility process σ : Ω × [0, T ] → R

generates the probability law Pσ ofBσ on Ω. Assume that the uncertainty is generated
by a convex and bounded set D = {σt ∈ [σt, σt]} of positive processes. The set of
priors is weakly compact and given by P = {Pσ : σ ∈ D}.

The purpose of P0 = P 1 stems from the construction of the uncertainty model
and is not a reference measure. P0 /∈ P means that 1 /∈ D. To guarantee weak
compactness and convexity of P, it suffices to assume Hölder continuity of the bounds
σ, σ : [0, T ]→ R for (σt), see Proposition 5 in [?]. Probability measures in P happen
to be mutually singular. Our approach also covers simultaneous drift and volatility
uncertainty.

Example 1. 1. We consider a set of probabilities P, in which both volatility
and drift of some state process are uncertain. Consider some finite constants
0 < σ < σ and κ < κ. We denote by P(σ, σ, κ, κ) the set of probability laws
on (Ω,F) of all the continuous semimartingales S which admit the decomposi-

tion St =
∫ t

0
σsdBs+

∫ t
0
θsds, where B is a Brownian motion, σ is predictable

and θ is adapted. These processes are defined on a filtered probability space
with usual conditions and satisfy σ ≤ σt ≤ σ and κ ≤ θt ≤ κ for all t ≤ T ,
P0-a.s.

2. As a special case of part 1., the resulting sublinear expectation corresponds to
the G–expectation, see [?], if κ = κ = 0

In view of Example 1, we then have by Proposition 5 in [?]: P(σ, σ, κ, κ) is a convex
and weakly compact set in ∆(Ω).

3. The Space of Contingent Claims. This section discusses a possible substi-
tute for the standard Lebesgue space, when multiple priors describe the uncertainty.
Some important special cases are discussed in the examples of Section 2.

3.1. Three Constructions for one Function Space. We consider the case
of an abstract uncertainty model that is given by a weakly compact set of (possibly)
mutually singular probability measures P. Each P ∈P is defined on (Ω,F), where
Ω is an arbitrary polish space and F = B(Ω). A natural question then points to the
formulation of a canonical function space of random variables. In the following, we
present three different methods of how to generalize the measure theoretic Lebesgue

space Lp(P ) := Lp(Ω,F , P ) with finite p–th moment ‖X‖P,p = EP [|X|p]1/p.



4 P. BEISSNER AND L. DENIS

Method 1: Topological Completion
To describe an F–measurable claim X : Ω → R under P, we focus on the

sublinear expectation1 E[X] = maxP∈P EP [X] and the resulting generalized Lp-

type norm ‖X‖P,p = E [|X|p]1/p. The closure of Cb(Ω), the space of continuous and
bounded functions on Ω, under ‖ · ‖P,p is denoted by Lp(P). The space

Lp(P) = Cb(Ω)
‖·‖P,p

/N(1)

denotes the quotient space of Lp(P) with respect to N . Here, N := NP denotes
the collection of all ‖ · ‖P–null elements; functions that are null P−quasi surely. A
property holds P−quasi surely (q.s.) if it holds P–a.s. for every P ∈ P. We do
not distinguish between classes and their representatives. X,X ′ ∈ Lp(P) can be
distinguished if there is a P ∈P with P (X 6= X ′) > 0. As shown in [?], Lp(P) is a
Banach space.

Method 2: Representation via quasi–continuous functions
Another approach departs from the perspective of Lusin’s Theorem. Under min-

imal topological conditions on Ω, Borel measurable functions are quasi–continuous.2

Departing from this classic result we base the second construction on the concept of
quasi–continuity. We say that X : Ω → R has a q.c. version if there exists a quasi–
continuous function Y : Ω → R with X = Y q.s. In that case, we write X ∈ QC.
A mapping X : Ω → R is said to be quasi-continuous (q.c.) if for all ε > 0 there
exists an open set O with CP(O) := supP∈P P (O) < ε such that X|Oc is continuous.
Define

Lp(E) =
{
X ∈ L(Ω) : ‖X‖P,p <∞, X ∈ QC, lim

n→∞
E
[
1{|X|p>n}|X|

]
= 0
}
,(2)

where L(Ω) denotes the space of equivalence classes (with respect to N from Method
1) of F–measurable random variables. The third requirement within the representa-
tion of (2) is a uniform integrability condition under E.

Method 3: Choquet’s Lebesgue Prolongation via Capacities
An alternative (and less known) way to construct function spaces with a finite

capacity norm was initiated by [?]. [?] presents a more detailed description, see
also [?]. Let H be any vector lattice in Cb(Ω), containing constants and generating
the topology of Ω. The prolongation is induced by a sublinear expectation E via

cpE(φ) = E[|φ|p]
1
p for all φ ∈ H in the following way:

• Set cpE(f) = sup{cpE(φ) : 0 ≤ φ ≤ f, φ ∈ H} for any f ≥ 0 and lower semi-
continuous (lsc).

• For any X ∈ L(Ω) set cpE(X) = inf{cpE(f) : f ≥ |X|, f lsc}.
We can now define the function space induced by the Lebesgue prolongation:

L(cpE) = CLcpE (H)/N(3)

where CLcpE denotes the closure operation with respect to the norm cpE in the set

{g ∈ L(Ω) : cpE(g) < ∞}. Similar to Method 1, we consider equivalence classes that
are now induced by the polar sets N of cpE.3

1By [?], E is a sublinear expectation, i.e. monotonicity, positive homogeneity, a constant pre-
serving property, sub-additivity.

2For a detailed formulation of Lusin’s Theorem we refer to Appendix D in [?].
3 It is important to note that we have in fact to set capacities. Indeed, for any A ∈ B(Ω) we can

put C(A) := c1E(1A). One can prove that in general c1E(A) 6= CP(A). As shown in Appendix A.2,
the equality holds for A open or compact. From this, it follows that there is no ambiguity in the
term “quasi-continuous”, when connecting method 2 and 3.
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3.2. Invariance of the Constructions. It turns out that all the three ap-
proaches, which respectively constructs a function space under Knightian uncertainty
P, result in the same space. This insight is the content of the first main result.

Theorem 1. (Representation of the Primal Space) Let Ω be a polish space and
P be a weakly compact set in ∆(Ω). For any p ∈ [1,∞), the spaces in (1), (2) and
(3) are Banach spaces and coincide, i.e.

Lp(E) = Lp(P) = L(cpE).

To some extend, Theorem 1 is remarkable, as the three constructions of function
spaces follow rather different ideas; classical completion of a test space in (1), Luisin’s
Theorem in (2) and the capacity–based two step procedure in (3). From this per-
spective, Theorem 1 serves as a formal justification that Lp(P) is “robust” against
different construction methods.

The order structure on Lp(P) is then given by C ≥ C ′ if C ≥ C ′ q.s. (P-quasi
surely) and makes the triplet (Lp(P), ‖ · ‖P,p,≥) into an order continuous Banach
lattice, see Proposition 1 in [?]. The induced positive cone is denoted by Lp(P)+.

Remark 1. 1. Theorem 1 heavily depends on the weak compactness of P.
As characterized in [?], this is equivalent to the regularity of the capacity CP .
We also note, that the first equality of Theorem 1 is shown in [?]. The second
equality is crucial for Theorem 2.

2. Alternatively one could consider in Method 1 the completion of the larger
space Bb(Ω), the collection of all bounded measurable random variables. As
discussed in [?], the completion is strictly larger than Lp(P) and can be
represented similarly as in Method 2, by{

X ∈ L(Ω) : ‖X‖P,p <∞, lim
n→∞

E
[
1{|X|p>n}|X|

]
= 0
}
.

3. The generality of the approach also allows to consider the function space of
adapted stochastic processes. In that case, we depart from the polish space
Ω = C0([0, T ]) × [0, T ]. In Subsection 4.3, we then state the dual for the
function space of progressively measurable processes.

4. The Topological Dual Space. We recall the basic relation of Lebesgue
spaces Lp and the representation of the topological dual, that is, the collection of all
linear and continuous functionals Π : Lp → R. In general such functionals allow for a
representation in terms of an integral Π(·) =

∫
·dµ. The main step is then to find the

characterizing properties of those measures that define these integrals.

4.1. Standard Dual Space under Risk. We recall the well–known dual space
representation of Lebesgue spaces under the uncertainty model described by a proba-
bility space (Ω,F ,P ). In view of (1), the classical Lebesgue space Lp(P ) :=Lp(Ω,F , P )
is then given by taking P = {P}. The Riesz(–Frechet) representation theorem then
establishes that the topological dual Lp(P )∗, where p ∈ [1,∞), can be identified by
another Lebesgue space with conjugate order of integrability 1

p + 1
q = 1:

Lp(P )∗ =
{

Π : Lp(P )→ R : Π(·) = EP [ψ·] for a ψ ∈ Lq(P )
}
.(4)

Note that, for the space of progressively measurable p-integrable processes, dual ele-

ments of Lp(dt⊗ P ) can be represented by Π(x) = EP [
∫ T

0
ψtxtdt], ψ ∈ Lq(dt⊗ P ).
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4.2. Dual Space under Knightian Uncertainty. A meaningful modification
of Lebesgue spaces is stated in Theorem 1 of Section 3 and denoted by Lp(P), with
p ∈ [1,∞). The Riesz-type representation for (Lp(P), ‖ · ‖P,p) turns out to allow for
a similar representation as in the case of classic Lebesgue spaces, as stated in (4).

Theorem 2. (Representation of the Dual Space) Let P be a weakly compact
and convex set in ∆(Ω). For any p, q ∈ [1,∞) with 1

p + 1
q = 1, we have the following

representation of the topological dual space

Lp(P)∗ =
{

Π : Lp(P)→ R : Π(·) = EP [ψP ·] for a P ∈P, ψP ∈ Lq(P )
}
.(5)

The proof is stated in Appendix B. [?] shows that any positive linear continuous
functional on L(cpE) can be represented by a positive measure µ : F → R+ that does
not charge polar sets, i.e. µ(A) = 0 for any A ∈ N . Departing from this result,
Theorem 2 shows that any representing µ allows for a decomposition of the form

A 7→ µ(A) =

∫
A

ψP (ω)dP (ω).(6)

The comparative statics work in the exact way as one may expect: Consider an
increase in the degree of Knightian uncertainty from P to a larger set P ′. Then, for
any fixed p ∈ [1,∞), the norm ‖·‖P′,p is stronger, the dual norm becomes weaker and
the dual space Lp(P ′)∗ increases, given Lp(P)∗. Alternatively, this type of increase
can be directly seen from the representation in (6), for some P in P ′.

Remark 2. In Proposition 2 of [?] it is only shown for the case p = 1 that for
every P ∈P and ψ ∈ L∞(P ), Π(·) = EP [ψ·] lies in L1(P)∗.

4.3. Dual Space of Stochastic Processes. We now apply Theorem 2 to
the space of progressively measurable stochastic processes under the filtration F =
(Ft)t∈[0,T ], with Ft = B(Ωt) and Ωt = C0[0, t]. Let P ⊂ ∆(ΩT ) be weakly compact.

We work on the (polish) product space Ω = [0, T ] × ΩT and consider the set of
product probability measures on [0, T ]× ΩT

PT =
{ 1

T
dt⊗ P ∈ ∆(Ω) : P ∈P

}
,

where dt is the Lebesgue measure on [0, T ]. The set PT is weakly compact if so P,
hence as a special case of Section 3, we can construct Lp(PT ) for any p ∈ [1,+∞).
Each η ∈ Lp(PT ) is a function of (t, ω)→ η(t, ω) = ηt(ω) with a norm is given by

‖ η ‖Lp(PT )=
1

T
max
P∈P

EP
[ ∫ T

0

|ηs|pds
]1/p

.

An important class of processes (as a space of integrand for a stochastic analysis under
volatility uncertainty) is given by

Mp(P) = {η ∈ Lp(PT ) F–progressively measurable } .

Clearly, Mp(P) is a ‖ · ‖Lp(PT )–closed subvector space of Lp(PT ).

Remark 3. If P, as in Example 1.2, these Banach spaces of processes are well-
known in the G-expectation theory, see [?] for a result that constructs also Mp(P)
via a similar approach to method 2.
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As a corollary of Theorem 2 we can also represent the topological dual of the Banach
space Mp(P):

Corollary 1. Let p ∈ [1,∞) and q ∈ (1,+∞] its conjugate then Π : Lp(PT )→
R belongs to the topological dual space of Mp(P) if and only if there exists P ∈ P

and ψ̃P , a progressively measurable process in Lq([0, T ]× Ω; dt⊗ P ), such that

∀η ∈Mp(P), Π(η) = EP
[ ∫ T

0

ψ̃Pt ηs ds
]
.

Proof. Let Π be in the topological dual space of Mp(P). By the Hahn-Banach
Theorem, there exists a Π̂ in Lp(PT )∗ such that Π̂|Mp = Π. As a consequence of
Theorem 2, there exist P ∈P and ψP in Lq([0, T ]× ΩT ; dt⊗ P ) such that

∀η ∈Mp(P), Π̂(η) = Π(η) =
1

T
EP
[ ∫ T

0

ψPs ηs ds
]
.

Denoting by ψ̃P the progressively measurable projection of 1
T ψ

P , the result is proved.

For the rest of the paper we exploit the impact of Theorem 2 and try to under-
stand the implications for a general equilibrium theory under volatility uncertainty.
In particular, we see in Section 5 that the representation result of Theorem 2 has
far reaching consequences for a sound microeconomic foundation of finance under
Knightian uncertainty.

5. Implications for General Equilibrium Theory. We recall the equilibrium
notion under risk and fix p = 2. The basic object of an economy (under uncertainty)
refers to the commodity space of contingent claims, that is, the set of all payoffs
x : Ω→ R being available in the economy with I = {1, . . . , I} agents.

5.1. The Case of Risk P = {P}. Fix the commodity space of payoffs with
finite variance L2(P ) and the economy EP = {L2(P )+, U

i, ei}i∈I, where the positive
cone L2(P )+ is the consumption set, ei ∈ L2(P )+ is the random endowment of agent
i and U i : L2(P )+ → R denotes her utility functional, e.g. U i(·) = EP [ln(·)]. We
assume that at least one agent has strictly monotone preferences.4 The following
notion of equilibrium is standard.5

Definition 1. (c̄; Π)∈L2(P )I+×L2(P )∗ is an Arrow-Debreu equilibrium in EP if

1. for all i ∈ I, c̄i maximizes U i on {x ∈ L2(P )+ : Π(c− ei) ≤ 0}.
2. the allocation c̄ is feasible:

∑
i∈I c̄

i =
∑
i∈I e

i P–a.s.

The equilibrium price Π ∈ L2(P )∗ allows for an explicit description in terms of a
state–price density ψ ∈ L2(P ). As in Subsection 4.1 and (4), this yields the usual
relationship through the dual pairing of the commodity and price space:

Π(x) = 〈ψ, x〉 = EP [ψx],(7)

for some ψ ∈ L2(P ). Strictly monotone and concave utilities U i then guarantees ψ > 0
P–a.s., by the first order condition of each optimization problem of Definition 1.1. We
may normalize ψ, when considered as a Radon–Nikodym derivative and recover the
classic equivalent martingale measure (EMM) dQ = ψ

EP [ψ]
dP . With zero interest

rate, the equilibrium price Π is then the expectation under the EMM: Π(x) = EQ[x].

4I.e., there is some k ∈ I, such that Uk(c+d) > Uk(c), for any C ∈ L2(P )+ and d ∈ L2(P )+\{0}.
5For existence of equilibria, see the overview article [?].
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5.2. The Case of Knightian Uncertainty. To see the major change under
volatility uncertainty, we fix a convex and weakly compact set P and set L := L2(P),
the space of random variables from Section 3. Note that since L is a Banach lattice,
linear and positive functionals on L are automatically ‖ · ‖P,p–continuous.

We consider the following standard exchange economy under P:

EP = {L+, U
i, ei}i∈I,

where ei ∈ L+ := {x ∈ L : x ≥ 0 P-q.s.} is again the random endowment of the i-th
agent and U i : L+ → R denotes the utility functional of agent i. The equilibrium
concept under P is an adjusted version of Definition 1.6

Definition 2. (c̄; Π) ∈ LI+ × L∗ is an Arrow-Debreu equilibrium in EP , if

1. for all i, c̄i maximizes U i on L+ under the constraint Π(c− ei) ≤ 0.

2. the allocation c̄ is feasible:
∑
i∈I c̄

i =
∑
i∈I e

i P–q.s.

Note that the feasibility condition in Definition 2 is now in the quasi sure sense.
With this slightly modified equilibrium notion, we may employ Theorem 2 and ex-

plore some properties of a linear equilibrium price system under volatility uncertainty.

Corollary 2. The equilibrium determines a collection of relevant null events,
induced by PΠ, i.e. any payoff x ∈ L+ outside the support of PΠ is zero. More
precisely, if {ω ∈ Ω : x(ω) > 0} ∩ supp(PΠ) = ∅ then Π(x) = 0.

Proof. By (8), the equilibrium price system Π is determined by the linear expec-
tation under some PΠ ∈P. The possible mutual singularity to another P ′ ∈P gives
an event A ∈ F that satisfies P ′(A) > 0 and PΠ(A) = 0. Consequently, Π can only
assign a strictly positive value to those payoffs that are not a PΠ-null set.

By Theorem 2, any equilibrium prices system is of the form

Π(x) = EPΠ [ψPx], for some PΠ ∈P and ψP ∈ L2(PΠ).(8)

This representation has a similar form as the equilibrium price system for the economy
EP under sole risk in (7). However, in the present setting of possibly mutually singular
probability measures, the functional form of Π is a more delicate issue. For instance,
the representation (8) creates an intrinsic weakness of linear equilibrium price systems.
The price functional Π : L → R can no longer be aware of any payoff outside the
support of the representing probability measure PΠ.

Proposition 1 establishes existence of equilibrium for a class of standard utility
functionals. Moreover, we observe a sharper description of the state–price density ψP .

Proposition 1. Let every agent i ∈ I in EP has a worst–case expected utility

U i(x) = min
P∈P

EP [ui(x)]

with strictly increasing, differentiable and strictly concave utility index such that x 7→
xui
′
(x) is increasing and e :=

∑
i e
i is P–q.s. is bounded away from zero. Then an

equilibrium (c̄1, . . . , c̄I ,Π) exists with Π(·) = EPΠ [ψP ·] and the state–price density ψP
in (8) satisfies ψP ∈ L+ and ψP > 0 q.s. For each i, PΠ is a minimizer of U i at c̄i.

6This paper presents not another existence result of equilibrium. For such results see [?].
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Proof. Our conditions on the economy satisfy Assumption 1 in [?] and by Theorem
1 therein, we get existence of an equilibrium. Moreover, we get that ψP = u′α(e) PΠ–
a.s. Note that (α1, . . . , αI) is a Pareto weighting of the efficient equilibrium allocation
and the aggregated utility index is defined by uα(e) = max∑

i x
i≤e,xi≥0

∑
i αiu

i(xi)
(for details we refer to Section 6.3.2 in [?]). Since e is bounded away from zero and
each ui is strictly increasing, concave and continuously differentiable, the same holds
for uα, consequently ‖u′α(e)‖P,2 < ∞ and u′α(e) > 0 P–q.s. Moreover, since u′α is
continuous, which follows from the continuous differentiability of each ui, it follows
that u′α(e) is quasi–continuous and by Theorem 1 we have ψP ∈ L2(P)+. ψP > 0
q.s. follows directly from the assumption on e and since each ui is strictly increasing.

To see that PΠ is for each agent a minimizer at her equilibrium consumption note
that the first–order condition with respect to the first part of Definition 2 requires
Π ∈ ∂U i(c̄i), the superdifferential of U i at c̄i for any agent i ∈ I. The result then
follows from Proposition 4 in [?].

5.3. Examples. We illustrate some new aspects of Arrow–Debreu equilibra un-
der volatility uncertainty. We begin with a case where disagreement in beliefs results
in non existence of equilibria.

Example 2. Let there be I = 2 agents in the economy and let the uncertainty
be that of Example 1 with constant volatility bounds [σ, σ]. Specifically, suppose each
agent is overconfident with subjective expected utility, given by Gateaux differentiable
and concave functionals U1(·) = EP

σ

[ln(·)] and U2(·) = EP
σ

[ln(·)]. Assume strictly
positive initial endowments e1, e2 > 0 P-q.s. Since Pσ, Pσ are mutually singular,
see Section 2, no equilibrium exists. To see this, we check the first–order conditions
for optimality and get ∇U1(c̄1; ·) = µ1Π, ∇U2(c̄2; ·) = µ2Π,7 for some constants
µ1, µ2 ≥ 0 and some equilibrium allocation (c̄1, c̄2). But this can only be true if

Π = 0 ∈ L∗, since the utility gradients in L∗ satisfy ∇U1(c̄1; ·) = EP
σ

[ 1
c̄1 ·] and

∇U2(c̄2; ·) = EP
σ

[ 1
c̄2 ·]. On the other hand, we have by the shape of each U i, c̄i > 0 on

the respective domain of the agent’s belief, which implies ∇U i(c̄i; ·) 6= 0, for i = 1, 2.

The example is a typical consequence of volatility uncertainty and the disagreement
of null sets. In the case of drift uncertainty, priors are mutually equivalent and trade
can be rather excessive, see [?] and the price for positive claim is not zero.

Agents in the economy of Example 3 share at least some priors in P.

Example 3. Let there be two pessimistic expected utility agents, with sets of be-
liefs P1,P2 ⊂P. We can write this in terms of variational preferences, see [?], and
get

U i(c) = min
P∈P

EP [ln(c)] + ci(P )

where ci : P → [0,∞] is zero if P ∈Pi and otherwise +∞.
Let us assume that ei > 0 q.s. and P1 ∩P2 6= ∅ then we get from Theorem 1

of [?] existence of an Arrow–Debreu equilibrium in EP = {L2(P)+, U
i, ei}i=1,2. As

long as agents share a prior, this result holds for more than two agents.

As a preparation of Section 6, we now consider a single–agent economy. As trade
will not occur, the insights from a no–trade equilibrium will only be revealed by
the properties of the equilibrium price system Π. This enables us to investigate the
principle pricing mechanisms, by recasting the notion of viability from [?].

7 By the assumptions on ei, the Slater conditions (with respect to the problems in Definition
2.1) holds for any agent and any positive and nonzero Π ∈ L∗.
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Example 4. Again, we depart from the uncertainty model of Example 1. Let there
be a single agent in a no–trade equilibrium with some initial endowment. Moreover,
suppose that this agent has maxmin expected utility in the sense of [?]:

U(c) = min
P∈P

EP [u(c)], for any c ∈ L+,

where u : R→ R is assumed to be increasing, continuously differentiable and concave.
Let e = |BT |. Since U(c) = −E[−u(c)], we have U(e) = EP

σ

[u(e)], since −u ◦ | · |
is convex. Pessimism lets the agent consider the maximal volatility regime, since
endowment is a convex function of the G–Brownian motion.8

A viable price system Π, making the representative agent economy into a no–
trade equilibrium, is then given by x 7→ Π(x) = EP

σ

[u′(e)x]. Since u′ is continuous
it follows by Theorem 1 that u′(e) ∈ L2(P) ⊂ L2(Pσ). But by Theorem 2, we then
have Π ∈ L2(P)∗. The form of Π follows from the necessary and sufficient first–order
condition of the constrained optimization problem in Definition 2.1 for the case I = 1.

Consequently, Π is only capable to detect positive payoffs within the support of
Pσ, the prior under which the volatility is maximal.

In Section 6, we focus on the standard approach to asset pricing via equivalent
martingale measures and the relation to a no–arbitrage pricing principle.

6. Implications for the Foundations of Finance. The discussion of the last
section has direct and far–reaching consequences for an asset pricing theory that
builds on principles of Arrow–Debreu equilbria, introduced in Definition 2. Especially
Example 4 makes this point clear.

6.1. Static Asset Pricing. The next definition is a robust counterpart to no
arbitrage under risk.

Definition 3. (no–arbitrage) A linear and positive price system Π : L → R is
P–arbitrage free if there is no costless and nontrivial positive payoff X : Ω→ R, that
is, X ∈ L+ \ {0}, such that Π(X) = 0.

From a geometric perspective the arbitrage cone coincides with the positive cone with
deleted zero. With Definition 3, an arbitrage for some nonnegative payoff is already
present, when there is at least one volatility model Pσ under which an arbitrage in
the classical sense occurs. This follows from the fact that X ∈ L+ \ {0} implies
P (X > 0) > 0 for some P ∈P and X ≥ 0 P–quasi surely.

For the rest of this section, let the uncertainty be given by Peng’s G-expectation
and the related interval [σ, σ], see Example 1.2 for details.

Corollary 3. For any nonzero positive price system Π : L→ R, we can find an
arbitrage opportunity.

Proof. By Theorem 2, we have Π(X) = EP [ψX] for some nonzero ψ ∈ L2(P )+

and P ∈ P. As discussed in Example 5, we can find some YP ∈ L+ \ {0} which is
only non-zero outside the support of the a priori given P ∈P. It then directly follows
that YP is an arbitrage with respect to the price system Π and the result follows.

This simple result tells us that the existence of an equivalent martingale measure
Q ∈ ∆(Ω), considered as a normalized version of Π, see Theorem 1 of [?], is no longer
sufficient for excluding arbitrage in a financial market.

8See [?] and [?] for an exposition.
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Remark 4. Corollary 3 is at first glance a bit surprising. However, as shown
in [?] or [?] in the case of the fundamental theorem of asset pricing (FTAP) under
volatility uncertainty, to exclude P-arbitrage there has to exist a set of mutually
singular pricing measure. In contrast to pricing under single prior uncertainty, a
linear pricing measure can no longer exclude the present type of strong arbitrage. In
Subsection 6.2, we derive such a set.

The following example presents a specific case in which certain positive volatility
derivatives are costless when priced under some equilibrium price system Π ∈ L∗+. In
the proof of Corollary 3 the existence of such a claim is needed.

Example 5. Let PΠ = Pσ be the “equilibrium” prior of the equilibrium price
Π ∈ L∗. In the case of an economy with ambiguity averse agents, such an equilibrium
outcome is likely to happen, see Example 4. Assume that the financial market follows a
modified Bachelier model under ambiguous volatility, that is the risky (and ambiguous)
asset follows a G-Brownian motion (BGt ).9

Consider a claim of the form X = 1A on the event A = {ω : 〈BG〉T (ω) ∈
[σ, σ + σ−σ

2 ]}. The claim X is then a volatility derivative of digital type.
In general, X /∈ L2(P) since it is not quasi-continuous. Nevertheless, we can ap-

proximate X in the following way: consider (ϕn)n≥1 a non increasing sequence of non-
negative continuous function, converging everywhere to 1[σ,σ+σ

2 ] such that ϕn(x) = 1

if x ∈ [σ, σ+σ
2 ], ϕn(x) = 0 if x ≤ σ − 1

n or x ≥ σ+σ
2 + 1

n . We set Xn = ϕn(〈BG〉T ) ∈
L2(P), then it is clear that Xn ≥ X q.s. Moreover, for n large enough EP

σ

[Xn] = 0,
hence it turns out that in equilibrium such contingent claims are for free, since it
implies Π(Xn) = EPΠ [ψPΠXn] = 0. This implies that the price of X has to be zero.

This example illustrates a critical aspect for a foundational role of Arrow–Debreu
equilibria under volatility uncertainty. When seeking a theory of value for security
prices under volatility uncertainty, Example 5 captures the shortcomings of linear
equilibrium–price systems in a particular, but not pathological, case. This aspect
plays a pivotal role, as the whole neoclassic finance theory ultimately relies on the
Arrow–Debreu equilibrium concept. In particular, nearly every dynamic asset pricing
theory relies on a marginal utility description of the universal system of equilibrium
conditions (feasibility, budget constraints and first–order conditions).

Within the no–arbitrage paradigm, there is a risk–neutral pricing measure. The
mutual equivalence with respect to the usually single physical probability, i.e. P =
{P}, yields the existence of a stochastic–discount factor that relates any payoff to
asset prices in the economy.

6.2. Continuous Time Asset Pricing. By virtue of Subsection 4.3, we extend
the asset pricing application to the continuous time setup. In view of Remark 4,
consider the continuous time G-expectation setting of Example 1.2.

Let there be one agent with positive endowment process det
et

= µetdt + V et dBGt ,

with e0 = 1, where (µet ), (V
e
t ) ∈ M2(P)+ = {x ∈ M2(P) : xt ≥ 0 ∀t q.s.} are

assumed to be bounded, with V et > 0 q.s. The utility functional U : M2(P)+ → R is
as in [?]:

U(c) = min
P∈P

EP
[ ∫ T

0

e−βtu(ct)dt
]

where β > 0 is a discount factor and u : R → R is a strictly increasing, three

9Note the result remains valid when the asset price follows a positive G-Ito process.
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times continuously differentiable and concave utility index. Usual arguments allows
to consider a no–trade equilibrium of a financial market (S0, S1) with locally riskless
asset S0 and uncertain asset S1 satisfying

dS0
t = S0

t rtdt, dS1
t = S1

t

(
µtdt+ ΣtdB

G
t

)
where the interest rate rt, and the return µt are determined from the equilibrium.
For simplicity set Σt = 1, so that all the volatility uncertainty is contained in BG.

By the concavity of U , the compactness of P and Corollary 2, there is a P e ∈P
such that, ∇U(c; ·) ∈M2(P)∗ is a super gradient of U at e in direction h ∈M2(P),
given by

∇U(c;h) = EP
e
[ ∫ T

0

e−βtu′(et)htdt
]

with the refinement {u′(et)} ∈ M2(P) ⊂ L2(dt ⊗ P e). In particular, we may apply
the Ito formula for G–Ito process to ψt = e−βtu′(et) and get

dψt
ψt

= −
(
β +

u′′(et)

u′(et)
µet −

1

2
u′′′(et)(V

e
t )2
)

︸ ︷︷ ︸
=rt

dt− et
u′′(et)

u′(et)
V et︸ ︷︷ ︸

=θt

dBGt

where θt denotes the market price of risk and ambiguity, see Section 3.1 in [?]. Con-

sequently we have ψt = Eθt · e−
∫ t
0
rsds, where Eθt is an exponential martingale under

any P ∈P, solving the G-SDE dEθt = −Eθt θtdBGt , Eθ0 = 1 with explicit solution:

Eθt = exp

(
−
∫ t

0

θsdB
G
s −

1

2

∫ t

0

θ2
sd〈BG〉s

)
By a classic change of measure and Fubini’s theorem under P e, we get the equilibrium
price for any payoff stream x = (xt) ∈M2(P):

Π(x) = EP
e
[ ∫ T

0

Eθt e−
∫ t
0
rsdsxtdt

]
= EQ

e
[ ∫ T

0

e−
∫ t
0
rsdsxtdt

]
.

Similarly to Corollary 3, we may find an arbitrage if the pricing only relies on Π. In
view of Remark 4, we can define a robust set of equilibrium pricing measures, that is
based on Eθ and P. Define the following set of (mutually singular) pricing measures

Q =
{
Q ∈ ∆(Ω) : dQ = EθTdP for some P ∈P

}
.

Under the “uncertainty neutral” expectation, see [?],

Eθ[e−
∫ T
0
rsdsX] = E[e−

∫ T
0
rsdsEθTX]

on L2(P), the asset prices S0 and S1 are then Q–martingales under every Q ∈
Q. From this, we see that the connection between equilibria and the FTAP under
volatility uncertainty are less tight as in the case of sole risk.

Remark 5. The novel effect under uncertain volatility relies on the equilibrium
prior that is the endogenous outcome of the equilibrium. In models under sole risk, as
in Subsection 5.1, all relevant data for pricing can be summarized by the state–price
density or the stochastic–discount factor. Under uncertain volatility this is no longer
possible. One immediate consequence is that, the tight connection between single agent
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no–trade equilibria with a utility gradient approach and a consumption–based asset
pricing model, such as in [?], appear in a different light.10

7. Conclusion. This paper establishes an infinite–dimensional commodity space
in the presence of a fairly general form of Knightian uncertainty. In a second step
we fully describe the topological dual space. Our application to general equilibrium
theory relies on the explicit representation of any linear and continuous pricing func-
tional on the new commodity space. We show that linear price systems can only
detect a subclass of favorable payoffs. In a further discussion we move then to some
direct implications for standard asset pricing. For instance, it turns out that linear
price systems allow for arbitrage opportunities under volatility uncertainty.

A further line of application points to convex risk measures and monetary util-
ity functions under volatility uncertainty. Theorem 2 allows then to represent con-
cave/convex functionals by means of the standard Legendre–Fenchel Duality.

Appendix A. Capacity related to a sublinear expectation. We collect
results to connect Methods 1–3 from Section 3. As the proof of Theorem 2 in Appendix
B relies on Method 3, we provide some preparation. Let Ω be a polish space.

Definition 4. A functional Ê : H 7→ R is called a sublinear expectation on a
vector lattice H of functions, with 1 ∈ H and Cb(Ω) ⊂ H if we have for all X,Y ∈ H:

1. Monotonicity: X ≥ Y implies Ê[X] ≥ Ê[Y ].

2. Sub-additivity: Ê[X + Y ] ≤ Ê[X] + Ê[Y ].

3. Positive homogeneity: for all λ ≥ 0, Ê[λX] = λÊ[X].

4. Constant translatability: for all c ∈ R, Ê[X + c] = Ê[X] + c.

This section consider a sublinear expectation Ê : H → R. We assume thatH generates
the topology of Ω and also that Ê is regular, i.e., for any decreasing sequence (Xn)n∈N
in H tending to 0 everywhere on Ω, we have limn Ê[Xn] = 0. We prove that Ê is the
upper expectation associated to a weakly compact family P.

For all X ∈ H, we set cp
Ê
(X) := Ê[|X|p]

1
p . Clearly, cp

Ê
is a semi-norm on H such

that cp
Ê
(1) = 1 and cp

Ê
(X) = cp

Ê
(|X|), hence, cp

Ê
(X) ≤ 1 if |X| ≤ 1. The Lebesgue

extension of cp
Ê

is introduced in Method 3 in Subsection 3.1. For A ⊂ Ω we put

C(A) := c1Ê(1A).(9)

Regularity of Ê implies that C is a Choquet capacity, see [?], Proposition 11.

Theorem 3. The set function A 7→ C(A) is a Choquet capacity, i.e.,
1. 0 ≤ C(A) ≤ 1, for each A ∈ B(Ω).
2. If A ⊂ B, then C(A) ≤ C(B).
3. If (An) is a sequence of sets in B(Ω), then C(∪nAn) ≤

∑
n C(An).

4. For any ε > 0, there exists a compact set K ⊂ Ω such that C(Ω \K) ≤ ε.

We still use the standard capacity-related vocabulary: a set A is C-polar if C(A) = 0
and a property holds “C-quasi-surely” (q.s.) if it holds outside a polar set. In view
of (9), we may also define Cp via cp

Ê
for any p ∈ [1,∞). However, polor sets are

independent of p ∈ [1,∞), since C1(A) = 0 if and only if Cp(A) = 0.

10In their Subsection 3.3, a discussion on the difference between minimizing and dynamically min-
imizing measures for maxmin expected utility can be found. As discussed in Example 6, minimizing
measure have a direct relation to the representation price systems of Arrow–Debreu equilibria.
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A.1. Extension of Ê. Thus far, Ê is only defined on H. Following [?], we first
extend cp

Ê
. For this, we denote by L(cp

Ê
) the closure of H in {g ∈ L(Ω) : cp

Ê
(g) <∞},

via the Lebesgue prolongation from Method 3.

Theorem 4. For any p ∈ [1,∞), each X ∈ L(cp
Ê
) can be identified with a function

on Ω defined q.s. Denote by L(cp
Ê
) the quotient of L(cp

Ê
) with respect to the quasi-sure

equivalence relation, then (L(cp
Ê
), cp

Ê
) is a Banach space. Moreover, Cb(Ω) ⊂ L(cp

Ê
).

Proof. For details see [?] p. 880.

As in the case for polar sets, quasi-continuity is independent of p ∈ [1,∞).

Definition 5. A mapping X : Ω → R is quasi-continuous (q.c.) if ∀ε > 0,
there exists an open set O with C(O) < ε such that X|Oc is continuous. We say that
X : Ω→ R has a q.c. version if there exists a q.c. Y : Ω→ R with X = Y C-q.s.

Proposition 2. Let (Xn) be a cp
Ê

-Cauchy sequence in H. Then there exists a

subsequence (Xnk) with: for each ε > 0, there exists an open set O with cp
Ê
(O) < ε

and (Xnk) converges uniformly on Oc. Each X ∈ L(cp
Ê
) admits a q.c. version X̃.

Proof. We can copy the proof of Theorem 25 in [?] or Theorem 2.1 in [?].

We now extend Ê to E in an easy way.

Proposition 3. For any p ∈ [1,∞), Ê can be extended uniquely to a continuous
mapping from L(cp

Ê
) to R, denoted by E and we have c1E(X) = E[|X|] for all X ∈ L(cp

Ê
).

Moreover, E is a sublinear expectation on L(cp
Ê
), in the sense that it satisfies all

the four properties of Definition 4 on L(cpE).

Proof. All is clear and based on the fact that X → X+ and X → |X| are con-
traction on L(cpE). For details, we refer to [?].

A.2. The abstract dual space of L(cpE). An important analogy with classical
measure theory is the representation property of the dual space of L(cpE), i.e., the
quotient space of L(cpE) with respect to the C–quasi sure equivalence relation.

Proposition 4. If l : L(cpE) → R belongs to the topological dual space of L(cpE),
then there exists a Radon measure µ on Ω which does not charge C-polar sets with

l(X) =

∫
Ω

X̃(ω) dµ(ω), ∀X ∈ L(cpE).

Proof. This is Proposition 11 in [?].

This Radon–property for elements in L(cpE) in Proposition 4 leads to the following
representation of E, which is a first step to prove Theorem 2.

Theorem 5. Let M1(E) ⊂ ∆(Ω) do not charge C–polar sets and be dominated
by E, i.e.,

∫
Ω
X(ω) dP (ω) ≤ E[X], for all X ∈ Cb(Ω), P ∈M1(E). Then

(10) E[X] = sup
P∈M1(E)

EP [X], ∀X ∈ L(c1E).

Moreover, the map E 7→ M1(E) is a bijection between the set of regular sublinear
expectations and the set of convex compact sets of probabilities.

Proof. As a consequence of the Hahn-Banach Theorem, we have for all X ∈ L(c1E):

E[X] = sup
l∈Q

l(X), Q =
{
l : L(c1E)→ R : linear, l(X) ≤ E[X] ∀X ∈ L(c1E)

}
.
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Let l ∈ Q, then for all non-negative X, we get −l(X) = l(−X) ≤ E[−X] ≤ E[0] = 0
so that l is positive. Since any l ∈ Q is dominated by E, we deduce the c1E-continuity
of l. Moreover: l(1) ≤ E[1] = 1 and −l(1) = l(−1) ≤ E[−1] = −1, so that l(1) = 1.
As a consequence of Proposition 4, there exists a probability P , not charging polar
sets, such that for all X ∈ L(c1E), l(X) = EP [X]. This yields

E[X] ≤ sup
P∈M1(E)

EP [X], ∀X ∈ L(c1E).

The converse inequality is obvious and we have the first part of the theorem.
The second assertion is a consequence of Theorem 12 in [?]. In particular,

E[X] = sup
P∈M(E)

EP [X], ∀X ∈ Cb(Ω),(11)

where M(E) denotes the sets of measure om (Ω,B(Ω)) dominated by E. Moreover
they established that the map E 7→ M(E) is a bijection between the set of regular
functional capacities and the set of weakly compact convex and hereditary (in the
sense P ∈ M(E) ⇒ αP ∈ M(E) ∀α ∈ [0, 1]) sets of measures. As a consequence
of the proof of the first assertion, we know that in the case of a regular non-linear
expectation the supremum in (11) is attained on the subset M1(E) ⊂ M(E). Then
it is easy to conclude since the map M(E) 7→ M1(E) is clearly a bijection.

A.3. Links between c1E and the upper-capacity of P. Appendix A.1 de-
parts from a regular sub–linear expectation E and relates a weakly compact set
M1(E) ⊂ ∆(Ω) via (10) and associates the capacity norm c1E from (9). However,
[?] take a converse perspective: starting from a weakly compact P, inducing a regu-
lar sublinear expectation E given by

(12) E[X] = sup
P∈P

EP [X], ∀X ∈ Cb(Ω)

and extended by completion. To this end, we have introduced another capacity which
is the upper probability CP given by

CP(A) = sup
P∈P

P (A), ∀A ∈ B(Ω).

From now on, we consider a set P ⊂ ∆(Ω) that is convex and weakly compact.
We denote by E the regular sublinear expectation defined by (12) and C1 = C the
capacity associated with E via c1E from (9) and CP as above. As in Section A, L(cpE)
still denotes the closure of H with respect to cpE. We discuss the relations between the
capacities C and CP and the different notions of quasi-continuity.

Proposition 5. 1. If O is open, C(O) = CP(O).
In particular, C-quasi-continuity and CP-quasi-continuity coincide.

2. We have CP(A) ≤ C(A), for all A ∈ B(Ω).
3. If K is compact then: C(K) = CP(K).
4. Let X : Ω→ R be q.c., then for all α ∈ R C({X > α}) = CP({X > α}).

In particular, let X,Y be C–q.c., then X = Y C-q.s.⇔ X = Y C-q.s.

Proof. 1. Since O is open, we can construct an increasing sequence (ψn)n of
nonnegative functions in Cb(Ω) converging everywhere to 1O. We can also construct
an increasing sequence (ζn)n of nonnegative functions in Cb(Ω) such that C(O) =
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limn→+∞ E[ζn]. Set ϕn = ψn∨ζn ≥ 0, so that (ϕn) is an increasing sequence in Cb(Ω)
converging everywhere to 1O and such that C(O) = limn→∞ E[ϕn]. This yields:

C(O) = sup
n

E(ϕn) = sup
n

sup
P∈P

EP [ϕn] = sup
P∈P

sup
n
EP [ϕn] = sup

P∈P
P (O).

2. Let O ⊃ A be open. By 1., we have CP(A) ≤ CP(O) = C(O). This gives the
result.

3. By part 2, we know that C(K) ≥ CP(K). By standard arguments, we can
construct a decreasing sequence of open sets, (On), such that⋂

n

On = K, C(K) = lim
n

C(On).

As P is compact and (On) is a decreasing sequence of closed sets with
⋂
nOn = K:

CP(K) = lim
n

CP(Ōn) ≥ lim
n

CP(On) = lim
n

C(On) = C(K).

4. Let ε > 0. By definition, there exists an open set O ⊂ Ω with C(O) = CP(O) < ε
such that X is continuous on Oc. As a consequence, {X > α}

⋂
Oc is open in Oc

hence {X > α}
⋃
O is open in Ω, this yields by Proposition 5.1

C({X > α}) ≤ C({X > α} ∪O) = CP({X > α} ∪O) ≤ CP({X > α}) + ε.

Since ε is arbitrary, the proof is complete thanks to Proposition 5.2.

Finally, we state an equivalent representation of C on B(Ω).

Proposition 6. For any A ∈ B(Ω), C(A) = inf{C(O); O ⊃ A, O open}.
Proof. Let us consider A ∈ B(Ω) and put m = inf{C(O); O ⊃ A, O open}.

Obviously, m ≥ C(A). Let us prove the converse inequality: Let ε > 0 and ϕ ≥ 1A
l.s.c. that we can always choose such that 0 ≤ c1E(ϕ)−ε ≤ C(A). Put O = {ϕ > 1−ε}
which is an open set, then as 1O ≤ ϕ

1−ε ,

m ≤ C(O) ≤ c1E(
ϕ

1− ε
) =

c1E(ϕ)

1− ε
≤ C(A) + ε

1− ε
.

As ε is arbitrary small, this ends the proof.

Appendix B. Proofs of the Theorems.

B.1. Proof of Theorem 1. 1. L(cpE) = Lp(P): The space L(cpE) from method
3, departs from a different notion of negligible sets, based on the Lebesgue prolonga-
tion. To identify this space with Lp(P) from method 1, the same quotient space for
the equivalence classes must be identified, see Proposition 5.4.

First of all, this E is regular as a consequence of Theorem 12 in [?]. Results of
Section A.2 apply so that we have the representation

E[X] = sup
P∈M1(E)

EP [X], X ∈ Cb(Ω).

As a direct consequence of the last assertion of Theorem 5, we have M1(E) = P
and the representation (12) holds on L(cpE), we can apply all the results established
in [?] and the space L(cpE) coincides with the space Lp(P) (denoted by LpCP

in [?]).

Moreover, E can be extended to any Borel function X with supP∈P EP [|X|] <∞ via

(13) E[X] = sup
P∈P

EP [X].
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2. L(cpE) = Lp(E): As a consequence of Theorem 25 in [?], we have the desired result
for any p ∈ [1,∞). The notions of quasi–continuity agree by Proposition 5.

B.2. Proof of Theorem 2. By Proposition 4 any element in the dual space of
L(cpE) is a Radon measure. Proposition 7 gives a representation of functionals in the
dual of L(cpE). Theorem 2 then directly follows from Proposition 4 and 7.

Proposition 7. Fix p ∈ (1,∞). A Radon measure µ on (Ω,B(Ω)) which does
not charge the C-polar sets belongs to the dual space of L(cpE) if and only if there exists
P ∈P and ψ ∈ Lq(P ) such that µ = ψ ⊗ P that is µ(·) =

∫
· ψ(ω)dP (ω).

More precisely µ belongs to the dual space L(cpE)∗ if there is some l ∈ L(cpE)∗ such
that l(X) =

∫
Xdµ for all X ∈ L(cpE). The case p = 1 was considered in [?].

Proof. Case I: Assume first that µ is non-negative and that∣∣∣ ∫
Ω

X(ω)dµ(ω)
∣∣∣ ≤ E[|X|p]1/p, ∀X ∈ Cb(Ω).

Define a set of measures H =
{
µ(·) =

∫
·ψdP

∣∣∣P ∈P, ψ ∈ Lq(P ), ψ ≥ 0, ‖ψ‖P,q ≤ 1
}
.

It is easy to check that H is a hereditary (i.e. µ ∈ H implies αµ ∈ H ∀α ∈ [0, 1])
convex set of measures. By the Prokhorov criterion, H is relatively weakly compact.

Let us prove that H is closed. Consider a sequence (µn)n in H converging weakly
to the measure µ. For all n ∈ N, we have µn = ψn ⊗ Pn where Pn ∈ P and
ψn ∈ Lq(Pn) with ‖ψn‖Pn,q ≤ 1. As P is compact, by extracting a subsequence if
necessary, we can assume that (Pn)n converges to an element P weakly in P. By the
Hölder inequality for each Pn, we have for any X ∈ Cb(Ω) and for all n ∈ N:∣∣∣∣∫ Xdµn

∣∣∣∣ ≤ EPn [|ψn||X|] ≤ EPn [|ψn|q]1/qEPn [|X|p]1/p ≤ ‖X‖Pn,p.

Taking n→ +∞, we get
∣∣∫ Xdµ

∣∣ ≤ EP [|X|p]1/p, for all X ∈ Cb(Ω).
From this, it easily follows that there exists ψ ∈ Lq(P ), ψ ≥ 0 with ‖ψ‖P,q ≤ 1

such that
∫
Xdµ = EP [ψX] for all X ∈ Cb(Ω) which proves that H is weakly compact.

Now, define the regular sublinear expectation by by

Ẽ[X] = sup
µ∈H

µ(X), ∀X ∈ Cb(Ω)

with the notations introduced in the proof of Theorem 5, we have H =M(Ẽ). Now,
using the fact that for each P ∈ P, the dual space of Lp(P ) is Lq(P ) we get that if
X belongs to Cb(Ω) then E[|X|p]1/p = Ẽ[X]. This implies that µ ∈ M(Ẽ) = H and
we have the desired result in this case.
Case II: Assume then that µ is positive. There exists M ≥ 0 such that∣∣∣ ∫

Ω

X(ω)dµ(ω)
∣∣∣ ≤ME[|X|p]1/p, ∀X ∈ Cb(Ω).

By considering
µ

M
we obtain the result from case I with µ = ψM ⊗ P , P ∈ P, and

ψM = M · ψ ∈ Lq(P ) .
Case III: Finally, the general case is obtained by decomposing µ as µ+ − µ− where
µ+ and µ− are singular and non-negative. From case II, we have∣∣∣ ∫

Ω

X(ω)dµ◦(ω)
∣∣∣ ≤M◦ · E[|X|p]1/p, ∀X ∈ Cb(Ω) ◦ ∈ {+,−}.
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Consequently µ+

M+ and µ−

M− belongs to H, defined in Case I. Set M = max(M+,M−)

and note µ+

M , µ
−

M ∈ H. We have as in case II the following representations: µ+

M =

ψ+ ⊗ P+, µ−

M = ψ− ⊗ P−, with P+, P− ∈P, ψ+ ∈ Lq(P+) and ψ− ∈ Lq(P−).

Now set P = P++P−

2 , we have P ∈P by the convexity assumption on P. Since

P =
1

2
(P+ + P−) =

1

2
(ψ+P + ψ−P )P, and ψ+P , ψ−P ≥ 0 P − a.s.

we have ψ+P , ψ−P ≤ 1 P -a.s. With ψ = M(ψ+ψ+P + ψ−ψ−P ) we then have the
desired representation µ = ψ ⊗ P . It remains to check:

‖ψ‖P,q ≤M‖ψ+ψ+P ‖P,q +M‖ψ−ψ−P ‖P,q ≤M(‖ψ+‖P,q + ‖ψ−‖P,q) <∞.

This completes the proof.
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tic analysis and applications, The Abel Symposium 2005 (2006), pp. 541–567.

[29] S. Peng, Nonlinear expectations and stochastic calculus under uncertainty, Arxiv preprint
ArXiv:1002.4546, (2010).

[30] J. Vorbrink, Financial markets with volatility uncertainty, Journal of Mathematical Eco-
nomics, 53 (2014), pp. 64–78.

[31] J. Werner, Arbitrage and the existence of competitive equilibrium, Econometrica, (1987),
pp. 1403–1418.


	Introduction
	Knightian Uncertainty about Volatility
	Construction of Probability Measures

	The Space of Contingent Claims
	Three Constructions for one Function Space
	Invariance of the Constructions

	The Topological Dual Space
	Standard Dual Space under Risk
	 Dual Space under Knightian Uncertainty
	Dual Space of Stochastic Processes

	Implications for General Equilibrium Theory
	The Case of Risk P={P}
	The Case of Knightian Uncertainty
	Examples

	Implications for the Foundations of Finance
	Static Asset Pricing
	Continuous Time Asset Pricing

	Conclusion
	Appendix A. Capacity related to a sublinear expectation
	Extension of 
	The abstract dual space of L(cpE)
	Links between c1E and the upper-capacity of P

	Appendix B. Proofs of the Theorems
	Proof of Theorem 1
	Proof of Theorem 2


