
Matrix Rigidity from the Viewpoint of
Parameterized Complexity
Fedor V. Fomin1, Daniel Lokshtanov2, S. M. Meesum3,
Saket Saurabh4, and Meirav Zehavi5

1 University of Bergen, Bergen, Norway
fomin@ii.uib.no

2 University of Bergen, Bergen, Norway
daniello@ii.uib.no

3 The Institute of Mathematical Sciences, Chennai, India
meesum@imsc.res.in

4 University of Bergen, Bergen, Norway; and
The Institute of Mathematical Sciences, Chennai, India
saket@imsc.res.in

5 University of Bergen, Bergen, Norway
meirav.zehavi@ii.uib.no

Abstract
The rigidity of a matrix A for a target rank r over a field F is the minimum Hamming distance
between A and a matrix of rank at most r. Rigidity is a classical concept in Computational
Complexity Theory: constructions of rigid matrices are known to imply lower bounds of sig-
nificant importance relating to arithmetic circuits. Yet, from the viewpoint of Parameterized
Complexity, the study of central properties of matrices in general, and of the rigidity of a matrix
in particular, has been neglected. In this paper, we conduct a comprehensive study of different
aspects of the computation of the rigidity of general matrices in the framework of Parameterized
Complexity. Naturally, given parameters r and k, the Matrix Rigidity problem asks whether
the rigidity of A for the target rank r is at most k. We show that in case F = R or F is any finite
field, this problem is fixed-parameter tractable with respect to k + r. To this end, we present a
dimension reduction procedure, which may be a valuable primitive in future studies of problems
of this nature. We also employ central tools in Real Algebraic Geometry, which are not well
known in Parameterized Complexity, as a black box. In particular, we view the output of our
dimension reduction procedure as an algebraic variety. Our main results are complemented by
a W[1]-hardness result and a subexponential-time parameterized algorithm for a special case of
Matrix Rigidity, highlighting the different flavors of this problem.

1998 ACM Subject Classification G.2.2 Graph Algorithms, I.1.2 Analysis of Algorithms

Keywords and phrases Matrix Rigidity, Parameterized Complexity, Linear Algebra

Digital Object Identifier 10.4230/LIPIcs.STACS.2017.32

1 Introduction

The rigidity of a matrix is a classical concept in Computational Complexity Theory, which
was introduced by Grigoriev [7, 8] in 1976 and by Valiant [22] in 1977. Constructions of rigid
matrices are known, for instance, to imply lower bounds of significant importance relating
to arithmetic circuits. Yet, from the viewpoint of Parameterized Complexity, the study of
central properties of matrices in general, and of the rigidity of a matrix in particular, has
been neglected. The few papers that do consider such properties are restricted to the very

© Fedor V. Fomin, Daniel Lokshtanov, S.M. Meesum, Saket Saurabh, and Meirav Zehavi;
licensed under Creative Commons License CC-BY

34th Symposium on Theoretical Aspects of Computer Science (STACS 2017).
Editors: Heribert Vollmer and Brigitte Vallée; Article No. 32; pp. 32:1–32:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2017.32
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

32:2 Matrix Rigidity from the Viewpoint of Parameterized Complexity

special case of adjacency matrices, and therefore they are primarily studies in Graph Theory
rather than Matrix Theory [16, 17]. In this paper, we conduct a comprehensive study of
different aspects of the computation of the rigidity of general matrices in the framework of
Parameterized Complexity.

Formally, given a matrix A over a field F, the rigidity of A, denoted by RF
A(r), is defined

as the minimum Hamming distance between A and a matrix of rank at most r. In other
words, RF

A(r) is the minimum number of entries in A that need to be edited in order to obtain
a matrix of rank at most r. Naturally, given parameters r and k, the Matrix Rigidity
problem asks whether RF

A(r) ≤ k. The case when F = Q or the edited entries must contain
integers, it is not even known whether the problem is decidable [19]. We therefore focus on
the cases where F = R or F is any finite field. Formally, we study the following forms of
Matrix Rigidity. Here, FF Matrix Rigidity is not restricted to a specific finite field Fp,
but includes Fp as part of the input.

Real Matrix Rigidity Parameter: r, k
Input: A matrix A with each entry an integer, and two non-negative integers r, k.
Question: Is RR

A(r) ≤ k?

FF Matrix Rigidity Parameter: p, r, k
Input: A finite field Fp of order p, a matrix A over Fp, and two non-negative integers r, k.
Question: Is RFp

A (r) ≤ k?

Valiant [22] presented the notion of the rigidity of a matrix as a means to prove lower
bounds for linear algebraic circuits. He showed that the existence of an n × n matrix A
with RF

A(εn) ≥ n1+δ would imply that the linear transformation defined by A cannot be
computed by any arithmetic circuit having size O(n) and depth O(logn) in which each gate
of the circuit computes a linear combination of its inputs. Later, Razborov [18] (see [14])
established relations between lower bounds on rigidity of matrices over the reals or finite
fields and strong separation results in Communication Complexity. Although many efforts
have been made in this direction [6, 20, 12, 10] (this is not an exhaustive list), proofs of
separation lower bounds (quadratic) for explicit families of matrices still remains elusive. For
a recent survey on this topic we refer the reader to [13]. The formulation of the Matrix
Rigidity as stated in this paper was first considered by Mahajan and Sharma [15], and
it was shown to be NP-Hard for any field by Deshpande [4]. In this paper, we study the
concept of the rigidity of a matrix from a different perspective, given by the framework of
Parameterized Complexity (see Section 2).

We remark that Meesum et al. [16] and Meesum and Saurabh [17] studied the following
problems, which are related to Matrix Rigidity but are simpler than it as they are
restricted to graphs. Given a graph G = (V,E) and two non-negative integers r, k, r-Rank
Vertex Deletion (r-Rank Edge Deletion) asks whether one can delete at most k
vertices (resp. edges) from G so that the rank of its adjacency matrix would be at most r,
while r-Rank Edge Editing asks whether one can edit k edges in G so that the rank of its
adjacency matrix would be at most r.1 For undirected graphs, Meesum et al. [16] proved
that these problems are NP-Hard even if r is fixed, but can be solved in time O∗(2O(k log r)).
They also showed that r-Rank Edge Deletion and r-Rank Edge Editing can be solved

1 Editing an edge {u, v} means that if {u, v} ∈ E then {u, v} is deleted, and otherwise it is added.

F. V. Fomin, D. Lokshtanov, S.M. Meesum, S. Saurabh, and M. Zehavi 32:3

in time O∗(2O(f(r)
√
k log k)). Meesum and Saurabh [17] obtained similar results for directed

graphs.

Our Contribution. In this paper, we establish that both Real Matrix Rigidity and FF
Matrix Rigidity are FPT with respect to r+k. Specifically, we obtain the following results.

I Theorem 1. Real Matrix Rigidity can be solved in time O∗(2O((r+k)·log(r·k))).

I Theorem 2. FF Matrix Rigidity can be solved in time O∗(f(r, k)) for a function f

that depends only on r and k.

Observe that the dependency of the running times on the dimension of the input matrix
is polynomial, and in the case of FF Matrix Rigidity, the dependency of the running
time on p is also polynomial. In the case of Real Matrix Rigidity, the dependency of
the running time on the maximum length (in binary) of any entry in both input and output
matrices is polynomial. In this context, recall that in case F = Q or the edited entries must
contain integers, it is not even known whether Matrix Rigidity is decidable [19]. We also
show that,

I Theorem 3 (?2). FF Matrix Rigidity is solvable in time O∗(2O(f(r,p)
√
k log k)) for some

function f that depends only on r and p.

Here, the dependency of the running time on k is subexponential, but the dependency of the
running time on p is unsatisfactory in case p is not fixed. This algorithm adapts ideas from
the papers [16, 17].

To obtain our main results, we first present a dimension reduction procedure, which
we believe to be a valuable primitive in future studies of problems of this nature. Our
procedure is simple to describe and given an instance of Matrix Rigidity, it outputs (in
polynomial time) an equivalent instance where the matrix contains at most O((r ·k)2) entries.
Furthermore, the set of entries of the output matrix is a subset of the set of entries of the
input matrix. We believe this procedure to be of interest independent of our main results
as it establishes that FF Matrix Rigidity admits a polynomial kernel with respect to
r + k + p. The simplicity of our procedure also stems from its modularity—it handles rows
and columns in separate phases. On a high-level, this procedure is defined as follows. For
k + 1 steps, it repeatedly selects a set of maximum size consisting of rows that are linearly
independent, where if the size of this set exceeds r + 1, it is replaced by a subset of size
exactly r+ 1. Each such set of rows is removed from the input matrix, and then it is inserted
into the output matrix. At the end of this greedy process, rows that remain in the input
matrix are simply discarded. The correctness of our procedure relies on two key insights:
(i) if the input instance contains more than k + 1 pairwise-disjoint sets of rows that are
linearly independent, and each of these sets is of size at least r + 1, then the input instance
is a NO-instance; (ii) by the pigeonhole principle, any row discarded from the input matrix
belongs to the span of at least one set of rows that cannot be edited. Having an intermediate
matrix with a small number of rows, the procedure applies the exact same process to the
input that is the transpose of this intermediate matrix, thus overall obtaining a matrix with
a small number of entries.

Armed with our dimension reduction procedure, we tackle Real Matrix Rigidity and
FF Matrix Rigidity by employing central tools in Algebraic Geometry, which are not well

2 Due to space constraints, proofs marked by ? are omitted.

STACS 2017

32:4 Matrix Rigidity from the Viewpoint of Parameterized Complexity

known in Parameterized Complexity, as a black box. For this purpose, we first recall that
the rank of a matrix is at most r if and only if the determinant of all of its (r + 1)× (r + 1)
submatrices is 0. Since at this point we can assume that we have a matrix containing only
O((r · k)2) entries at hand, we may “guess” which entries should be edited. Yet, it is not
clear how these entries should be edited. However, with the above observation in mind, we
are able to proceed by viewing our current problem in terms of an algebraic variety (such
a formulation was also used in the context of complexity analysis in [19]). In particular,
this viewpoint gives rise to the applicability of firmly established tools that determine the
feasibility of a system of polynomials [1, 9].

Our main results are complemented by a W[1]-hardness result and a subexponential-time
parameterized algorithm for a special case of Matrix Rigidity, which overall present the
different flavors of this problem and the techniques relevant to its study. We show that both
Real Matrix Rigidity and FF Matrix Rigidity are W[1]-hard with respect to the
parameter k. (The papers [16, 17] already imply that both of these problems are para-NP-Hard
with respect to the parameter r.) Our reduction is inspired by studies in Parameterized
Complexity that involve the Odd Set problem [5], and consists of four reductions, one of
which builds upon the recent work of Bonnet et al. [2].

The complexity of our reduction stems from the fact that unlike previous studies of this
nature, we establish the W[1]-hardness of our problem of interest over any finite field and
over the field of reals rather than only over a specific finite field. Thus, we first need to
define a special case of Odd Set, which we call Partitioned Odd Set, and observe that
its W[1]-hardness follows from the proof of the W[1]-hardness of Odd Set that is given in
[5]. The correctness of our reductions crucially relies on the implications of the properties
of this special case. Our first reduction translates Partitioned Odd Set to a problem
involving matrices rather than sets, which we call Partitioned Odd Matrix. Then, to
be able to discuss any finite field as well as the field of reals, we introduce new variants of
Partitioned Odd Matrix and the Nearest Codeword problem, called F-Odd Matrix
and F-Nearest Codeword, respectively. The application of our second reduction results
in an instance of F-Odd Matrix. Then, the application of our third reduction, which builds
upon [2], results in an instance of F-Nearest Codeword. Finally, we devise a reduction
whose application results in an instance of Matrix Rigidity. Here, we make explicit use
of the fact that the rank of the target matrix can be large. The overall structure of the
reduction may be relevant to studies of other problems where the field is not fixed.

2 Preliminaries

Due to space constraints, some standard notations and definitions have been omitted. The
notation [n] is used to denote the set of integers {1, . . . , n}. Given a matrix A of dimension
m× n, the i-th row of A is denoted by Ai, and the j-th column of A is denoted by Aj . The
rank of a matrix is the cardinality of a maximum-sized collection of linearly independent
columns (or rows), and is denoted by rank(A). We call a matrix Ã a jumbled matrix of
A if one can perform a series of row and column exchanges on Ã to obtain the matrix A.
Similarly, we call a matrix Ã a jumbled submatrix of A if there exists a submatrix of A which
is a jumbled matrix of Ã. A mixed matrix is a matrix having either an indeterminate or a
value at each entry. We will be dealing with mixed matrices where the values belong to a
finite field or R. We use In to denote the identity matrix of size n× n.

Let x1, . . . , xn be variables. Then, a monomial is defined as a product
∏n
i=1 x

ai
i for

non-negative integers a1, . . . , an. The degree of a variable xi in a monomial
∏n
i=1 x

ai
i is

F. V. Fomin, D. Lokshtanov, S.M. Meesum, S. Saurabh, and M. Zehavi 32:5

defined to be the number ai, for i ∈ [n]. The degree of a monomial is defined as the sum
of degrees of each variable occurring in it. A polynomial over a field F consists of a sum
of monomials with coefficients from the field F. The total degree of a polynomial is the
degree of a monomial having maximum degree. Given a system of polynomial equations
P = {P1 = 0, P2 = 0, . . . , Pm = 0} over a field F, we say that P is feasible over F if there
exists an assignment of values from the field F to the variables in P which satisfies every
polynomial contained in P.

Parameterized Complexity. Each problem instance is associated with a parameter k, and
we say that a problem is fixed parameter tractable (FPT) if any instance (I, k) of the problem
can be solved in time τ(k)|I|O(1), where τ is an arbitrary function of k. Throughout this
paper, we use the standard notation O∗ to hide factors polynomial in |I|.3 On the one hand,
to prove that a problem is FPT, it is possible to give an explicit algorithm of the required
form, called a parameterized algorithm, which solves it. On the other hand, to show that a
problem is unlikely to be FPT, it is possible to use parameterized reductions analogous to
those employed in Classical Complexity. Here, the concept of W[1]-hardness replaces the one
of NP-hardness, and we need not only construct an equivalent instance in FPT time, but
also ensure that the size of the parameter in the new instance depends only on the size of
the parameter in the original instance. For our purposes, it is sufficient to note that if there
exists such a reduction transforming a problem known to be W[1]-hard to another problem
Π, then the problem Π is W[1]-hard as well.

A central notion in Parameterized Complexity is the one of kernelization. Formally,
a parameterized problem Π is said to admit a polynomial kernel if there is a polynomial-
time algorithm, called a kernelization algorithm, that given any instance of Π, outputs an
equivalent instance of Π whose size is bounded by τ(k), where τ is a function polynomial in
k and independent of |I|. We say that the reduced instance is a p(k)-kernel for Π. Roughly
speaking, a kernelization algorithm can be viewed as an efficient preprocessing procedure that
satisfies a well defined restriction with respect to the size of its output. For more information
about Parameterized Complexity in general and Kernelization in particular, we refer the
reader to monographs such as [5, 3].

3 Dimension Reduction Procedure

In this section we show how to compress an input instance of Matrix Rigidity to an
equivalent instance in which the matrix has at most O(r2 · k2) entries. This is a crucial step
in obtaining our FPT algorithms for Real Matrix Rigidity and FF Matrix Rigidity.
In particular, this step will imply that FF Matrix Rigidity admits a polynomial kernel
with respect to r + k + p.

Our algorithm is based on the following intuition. Suppose that A is a matrix of rank
`. If we could obtain a sequence B1, . . . , Bk of pairwise disjoint sets of columns of A where
each set forms a column basis of A, then the answer to the question “can we reduce the
rank of A to a number r < ` by editing at most k entries in A” would have been completely
determined by the answer to the same question where the editing operations are restricted to
the submatrix of A formed by columns in the sets B1, . . . , Bk. The same conclusion is also
true in the case where each Bi is not necessarily a basis, but simply a set of r + 1 linearly
independent columns. Keeping this intuition in mind, we turn to examine an approach where

3 That is, O∗(τ(k)) = τ(k) · |I|O(1).

STACS 2017

32:6 Matrix Rigidity from the Viewpoint of Parameterized Complexity

we greedily select and remove (one-by-one) k+ 1 pairwise disjoint sets of linearly independent
columns. In each iteration, we attempt to select a set whose size is exactly r + 1, where if it
is not possible, we select a set of maximum size.

Now, let us move to the formal part of our arguments. Note that the relation “is a
jumbled matrix of” as defined in Section 2 is an equivalence relation. We need the following
simple observations which follow from the definition of the rank of a matrix.

I Observation 4. Let A ∈ Fm×n be a matrix of rank equal to r. To make the rank of A at
most r − 1, one needs to change at least one entry in A.

I Observation 5. For a matrix A, let Ã be a jumbled matrix of A. Then, the instances
(A, r, k), (AT , r, k), (Ã, r, k) and (ÃT , r, k) are equivalent instances of Matrix Rigidity.

I Observation 6. For a matrix A, let Ã be its jumbled submatrix. Then rank(Ã) ≤ rank(A).

Using Observation 6, we have the following.

I Observation 7. If Ã is a jumbled submatrix of A and (Ã, r, k) is a NO-instance of
Matrix Rigidity, then (A, r, k) is also a NO-instance of Matrix Rigidity.

As stated before, our procedure greedily selects a set of columns of A of appropriate
dimension iteratively. A detailed description of the procedure, called Column-Reduction,
can be found in Figure 1. We will now explain the ideas necessary to understand this
procedure, which is the heart of this section. The input to Column-Reduction consists of a
matrix A over any field, given along with non-negative integers k and r. It outputs a matrix
Ã whose number of columns is bounded by a function of k and r such that the instances
(A, r, k) and (Ã, r, k) are equivalent instances of Matrix Rigidity. The computation of a
column basis and linearly independent vectors are done in the field F over which the matrix
A is provided.

The procedure employs several variables. The variable i is used as an index variable
whose initial value is 0, and it is incremented by 1 at a time. The case when the value
of i exceeds k we will show that we are dealing with a NO-instance, otherwise the value
depends on a particular input matrix A and is at most k. The variables M0,M1, . . . are
submatrices of the input matrix A, satisfying the property that Mi is a submatrix of Mi−1
with M0 = A. In the first loop of Column-Reduction (line 3), if the matrix Mi has rank
at least r + 1 then the variable Li stores a set of r + 1 linearly independent columns in the
matrix Mi. Additionally, Mi can be obtained by appending the columns in Li to the matrix
Mi+1. The variable i≤r is set to the value of i where the rank of Mi falls below r + 1—after
its initialization the value of i≤r is not changed. In the second half of the procedure, similar
to the set of variables Li, we define a set of variables Bi which store a column basis of the
matrix Mi (line 6). Recall that in this half of the procedure i ≥ i≤r, and therefore each
matrix Mi is of rank at most r. Additionally, Mi can be obtained by appending the columns
in Bi to the matrix Mi+1, for i ≥ i≤r. Finally, the matrix L is constructed using all the
columns in each matrix Li, and the matrix B is constructed using all the columns in each
matrix Bi for appropriate values of i. By Observation 4, we have to edit at least i≤r entries
of L to make its rank at most r.

In the procedure Column-Reduction, a YES-instance of appropriate size can be
obtained by taking the matrix Z = [0] (of rank 0), which contains 0 as its only entry. Clearly,
(Z, r, k) is a YES-instance of Matrix Rigidity irrespective of the values of r and k. On the
other hand, the instance (Ir+k+1, r, k) is a NO-instance of Matrix Rigidity. Therefore,
the matrix Ir+k+1 can be used in place of a NO-instance of appropriate size. We need Z and

F. V. Fomin, D. Lokshtanov, S.M. Meesum, S. Saurabh, and M. Zehavi 32:7

Algorithm: Column-Reduction
Input: A matrix A over some field F, and two non-negative integers r, k.
Output: A matrix having O(r · k) columns.
1. If rank(A) ≤ r then return a YES-instance of appropriate size and exit.
2. Initialize M0 = A and i = 0.
3. While rank(Mi) ≥ r + 1:

a. Let Li be a set of columns of Mi which is linearly independent in F and whose
size is r + 1.

b. Let Mi+1 be the matrix obtained by deleting the columns in Li from Mi.
c. Increment i by 1.

4. If i > k then return a NO-instance of appropriate size and exit.
// The matrix A has more than k pairwise-disjoint blocks of the form Lj for j ≤ i,
each having r + 1 linearly independent columns. By Observation 4, each block Li
requires at least 1 edit, hence, by Observation 7, (A, r, k) is a NO-instance of Matrix
Rigidity.

5. Let i≤r = i store the index where the rank of Mi falls below r + 1.
6. While i ≤ k:

a. Let Bi be a column basis of Mi.
b. Obtain Mi+1 by deleting the columns in Bi from Mi.
c. If Mi+1 is empty (in other words, Bi = Mi) then return A.
d. Increment i by 1.

7. Let L be a matrix formed by the columns in each Li for i ∈ {0, . . . , i≤r − 1}.
8. Let B be a matrix formed by the columns in each Bi for i ∈ {i≤r, . . . , k}.
9. Return the matrix formed by the columns in L ∪ B .

//Note that Mk+1 is non-empty if output occurs here.

Figure 1 The column reduction procedure.

Ir+k+1 to satisfy the constraint that a kernel is an instance of the same problem as the input
instance (even though, if the output is given by either line 1 or 4, we have actually solved
the input instance (A, r, k) of Matrix Rigidity in polynomial time). Using the procedure
Column-Reduction, it is straightforward to reduce the number of rows too. The details of
this procedure are given in Figure 2.

I Lemma 8. Let A be a matrix over some field F, and let r and k be two non-negative integers.
Given an instance (A, r, k), the procedure Matrix-Reduction runs in time polynomial in
input size and returns a matrix Ã satisfying the following properties:
1. Ã has at most O(r2 · k2) entries.
2. If the output is produced by lines 6c and 9 of Column-Reduction (when called by

Matrix-Reduction), then Ã is a jumbled submatrix of A.
3. (A, r, k) is a YES-instance of Matrix Rigidity if and only if (Ã, r, k) is a YES-instance.

Proof. The steps of procedure Column-Reduction are all computable in polynomial time,
and therefore Matrix-Reduction runs in polynomial time. We now prove the desired
properties one by one. Let the matrix Ñ denote the output of Column-Reduction on the
input instance (N, r, k).

Proof of 1. We first bound the size of the output of Column-Reduction. The output of
this procedure can occur at lines 1, 4, 6c and 9. If the output happens at line 1, it has 1 column

STACS 2017

32:8 Matrix Rigidity from the Viewpoint of Parameterized Complexity

Algorithm: Matrix-Reduction
Input: A matrix A over some field F, and two non-negative integers r, k.
Output: A matrix having O(r · k)×O(r · k) entries.
1. Let CA = Column-Reduction(A, r, k).
2. Let RA = Column-Reduction(CTA , r, k).
3. Return RTA.

Figure 2 The dimension reduction procedure.

by construction. Similarly, if the output happens at line 4, it has r + k + 1 ≤ (r + 1) · (k + 1)
columns by construction. If the output occurs at line 6c or line 9, then the number of columns
in Ñ is at most (k + 1) · (r + 1) as it is constructed using columns of at most i ≤ k matrices,
L0, . . . , Li≤r−1, Bi≤r

, . . . , Bi, each having at most r + 1 columns.
The procedure Matrix-Reduction first obtains a matrix CA with the aforementioned

number of columns by running Column-Reduction. Then, it runs Column-Reduction
again on the transpose of CA to get its rows bounded. Thus, the dimensions of the output
matrix are as claimed. J

Proof of 2. The relation “is a jumbled submatrix of” is a transitive relation, therefore it
suffices to show that the procedure Column-Reduction outputs a jumbled submatrix of
A. If the output happens at lines 6c and 9, then the columns in the output matrix are a
subset of the columns in the input matrix. Therefore, in the first line of procedure Matrix-
Reduction CA is a jumbled submatrix of A. Similarly, RA is a jumbled submatrix of CTA .
Finally note that for matrices X and Y , X is a jumbled submatrix of Y if and only if XT is
a jumbled submatrix of Y T . Hence, the output matrix RTA is a jumbled submatrix of A. J

Proof of 3: We first show that the procedure Column-Reduction produces an equivalent
instance of Matrix Rigidity. In the forward direction, suppose that (N, r, k) is a YES-
instance of Matrix Rigidity. If the output occurs at line 1, it is a YES-instance by
construction. The output cannot occur at line 4 as (N, r, k) is a YES-instance. At lines 6c
and 9, by property 2, Column-Reduction outputs a jumbled submatrix Ñ of the input
matrix N . Let S denote a solution of instance (N, r, k) of Matrix Rigidity. The set
S consists of replaced entries and their indices. We denote the edited matrix obtained
from N by NS . We construct S̃, a solution of (Ñ , r, k), by remembering the new positions
of columns and rows of N in the matrix Ñ , and then performing the same permutations
on the indices of entries in S. As Ñ

S̃
is a jumbled submatrix of NS , by Observation 6,

rank(Ñ
S̃

) ≤ rank(NS) ≤ r, hence (Ñ , r, k) is a YES-instance of Matrix Rigidity. J

In the backward direction, suppose (Ñ , r, k) is a YES-instance of Matrix Rigidity. If
the output of Ñ occurs at lines 1 or 4, then we actually know the solution to the instance
(N, r, k) of Matrix Rigidity (as explained in the pseudocode). If the output occurs at line
6c, then the output Ñ of Column-Reduction is a jumbled matrix of N and the result
holds by Observation 5. Now we are left with the case when the output occurs at line 9. Let
S̃ be any solution to the instance (Ñ , r, k) of Matrix Rigidity. The matrix edited using a
solution S̃ is denoted by Ñ

S̃
. Notice that the matrix Ñ consists of two submatrices L and B.

As L consists of i≤r blocks having rank r + 1, by Observation 4, we need to edit at least i≤r
entries in L. So, we can afford to make at most k − i≤r edits in the matrix B. As B consists
of k + 1 − i≤r blocks, by pigeonhole principle there exists at least one block in B, say Bt,

F. V. Fomin, D. Lokshtanov, S.M. Meesum, S. Saurabh, and M. Zehavi 32:9

which is not subject to any edit by the solution S̃. The block Bt has rank at most r and
spans the matrix Mk+1 (refer to pseudocode), by construction. Construct the matrix N ′

S̃
by

concatenating the columns of Ñ
S̃
and Mk+1; it has rank at most r as the columns of the

matrix Mk+1 are in the span of the columns of Ñ
S̃
. Similarly, construct another matrix N ′

by concatenating the columns of Ñ and Mk+1. As observed in the first half of this proof,
we can easily construct a solution S for the matrix N using N ′

S̃
, as N ′ is a jumbled matrix

of N . Thus, rank(NS) = rank(N ′
S̃

) = rank(Ñ
S̃

) ≤ r, proving that the instance (N, r, k) is a
YES-instance of Matrix Rigidity.

To complete the proof, observe that in the procedure Matrix-Reduction, the instances
(A, r, k) and (CA, r, k) are equivalent by the argument above. By Observation 5, (CA, r, k) and
(CTA , r, k) are equivalent. As RA is the output of Column-Reduction,(RA, r, k) is equivalent
to (CA, r, k). Finally, by Observation 5, again (RA, r, k) and (RTA, r, k) are equivalent. J

If the matrix A is over a fixed finite field F, we obtain a kernel as well.

I Theorem 9. Given an instance (A, r, k) of FF Matrix Rigidity over the field Fp, the
procedure Matrix-Reduction outputs an O(r2 · k2 · log p)-kernel.

Proof. The number of entries in the output matrix of Matrix-Reduction is bounded by
O(r2 · k2), and the bit length of each entry is at most dlog2 pe. J

In case the field F is infinite—for example, if F is either Q or R—the procedure is not
guaranteed to produce a kernel as the bit lengths of matrix entries may not be bounded by a
function of r and k.

4 Fixed-Parameter Tractability with Respect to k + r

This section describes an algorithm for Matrix Rigidity. The formulation it presents was
also used in the context of complexity analysis in [19].

Using Lemma 8, we can reduce any instance (A, r, k) to an equivalent instance (A′, r, k)
such that the matrix A′ is a jumbled submatrix of A and the number of entries in A′ is
O(r2 · k2). Once we have such a matrix A′, it is useful to examine an alternative definition
of the rank of a matrix, which is given in terms of the determinant of its square submatrices.
Specifically, we will rely on the following lemma.

I Lemma 10 (Chapter 7, [21]). A matrix A over R has rank at most r if and only if all the
(r + 1)× (r + 1) submatrices of A have determinant 0.

The correctness of our algorithm MatRig-Alg for Matrix Rigidity, which is described
in Figure 3, follows in a straightforward fashion using Lemma 10. This algorithm for Matrix
Rigidity crucially relies on a procedure which can decide the feasibility of a system of
polynomials over a given field. This procedure shall be the object of discussion in the rest of
the section.

Observe that each polynomial in P, as defined in the algorithm MatRig-Alg, has at
most k unknowns and its total degree is at most k. The size of P is of order (r · k)O(r). In
the case where the underlying field is R, suppose the longest length entry has bit length L.
The coefficients of polynomials in P are obtained by computing the determinant of matrices
which have size at most r× r. By Hadamard’s inequality [11], for a matrix M of size r× r the
det(M) ≤

∏
i∈[r] ‖Mi‖2. If the bit length of entries in M is at most L then the coefficients

of polynomials in P can be shown to be bounded by L′ = r · L+O(r · log r).

STACS 2017

32:10 Matrix Rigidity from the Viewpoint of Parameterized Complexity

Algorithm: MatRig-Alg
Input: A matrix A over a field F, and two non-negative numbers r, k.
Output: Can one edit at most k entries of A to obtain a matrix of rank at most r?
1. Let A′ =Matrix-Reduction(A, r, k).
2. For each set E of k entries in A′:

a. Replace each entry of A′ indexed by an element in E by a distinct indeterminate
to obtain a mixed matrix A′E .

b. Let P be the set of equations obtained by setting the determinant of each (r +
1)× (r + 1) submatrix of A′E to 0.

c. If P is feasible over F then return YES and exit.
3. Return NO and exit.

Figure 3 Description of the algorithm for Matrix Rigidity.

We use the following proposition, given in [1] (Proposition 13.19), to check the feasibility
of the system of polynomials P when it is defined over R.

I Proposition 11. Given a set P of ` polynomials of degree d in k variables with coefficients
in C, we can decide with complexity ` · dO(k) in D (where D is the ring generated by the real
and imaginary parts of the coefficients of the polynomials in P) whether Zer(P, Ck) is empty.
Moreover, if D = Z and the bit-sizes of the coefficients of the polynomials are bounded by τ ,
then bit-sizes of the integers appearing in the intermediate computations and the output are
bounded by (τ + log `) · dO(k).

Applying the proposition above on the system of equations P, we get the following.

I Theorem 12. Suppose we are given a matrix A over R such that the bit length of each of
its entries is bounded by L, and let r and k be two non-negative integers. Then, the instance
(A, r, k) of Real Matrix Rigidity can be solved in time O∗(2O((r+k)·log(r·k))). Here, the
bit lengths of integers appearing in intermediate computations and the output are bounded by
O(r · (log(k · r) + L)) · 2O(k·log k).

Proof. The algorithm MatRig-Alg generates O((r ·k)2k) many systems of equations. Each
system of equations has ` = (r · k)O(r) many equations, where the degree d = k and there
are k variables. Using Proposition 11, we get the required running time and the bit lengths.

Notice that a system of equations P is feasible if and only if the chosen entries of the
matrix can be edited to reduce the rank. Since we exhaustively try all possible entries that
can be edited, the correctness of MatRig-Alg follows. J

In the case where the underlying field Fp is finite, the coefficients of the polynomials are
elements of Fp and hence have bounded bit lengths. The feasibility of P over a finite field
can be decided using the following known algorithm which also gives us an algorithm for FF
Matrix Rigidity.

I Proposition 13 ([9]). There is a deterministic algorithm which, given an input consisting
of a finite field Fp and system of polynomials f1, . . . , f` ∈ Fp[x1, . . . , xk] of total degree
bounded by d, decides the feasibility of the system in time dkO(k) · (` · log p)O(1).

Similar to the proof of Theorem 12, we obtain the following.

F. V. Fomin, D. Lokshtanov, S.M. Meesum, S. Saurabh, and M. Zehavi 32:11

I Theorem 14. The problem FF Matrix Rigidity, where the input matrix A is an m× n
matrix over a field Fp, can be solved in time f(r, k)(log p+m+ n)O(1) for some function f .

This algorithm for FF Matrix Rigidity has the advantage that it runs in time which
is polynomial in the logarithm of the order of the field, even though the dependence on k is
exponential.

5 W[1]-Hardness with Respect to k

In this section, we first reduce (in two steps) a special case of Odd Set to a problem that
has a formulation easier to use in our context. The latter problem is reduced to a variant of
Nearest Codeword, which, in its turn, is reduced to Real Matrix Rigidity and FF
Matrix Rigidity.

I Theorem 15. Real Matrix Rigidity and FF Matrix Rigidity for any choice of a
finite field Fp are W[1]-hard with respect to k.

Proof. Let F denote the field, which is either R or some finite field Fp, over which we define
Matrix Rigidity. First, we observe that the reduction from Multicolored Clique given
in the book [3] (Theorem 13.31) to show that Odd Set is W[1]-hard actually shows that the
following special case of Odd Set is W[1]-hard. That is, the constructed instances have the
form specified in the special case.

Partitioned Odd Set Parameter: k
Input: A family F of sets over a universe U , a non-negative integer k, a partition
(U1, . . . , Uk) of U such that for every i ∈ [k], Ui ∈ F , and for every F ∈ F , there exist
i, j ∈ [k] for which F ⊆ Ui ∪ Uj .
Question: Is there a subset S ⊆ U of size at most k such that the intersection of S with
every set in F has size 1?

The arguments below will crucially rely on the fact that we restrict ourselves to this special
case. Given a vector v, we let Ī0(v) denote the indices of the entries of v that do not contain
0. Now, we reformulate Partitioned Odd Set in the language of matrices as follows.

Partitioned Odd Matrix Parameter: k
Input: A t× r binary matrix L over R, a non-negative integer k, a partition (U1, . . . , Uk)
of [r] such that for every i ∈ [k], there exists j ∈ [t] for which Ui = Ī0(Lj), and for every
i ∈ [t], there exist j, ` ∈ [k] for which Ī0(Li) ⊆ Uj ∪ U`.
Question: Is there an r-dimensional binary vector x such that |Ī0(x)| ≤ k and Lx = 1?

Given an instance (F , U, (U1, . . . , Uk), k) of Partitioned Odd Set, it is straightforward to
obtain (in polynomial time) an equivalent instance (Lt×r, (U ′1, . . . , U ′k), k′) of Partitioned
Odd Matrix as follows. First, we let t = |F| and r = |U |. We assume w.l.o.g. that U = [r].
Now, we associate a row Li with each set F ∈ F by letting Li contain 1 at each entry whose
index belongs to F and 0 at each of the remaining entries. That is, Ī0(Li) = F . Finally,
we let (U ′1, . . . , U ′k) = (U1, . . . , Uk) and k′ = k. It is easy to see that S ⊆ U is a solution to
(F , U, (U1, . . . , Uk), k) if and only if the binary vector xr×1 such that Ī0(x) = S is a solution
to (Lt×r, (U ′1, . . . , U ′k), k), and therefore the instances are equivalent.

We now incorporate the input field F.

STACS 2017

32:12 Matrix Rigidity from the Viewpoint of Parameterized Complexity

F-Odd Matrix Parameter: k
Input: A t× r binary matrix L over F and a non-negative integer k.
Question: Is there an r-dimensional vector x over F such that |Ī0(x)| ≤ k and Lx = 1?

We reduce Partitioned Odd Matrix to F-Odd Matrix as follows. Given an in-
stance (Lt×r, (U1, . . . , Uk), k) of Partitioned Odd Matrix, we simply output (Lt×r, k)
as the equivalent instance of F-Odd Matrix. In one direction, let x be a solution to
(Lt×r, (U1, . . . , Uk), k). Recall that L is a binary matrix. Thus, since x is a binary vector
satisfying Lx = 1 over R, it must also satisfy Lx = 1 over F. Since |Ī0(x)| ≤ k, we get that
x is a solution to (Lt×r, k). In the second direction, let x be a solution to (Lt×r, k). Since
|Ī0(x)| ≤ k and for every s ∈ [k], there exists s′ ∈ [t] for which Us = Ī0(Ls′), it must hold
that for every s ∈ [k], |Ī0(x) ∩ Us′ | = 1. Thus, since for every s ∈ [k], Ls′x = 1 over F, it
holds that x is a binary vector. It remains to show that Lx = 1 over R. Consider some index
i ∈ [t]. Then, there exist j, ` ∈ [k] such that Ī0(Li) ⊆ Uj ∪ U`. Therefore, since for every
s ∈ [k], |Ī0(x) ∩ Us| = 1, and since both L and x are binary, it is only possible that Lix = 1
over F if |Ī0(x) ∩ Ī0(Li)| = 1, which allows us to conclude that Lix = 1 also over R.

In what follows, calculations are performed over F. Next, we reduce F-Odd Matrix
to the following variant of the Nearest Codeword problem. This specific reduction is
inspired by a reduction from Nearest Codeword to Odd Set of Bonnet et al. [2].

F-Nearest Codeword Parameter: k
Input: An m × n matrix M , an m-dimensional vector b over F, and a non-negative
integer k.
Question: Is there an n-dimensional vector y over F such that the Hamming distance
between My and b is at most k?

Given an instance (Lt×r, k) of F-Odd Matrix, we construct an instance (Mm×n, b, k
′) of

F-Nearest Codeword as follows. First, let k′ = k. Now, let M be an m×n matrix, where
m = r and n = r− rank(L), such that the rows of L form a basis for the subspace orthogonal
to the column space ofM . Then, an r-dimensional vector v over F satisfies Lv = 0 if and only
if v belongs to the column space of M (i.e., there is an n-dimensional vector y over F such
that My = v). Finally, let b be an r-dimensional vector such that Lb = −1. If no such vector
exists, then there is no r-dimensional vector over F such that Lv = 1, which in particular
implies that (Lt×r, k) is a NO-instance, and thus we can return a trivial NO-instance of
F-Nearest Codeword. Therefore, next assume that b exists. To prove that the reduction
is correct, first let x be a solution to (Lt×r, k). Then, Lx = 1, and since Lb = −1, we have
that L(x + b) = Lx + Lb = Lx − 1 = 0. Therefore, by the choice of M , there exists an
n-dimensional vector y over F such that My = (x+ b). Since |Ī0(x)| ≤ k, we have that the
Hamming distance between My and b is at most k, which implies that y is a solution to
(Mm×n, b, k

′). In the other direction, let y be a solution to (Mm×n, b, k
′). Then, since the

Hamming distance between My and b is at most k, there exists an m-dimensional vector x
such that |Ī0(x)| ≤ k and My = x+ b. Therefore, by the choice of M , L(x+ b) = 0. Since
Lb = −1, we get that Lx = 1, which implies that x is a solution to (Lt×r, k).

Finally, we reduce F-Nearest Codeword to Matrix Rigidity over F. For this purpose,
let (Mm×n, b, k) be an instance of F-Nearest Codeword. We assume w.l.o.g. that the
columns of M are linearly independent. We construct an equivalent instance (A

â×̂b, r, k̂)
of Matrix Rigidity over F as follows. First, let k̂ = k. Now, let â = m, r = n and
b̂ = (k + 1)n+ 1. For each i ∈ [k + 1] and j ∈ [n], we define A(k+1)(i−1)+j = M j . Finally, we

F. V. Fomin, D. Lokshtanov, S.M. Meesum, S. Saurabh, and M. Zehavi 32:13

define A(k+1)m+1 = b. On the one hand, let y be a solution to (Mm×n, b, k). Then, there are
at most k entries that should be changed in b to obtain an m-dimensional vector b′ over F
such that My = b′. In the matrix A, replace the last column b by b′. Denote the resulting
matrix by A′. Then, the last column of A′ is a linear combination of its other columns
(by the construction of A and since My = b′), and among the other columns of A′, there
are only m distinct columns. Therefore, rank(A′) = n, which implies that (A

â×̂b, r, k̂) is a
YES-instance. In the other direction, suppose that (A

â×̂b, r, k̂) is a YES-instance. Then, it
is possible to change at most k entries in A and obtain a matrix A′ such that rank(A′) = n.
Since besides the last column of A, each column of A is repeated k+ 1 times (i.e., more times
than the number of changes), and there are n such distinct rows, it must be that the last
column of A′ is a linear combination of the distinct columns of A excluding the last column
of A. By the construction of A, we get that there exists an n-dimensional vector y over F
such that My = b′, where b′ is the last column of A′. Since the Hamming distance between
b and b′ is at most k, we have that y is a solution to (Mm×n, b, k). J

References
1 Saugata Basu, Richard Pollack, and Marie-Françoise Roy. Algorithms in Real Algebraic

Geometry (Algorithms and Computation in Mathematics). Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 2006.

2 E. Bonnet, L. Egri, and D. Marx. Fixed-parameter approximability of boolean MinCSPs.
In ESA, pages 18:1–18:18, 2016.

3 M. Cygan, F.V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk,
and S. Saurabh. Parameterized algorithms. Springer, 2015.

4 Amit Jayant Deshpande. Sampling-based algorithms for dimension reduction. PhD thesis,
Massachusetts Institute of Technology, 2007.

5 Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity.
Texts in Computer Science. Springer, 2013.

6 Joel Friedman. A note on matrix rigidity. Combinatorica, 13(2):235–239, 1993.
7 D. Grigoriev. Using the notions of separability and independence for proving the lower

bounds on the circuit complexity (in russian). Notes of the Leningrad branch of the Steklov
Mathematical Institute, Nauka, 1976.

8 D. Grigoriev. Using the notions of separability and independence for proving the lower
bounds on the circuit complexity. Journal of Soviet Math., 14(5):1450–1456, 1980.

9 Neeraj Kayal. Solvability of a system of bivariate polynomial equations over a finite field.
In ICALP, pages 551–562, 2005.

10 Abhinav Kumar, Satyanarayana V. Lokam, Vijay M. Patankar, and Jayalal M.N. Sarma.
Using elimination theory to construct rigid matrices. Computational Complexity, 23(4):531–
563, 2013.

11 Kenneth Lange. Hadamard’s determinant inequality. The American Mathematical Monthly,
121(3):258–259, 2014.

12 Satyanarayana V. Lokam. On the rigidity of Vandermonde matrices. Theoretical Computer
Science, 237(1–2):477–483, 2000.

13 Satyanarayana V. Lokam. Complexity lower bounds using linear algebra. Found. Trends
Theor. Comput. Sci., 4:1–155, January 2009.

14 S.V. Lokam. Spectral methods for matrix rigidity with applications to size-depth tradeoffs
and communication complexity. In FOCS, pages 6–15, 1995.

15 Meena Mahajan and Jayalal M.N. Sarma. On the complexity of matrix rank and rigidity.
In CSR, pages 269–280, 2007.

STACS 2017

32:14 Matrix Rigidity from the Viewpoint of Parameterized Complexity

16 S.M. Meesum, Pranabendu Misra, and Saket Saurabh. Reducing rank of the adjacency
matrix by graph modification. In COCOON, pages 361–373, 2015.

17 S.M. Meesum and S. Saurabh. Rank reduction of directed graphs by vertex and edge
deletions. In LATIN, pages 619–633, 2016.

18 A.A. Razborov. On rigid matrices. Manuscript in russian, 1989.
19 Jayalal M.N. Sarma. Complexity Theoretic Aspects of Rank, Rigidity and Circuit Eval-

uation. PhD thesis, The Institute of Mathematical Sciences, CIT Campus, Taramani,
Chennai, 2009.

20 M.A. Shokrollahi, D. Spielman, and V. Stemann. A remark on matrix rigidity. Information
Processing Letters, 64(6):283–285, 1997.

21 L.E. Sigler. Algebra. Undergraduate Texts in Mathematics. Springer-Verlag, 1976.
22 L.G. Valiant. Graph-theoretic arguments in low-level complexity. In MFCS, pages 162–176,

1977.

	Introduction
	Preliminaries
	Dimension Reduction Procedure
	Fixed-Parameter Tractability with Respect to k+r
	W[1]-Hardness with Respect to k

