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Abstract

We study the properties of Hopf-Lax formula restricted to convex functions
and provide a characterization of the optimal transfer plan for weak transport
problems on the real line. On n dimensional real space, we also provide a
sufficient condition on the potential function such that the optimal plan of the
classical Monge-Kantorovich problem does not depend on the cost function.
As a byproduct, we establish a link between the combinatorial object (the
permutation polytope) and the Hamilton Jacobi equation.

key words: Weak transport costs; Hopf-Lax formula; Monge-Kantorovich problem;
Hamilton Jacobi equation

1 Introduction

1.1 Monge-Kantorovich problem and weak transport cost

Throughout the paper, the space would be Euclidean space R or R
n. We denote

P(Rn) the set of probability measures on R
n, P1(R

n) the set of probability measures
on R

n with finite first moment and ‖.‖, the Euclidean norm.
Given two probability measures µ, ν ∈ P1(R

n), recall that the classical Monge-
Kantorovich problem is to minimize the following transportation cost:

Tc(µ, ν) = inf
π

∫

c(x, y)dπ ∈ [0,∞],

where c : Rn × R
n → R

+ is called the cost function and π is a measure coupling
with marginal µ and ν. Readers can refer to [26] for an introduction of the optimal
transport theory. One of the most interesting cases is that the cost function c is
a convex function with respect to the distance d. One of the well-known results
about the optimal transfer plan is due to Brenier [6] in 1991, he proved that on a
finite dimensional real space, the optimal transfer plan is a gradient of some convex
function. In particular, in one dimension, the optimal transfer plan does not depend
on the cost function if the cost function is convex. We also refer readers to related
results about the optimal transfer plan in [10], [18], [21].
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Here we are interested in the optimal transfer plan of a variant of Monge-
Kantorovich problem, which is introduced in [13], the general optimal transporta-
tion problem, defined by

T c(ν|µ) = inf
π

∫

c(x, p)µ(dx). (1.1)

The cost function c is defined on the space R
n × P(Rn), the infimum runs over

all couplings π(dxdy) = p(x, dy)µ(dx) of µ and ν and where p(x, · ) denotes the
disintegration kernel of π with respect to its first marginal. Further papers directly
related to this problem include [2, 3, 8, 11, 12, 22, 23, 24].

In terms of random variables, one has the following interpretation:

T c(ν|µ) = inf E (c(X,E(Y |X))) ,

whereas
Tc(ν, µ) = inf E (c(X,Y )) ,

where in both cases the infimum runs over all random vector (X,Y ) such that X
has law µ and Y has law ν. This general transport cost (1.1) plays an important
role in the study of Talagrand type transport inequalities and some log-Sobolev
inequalities, especially in a discrete space such as graphs or a subset of vector
space. Those transport inequalities immediately yield concentration results and
tensorization properties of the measure (see [8, 13, 12, 23, 24]).

Throughout the paper, the cost function is of form: c(x, y) = θ(x−y), where θ :
R
n 7→ R

+ is a non-constant convex function vanishing at 0 and radially symmetric
with respect to the origin. In one dimension, θ is even, and in n dimension, θ only
depends on the distance between x and y. In what follows, taking two probability
measures µ, ν ∈ P1(R

n), the optimal weak transport cost of ν with respect to µ
and cost function θ : Rn 7→ R means

T θ(ν|µ) = inf
π

∫

θ

(

x−

∫

y p(x, dy)

)

µ(dx)

where the infimum runs over all couplings π(dxdy) = p(x, dy)µ(dx) of µ and ν,
and where p(x, · ) denotes the disintegration kernel of π with respect to its first
marginal. Since the θ is convex, by Jensen’s inequality, one has

T θ(ν|µ) 6 Tθ(ν, µ).

This weak transport cost is deeply linked to the Monge-Kantorivich problem.
Together with Gozlan, Roberto, Samson and Tetali, following Strassen’s theorem
[25], we proved in [12] that,

T θ(ν|µ) = inf
ν1�ν

Tθ(ν1, µ),

where � is the convex order, defined as:

ν1 � ν ⇔ ∀f convex,

∫

fdν1 6

∫

fdν.
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Moreover, in one dimension, the measure ν1 which achieves the infimum does
not depend on the choice of the convex cost function θ. As an application, one
can deduce a completed characterization of a convex modified Log-Sobolev inequal-
ity [24].

1.2 Presentation of the results

It is natural to ask the following questions about the optimal transfer plan of weak
transport problem:

• When the weak transport would be equal to the classical transport?

• Does the optimal coupling depend on the cost function θ?

We approach those questions by the following duality framework of the weak
transport cost. Following [13, Theorem 2.11], for µ, ν ∈ P1(R

n), and θ : Rn 7→ R a
convex function such that θ(x) > a‖x‖+ b for some a > 0 and b ∈ R, it holds

T θ(ν|µ) = sup
f

∫

Qθ
1fdµ−

∫

fdν (1.2)

where the supremum runs over all function f convex, Lipschitz and bounded from
below, and where

Qθ
t f(x) = inf

y∈Rn

{

f(y) + tθ

(

y − x

t

)}

.

The above equation is often called the Hopf-Lax formula, in some references the
operator Qθ

t is also called the inf-convolution operator and often denoted simply by
Qθ for t = 1. The Hopf-Lax formula is known as the solution of a Hamilton Jacobi
equation, and has been widely studied in many different contexts. We remark as
well in the proof of [2, Theorem 5.5], Backhoff-Veraguas, Beiglbock and Pammer
shown that a maximizer of equation (1.2) exists even with a weaker assumption.

In this paper, since the cost function θ is convex, real valued, positive and only
depended on the euclidean norm, it satisfies the growth condition θ(x) > a‖x‖+ b
and the condition (A+) in [2]. Therefore we can apply the duality theorem and the
existence of the maximizer here.

Apart from the introduction, this paper is divided into three sections. In section
2, the space will be the real line R, and in section 3, the space will be R

n and we
will present some applications in section 4.

In section 2, we stay in one dimension. We provide an equivalent condition for
the equality between the weak transport cost and the classical Monge-Kantorovich
transport cost (theorem 2.6), which states that

T θ(ν|µ) = Tθ(ν, µ)

if and only if the difference between the inverse cumulative functions of µ and ν is
non-decreasing, precisely, the function

F−1
µ − F−1

ν
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is non-decreasing. This equivalence also has been obtained recently by Gozlan and
Juillet in a slightly different form in [11] and by Backhoff Veraguas, Beiglboeck and
Pammer in [3].

Furthermore, according to Brenier [6], in one dimension, the optimal mapping
of a classical transport does not depend on the cost function as soon as the cost
function is convex. In [12], the same result is obtained for weak transport cost. We
will give a new proof of this result in section 2, using a very different argument.
During this approach, a byproduct about the Hamilton-Jacobi equation is obtained,
which might have its own interest (theorem 2.11).

In section 3, the space will be R
n. We will show in theorem 3.4 an extension of

the results of section 2, which provide equivalence conditions (under some smooth-
ness properties) such that T θ(ν|µ) = Tθ(µ, ν) holds. We will define Property F ,
which reduces to convexity in one dimension and plays the role of the convexity in
n dimensions. The condition that there is equality between the weak transport cost
and the classical transport cost is deeply related to Property F .

In section 4, we briefly explain some applications on the infimum convolution
inequality introduced by Maurey in [17].

2 Weak transport on the line

In this section we will focus on the real line. A cost function in this section is a
function θ : R 7→ R

+, convex, even, satisfying θ(0) = 0.
We remind here the notion of cyclical monotone of a multivalued mapping [20,

Page 238]. A multivalued mapping ρ from R
n to R

n is called cyclically monotone
if one has

〈x1 − x0, x
∗
0〉+ 〈x2 − x1, x

∗
1〉+ · · · + 〈x0 − xm, x

∗
m〉 6 0.

for any set of pairs (xi, x
∗
i ), i = 0, 1, ...,m (m arbitrary) such that x∗i ∈ ρ(xi).

The property of cyclical monotone characterizes the gradient of a convex function
according to [20, Theorem 5.6], which states that, ρ is cyclically monotone if and
only if there exist a convex proper function f on R

n such that ρ ⊂ ∂f .

2.1 A remark on Hopf-Lax formula

We begin with some development of the Hopf-Lax formula. The key observation is
the following lemma.

Lemma 2.1. Let I, J be two subset of R with strictly positive Lebesgue measure.
Given t > 0, let Tt : I ⊂ R → J ⊂ R be a real valued function. Then the following
statements hold.

(i) If there exists a real-valued convex function f defined on R and a strictly
convex cost θ (recall that a cost function here should be positive and vanishing at 0)
such that for all x ∈ I, it holds

Qθ
t f(x) = f(Tt(x)) + tθ

(

Tt(x)− x

t

)

. (2.2)
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then Tt is non-decreasing and x 7→ Tt(x)− x is non-increasing.
(ii) Inversely, taking a function Tt defined on I ⊂ R, if Tt is non-decreasing

and x ∈ J 7→ Tt(x) − x is non-increasing, then for all convex cost θ, there exists a
closed proper convex function f , such that (2.2) holds for all x ∈ I.

Proof. (i). Given t > 0 and x ∈ I, the function Gx : u 7→ f(u)+ tθ
(

u−x
t

)

is defined
on R. According to convexity of f and θ, G is strictly convex. Therefore, it has
at most one minimum. Since a convex function always has a right derivative and a
left derivative, then it holds for all x ∈ I:

0 ∈ [∂−Gx(Tt(x)), ∂+Gx(Tt(x))]. (2.3)

We deduce that for all x ∈ I:

∂+f(Tt(x)) + ∂+θ

(

Tt(x)− x

t

)

> 0.

We will first prove that Tt is non-decreasing. For any x, y ∈ I, x < y, since θ is
strictly convex, we deduce that

∂+Gx(Tt(y)) = ∂+f(Tt(y)) + ∂+θ

(

Tt(y)− x

t

)

> ∂+f(Tt(y)) + ∂+θ

(

Tt(y)− y

t

)

> 0 > ∂+Gx(Tt(x)).

Together with the strict convexity of Gx, we deduce that Tt(y) > Tt(x).
Now we turn to prove that x 7→ Tt(x)− x is non-increasing on I. We will show

that for x, y ∈ I such that x < y, it holds Tt(x) − x > Tt(y) − y. Since Tt is
non-decreasing, Tt(x) 6 Tt(y).

If Tt(x) = Tt(y), it follows immediately Tt(x)− x > Tt(y)− y.
Now we assume that Tt(x) < Tt(y). Since f is convex, it holds

∂+f(Tt(x)) 6 ∂−f(Tt(y)). (2.4)

Now applying (2.3) for x and y, we deduce:

∂+Gx(Tt(x)) > 0 > ∂−Gy(Tt(y)). (2.5)

Combining equation (2.4) and (2.5), we deduce

∂+θ

(

Tt(x)− x

t

)

> ∂−θ

(

Tt(y)− y

t

)

.

By convexity of θ, it holds Tt(x) − x > Tt(y) − y. Thus x 7→ Tt(x) − x is non-
increasing on I.

(ii). Assume that the function Tt is non-decreasing on I and the function
x 7→ Tt(x)− x is non-increasing on I. Define a multi valued mapping ρ from R to
R such that

y∗ ∈ ρ(y) ⇔ y∗ = −∂+θ

(

y − x

t

)

,
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for some x such that Tt(x) = y.
For any set of pairs (yi, y

∗
i ), i = 0, 1, ...,m, (m arbitrary) such that y∗i ∈ ρ(y),

there exist x0, ..., xm, such that Tt(xi) = yi. We claim that yi < yj implies y∗i 6 y∗j ,
for any i, j ∈ {0, 1, ...,m}. In fact, if yi < yj, then by monotony of Tt, it holds xi <
xj. Since x 7→ Tt(x)−x is non-increasing, we deduce that Tt(xi)−xi > Tt(xj)−xj.
Therefore, by convexity of θ,

y∗i = −∂+θ

(

Tt(xi)− xi
t

)

6 −∂+θ

(

Tt(xj)− xj
t

)

= y∗j .

Therefore, according to rearrangement inequality, it holds:

〈y1 − y0, y
∗
0〉+ 〈y2 − y1, y

∗
1〉+ · · ·+ 〈y0 − ym, y

∗
m〉

=
m
∑

i=0

yiy
∗
i −

m
∑

i=0

yiyi+1 6 0,

where we denote ym+1 = y0 and in dimension one, the bracket 〈, 〉 is the multipli-
cation. Thus, ρ is cyclically monotone. According to [20, Page 238, Theorem 24.8],
there exists a closed proper convex function f (thus lower semi-continuous) defined
on R, such that for all y ∈ R, ρ(y) ⊂ ∂f(y) (ρ(y) could be empty). Therefore, for
all x ∈ I, it holds

−∂+θ

(

Tt(x)− x

t

)

∈ [∂−f(Tt(x)), ∂+f(Tt(x))],

which leads to

0 ∈

[

∂−f(Tt(x)) + ∂−θ

(

Tt(x)− x

t

)

, ∂+f(Tt(x)) + ∂+θ

(

Tt(x)− x

t

)]

.

Thus equation (2.2) holds. The conclusion follows.

2.2 Characterization of equality between weak transport cost and

transport cost

We firstly recall the definition of cumulative distribution function and its inverse.
For a probability measure µ ∈ P(R), denote Fµ the cumulative distribution

function of µ, i.e.
Fµ(x) = µ(−∞, x],

and define the generalized inverse of F−1
µ by

F−1
µ (t) = inf{x ∈ R;Fµ(x) > t}.

Theorem 2.6. Let µ, ν ∈ P1(R) and let the cost function θ : R 7→ R
+ be even,

strictly convex and vanishing at 0. Assume that µ and ν are absolutely continuous
with respect to Lebesgue measure. Assume that the weak transport T θ(ν|µ) is finite,
then

T θ(ν|µ) = Tθ(µ, ν)

if and only if F−1
µ − F−1

ν is non-decreasing.
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In one dimension, given two probability measures µ and ν which are absolutely
continuous with respect to Lebesgue measure, the optimal transport mapping for
transport problem is transporting mass from location F−1

µ (x) to location F−1
ν (x).

This mapping is in fact the monotone rearrangement T from µ to ν. We will
play with the Kantorovich duality formula related to this mapping T for the weak
transport problem.

Proof. We assume at first that F−1
µ − F−1

ν is non-decreasing. Denote T the mono-
tone rearrangement from µ to ν and denote I := supp(µ) the support of µ and
J := supp(ν) the support of ν. Thus T is an one-to-one mapping from I to J , and
for all x ∈ I,

Fµ(x) = µ(−∞, x) = ν(−∞, T (x)) = Fν(T (x)). (2.7)

Since µ, ν are absolutely continuous, F−1
µ and F−1

µ are well defined on (0, 1). Now
given u ∈ (0, 1), denote u = Fµ(x) = Fν(T (x)). According to the equality (2.7), it
holds

F−1
ν (u)− F−1

µ (u) = T (x)− x.

According to our hypothesis, x 7→ T (x) − x is non-increasing. Moreover, notice
that T is the monotone rearrangement from µ to ν, T is non-decreasing. We can
apply lemma 2.1, and there exists a closed proper convex function f (thus lower
semi-continuous), such that for all x ∈ I:

Qθf(x) = inf
y∈R

{f(y) + θ(y − x)} = f(T (x)) + θ(T (x)− x).

Since f is proper, there exist x0 ∈ R such that f(x0) < ∞. By definition of Qf , it
holds

Qθf(x) = f(T (x)) + θ(T (x)− x) 6 f(x0) + θ(x0 − x).

Thus, for R > |x0| and for all x ∈ I ∩ [−R,R],

f(T (x)) 6 f(x0) + θ(x0 − x)− θ(T (x)− x) 6 f(x0) + θ(2R).

Therefore f is a lower semi-continuous, bounded and lipschitz on the interior of
I ∩ [−R,R].

By Kantorovich duality from [13], we have

T θ(ν|µ) = sup
ϕ convex,Lip, l.s.c.

∫

Qθϕdµ−

∫

ϕdν

>

∫

I∩[−R,R]
Qθfdµ−

∫

I∩[−R,R]
fdν =

∫

I∩[−R,R]
θ(T (x)− x)dµ

= Tθ(µ, ν)− εR > T θ(ν|µ)− εR.

Now let R→ ∞, εR → 0, and we obtain

T θ(ν|µ) = Tθ(µ, ν).
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Now assume that T θ(ν|µ) = Tθ(µ, ν). According to [2, Theorem 5.5], for µ, ν ∈
P1(R), if T θ(ν|µ) is finite, there exists a convex function f such that

T θ(ν|µ) =

∫

Qθfdµ−

∫

fdν.

Thus,

T θ(ν|µ) =

∫

Qθfdµ−

∫

fdν

6

∫

f(T (x)) + θ(T (x)− x)dµ −

∫

fdν =

∫

θ(T (x)− x)dµ

= Tθ(µ, ν).

Therefore, Qθf(x) = f(T (x))+ θ(T (x)− x) µ almost-surely. Since f is convex and
θ is strictly convex, according to lemma 2.1 (i), we obtain that T (x) − x is non-
increasing µ almost surely, together with the monotonicity of the function F−1

µ , the
conclusion follows.

2.3 Weak transfer plan

In this section we give an alternative proof of a theorem in [12], as a consequence
of lemma 2.1, which is the following:

Theorem 2.8. [12, Theorem 1.4] Let α, β and θ be convex cost functions satisfying
α+ β = θ. Let µ, ν ∈ P1(R). Assume that T θ(ν|µ) is finite, it holds

T θ(ν|µ) = T α(ν|µ) + T β(ν|µ). (2.9)

We need to prove the following proposition at first.

Proposition 2.10. Let α, β, θ : R → R be convex cost functions, even and of class
C1 satisfying α + β = θ. We assume that θ is strictly convex. Then for all convex
function f : R → R bounded from below of class C1, there exists convex functions
f1, f2 : R 7→ R, bounded from below and of class C1, such that

f = f1 + f2

and for all t > 0
Qθ

t f = Qα
t f1 +Qβ

t f2

more precisely,

f1(x) = a+

∫ x

0
α′ ◦ θ′−1 ◦ f ′(u)du,

with any constant a ∈ R.

From this proposition, combining with the fact that Qθ
t f is in fact the solution

of the Hamilton Jacobi equation (2.12) [7], one deduces immediately of the following
theorem.

8



Theorem 2.11. Let θ : R → R be a strictly convex cost function with super-linear
growth of class C1 (i.e. θ′(x) goes to ∞ as x goes to ∞) and θ∗ be the Legendre
transform of θ. Consider the following Hamilton Jacobi equation:

{

∂tv(x, t) + θ∗(∂xv(x, t)) = 0 (x, t) ∈ R× (0,∞)

v(x, 0) = f(x) x ∈ R.
(2.12)

Assume that the initial function f : R → R is convex bounded from below of class
C1, then for all convex cost function θ1, θ2, with super-linear growth and satisfying
θ1 + θ2 = θ, there exists v1, v2 and f1, f2, such that for i = 1, 2, it holds

{

∂tvi(x, t) + θ∗i (∂xvi(x, t)) = 0 (x, t) ∈ R× (0,∞)

vi(x, 0) = fi(x) x ∈ R,

v = v1 + v2 and f = f1 + f2.

We begin with a lemma.

Lemma 2.13. Assume that θ is strictly convex, even and of class C1. Let f be a
convex function bounded from below and of class C1. For t > 0, denote I := {x ∈
R|f ′(x) ∈ θ′(R)}. Define the mapping Ut as

Ut : x ∈ I 7→ x+ tθ′−1 ◦ f ′(x) ∈ R.

Then Tt := U−1
t satisfies (2.2).

Proof. Since θ is even, strictly convex and of class C1, θ′(R) contains a neighborhood
of 0, combining with the fact that f is bounded from below, convex and C1, we
deduce that I is not an empty set. Since θ is strictly convex, θ′ : R → θ′(R) is a
bijection and it is strictly increasing. Thus θ′−1 : θ′(R) → R is well defined as well
as Ut. It is easy to see that Ut is strictly increasing and continuous. Now we will
show that the image set Ut(I) = R and Ut is in fact a bijection from I to R.

Assume first that inf I = −∞, then it is easy to see that limx→−∞Ut(x) =
−∞. Now assume that inf I > −∞. Then for x ց inf I, f ′(x) ց θ(−∞), thus
θ′−1f ′(x) → −∞. The same argument holds for sup I. Therefore, Ut : I → R is
bijective and strictly increasing. Thus U−1

t : R → I is well defined and strictly
increasing.

It remains to show that U−1
t (x) is the point achieving the infimum for Qθ

t f(x).
For all x ∈ R, let y = U−1

t (x), using the fact that θ is even, it holds

θ′
(

y − x

t

)

= θ′
(

y − Ut(y)

t

)

= −θ′
(

θ′−1 ◦ f ′(y)
)

= −f ′(y).

According to (2.3), it holds y = Tt(x).

Now we are in position to prove proposition 2.10.
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Proof of proposition 2.10. We define f1 as following: for all y ∈ I,

f1(y) :=

∫ y

0
α′ ◦ θ′−1 ◦ f ′(u)du.

and (in the case that I 6= R) f1 is affine when y > sup I, and y < inf I with
f ′1 = f ′1(sup I) := limx→sup I f

′
1(x) and f ′1 = f ′1(inf I) respectively.

We observe that f1 is convex: for all x ∈ I, f ′1 = α′ ◦ θ′−1 ◦ f ′ is non-decreasing,
and for x ∈ R \ I, f ′1 is constant which equals to f ′1 = f ′1(sup I) and f ′1 = f ′1(inf I)
respectively. It follows that f ′1 is non-decreasing on R.

Given t > 0 and x ∈ R, denote y = Tt(x) ∈ I and it holds

f ′1(y) = α′ ◦ θ′−1 ◦ f ′(y)

= −α′ ◦ θ′−1 ◦ θ′
(

y − x

t

)

= −α′

(

y − x

t

)

.

We deduce from equation (2.3) that

Qα
t f1(x) = f1(Tt(x)) + tα

(

Tt(x)− x

t

)

. (2.14)

Now let f2 = f − f1, together with θ = α+ β, we deduce

f ′2(x) =











f ′ − f ′1(inf I) ∀x ∈ (−∞, inf I]

β′ ◦ θ′−1 ◦ f ′(x) ∀x ∈ I

f ′ − f ′1(sup I) ∀x ∈ [sup I,∞)

,

which is non-decreasing. Thus f2 is convex.
On the other hand, since f ′1(y) = −α′

(

y−x
t

)

and f ′(y) = −θ′
(

y−x
t

)

, it holds
that

f ′2(y) = −β′
(

y − x

t

)

.

According to equation (2.3) and we have

Qβ
t f2(x) = f2(Tt(x)) + tβ

(

Tt(x)− x

t

)

. (2.15)

It immediately yields
Qθ

t f = Qα
t f1 +Qβ

t f2.

Now we are in position to proof theorem 2.8.

Proof of theorem 2.8. We first prove the case that the convex cost functions α,β
and θ are C1:

We assume at first that θ = α+ β is strictly convex.
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Observe that by the definition of T , it is easy to see that

T θ(ν|µ) > T α(ν|µ) + T β(ν|µ). (2.16)

Now we turn to prove the inverse inequality.
According to Proposition 2.10, for all convex function f bounded from below

and of class C1, there exist f1 and f2 such that it holds:

∫

Qθfdµ−

∫

fdν =

∫

Qαf1dµ−

∫

f1dν +

∫

Qβf2dµ −

∫

f2dν

6 T α(ν|µ) + T β(ν|µ).

We take the supremum over all convex function f bounded from below and of class
C1 and by the duality formula (1.2), we get

T θ(ν|µ) 6 T α(ν|µ) + T β(ν|µ).

The conclusion follows with the inverse inequality (2.16).
Now assume that θ is not strictly convex. Since µ, ν ∈ P1(R), there exists a

strictly convex cost function γ, such that
∫

γ(x− c)µ(dx) and
∫

γ(x− c)ν(dx) are
finite for all c ∈ R. Therefore T θ+γ(ν|µ) is finite. Since α + γ, (α + γ) + β are
strictly convex, it holds:

T θ+γ(ν|µ) = T θ(ν|µ) + T γ(ν|µ). (2.17)

and

T θ+γ(ν|µ) = T (α+γ)+β(ν|µ) = T α+γ(ν|µ) + T β(ν|µ)

= T α(ν|µ) + T β(ν|µ) + T γ(ν|µ). (2.18)

Combining equation (2.17) and (2.18), we deduce that the equality (2.9) holds for
the case α, β and θ are C1.

Now for general convex cost α, β and θ, for all ε > 0 there exist cost functions
αε, βε and θε satisfying θε = αε + βε of class C1 such that

‖αε − α‖∞ + ‖βε − β‖∞ + ‖θε − θ‖∞ < ε.

We deduce that

T α(ν|µ) + T β(ν|µ) 6 T θ(ν|µ)

6 T θε(ν|µ) + ε = T αε(ν|µ) + T βε
(ν|µ) + ε

6 T α(ν|µ) + T β(ν|µ) + 2ε.

Let ε goes to 0 and the theorem follows.
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2.4 An alternative approach

The proof of theorem 2.6 in [12] is based on properties of convex ordering and
Rado’s theorem. In this section, we provide another way to understand theorem 2.6
in aspect of [12].

Here we only recall some necessary definitions and properties of the convex
ordering and majorization of vectors. We refer the interested reader to [16], [14]
and [19] for further results and bibliographic references related to properties of
inequalities, and to [12, 11, 3] for recent developments related to the optimal weak
transfer plan.

Definition 2.19 (Convex order). Given ν1, ν2 ∈ P1(R), we say that ν2 dominates
ν1 in the convex order, and write ν1 � ν2, if for all convex functions f on R,
∫

R
f dν1 6

∫

R
f dν2.

Definition 2.20 (Majorization of vectors). Let a, b ∈ R
n, one says that a is ma-

jorized by b if the sum of the largest j components of a is less than or equal to the
corresponding sum of b, for every j, and if the total sum of the components of both
vectors are equal.

Assuming that the components of a = (a1, . . . , an) and b = (b1, . . . , bn) are
in non-decreasing order (i.e. a1 6 a2 6 . . . 6 an and b1 6 b2 6 . . . 6 bn), a is
majorized by b, if

an + an−1 + · · ·+ an−j+1 ≤ bn + bn−1 + · · ·+ bn−j+1, for j = 1, . . . , n− 1,

and
∑n

i=1 ai =
∑n

i=1 bi.
The next proposition recalls the link between majorization of vectors and convex

ordering.

Proposition 2.21. [12] Let a, b ∈ R
n and set ν1 =

1
n

∑n
i=1 δai and ν2 =

1
n

∑n
i=1 δbi .

The following statements are equivalent.

(i) a is majorized by b.

(ii) ν1 is dominated by ν2 for the convex order. In other words, for every convex
function f : R → R, it holds that

∑n
i=1 f(ai) ≤

∑n
i=1 f(bi) .

Thanks to the above proposition and with a slight abuse of notation, we will
also write a � b when a is majorized by b.

Now we are able to prove an alternative version of theorem 2.6. We shall focus
on measure µn of form 1

n

∑n
i=1 δxi

. For general measure, one can consider it as a
limit of µn as n goes to ∞, readers can refer to [12] for rigorous justification. Here
is a discrete version of theorem 2.6 is telling the following:

Theorem 2.22 (Discrete version of theorem 2.6). Let µ = 1
n

∑n
i=1 δxi

and ν =
1
n

∑n
i=1 δyi , where xi and yi are in non-decreasing order. Assume that θ is a strictly

convex cost function. The following statements are equivalent.

12



(i) The function i 7→ xi − yi is non-decreasing.

(ii) T θ(ν|µ) = Tθ(ν, µ).

Proof. Observe that the optimal transfer plan of Tθ(ν, µ) sends xi to yi since xi and
yi are in non-decreasing order. As a consequence,

Tθ(ν, µ) =
1

n

n
∑

i=1

θ(xi − yi).

On the other hand, denoting x = (x1, ..., xn), y = (y1, ..., yn) ∈ R
n, according to

[12], the following holds:

T θ(ν|µ) = inf
ν1�ν

Tθ(ν1, µ) = inf
y′�y

1

n

n
∑

i=1

θ(xi − y′i).

Thus, item (ii) is equivalent to

n
∑

i=1

θ(xi − yi) = inf
y′�y

n
∑

i=1

θ(xi − y′i). (2.23)

Now it is enough to prove that (2.23) is equivalent to (i).
(i) ⇒ (ii): For any y′ � y, it holds

n
∑

i=k

y′i 6
n
∑

i=k

yi ∀1 6 k 6 n.

It follows that
n
∑

i=k

xi − yi 6

n
∑

i=k

xi − y′i ∀1 6 k 6 n.

Thus x− y � x− y′ for all y′ � y, which leads to (2.23).
(ii) ⇒ (i): Assume that (ii) holds and (i) does not. Let i be the smallest integer

such that xi − yi > xi+1 − yi+1. Thus yi+1 − yi − (xi+1 − xi) = 2ε > 0.
Now define y′ ∈ R

n with y′j = yj for j 6= i, i + 1 y′i = yi + ε, y′i+1 = yi+1 − ε. It
is easy to see that y′ � y and by strict convexity of θ:

n
∑

i=1

θ(xi − yi)−
n
∑

i=1

θ(xi − y′i)

= θ(xi − yi) + θ(xi+1 − yi+1)− θ(xi − yi − ε)− θ(xi+1 − yi+1 + ε)

= θ(xi − yi) + θ(xi+1 − yi+1)− 2θ

(

(xi − yi) + (xi+1 − yi+1)

2

)

> 0

which is a contradiction to (2.23).
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3 Weak transport in n dimensions

This section is devoted to extending theorem 2.11 and theorem 2.6 of the previous
section in n dimensions for n > 2. In this section, we will focus on the space R

n

and an open subset Ω ⊂ R
n, which correspond to the support of an absolutely

continuous measure w.r.t Lebesgue measure. We assume that all cost functions are
convex, only depending on Euclidean distance ‖.‖ := ‖.‖2 and vanishing in 0. We
denote L for the Lebesgue measure.

In one dimension, convexity of functions plays a central role in the proofs, but
in n dimensions, we will replace the convexity by another stronger property, we call
it property F , which is defined as following.

Definition 3.1. Let Ω ⊂ R
n be a convex open set satisfying L(Ω) > 0. We say

that f : Ω 7→ R satisfies the Property F on Ω if the following conditions hold:

1. f is convex on Ω.

2. For almost all x ∈ Ω, there exists λ, such that Hessf(x)∇f(x) = λ∇f(x).

Remark 3.2. Theorem of Alexandrov [1] guarantees that the Hessian of a convex
function f is well defined on R

n almost everywhere.

Remark 3.3. For dimension n = 1, the Property F is the convexity.

Now let f : Ω → R be a continuous function. Denote

Hf := {x ∈ Ω,Hessf(x) exists}.

Due to regularity issues, we introduce the following smoothness assumption (SA).
(SA): The interior of Hf , denoted by Hf

o, is simply connected, and satisfies

L(Ω \ Hf
o) = 0.

Now we are ready to state the main theorem of this section, which is an extension
of theorem 2.6 in n dimensions.

Theorem 3.4. Let µ, ν ∈ P1(R
n) be two probability measures absolutely continuous

with respect to Lebesgue measure. Assume that the support of the measure ν is a
convex set Ω. Denote g the convex function such that ∇g is the transfer plan for
Monge-Kantorovich problem of quadratic cost, and satisfying ∇g#ν = µ. If g
satisfies the smoothness assumption (SA), then the following assertions hold.

(i) If there exists a two times differentiable cost function θ such that xθ′′(u) −
θ′(u) 6= 0 for all u > 0 and

T θ(ν|µ) = Tθ(µ, ν) =

∫

θ(‖x−∇g(x)‖)dν <∞.

Then the function x 7→ g(x) − 1
2〈x, x〉 satisfies the Property F on Ω, and ∇g

is an optimal transfer plan of Tα for all convex cost α (such that T θ(ν|µ) is
finite). Since the transport mapping ∇g of the quadratic cost is unique, ∇g is
the unique optimal transport plan in common for all convex cost α.
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(ii) Inversely, if x 7→ g(x) − 1
2 〈x, x〉 is strictly convex and satisfies Property F ,

then for all convex cost θ such that T θ(ν|µ) is finite, ∇g is an optimal transfer
plan of Tθ for all convex cost θ and it holds

T θ(ν|µ) = Tθ(µ, ν).

Remark 3.5. The existence and uniqueness of the optimal transport mapping ∇g
of the quadratic cost is guaranteed by the Benamou-Brenier theorem [4].

Remark 3.6. In one dimension, adapting the notation in theorem 2.6, the mapping
∇g is correspond to Fµ ◦ F−1

ν . A simple computation shows that the convexity of
g(x)− 1

2x
2 is equivalent to the fact that F−1

µ −F−1
ν is non-decreasing. Therefore the

equality between the weak transport cost and the Monge-Kantorovich transport cost
is equivalence to the convexity of g(x)− 1

2x
2. The latter theorem shows that with the

additional smoothness assumption (SA), this equivalent still holds. Heuristically, I
do believe that it holds true without (SA), but the regularity issue is very delicate
and there is still a lot to investigate on.

In order to prove the theorem, we begin with studying Property F .

3.1 Characterization of Property F

Let us begin with some properties of the set F :

Lemma 3.7. Let Ω ⊂ R
n be a convex open set. Let f : Ω → R be a continuous

function. Denote u = ‖∇f‖. Then for all x ∈ Hf , the following conditions are
equivalent:

(i) there exists λ ∈ R such that

Hessf(x)∇f(x) = λ∇f(x).

(ii) for all 1 6 i 6 j 6 n, if ‖∇f‖(x) 6= 0, it holds

∂iu∂jf = ∂ju∂if.

From this lemma, we can construct some examples of f such that f ∈ F , by
simply checking (ii).

Example 3.8. In n dimensions, following functions satisfy Property F on R
n :

1. Linear forms.

2. Functions of form x ∈ R
n 7→ g(‖x‖) where g : R → R is a convex function

with g(0) = 0.

3. Functions of form x ∈ R
n 7→ a‖x‖2 + L(x) with a > 0 and L : Rn → R being

a linear form.
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Proof of lemma 3.7. (i) ⇒ (ii):
u is well defined on Hf . Suppose that (i) holds. For all x ∈ Hf with ∇f(x) 6= 0,

it holds for all 1 6 i 6 j 6 n,

∂iu =
1

u

n
∑

k=1

∂kf∂kif =
λ

u
∂if. (3.9)

Thus

∂iu∂jf =
λ

u
∂if∂jf = ∂ju∂if.

(ii) ⇒ (i): For all x ∈ Hf such that ∇f(x) 6= 0, there exists j such that ∂jf 6= 0.
Let λ = ∂ju/∂jf , (ii) implies that for all 1 6 i 6 n,

∂iu = λ∂if. (3.10)

Computing the differential of u, it holds

∂iu =
1

u

n
∑

k=1

∂kf∂kif.

Together with (3.10), it holds for all 1 6 i 6 n

n
∑

k=1

∂kif∂kf = λu∂if,

which means exactly Hessf ∇f = λu∇f .

Proposition 3.11. Let Ω ⊂ R
n be a convex open set and f : Ω → R be a strictly

convex function satisfying the smoothness assumption (SA).
Then the following statements hold.
(i) If f satisfies Property F on Ω, then for all non-decreasing, differentiable

function G : R+ → R
+, there exists ϕ ∈ F such that for x ∈ Ω almost everywhere,

it holds

∇ϕ(x) = G(‖∇f‖(x))
∇f(x)

‖∇f‖(x)
. (3.12)

(ii) Inversely, if there exists a non-decreasing differentiable function G : R+ 7→
R
+ which satisfies uG′(u) − G(u) 6= 0 for all u > 0, and there exists a convex

function ϕ : Ω → R such that equation (3.12) holds almost everywhere, then f
satisfies Property F on Ω.

Proof. The proof of (i) is divided into three steps: we will prove at first the existence
of a such function ϕ satisfying (3.12), secondly we will show that ϕ is convex, at
the end we will prove that ϕ ∈ F .

Step 1. Existence of function ϕ such that (3.12) holds.
By strict convexity of f , there exists at most one x∗ such that ∇f(x∗) = 0.
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Denote F the vector field G(‖∇f‖) ∇f
‖∇f‖ defined on the simply connected open

set Hf
o \ x∗, then the ith component of F is :

Fi = G(‖∇f‖)
∂if

‖∇f‖
. (3.13)

We begin with proving the existence of function ϕ defined on Hf
o \{x∗}, according

to a generalized version of Poincaré’s Lemma [15] and the smoothness assumption
(SA), we only need to show that on Hf

o, it holds:

rot F = 0,

which is equivalent to
∂jFi = ∂iFj (3.14)

for all 1 6 i, j 6 n.
Now denote u = ‖∇f‖2, it holds

∂jFi = ∂j

(

G(u)

u

)

∂if +
G(u)

u
∂ijf

= ∂ju

(

G′(u)u−G(u)

u2

)

∂if +
G(u)

u
∂ijf

The same argument leads to

∂iFj = ∂iu

(

G′(u)u−G(u)

u2

)

∂jf +
G(u)

u
∂ijf. (3.15)

Since f ∈ F , applying lemma 3.7, we deduce that

∂ju ∂if = ∂iu ∂jf. (3.16)

Thus equation (3.14) holds and we have the existence of ϕ on Hf
o \ {x∗}.

According to the assumption (SA), Ω\(Hf
o \ {x∗}) is a finite set, together with

the fact that Ω is an open set, one can extend the continuous function ϕ on Ω.
Step 2. ϕ is convex.
We only need to check Hess ϕ is positive almost everywhere on Ω.
Fix x ∈ Hf

o \ {x∗}, assume that Hess f∇f = λ∇f . It is enough to prove that
Hess ϕ = (∂ijϕ)ij is positive. According to (3.15) and (3.9), we have

∂ijϕ = ∂iFj

= ∂iu

(

G′(u)u−G(u)

u2

)

∂jf +
G(u)

u
∂ijf

=
G(u)

u

(

∂ijf −
∂iu∂jf

u

)

+
G′(u)

u2
∂iu ∂jf

=
G(u)

u

(

∂ijf − λ
∂if∂jf

u2

)

+ λ
G′(u)

u3
∂if ∂jf.
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Observe that G is positive, non-decreasing and u > 0, it follows that G(u)
u

> 0 and
G′(u)
u3 > 0. Moreover, the convexity of f implies that λ > 0. Thus, it is enough to

prove that the matrix M0 =
(

∂ijf − λ
∂if∂jf

u2

)

ij
and M1 = (∂if ∂jf)ij are positive.

We begin with the positivity of M1. For any vector w ∈ R
n,

twM1w =
∑

i,j

wi∂if∂jfwj =

(

∑

i

wi∂if

)2

= 〈w,∇f〉2 > 0. (3.17)

Now we turn to prove the positivity of M0. For any w ∈ R
n, write w = y+a∇f

with a ∈ R and y perpendicular to ∇f . Noticing that M0 = Hessf − λ
u2M1, then

twM0w =t (y + a∇f)

(

Hessf −
λ

u2
M1

)

(y + a∇f).

Using Hessf ∇f = λ∇f and u2 = ‖∇f‖2, it holds

t(y + a∇f)Hessf (y + a∇f)

= 〈y,Hessf y〉+ a2〈∇f,Hessf∇f〉+ 2a〈y,Hessf∇f〉

= 〈y,Hessf y〉+ a2〈∇f, λ∇f〉+ 2a〈y, λ∇f〉

= 〈y,Hessf y〉+ a2λu2.

On the other hand, according to (3.17),

t(y + a∇f)
λ

u2
M1(y + a∇f) =

λ

u2
〈y + a∇f,∇f〉2 =

λa2

u2
〈∇f,∇f〉2 = λa2u2.

Thus, together with the convexity of f , we deduce that

twM0w =t (y + a∇f)

(

Hessf −
λ

u2
M1

)

(y + a∇f) = 〈y,Hessf y〉 > 0.

Hence, M0,M1 are positive matrices, and Hess ϕ = G(u)
u
M0+λG′(u)

u3 M1 is positive.
Step 3. ϕ ∈ F .
The convexity of ϕ is proved in step 2. It is enough to show that for all x ∈

Ω almost everywhere, there exists λ ∈ R such that Hessϕ(x)∇ϕ(x) = λ∇ϕ(x).
Adapting the notations in step 1, applying lemma 3.7, it is enough to show that on
Hf

o \ {x∗}, it holds
∂i‖F‖Fj = ∂j‖F‖Fi. (3.18)

We develop ∂i‖F‖Fj by (3.13) and (3.15):

Fj∂i‖F‖ =
G(u)

u
∂jf

1

‖F‖

n
∑

k=1

G(u)

u
∂kf

[

∂iu

(

G′(u)−G(u)

u2

)

∂kf +
G(u)

u
∂if

]

= Aij +Bij,
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where

Aij :=
G(u)

u
∂jf

1

‖F‖

n
∑

k=1

G(u)

u
∂kf

[

∂iu

(

G′(u)−G(u)

u2

)

∂kf

]

and

Bij :=
G(u)

u
∂jf

1

‖F‖

n
∑

k=1

(

G(u)

u

)2

∂kf∂if.

It is easy to see that Bij = Bji. Using (3.16), we deduce that Aij = Aji. Therefore,
equation (3.18) holds and it follows that ϕ ∈ F . The proof of item (i) is completed.

Now we turn to prove item (ii). Adapting the notations in the step 1 of the
proof of item (i), the existence of ϕ guarantees that

rot F = 0,

Developing the latter equation (see (3.15)), it holds

∂iu

(

G′(u)u−G(u)

u2

)

∂jf +
G(u)

u
∂ijf = ∂ju

(

G′(u)u−G(u)

u2

)

∂if +
G(u)

u
∂ijf.

By assumption of G, we deduce that for almost all x ∈ Ω,

∂iu∂jf = ∂ju∂if.

The conclusion follows by applying lemma 3.7.

Now we present extensions of proposition 2.10 and theorem 2.11 in the case of
dimension n.

Proposition 3.19. Let α, β, θ be differentiable strictly convex cost functions such
that α+β = θ. We assume that θ is strictly convex. Then if f is differentiable and
satisfying Property F on Ω, there exists ϕ,ψ ∈ F , such that

f = ϕ+ ψ

and for all t > 0, it holds for x ∈ Ω almost surely,

Qθ
t f(x) = Qα

t ϕ(x) +Qβ
t ψ(x)

Proof. Since f satisfying Property F and (SA) on Ω, according to Proposition 3.11
for G = α′ ◦ θ′−1, there exists a ϕ ∈ F such that

∇ϕ(x) = α′ ◦ θ′−1(‖∇f‖(x))
∇f(x)

‖∇f‖(x)
(3.20)

holds for x ∈ Ω almost surely.
Denote Tt(x) the point such that

Qθ
t f(x) = f(Tt(x)) + tθ

(

‖x− Tt(x)‖

t

)

.
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It follows that x ∈ Ω almost surely,

∇f(Tt(x)) = θ′
(

‖x− Tt(x)‖

t

)

x− Tt(x)

‖x− Tt(x)‖
.

Combining equation (3.20), we get

∇ϕ(Tt(x)) = α′ ◦ θ′−1(‖∇f‖)
∇f

‖∇f‖
(Tt(x))

= α′

(

‖x− Tt(x)‖

t

)

x− Tt(x)

‖x− Tt(x)‖
,

which implies that for all x ∈ R
n,

Qα
t ϕ(x) = ϕ(Tt(x)) + tα

(

‖x− Tt(x)‖

t

)

. (3.21)

Now letting
ψ = f − ϕ,

it holds

∇ψ(Tt(x)) = β′
(

‖x− Tt(x)‖

t

)

x− Tt(x)

‖x− Tt(x)‖
.

It follows that

Qα
t ψ(x) = ψ(Tt(x)) + tβ

(

‖x− Tt(x)‖

t

)

. (3.22)

Summing (3.21) and (3.22) leads to the conclusion.

3.2 Proof of Theorem 3.4

Now we are ready to prove theorem 3.4.

Proof. We first prove (ii): Since g satisfies the smoothness assumption (SA) and

x 7→ g(x)−
1

2
〈x, x〉

is strictly convex, according to Proposition 3.11 by taking f := x 7→ g(x)− 1
2 〈x, x〉

and G = θ′, there exists a convex function ϕ such that it holds for x ∈ Ω almost
everywhere,

∇ϕ(x) = θ′(‖x−∇g(x)‖)
∇g(x)− x

‖x −∇g(x)‖
.

Since Ω is the support of µ, it follows that ν almost surely

Qθϕ(∇g(x)) = ϕ(x) + θ(‖x−∇g(x)‖).
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Hence,

Tθ(µ, ν) 6

∫

θ(‖x−∇g(x)‖)dν

=

∫

Qθϕ(∇g(x)) − ϕ(x)dν

=

∫

Qθϕdµ −

∫

ϕdν 6 T θ(ν|µ).

Together with the fact that T θ(ν|µ) 6 Tθ(µ, ν), the equality holds.
Now we prove that the transfer plan does not depend on the cost function.
Since θ is two times differentiable and convex, applying proposition 3.11 to

equation (3.24) for G = θ′, together with the fact that x→ g(x)− 1
2〈x, x〉 ∈ F , we

deduce that ϕ ∈ F . Now given a convex cost function α, applying Proposition 3.11
for G = α′ ◦ θ′−1, we deduce that there exists ψ ∈ F such that for ν almost surely,

∇ψ(x) = α′ ◦ θ′−1 ∇ϕ(x)

‖∇ϕ(x)‖
.

It follows that ν almost surely,

Qαψ(∇g(x)) = ψ(x) + α(‖x −∇g(x)‖).

The conclusion follows by writing the definition of optimal transport and its Kan-
torovich’s duality:

Tα(µ, ν) = inf
π

{
∫

α(‖x − y‖)dπ

}

6

∫

α(‖x −∇g(x)‖)dν,

and

Tα(µ, ν) = sup
f

{
∫

Qαfdµ−

∫

fdν

}

>

∫

Qαψdµ−

∫

ψdν

=

∫

α(‖x −∇g(x)‖)dν.

By a similar argument with the suprement taken over all f convex, Lipschitz and
lower semi-continuous, it holds

T α(ν|µ) =

∫

α(‖x−∇g(x)‖)dν.

We now turn to prove (i): For all convex function ϕ, it holds for all x ∈ Ω,

Qθϕ(∇g(x)) 6 ϕ(x) + θ(‖x−∇g(x)‖). (3.23)
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Now let ϕ be the convex function such that T θ(ν|µ) =
∫

Qθϕdµ−
∫

ϕdν. Together
with (3.23), it follows

T θ(ν|µ) =

∫

Qθϕdµ−

∫

ϕdν

6

∫

θ(‖x−∇g(x)‖)dν = Tθ(µ, ν).

The assumption of (i) implies that the inequality in the latter formula is in fact
equality. Thus, for x ∈ Ω, ν almost surely, equation (3.23) holds. We deduce that

∇ϕ(x) = θ′(‖x−∇g(x)‖)
∇g(x)− x

‖x −∇g(x)‖
. (3.24)

According to Proposition 3.11, the conclusion follows.

4 Applications

4.1 A simple example

In the space R
n, let µ be the uniform probability measure on the unit ball B(0, 1)

and ν be the uniform probability measure on the ball B(a, 1/4). Observe that
T := x 7→ 4x−a satisfies T#ν = µ and define g(x) := 2‖x‖2−ax for x ∈ B(a, 1/4).
It is easy to check that ∇g = T and it is the optimal transfer plan T (µ, ν) with
quadratic cost. Now observe that g(x) − 1

2‖x‖
2 satisfies Property F on B(a, 1/4).

According to item (ii) of theorem 3.4, we can deduce that T is an optimal transfer
plan for both weak and classical transport problem with convex costs depending on
the distance.

4.2 Links with the infimum convolution inequality

The so-called infimum operator inequalities were first introduced by Maurey in [17].
They are closely related to Transport-cost inequalities.

Let us stay in the space R
n and adapt the settings before. We say that a

probability measure µ satisfies the inf-convolution inequality IC(θ) with the cost θ
if the following holds for all measurable functions bounded from below f : Rn 7→ R:

∫

eQ
θfdµ

∫

e−fdµ 6 1.

This inequality was proved to be equivalent to the transport cost inequality (see
[5]):

Tθ(ν, µ) 6 H(ν|µ),

where H(ν|µ) is the related entropy of ν with respect to µ.
Now consider the inf-convolution inequality restricted to the class F (denoted

by rIC(θ)):
∫

eQ
θfdµ

∫

e−fdµ 6 1 ∀f ∈ F .
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According to proposition 3.19, let α, β be convex costs such that α+β = θ, assume
that rIC(α) and rIC(β) hold, then rIC(12θ) holds. The proof is simply apply Cauchy
Schwartz inequality and proposition 3.19, details are left to the readers.

We remark that in one dimension, Property F is convexity. Feldheim and al. in
[9] and Gozlan and al. in [12] proved independently that for a quadratic linear cost
α, the inequality rIC(α) is equivalent to the convex Poincaré inequality. For general
convex cost θ, rIC(θ) is equivalent to the weak transport inequality T θ 6 H. The
fact that rIC(α) and rIC(β) imply rIC(θ) is simply T θ = T α+T β in one dimension.
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