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Abstract

In this paper we consider a utility maximization problem with defaultable stocks and looping contagion risk.

We assume that the default intensity of one company depends on the stock prices of itself and other companies,

and the default of the company induces immediate drops in the stock prices of the surviving companies. We

prove that the value function is the unique viscosity solution of the HJB equation. We also perform some

numerical tests to compare and analyse the statistical distributions of the terminal wealth of log utility and

power utility based on two strategies, one using the full information of intensity process and the other a proxy

constant intensity process.

Keywords: dynamic portfolio optimization, looping contagion risk, HJB equation, viscosity solution, robust

tests, statistical comparisons.
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1 Introduction

There has been extensive research in dynamic portfolio optimization and credit risk modelling, both in theory

and applications (see Pham (2009), Brigo and Morini (2013), and references therein). Utility maximization with

credit risk is one of the important research areas, which is to find the optimal value and optimal control in the

presence of possible defaults of underlying securities or names. The early work includes Korn and Kraft (2003)

using the firm value structural approach and Hou and Jin (2002) using the reduced form intensity approach.

Defaults are caused by exogenous risk factors such as correlated Brownian motions, Ornstein-Uhlenbeck or

CIR intensity processes. Bo et al. (2010) consider an infinite horizon portfolio optimization problem with a

log utility and assume that both the default risk premium and the default intensity dependant on an external

factor following a diffusion process and show the pre-default value function can be reduced to a solution of a

quasilinear parabolic PDE (partial differential equation). Capponi and Figueroa-Lopez (2011) assume a Markov

regime switching model and derive the dynamics of the defaultable bond and prove a verification theorem with

applications to log and power utilities. Callegaro et al. (2012) consider a wealth allocation problem with several

defaultable assets whose dynamics depend on a partially observed external factor process.

Contagion risk or endogenous risk has grown into a major topic of interest as it is clear that the conventional

dependence modelling of assets using covariance matrix cannot capture the sudden market co-movements. The

failure of one company will have direct impacts on the performance of other related companies. For example,

during the global financial crisis of 2007-2008, the default of Lehman Brothers led to sharp falls in stock prices of

other investment banks and stock indices such as Dow Jones US Financial Index. Since defaults are rare events,

one may have to rely on the market information of other companies or indices to infer the default probability

of one specific company. For example, one can often observe in the financial market data that the stock price of

one company has negative correlation with the CDS (credit default swap) spread (a proxy of default probability)

of another company. A commonly used contagion risk model is the interacting intensity model (see Jarrow and

Yu (2001)) in which the default intensity of one name jumps whenever there are defaults of other names in a

portfolio. Contagion risk has great impact on pricing and hedging portfolio credit derivatives (see Gu et al.

(2013)).

There is limited research in the literature on dynamic portfolio optimization with contagion risk. Jiao

and Pham (2011) consider a financial market with one stock which jumps downward at the default time of a
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counterparty which is not traded and not affected by the stock and, for power utility, solve the post-default

problem by the convex duality method and show the process defined by the pre-default value function satisfies

a BSDE (backward stochastic differential equations). Jiao and Pham (2013) discuss multiple defaults of a

portfolio with exponential utility and prove a verification theorem for the value function characterized by a

system of BSDEs. Bo and Capponi (2016) consider a market consisting of a risk-free bank account, a stock

index, and a set of CDSs. The default of one name may trigger a jump in default intensities of other names in

the portfolio, which in turn leads to jumps in the market valuation of CDSs referencing the surviving names and

affects the optimal trading strategies. They solve the problem with the DPP (dynamic programming principle)

and, for power utility, find the optimal trading strategy on the stock index is Merton’s strategy, and those on

the CDSs can be determined by a system of recursive ODEs (ordinary differential equations). Capponi and

Frei (2017) introduce an equity-credit portfolio with a market consisting of a risk-free bank account, defaultable

stocks, and CDSs referencing these stocks. The default intensities of companies are functions of stock prices and

some external factors, which provides a genuine looping contagion default structure. For a log utility investor,

there exists an explicit optimal strategy which crucially depends on the existence of CDSs in the portfolio, see

Remark 3.2 for details.

In this paper we analyse the interaction of market and credit risks and its impact on dynamic portfolio

optimization. The market is assumed to have one risk-free savings account, and multiple defaultable stocks in

which the underlying companies may default and the value of defaulted stock price becomes zero. The default

time of any stock is the first jump time of a pure jump process driven by an intensity process that depends on all

the surviving stock prices, and the surviving stock prices jump at time of default. This setup characterizes an

investment with multiple stocks that are closely dependent on each other, both endogenously and exogenously.

Compared with exogenous factor models in the literature, which strongly depend on the historical calibration of

factor parameters, the looping contagion model has the ability to adjust trading strategies automatically based

on current stock prices in the portfolio. We study a terminal wealth utility maximization problem with general

utility functions under this looping contagion framework.

The aforementioned papers by Bo and Capponi (2016) and Capponi and Frei (2017) characterize the value

function as a solution of the HJB (Hamilton-Jacobi-Bellman) equation and, for power and log utility respectively,

find the optimal trading strategies with some implicit unknown functions. For general utilities, it is essentially

impossible one may guess a solution form of the HJB equation nor can one apply the verification theorem.

In that case, a standard approach to studying the value function is the viscosity solution method. We prove,

in addition to the verification theorem, that the value function is the unique viscosity solution of the HJB

equation. The result is important as it lays a solid theoretical foundation for numerical schemes to find the

value function, in contrast to the verification theorem that requires priori the existence of a classical solution

to the HJB equation, which is in general difficult to prove. To the best of our knowledge, this is the first time

the viscosity solution properties of the value function are studied and established in the literature of utility

maximization with looping contagion risk. This is one of the main contributions of the paper.

We perform some numerical and robust tests to compare the statistical distributions of terminal wealth of

log utility and power utility based on two trading strategies, one uses the full information of intensity process,

the other a proxy constant intensity process. These two strategies may be considered respectively the active

and passive portfolio investment. The numerical examples show that, statistically, they have similar terminal

wealth distributions, but active portfolio investment is more volatile in general. Furthermore, we illustrate

the financial insight of the looping contagion model via a similar numerical test, but with different initial

stock prices. The numerical test assumes that the constant intensity is estimated from historical calibration

window, but there are big falls of stock prices at the start of the investment. The numerical example shows

that the terminal wealth based on strategies using stock dependent intensity would have much higher expected

return and standard deviation than the one using a constant intensity. Therefore, one may greatly improve the

performance of investment if one uses the information of stock dependant default intensity in a financial crisis

period.

The rest of the paper is organized as follows. In Section 2 we introduce the market model and state the

main results, including the continuity of the value function for one-sided contagion case (Theorem 2.5), the

verification theorem (Theorem 2.7), and the unique viscosity solution property of the value function (Theorems

2.10 and 2.14). In Section 3 we perform numerical and robust tests with statistical distribution analysis for log

and power utility. In Section 4 we prove Theorems 2.5, 2.7, 2.10 and 2.14. Section 5 concludes the paper.
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2 Model Setting and Main Results

Let (Ω,G, (Gt)t≥0,P) be a complete probability space satisfying the usual conditions and (Gt)t≥0 a filtration to be

specified below. Let the market consist of one risk-free bank account with value process (Bt)t≥0 and interest rate

r and N defaultable stocks with price process (St)t≥0 := (S1
t , ..., S

N
t )Tt≥0, where aT is the transpose of a vector

a. Let (Ft)t≥0 be the filtration generated by N correlated Brownian motions (Wt)t≥0 := (W 1
t , ...,W

N
t )Tt≥0,

which represents the market information. Let τ := (τ1, ..., τN ) be a vector of nonnegative random variables

representing the default time of each defaultable stock, defined by

τi := inf

{
s ≥ t :

∫ s

t

hiudu ≥ Xi
}
,

where (hit)t≥0 is an intensity rate process and Xi is a standard exponential variable on the probability space

(Ω,G,P) and is independent of the filtration (Ft)t≥0, which means that τi is a totally inaccessible stopping time.

We make the further assumption that Xi is independent of Xj for i 6= j. Under this assumption, the default of

each stock is independent.

Let (Ht)t≥0 be the filtration generated by the default indicator process (Ht)t≥0 := (H1
t , ...,H

N
t )Tt≥0 where

each of the default process Hi
t is associated with the intensity process (hit)t≥0 and defined by Hi

t := I{τi≤t},
the indicator function that equals 0 if τi > t and 1 otherwise. Denote the value of indicator process Ht by z,

thus z ∈ I := {0, 1}N . The indicator process Ht can only jump from z := (z1, ...zN )T to its neighbor state

zi := (z1, ..., 1−zi, ..., zN )T with rate (1−zi)hit for i ∈ {1, ..., N}. We denote Nz the number of surviving stocks

when Ht = z and Iz the set of surviving stock numbers.

Finally, let (Gt)t≥0 be an enlarged filtration, defined by Gt = Ft ∨ Ht, which contains both the market

information and the default information. The stopping time τi defined in above way satisfies the so-called

H-hypothesis, which means any F-square integrable martingale is also a G-square integrable martingale (see

Bielecki and Rutkowski (2003)), a property we will use later in the proofs. The market model is driven by the

following stochastic differential equations (SDEs):

dSit
Sit−

= µidt+ σidW
i
t − LTi dHt,

dBt
Bt

= rdt,

for integer i ∈ {1, ..., N} where µi is the growth rates of Si, respectively, σi is the volatility rate. The vector

Li := (Li1, ..., LiN )T represents the default impact of each stock to the ith stock, thus Lii = 1.

All coefficients are positive constants to simplify discussions. We assume that the defaults of stocks do not

occur at the same time. At default time τi the defaultable stock price Si falls to zero and the other stock price

Sj is reduced by a percentage of Lji for i 6= j. We require that Lii = 1 and Lij < 1 for i 6= j. Lji < 1 ensures

the other stock price Sj does not fall to zero at default time of τi. We denote by K a generic constant which

may have different values at different places.

Assumption 2.1. The intensity process (hit)t≥0 of the default indicator process (Hi
t)t≥0 can be represented by

hit = h(Szt−, z), a function of surviving stock prices Szt− := (Sit−)i∈Iz and the state of default indicator process

Ht− = z. For simplicity, we denote h(Szt−, z) by hiz(St−). We further assume that hiz is bounded and continuous

in Szt− for ∀z ∈ I and i ∈ {1, . . . , N}.

To classify the looping contagion model setting, we give two examples which contain only two stocks in the

market, denoted by (St)t≥0 and (Pt)t≥0.

Example 2.1. (One-sided contagion) In this case, (St)t≥0 denotes the price of ETF (exchange-traded-fund)

on DJ US Financial Index and (Pt)t≥0 denotes the price of a US investment bank. We may treat the ETF as

default-free and its stock price reflects the whole US banking industry and thus has impact on the performance

of the individual bank. Then the model is given by

dSt
St−

= µSdt+ σSdWS
t − LSdHt,

dPt
Pt−

= µP dt+ σP dWP
t − dHt,

where µS and µP are the growth rates of S and P , respectively, σS and σP are the volatility rates, and LS < 1

is the percentage loss of the stock S upon the default of stock P . At default time τ the defaultable stock price P

falls to zero and the stock price S is reduced by a percentage of LS. The intensity process (ht)t≥0 of the default

indicator process (Ht)t≥0 can be represented by ht = h(St−, Pt−).
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Example 2.2. (Looping contagion) In this case, both (St)t≥0 and (Pt)t≥0 denote the prices of single stocks.

Then the model is given by

dSt
St−

= µSdt+ σSdWS
t − dHS

t − LSdHP
t ,

dPt
Pt−

= µP dt+ σP dWP
t − LP dHS

t − dHP
t .

At default time of S (resp. P ), the stock price S (resp. P ) falls to zero and the stock price P (resp. S) is reduced

by a percentage of LP (resp. LS). The intensity process hS(0,0)(t) (resp. hP(0,0)(t)) of the default indicator process

(HS
t )t≥0 (resp. (HP

t )t≥0) can be represented by hS(0,0)(t) = hS(0,0)(St−, Pt−) (resp. hP(0,0)(t) = hP(0,0)(St−, Pt−)).

After the default of S (resp. P ), the intensity process hP(1,0)(t) (resp. hS(0,1)(t)) of the default indicator process

(HP
t )t≥0 (resp. (HS

t )t≥0) can be represented by hP(1,0)(t) = hP(1,0)(Pt−) (resp. hS(0,1)(t) = hS(0,1)(St−)).

An investor dynamically allocates proportions (π1, . . . , πN , 1−
∑N
i=1 π

i) of the total wealth into the stocks

and the bank account. The admissible control set A is the set of control processes π that are progressively

measurable with respect to the filtration (Gt) and πt ∈ A for all t ∈ [0, T ]. The set A is defined by

A :=

{
π ∈ O and 1−

N∑
i=1

Lijπ
i ≥ εA for ∀j ∈ {1, ..., N}

}
,

where O is a bounded set in RN and εA is a positive constant. The dynamics of the wealth process (Xt)t≥0 is

given by

dXt

Xt−
=
(
r + πTt Dtθ

)
dt+ πTt DtσdWt − πTt−DtLdHt, (2.1)

where

Dt :=

1−H1
t . . . 0

...
...

...

0 . . . 1−HN
t

 , θ :=

µ1 − r
...

µN − r

 , σ :=

σ1 . . . 0
...

...
...

0 . . . σN

 , L :=

L11 . . . L1N

...
...

...

LN1 . . . LNN

 .

The matrix-valued process (Dt)t≥0 is adapted to the filtration (Ht)t≥0 and plays the role of removing the

defaulted stocks. Even though the admissible control set is still A after default time τi, π
i
t = 0 and is not

a variable but a constant. The requirement 1 −
∑N
i=1 Lijπ

i ≥ εA for ∀j ∈ {1, ..., N} ensures that when jth

stock defaults, the maximum percentage loss of the wealth does not exceed 1 − εA, in other words, if x is the

pre-default wealth, then the post-default wealth is at least εAx.

Remark 2.2. For a given control process π ∈ A, equation (2.1) admits a unique strong solution that satisfies

sup
t∈[0,T ]

E [Xα
t ] ≤ Kxα (2.2)

for any α > 0. This can be easily verified as Xα
t = xαNtMt, where

Nt := exp

α ∫ t

0

(
r + πTuDuθ

)
du+

1

2
(α2 − α)

∫ t

0

πTuDuΣDuπudu+ α

N∑
j=1

∫ t

0

ln

(
1−

N∑
i=1

Lijπ
i
u−

)
dHj

u

 ,

Mt := exp

(∫ t

0

απTuDuσdWu −
1

2
α2

∫ t

0

πTuDuΣDuπudu

)
,

Σ :=

 (σ1)2 ρ12σ1σ2 . . . ρ1Nσ1σN
...

...
...

...

ρN1σ1σN ρN2σ2σN . . . (σN )2

 ,

πu := (π1
u, . . . , π

N
u )T .

Note that ρij is the correlation between Brownian motion W i and W j . Since A is a bounded set and 1 −∑N
i=1 Lijπ

i ≥ εA for ∀j ∈ {1, ..., N}, we have |Nt| < K, independent of t, and Mt is an exponential martingale,

thus E [Mt] = 1, which gives (2.2).

Our objective is to maximize the expected utility of the terminal wealth, that is,

sup
π∈A

E[U(Xπ
T )],

where U is a utility function defined on [0,∞) and satisfies the following assumption.
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Assumption 2.3. The utility function U is continuous, non-decreasing, concave, and satisfies U(0) > −∞ and

|U(x)| ≤ K (1 + xγ) for all x ∈ [0,∞), where K > 0 and 0 < γ < 1 are constants.

Depending on the default scenarios, the value function is defined by

vz(t, x, s) = sup
π∈A

E [U(Xπ
T )|Xt = x, St = s,Ht = z]

for (t, x, s) ∈ [0, T ]× (0,∞)Nz+1 and z ∈ I. Note that if h is independent of s, then the value function vz is a

function of t, x only.

Remark 2.4. Combining Assumption 2.3 and Remark 2.2, we have |vz(t, x, s)| ≤ K(1 + xγ).

For the one-sided contagion model defined in Example 2.1, the problem can be naturally split into pre-

default case and post-default case. The latter is a standard utility maximization problem as stock P disappears

and the post-default value function v1 is a function of time t and wealth x only, see Pham (2009). We have the

following continuity result for the pre-default value function v0.

Theorem 2.5. For the one-sided contagion model (Example 2.1), assume further that h is non-increasing

in p, monotone in s and Lipschitz continuous in s, p, and U satisfies |U(x1)− U(x2)| ≤ K |x1 − x2|γ for all

x1, x2 ∈ [0,∞). Then the pre-default value function v0 is continuous in (t, x, s, p) ∈ [0, T ]× [0,∞)× (0,∞)2.

Remark 2.6. We assume h is non-increasing in p as intuitively the default probability of one company is

non-increasing with its own stock price. We also assume that h is monotone in s as we consider S and P are

strongly correlated in the sense that the default probability of stock P is either positively or negatively affected

by the stock S. The continuity of pre-default value function for the one-sided contagion model relies on the

special structure that there is only one default process in the place. For general looping contagion models, the

continuity of the value function is difficult to obtain as the order of multiple jumps is random.

Applying the DPP, one can show that the value function satisfies the following HJB equation:

− sup
π∈A
Lπwz(t, x, s) = 0 (2.3)

for (t, x, s) ∈ [0, T ) × (0,∞)Nz+1 and z ∈ I with terminal condition wz(T, x, s) = U(x), where Lπ is the

infinitesimal generator of processes S, H and X with control π, given by

Lπwz(t, x, s) =
∂wz
∂t

+ (r + θTπ)x
∂wz
∂x

+
∑
i∈Iz

µisi
∂wz
∂si

+
1

2
πTΣπx2 ∂

2wz
∂x2

+
1

2

∑
i∈Iz

σ2
i s

2
i

∂2wz
∂s2
i

+
∑

i,j∈Iz,i<j
ρijσiσjsisj

∂2wz
∂si∂sj

+
∑
i∈Iz

ρTi σπσixsi
∂2wz
∂x∂si

+
∑
i∈Iz

hiz(s)

wzi
t, x

1−
N∑
j=1

Ljiπ
j

 , si

− wz
 , (2.4)

where si := (s1(1− L1i), . . . , sj(1− Lji), . . . , sN (1− LNi))T for j ∈ Izi and ρi := (ρi1, . . . , ρij , . . . , ρiN )
T

for

j ∈ Iz. Note that the dimension of si is Nzi which is equal to Nz − 1 as we have removed the ith defaulted

stock.

We next give a verification theorem for the value function.

Theorem 2.7. Assume that the function tuple w := (wz)z∈I where wz ∈ C
(
[0, T ]×(0,∞)Nz+1

)
∩C1,2,...,2

(
[0, T )×

(0,∞)Nz+1
)

for any z ∈ I solves (2.3) with the terminal condition wz(T, x, s) = U(x), that wz satisfies a growth

condition |wz(t, x, s)| ≤ K (1 + xγ) for 0 < γ < 1, that the maximum of the Hamiltonian in (2.3) is achieved

at π̂(t, x, s, z) in A, and that SDE (2.1) admits a unique strong solution X π̂
t with control π̂. Then wz coincides

with the value function vz and π̂ is the optimal control process.

Remark 2.8. For log utility U(x) = lnx, the assumption U(0) > −∞ is not satisfied. However, one may

postulate that the value function has a form wz(t, x, s) = lnx+fz(t, s), where f is a solution of a linear PDE, see

(3.1). If we assume fz ∈ C
(
[0, T ]× (0,∞)Nz+1

)
∩ C1,2,...,2

(
[0, T )× (0,∞)Nz+1

)
and is bounded, then one can

show that wz is indeed the value function with the same proof as that of Theorem 2.7 except one change: instead

of using |wz(t, x, s)| ≤ K (1 + xγ), which does not hold for log utility, one uses |wz(t, x, s)| ≤ K (1 + | lnx|).
Since

lnXu = lnx+

∫ u

t

(
r + πTūDūθ −

1

2
πTūDūΣDūπū

)
dū+

∫ u

t

πTūDūσdWū +

N∑
j=1

∫ u

t

ln

(
1−

N∑
i=1

Lijπ
i
ū−

)
dHj

ū
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for u ∈ [t, T ], we have E
[
|lnXu|2

]
≤ K(1 + (lnx)2), which provides the required uniform integrability property

in the proof.

The verification theorem assumes the existence of a classical solution of the HJB equation (2.3), which may

not be true for the value function vz. Next we show that the value functions {vz}z∈I is the unique viscosity

solution to the PDE system characterized by (2.3) based on the following definition.

To facilitate discussions of viscosity solution, we define F function by

Fz

(
t, x, s, w,∇(t,x,s)wz,∇2

(x,s)wz

)
= − sup

π∈A
Lπwz(t, x, s),

where ∇(t,x,s)wz ∈ RNz+2 is the gradient vector of wz with respect to (t, x, s), and ∇2
(x,s)wz ∈ R(Nz+1)×(Nz+1)

is the Hessian matrix of wz with respect to (x, s). wz and its derivatives are evaluated at (t, x, s). The HJB

equation (2.3) is the same as

Fz

(
t, x, s, v,∇(t,x,s)vz,∇2

(x,s)vz

)
= 0

for ∀z ∈ I.

Definition 2.9. (i) w := (wz)z∈I is a viscosity subsolution of the PDE system (2.3) on [0, T )× (0,∞)N+1 if

Fz̄

(
t̄, x̄, s̄, ϕ,∇(t,x,s)ϕz̄,∇2

(x,s)ϕz̄

)
≤ 0

for all z̄ ∈ I, (t̄, x̄, s̄) ∈ [0, T )× (0,∞)Nz̄+1 and testing functions ϕ := (ϕz)z∈I ∈ C1,2,...,2
(
[0, T )× (0,∞)Nz+1

)
such that (wz̄)

∗(t̄, x̄, s̄) = ϕz̄(t̄, x̄, s̄) and (wz)
∗ ≤ ϕz for ∀z ∈ I on [0, T ) × (0,∞)Nz+1, where (wz)

∗ is the

upper-semicontinuous envelope of wz, defined by (wz)
∗(t̄, x̄, s̄) = lim sup(t,x,s)→(t̄,x̄,s̄) wz(t, x, s).

(ii) w := (wz)z∈{0,1}N is a viscosity supersolution of the PDE system (2.3) on [0, T )× (0,∞)N+1 if

Fz̄

(
t̄, x̄, s̄, ϕ,∇(t,x,s)ϕz̄,∇2

(x,s)ϕz̄

)
≥ 0

for all z̄ ∈ I, (t̄, x̄, s̄) ∈ [0, T )× (0,∞)Nz̄+1 and testing functions ϕ := (ϕz)z∈I ∈ C1,2,...,2
(
[0, T )× (0,∞)Nz+1

)
such that (wz̄)∗(t̄, x̄, s̄) = ϕz̄(t̄, x̄, s̄) and (wz)∗ ≥ ϕz for ∀z ∈ I on [0, T ) × (0,∞)Nz+1, , where (wz)∗ is the

lower-semicontinuous envelope of wz, defined by (wz)∗(t̄, x̄, s̄) = lim inf(t,x,s)→(t̄,x̄,s̄) wz(t, x, s).

(iii) We say that w is a viscosity solution of the PDE system (2.3) on [0, T ) × (0,∞)N+1 if it is both a

viscosity subsolution and supersolution of (2.3).

Based on the above definition, we have the following viscosity solution property for the value function.

Theorem 2.10. The value function v = (vz)z∈I is a viscosity solution of the PDE system (2.3) on [0, T ) ×
(0,∞)N+1, satisfying the growth condition |vz(t, x, s)| ≤ K(1 + xγ) for some constant 0 < γ < 1.

To prove the uniqueness of the viscosity solution, we need to introduce a structure condition on the model.

Assumption 2.11. The following inequality holds:

Jz(π) ≤ K

ε

(
|x1 − x2|2 +

∑
i∈Iz

|s1i − s2i|2
)
, ∀π ∈ A, z ∈ I,

where

Jz(π) :=
1

2
πTΣπ

(
x2

1Q1,1 − x2
2Q
′
1,1

)
+

1

2

∑
i∈Iz

σ2
i

(
s2

1iQki,ki − s2
2iQ
′
ki,ki

)
+

∑
i,j∈Iz,i<j

ρijσiσj

(
s1is1jQki,kj − s2is2jQ

′
ki,kj

)
+
∑
i∈Iz

ρTi σπσi
(
x1s1iQ1,ki − x2s2iQ

′
1,ki

)
and matrices Q and Q′ satisfy (

Q 0

0 −Q′

)
≤ 3

ε

(
INz+1 −INz+1

−INz+1 INz+1

)
.

Remark 2.12. The dimension of matrices Q and Q′ in Theorem 2.14 is Nz+1. We use ki to represent the right

index of matrices which corresponds to si where i ∈ Iz. The introduction of ki is to resolve the gap between s

index and matrix index. We use a simple example to illustrate the definition of ki. For example, Iz := {3, 4, 6}.
In this case, there are three surviving stocks in the market, namely s3, s4, s6. The dimension of matrices Q and

Q′ is 4 (including 3 surviving stocks and the wealth process x). Then k3 = 2, k4 = 3, k6 = 4.
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Remark 2.13. For the simplest case where there are only two defaultable stocks in the market, e.g. Example

2.1 and Example 2.2, Assumption 2.11 holds for ∀ρ ∈ (−1, 1), as Jz(π) can be written as

Jz(π) =
1

2
ξT
(
Q 0

0 −Q′

)
ξ +

1

2
(1− ρ2)(σP )2

(
πPx1, 0, p1, π

Px2, 0, p2

)(Q 0

0 −Q′

)(
πPx1, 0, p1, π

Px2, 0, p2

)T
,

where ξ =
(
mTπx1, σ

Ss1, ρσ
P p1,m

Tπx2, σ
Ss2, ρσ

P p2

)T
, m = (σS , ρσP )T , n = (ρσS , σP )T and π := (πS , πP )T .

Using the matrix inequality and simple algebraic calculation, one can show that

Jz(π) ≤ 3

2ε

(
(mTπ)2|x1−x2|2+(σS)2|s1−s2|2+ρ2(σP )2|p1−p2|2

)
+

3

2ε
(1−ρ2)(σP )2

(
(πP )2|x1 − x2|2 + |p1 − p2|2

)
.

By the boundedness of control set A, Assumption 2.11 holds for all ρ ∈ (−1, 1).

The next result states the uniqueness of the viscosity solution.

Theorem 2.14. Let Assumption 2.11 hold. Assume the value function v = (vz)z∈Iz , satisfies the terminal con-

dition vz(T−, x, s) = U(x) and the boundary conditions (vz)
∗(t, x, s) = (vz)∗(t, x, s) for (x, s) on the boundary

of [0,∞)Nz+1. Then v is the unique viscosity solution of the PDE system (2.3) on [0, T )× (0,∞)N+1.

Remark 2.15. The condition (vz)
∗(t, x, s) = (vz)∗(t, x, s) for (x, s) on the boundary is equivalent to the

existence of the limit of the value function vz at boundary points. This condition is needed as the domain

of (x, s) variables is (0,∞)Nz+1, not (−∞,∞)Nz+1, in which case one may impose some polynomial growth

conditions on vz, see Pham (2009), Remark 4.4.8, for further discussions on this point.

3 Numerical Tests

In this section, we perform some statistical and robust tests for log and power utilities. We assume that there

are two defaultable stocks and one risk-free bank account in the market (Example 2.2).

3.1 Optimal strategies for log utility

For U(x) = lnx, the post-default case z = (1, 1) is investing into the risk-free bank account, thus πS = πP = 0

and v(1,1)(t, x) = lnx + r(T − t). We conjecture that the pre-default value function v(0,0)(t, x, s, p) takes the

form

v(0,0)(t, x, s, p) = lnx+ f(0,0)(t, s, p), (3.1)

and the value function v(1,0)(t, x, p), v(0,1)(t, x, s) respectively take the forms

v(1,0)(t, x, p) = lnx+ f(1,0)(t, p), v(0,1)(t, x, s) = lnx+ f(0,1)(t, s). (3.2)

Substituting (3.1) and (3.2) into (2.3), we get a linear PDE for f(0,0) depending on the value of f(1,0) and f(0,1):

∂f(0,0)

∂t
+ bT (s, p)Df(0,0) +

1

2
Tr
(
σσT (s, p)D2f(0,0)

)
−
(
hS(0,0)(s, p) + hP(0,0)(s, p)

)
f(0,0)(t, s, p)

+ hS(0,0)(s, p)f(1,0)(t, p(1− LP )) + hP(0,0)(s, p)f(0,1)(t, s(1− LS)) + r + sup
π∈A

G(0,0)(s, p, π) = 0
(3.3)

with the terminal condition f(0,0)(T, s, p) = 0, where G(0,0) is defined by

G(0,0)(s, p, π) := −1

2
πTΣπ + θTπ + hS(0,0)(s, p) ln(1− πS − LPπP ) + hP(0,0)(s, p) ln(1− LSπS − πP ),

and the other notations are given by

b(s, p) :=

(
µSs

µP p

)
, Df(0,0) :=

(
∂f(0,0)

∂s
∂f(0,0)

∂p

)
, σ(s, p) :=

(
σSs 0

ρσP p
√

1− ρ2σP p

)
, D2f(0,0) :=

∂2f(0,0)

∂s2
∂2f(0,0)

∂s∂p
∂2f(0,0)

∂s∂p

∂2f(0,0)

∂p2

 .

By the same argument, we get a linear PDE for f(1,0):

∂f(1,0)

∂t
+ µP p

∂f(1,0)

∂p
+

1

2
(σP )2p2 ∂

2f(1,0)

∂p2
− hP(1,0)(p)f(1,0)(t, p) + r + hP(1,0)(p)r(T − t) + sup

π∈A
G(1,0)(p, π) = 0
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with the terminal condition f(1,0)(T, p) = 0, where G(1,0) is defined by

G(1,0)(p, π) := −1

2
(σP )2(πP )2 + (µP − r)πP + hP(1,0)(p) ln(1− πP ).

The PDE associated with f(0,1) can be obtained similarly.

Assume the control constraint set A is given by

A :=
{
π | aS ≤ πS ≤ bS and aP ≤ πP ≤ bP

}
,

where aS , bS , aP , bP ∈ R are chosen such that 1 − LTπ ≥ εA for ∀π ∈ A. We need to solve a constrained

optimization problem:

max
π∈A

G(0,0)(s, p, π).

Since A is compact and G(0,0) is continuous, there exists an optimal solution which satisfies the Kuhn-Tucker

optimality conditionµS − r − (σS)2πS − ρσSσPπP − hS(0,0)(s,p)

1−πS−LPπP −
LShP(0,0)(s,p)

1−LSπS−πP + µ1 − µ2 = 0

µP − r − (σP )2πP − ρσSσPπS − LPhS(0,0)(s,p)

1−πS−LPπP −
hP(0,0)(s,p)

1−LSπS−πP + µ3 − µ4 = 0
(3.4)

and the complementary slackness condition

µ1(πS − aS) = 0, µ2(bS − πS) = 0, µ3(πP − aP ) = 0, µ4(bP − πP ) = 0, (3.5)

where µi ≥ 0, i = 1, . . . , 4, are Lagrange multipliers. Since πS can only take value either in the interior of

interval [aS , bS ] or one of two endpoints, the same applies to πP , we have nine possible combinations.

If both πS and πP are interior points, then µi = 0 for i = 1, . . . , 4 from (3.5). Assuming that there

exists a unique solution
(

(πS)∗(0,0), (π
P )∗(0,0)

)
of (3.4) such that (πS)∗(0,0) ∈ (aS , bS) and (πP )∗(0,0) ∈ (aP , bP ),

then
(

(πS)∗(0,0), (π
P )∗(0,0)

)
is the optimal control. We can discuss other cases one by one. For example, if

(πS)∗(0,0) = aS and (πP )∗(0,0) ∈ (aP , bP ), then µ2 = µ3 = µ4 = 0 from (3.5) and (πP )∗(0,0) and µ1 are solutions of

equation (3.4). If solutions do not satisfy (πP )∗(0,0) ∈ (aP , bP ) and µ1 ≥ 0, then this case is impossible.

Remark 3.1. Applying Kuhn-Tucker optimality condition to G(1,0)(p, π), we get the explicit optimal control

for z = (1, 0) as

(πS)∗(1,0) = 0, (πP )∗(1,0) =
µP − r + (σP )2 −

√
(µP − r − (σP )2)2 + 4(σP )2hP(1,0)(p)

2(σP )2
,

provided (πP )∗(1,0) ∈ (aP , bP ), otherwise, (πP )∗(1,0) equals aP or bP .

Remark 3.2. Capponi and Frei (2017) derive explicit optimal trading strategies for log utility investors when

there are N stocks and N CDSs for these stocks. Applying Ito’s formula to log wealth process and taking

expectation, they get

E[lnXT ] = lnx+

∫ T

0

E[αt]dt, (3.6)

where αt := r+ f(x̄) +
∑
n∈Iz hngn(yn) and x̄ is a vector of dimension Nz such that each component is a linear

combination of Nz controls π into stocks and Nz controls ψ into CDSs, and yn, n ∈ Iz, are similarly defined.

To maximize αt over controls π and ψ, Capponi and Frei (2017) use a clever trick of maximizing f(x̄) and

gn(yn) separately and derive a linear equation system with 2Nz equations and 2Nz variables in π and ψ. The

explicit optimal controls come from solving the equation system, see equation (B.3) in the E-companion paper

of Capponi and Frei (2017).

The success of finding the explicit optimal control in Capponi and Frei (2017) crucially relies on the existence

of equal number of CDSs in the model. When there is no CDS in the portfolio as in our case, maximizing

f(x̄) and gn(yn) separately would result in an incompatible system of 2Nz equations with Nz variables. It is

therefore impossible to get the closed-form optimal control for log utility investors in our looping contagion

model by applying Capponi and Frei’s technique. In fact, applying Ito’s formula to log wealth process and

taking expectation in our model, we get

E[lnXT ] = lnx+

∫ T

0

E[α̃t]dt,

where α̃t := r + πTt Dtθ − 1
2π

T
t DtΣDtπt +

∑
j∈Iz h

j
z(s) ln

(
1−

∑
i∈Iz Lijπ

i
t−
)
. Taking derivatives of α̃t with

respect to π would lead to the same equation system as that in (3.4).
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3.2 Performance comparison of state-dependent and constant intensities

We now do some statistical analysis. The data used are the same as the benchmark case and:

T = 1, S0 = 100, P0 = 100, x0 = 100.

Assume the intensity function h is given by

h(x, y) = min
{

max
{
h0 (k1x+ k2y)

−α
, hm

}
, hM

}
(3.7)

with minimum intensity hm = 0.05, maximum intensity hM = 1.0, and parameter α = 1. The default intensity

functions with respect to each stock and default state are given by

hS(0,0)(s, p) = h(s, p), hP(0,0)(s, p) = h(p, s), hS(0,1)(s) = h(s, 0), hP(1,0)(p) = h(p, 0).

Note that h0 controls the initial intensity and weights k1, k2 control the sensitivity of intensity h to stock prices

s and p. We set h0 = 10.0 such that the initial intensity is 0.1 and k1 = 0.7, k2 = 0.3 which means the default

intensity of one stock is slightly more sensitive to its own stock price. Moreover, the intensity of one stock

jumps up when the other stock defaults, which captures the virtue of interacting default intensity model, see

Bo and Capponi (2013).

Figure 1: Sample paths of stock price, default intensity, and wealth

Figure 1 shows sample paths of stock prices, default intensities, and optimal wealth with two different trading

strategies. The left panel shows stock price paths of S and P . In this scenario, only stock S defaults. At time of

default, stock price S drops to zero and stock price P jumps down then continues. The middle panel shows the

default intensity processes hSz (St, Pt) and hPz (St, Pt), which are functions of stock prices St, Pt. The intensity

of stock S becomes zero after default, while the default intensity hP(0,0)(St, Pt) jumps up to hP(1,0)(Pt). The

right panel shows the sample wealth paths when optimal control strategies used are based on S, P -dependant

intensities and constant intensities (value equal to 0.1). Both the wealth paths with S, P -dependant intensities

and constant intensities jump up when default occurs and then two wealth paths move in the same pattern.

Compared with the constant intensities, the S, P -dependant wealth path jumps more. This is not surprising

as at time of default, strategies with intensity h(St, Pt) short sells more stocks S and P than strategies with

constant intensity, which means gain is more, see Figure 2. Of course, this is due to the fact that at time of

default the default intensities of S and P are both above 0.1. The opposite phenomenon happens when the

intensity hP (St, Pt) at time of default is larger than constant intensity 0.1.

Figure 2: Optimal controls and terminal wealth distribution.
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Figure 2 shows optimal controls πS and πP associated with the stock paths in Figure 1 and the statistical

distributions of the wealth at time T . The left panel and mid panel are proportions of wealth invested in stocks

S and P , respectively. It is clear that as default intensity increases, investments in stocks S and P both decrease

and investment in savings account B increases, which is intuitively expected as if the default probability of one

stock increases, then one would reduce the holdings of both stocks S and P to reduce the risk of loss in case the

default of system indeed occurs. In this scenario, both the optimal investment strategies to stock S and P are

short-selling, which is a combination effect of parameters chosen and default in the place. We simulate 10000

paths of both stock prices S and P , using S, P -dependent default intensity h(St, Pt). Among all these paths,

about 1/5 (precisely 1752 paths) contain defaults of either S or P . The terminal wealth is generated by two

strategies: one is optimal strategy based on the full information of h(St, Pt), the other is optimal strategy based

on constant intensity 0.1. The right panel shows the histograms of terminal wealth of these two strategies. It

is clear that their distributions are similar but with some slight differences at tail parts, that is, probability

of over-performance is higher and probability of under-performance is lower with S, P -dependant intensities.

These histograms seem to indicate, for log utility, the overall performance of S, P -dependent optimal strategies

and constant strategies are similar, while the S, P -dependent optimal strategies perform better in extreme

scenarios.

mean std dev 2.3% quantile 97.7% quantile

All samples + h(S, P ) 107.78 22.60 84.08 171.82

All samples + constant h 107.59 19.27 78.60 157.80

Default + h(S, P ) 134.81 36.04 83.80 225.20

Default + constant h 134.68 21.50 95.29 178.04

No-default + h(S, P ) 102.17 12.82 84.11 134.68

No-default + constant h 101.96 12.99 78.13 130.48

Table 1: Sample means, standard deviations, and quantile values.

Table 1 contains sample means, sample standard deviations, and quantile values at low end (2.3%) and high

end (97.7%) for both S, P -dependant intensity and constant intensity 0.1. It is clear that the overall sample

mean with S, P -dependent optimal strategies is (slightly) higher than constant intensity optimal strategies,

which is expected as the former is the genuine optimal control, however, the sample standard deviation with

S, P -dependent optimal strategies is also higher, which implies the S, P -dependent optimal strategies can be

volatile and risky, while the constant optimal strategies are more conservative. However, if we check the

quantiles of the distribution (which is a different risk measure), we find that the S, P -dependent optimal

strategies overall generate both higher 2.3% quantile (less loss) and higher 97.7% quantile (more gain), which

implies the S, P -dependent optimal strategies outperform the constant strategies in the extreme scenarios. Note

that the outperformance in upper quantile comes from more short selling (anticipating the default when stock

price is very low).

Remark 3.3. By far the conclusion drawn relies on the benchmark parameter values, in which case the optimal

controls for both stocks are short selling in most scenarios. We repeat the same comparison tests on two other

parameter sets (if not specified, the parameter value is the same as benchmark case).

• Parameter set 1. σS = 0.2, σP = 0.3, LS = 0.1, LP = 0.2, ρ = 0.4, h0 = 5.0, hm = 0.01.

• Parameter set 2. r = 0.01, µS = 0.15, µP = 0.2, LS = 0.05, LP = 0.1, ρ = 0.7, h0 = 5.0, hm = 0.01.

In most scenarios, the strategies of parameter set 1 is short selling stock S and longing stock P and the

strategies of parameter set 2 are longing both stocks S, P . The overall performance with S, P -dependent

optimal strategies is very similar to that with constant intensity optimal strategies. The overall sample mean

with S, P -dependent optimal strategies is (slightly) higher than constant intensity optimal strategies, and the

sample standard deviation with S, P -dependent optimal strategies is also higher, which implies the difference

in the tail distribution and that S, P -dependant optimal strategies can be more volatile.

3.3 Robust tests of model parameters

Assume intensity function h is given by (3.7) and stock prices S and P are generated based on that. It may be

difficult to calibrate parameters accurately even one knows the exact form of the intensity function. We do some
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robust tests for parameters k1, k2, α, hm, hM , h0, that is, we compare the optimal performances of two investors,

one uses benchmark parameter values and the other incorrect estimated values. We change one parameter only

in each test while keep all other parameters fixed at benchmark values.

mean std dev 2.3% quantile 97.7% quantile

benchmark 107.78 22.60 84.08 171.82

k1 = 0.5, k2 = 0.5 107.69 (-0.09%) 22.85 (1.10%) 83.00 (-1.29%) 173.82 (1.16%)

k1 = 0.3, k2 = 0.7 107.69 (-0.09%) 23.15 (2.44%) 80.95 (-3.73%) 174.67(1.66%)

α = 0.8 111.59 (3.53%) 53.15 (135.20%) 53.18 (-36.75%) 262.58 (52.82%)

α = 1.2 105.17 (-2.42%) 9.43 (-58.26%) 84.52 (0.53%) 122.93 (-28.45%)

hm = 0.01, hM = 1.5 107.77 (-0.01%) 22.60 (0.01%) 84.08 (0.00%) 171.82 (0.00%)

hm = 0.07, hM = 0.5 107.76 (-0.02%) 22.62 (0.07%) 83.91 (-0.20%) 171.82 (0.00%)

h0 = 5 105.36 (-2.25%) 9.52 (-57.86%) 85.24 (1.39%) 124.36 (-27.62%)

h0 = 15 109.76 (1.84%) 37.64 (66.55%) 70.59 (-16.04%) 221.49 (28.91%)

Table 2: Robust test of intensity parameters

Table 2 shows that sample means are essentially the same over a broad range of model parameters. The

main difference is sample standard deviations. Percentage changes over the benchmark values are listed in

parentheses. The performance of state-dependent intensity strategies is robust for some parameters, including

weight k1, k2, minimum intensity level hm and maximum intensity level hM . Changes of these parameters

do not greatly change sample standard deviations and quantile values at low and high ends. On the other

hand, it seems important to have correct estimations of parameters α and h0 to avoid large changes of the

standard deviation. Those parameters have strong impact on the estimated intensity levels. For example, if one

overestimates the initial default intensity (h0 = 15 instead of correct value h0 = 10) then the sample standard

deviation is greatly increased with large loss at low end quantile value.

Next we do some robust tests to see the impact of changes of model parameters on the distribution of

optimal terminal wealth, including drift µ, volatility σ, correlation ρ, and percentage loss LS . We change drift

and volatility parameters by 20% of their benchmark values and correlation and percentage loss parameters by

some big deviations.

mean std dev 2.3% quantile 97.7% quantile

benchmark 107.78 22.60 84.08 171.82

µS = 0.12 107.05 (-0.68%) 17.54 (-22.39%) 91.98 (9.39%) 158.13 (-7.97%)

µS = 0.08 108.55 (0.71%) 28.35 (25.44%) 75.99 (-9.62%) 187.88 (9.35%)

µP = 0.18 107.53 (-0.23%) 21.78 (-3.61%) 80.93 (-3.75%) 165.05 (-3.94%)

µP = 0.12 108.08 (0.28%) 25.58 (13.17%) 83.68 (-0.48%) 182.54 (6.24%)

σS = 0.36 107.28 (-0.46%) 18.87 (-16.49%) 88.04 (4.71%) 161.89 (-5.78%)

σS = 0.24 108.47 (0.64%) 27.88 (23.37%) 78.37 (-6.79%) 188.35 (9.62%)

σP = 0.48 107.74 (-0.04%) 21.94 (-2.92%) 84.12 (0.04%) 169.01 (-1.63%)

σP = 0.32 107.86 (0.07%) 23.56 (4.24%) 83.84 (-0.29%) 175.82 (2.33%)

ρ = −0.3 108.21 (0.40%) 25.50 (12.83%) 83.45 (-0.75%) 183.56 (6.83%)

ρ = 0.3 107.57 (-0.20%) 21.83 (-3.39%) 82.74 (-1.59%) 167.26 (-2.65%)

LS = 0.1 107.49 (-0.26%) 20.49 (-9.33%) 87.32 (3.85%) 166.49 (-3.10%)

LS = 0.4 108.24 (0.43%) 26.45 (17.05%) 77.52 (-7.80%) 181.95 (5.90%)

LP = 0.15 107.70 (-0.07%) 21.94 (-2.91%) 83.26 (-0.97%) 169.43 (-1.39%)

LP = 0.6 107.88 (-0.10%) 23.90 (5.74%) 84.69 (0.73%) 177.53 (3.32%)

Table 3: Robust test of model parameters

Table 3 lists statistical results of distributional sensitivity to changes of parameters. It is clear that sample

means are essentially the same for all parameters, but sample standard deviations are sensitive to changes
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of drift, volatility, correlation and percentage loss, which would significantly affect overall distributions of

optimal terminal wealth. This requires one to have good estimations of these parameters to have correct

distributions. It is well known that it is easy to estimate volatility but difficult to estimate drift (see Rogers

(2013)) and information of percentage loss is rarely available. Since optimal trading strategies and optimal

wealth distributions are greatly influenced by these parameters which are difficult to be correctly estimated,

one needs to be cautious in using state-dependent intensity to model and solve optimal investment problems.

Using sub-optimal but conservative and robust trading strategies, instead of optimal ones based on unobservable

parameters and intensities, might be more sensible and less risky.

3.4 Performance comparison of different initial stock prices

Table 1 shows the overall distributions of the terminal wealth are similar whether one uses the intensity hiz(s, p)

or constant intensity 0.1 as approximation. This is possibly due to the fact that the initial price of S and P

are both 100, which results in the inital intensity hiz(s, p) being equal to the constant intensity. The value 0.1

comes from the calibration which relies only on the historical data, while h(s, p) is a forward-looking function

which depends on the future stock prices. Table 1 represents the normal situation where the default probability

in calibration window is close to that in investment window. However, if the initial intensity hiz(s, p) is vastly

different from 0.1 which comes from the estimation of calibration window (one example is that the calibration

window is just before the financial crisis, while the investment starts from the financial crisis period), the

distributions of terminal wealth can be significantly different. We use a numerical example to illustrate this.

For simplicity, let the intensity function be given by hiz(s, p) = 20/(s+ p). This means the default intensity

of S jumps from 20/(St + Pt) to 20/St after P defaults. So is the situation when S defaults. Assume that the

initial prices of S and P are s = 10, p = 10 respectively, then the initial intensity is hS(0,0)(s, p) = hP(0,0)(s, p) = 1,

which makes the stocks ten times more likely to default than the constant intensity h = 0.1 would have suggested

(from the calibration window). This would cause one to take different control strategies (more shortselling when

s = 10, p = 10) and would have large impact on the distributions of the terminal wealth as shown in the table

below.

mean std dev 2.3% quantile 97.7% quantile

All samples & h(S, P ;S0 = 10, P0 = 10) 179.74 63.21 58.63 316.08

All samples & h ≡ 0.1 66.26 22.87 44.62 138.28

Default & h(S, P ;S0 = 10, P0 = 10) 195.90 52.78 99.20 318.65

Default & h ≡ 0.1 57.70 7.16 44.23 73.82

No-default & h(S, P ;S0 = 10, P0 = 10) 88.18 31.46 50.36 172.72

No-default & h ≡ 0.1 114.78 20.69 78.99 157.11

Table 4: Sample statistics. Data: x = 100, S0 = 10, P0 = 10, T = 1

Table 4 shows the statistics of the terminal wealth with 10000 simulation scenarios which produces 8542

default scenarios, a reflection of the high initial default intensity hiz(S0, P0) = 1. When stock prices are small,

defaultable stocks are very likely to default. With S, P dependent intensity, the optimal controls are to short

sell more stocks, which results in a much larger mean (195.90) than the mean (57.70) with constant intensity

h ≡ 0.1 if stock S or P indeed defaults (anticipated). However, if stock does not default (non-anticipated), then

the opposite outcomes appear. This numerical test shows S, P -dependant control strategies may outperform

or under-perform S, P independent control strategies, depending on the anticipated market event (default of

stock) occurring or not.

Remark 3.4. We repeat the same tests on the other two parameter sets defined in Remark 3.3. Numerical

results display the similar patterns as those in Table 4, so the conclusion drawn in this section is robust.

3.5 Numerical method for power utility

For power utility U(x) = (1/γ)xγ , 0 < γ < 1, the post-default case is well known with the optimal control

πS = (µS − r)/((σS)2(1− γ)) (and πP = 0) and the post-default value function v1(t, x) = (1/γ)xγg1(t), where

g1(t) = exp

((
rγ +

γ

2(1− γ)

(
µS − r
σS

)2
)

(T − t)

)
.
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We conjecture that the pre-default value function takes the form

w(t, x, s, p) =
xγ

γ
f(t, s, p). (3.8)

Substituting (3.8) into (2.3), we get a semilinear PDE for f :

− ∂f

∂t
− 1

2
Tr
(
σσT (s, p)D2f

)
− sup
π∈A

{
bT (s, p, π)Df − β(s, p, π)f + g(t, s, p, π)

}
= 0, (3.9)

with terminal condition f(T, s, p) = 1, where

b(s, p, π) :=

((
µS + γmTπσS

)
s(

µP + γnTπσP
)
p

)
, Df :=

(
fs
fp

)
, σ(s, p) :=

(
σSs 0

ρσP p
√

1− ρ2σP p

)
, D2f :=

(
fss fsp
fsp fpp

)
,

and

β(s, p, π) := −rγ + h(s, p)− γ
(
θTπ +

1

2
(γ − 1)πTΣπ

)
,

g(t, s, p, π) := h(s, p)g1(t)(1− LTπ)γ .

Equation (3.9) is a nonlinear PDE with two state variables and it is highly unlikely, if not impossible, to

find a closed form solution f . However, by Pham (2009) (Remark 3.4.2), equation (3.9) is the HJB equation

for the value function v of the following optimal control problem:

v(t, y) = sup
π∈A

E

[∫ T

t

Γ(t, u)g(u, Yu, πu)du+ Γ(t, T )

∣∣∣∣Yt = y

]
, (3.10)

where Yu := (Su, Pu)T , t ≤ u ≤ T , is a controlled Markov state process satisfying the following SDE:

dYu = b(Yu, πu)du+ σ(Yu)dWu, t ≤ u ≤ T, (3.11)

with the initial condition Yt = y := (s, p)T , W is a 2-dimensional standard Brownian motion and Γ(t, u) :=

exp
{
−
∫ u
t
β(Yl, πl)dl

}
is a discount factor.

By our theoretical result, we claim that the value function v(t, y) is the unique viscosity solution of the HJB

equation (3.9). Moreover, if the HJB equation (3.9) has a classical solution, then it is the value function v(t, y).

In other words, we may find the solution f(t, s, p) of equation (3.9) by solving a stochastic optimal control

problem (3.10). Since the diffusion coefficient of SDE (3.11) does not contain control variable π, we may use

the numerical method of Kushner and Dupuis (2001) to find the optimal value function in (3.10), which would

give us a numerical approximation to the solution f(t, s, p) of equation (3.9). Next we give some details.

According to Kushner and Dupius (2001), the process Y can be approximated by a Markov chain process,

which transits a point Yt = (s, p) at time t to one of nine points Yt+∆t may take at time t + ∆t, that is,

(s, p), (s± δ, p), (s, p± δ), (s+ δ, p± δ), (s− δ, p± δ), with the following transition probabilities:

aδ,∆t ((s, p), (s, p) | π) := 1− ∆t

δ
(|b1|+ |b2|)−

∆t

δ2

(
(σSs)2 + (σP p)2 − |ρ|σSσP sp

)
aδ,∆t ((s, p), (s± δ, p) | π) :=

∆t

δ
b±1 +

∆t

2δ2
(σSs)2 − ∆t

2δ2
|ρ|σSσP sp

aδ,∆t ((s, p), (s, p± δ) | π) :=
∆t

δ
b±2 +

∆t

2δ2
(σP p)2 − ∆t

2δ2
|ρ|σSσP sp

aδ,∆t ((s, p), (s+ δ, p± δ) | π) :=
∆t

2δ2
ρ±σSσP sp

aδ,∆t ((s, p), (s− δ, p∓ δ) | π) :=
∆t

2δ2
ρ±σSσP sp,

where δ is the step size of space, ∆t := (T − t)/N is the step size of time with N ≥ 1 an integer, b1 :=

(µS + γmTπσS)s, b2 := (µP + γnTπσP )p and x+ := max{x, 0}, x− := max{−x, 0}.
The numerical scheme is based on the following discretized dynamic programming principle:

v(k∆t, Sk∆t, Pk∆t)

≈ sup
πk∈A

(
g(k∆t, Sk∆t, Pk∆t, πk)∆t+ exp

{
−β(SNk , P

N
k , πk)∆t

}
E
[
v
(
(k + 1)∆t, SNk+1, P

N
k+1

)])
for k = N−1, . . . , 1, 0, where πk is the piece-wise constant control and the expectaton is computed with the help

of the above Markov chain transition probabilities. The terminal condition is given by v(N∆t, SN∆t, PN∆t) = 1.
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We compare the passive investment and active investment under the power utility setting. Most parameter

values used in power utility case are the same as log utility benchmark case, except the step size of space δ = 5,

the step size of time ∆t = 0.1, and the set of control parameters are aS = aP = −1.0, bS = bP = 1.0. Table

5 lists the numerical results with mean, variance, and quantile values at lower and upper ends. It is clear the

performance is similar to that of the log utility as one would expect. We have also done other tests defined in

log utility scope and drawn the similar conclusions for the power utility investors.

mean std dev 2.3% quantile 97.7% quantile

All samples + h(S, P ) 106.38 17.45 77.30 148.20

All samples + constant h 105.99 14.90 79.92 139.08

Default + h(S, P ) 106.70 21.00 71.67 158.63

Default + constant h 106.18 15.78 78.50 140.40

No-default + h(S, P ) 106.35 17.06 77.83 146.52

No-default + constant h 105.97 14.80 80.03 138.94

Table 5: Sample means, standard deviations, and quantile values.

There is a backward stochastic differential equation (BSDE) representation of the solution f(t, s, p) of

equation (3.9). So in theory one may find f if one can solve a highly nonlinear BSDE, which is not pursued in

this paper, see Cheridito et al. (2007) for details.

4 Proofs

4.1 Proof of Theorem 2.5

Proof. We prove the theorem in four steps: 1) v0 is continuous in x, uniformly in t, s, p, 2) v0 is continuous in

s, uniformly in t, p, 3) v0 is continuous in p, uniformly in t, s and 4) v0 is continuous in t. Combining these four

steps gives the continuity of v0 in t, x, s, p.

Step 1. For any x1, x2 ∈ [0,∞) and t, s, p ∈ [0, T ]× (0,∞)2, using Assumption 2.3, we have

|v0(t, x1, s, p)− v0(t, x2, s, p)| =
∣∣∣∣sup
π∈A

E
[
U(Xt,x1,s,p,π

T )
]
− sup
π∈A

E
[
U(Xt,x2,s,p,π

T )
]∣∣∣∣

≤ sup
π∈A

E
[∣∣U(Xt,x1,s,p,π

T )− U(Xt,x2,s,p,π
T )

∣∣]
≤ K sup

π∈A
E
[∣∣Xt,x1,s,p,π

T −Xt,x2,s,p,π
T

∣∣γ]
≤ K|x1 − x2|γ .

by virtue of (2.2). Therefore, v0 is continuous in x, uniformly in t, s, p.

Step 2. Fix 0 < s1 < s2 <∞ and t, x, p ∈ [0, T ]× [0,∞)× (0,∞). Denote by Si the stock price that starts

from si, i = 1, 2, and hi and τi the corresponding default intensity and default time of stock P , respectively.

By our model setting, τi can be represented by

τi := inf

{
s ≥ t :

∫ s

t

hiudu ≥ X
}
,

where X is a standard exponential random variable on the probability space (Ω,G,P) and is independent of the

filtration (Ft)t≥0, which means τi are totally inaccessible stopping times.

Define τmin := min {τ1, τ2}. It is clear that before τmin, the stock price dynamic is a standard geometric

Brownian motion. We have

E
[∣∣S1

u − S2
u

∣∣ I{u<τmin}] ≤ K|s1 − s2|

and

E

[∫ τmin∧u

t

∣∣h1
u − h2

u

∣∣ du] ≤ KE

[∫ u

t

∣∣S1
u − S2

u

∣∣ I{u<τmin}du
]
≤ K|s1 − s2| (4.1)

for any u ∈ [t, T ].
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If there is no jump on interval [t, T ], then sup[t,T ] |H1
u − H2

u| = 0 and Xt,x,s1,p,π
T = Xt,x,s2,p,π

T , where Hi

is the jump process associated with default time τi. If there is at least one jump on interval [t, T ], then

sup[t,T ] |H1
u −H2

u| = 1 as τ1 and τ2 do not jump at the same time. We have the relation

|Xt,x,s1,p,π
T −Xt,x,s2,p,π

T | = |Xt,x,s1,p,π
T −Xt,x,s2,p,π

T | sup
[t,T ]

|H1
u −H2

u|

≤ (|Xt,x,s1,p,π
T |+ |Xt,x,s2,p,π

T |) sup
[t,T ]

|H1
u −H2

u|.

Since sup[t,T ] |H1
u − H2

u| equals 0 or 1, we have (sup[t,T ] |H1
u − H2

u|)α = sup[t,T ] |H1
u − H2

u| for any α > 0.

Using (x + y)γ ≤ xγ + yγ for x, y ≥ 0 and 0 < γ ≤ 1 and the Cauchy-Schwarz inequality, also noting Remark

2.2, we have

E
[∣∣Xt,x,s1,p,π

T −Xt,x,s2,p,π
T

∣∣γ] ≤ E

[
(|Xt,x,s1,p,π

T |γ + |Xt,x,s2,p,π
T |γ) sup

[t,T ]

|H1
u −H2

u|

]

≤ K
((

E
[
|Xt,x,s1,p,π

T |2γ
])1/2

+
(
E
[
|Xt,x,s2,p,π

T |2γ
])1/2)(E[sup

[t,T ]

|H1
u −H2

u|

])1/2

≤ Kxγ

(
E

[
sup
[t,T ]

|H1
u −H2

u|

])1/2

.

We therefore have

|v0(t, x, s1, p)− v0(t, x, s2, p)| ≤ K sup
π∈A

E
[
|Xt,x,s1,p,π

T −Xt,x,s2,p,π
T |γ

]
≤ Kxγ

(
E

[
sup
[t,T ]

|H1
u −H2

u|

])1/2

.

We can decompose Hi as Hi
u = M i

u + Aiu, where M i is a martingale and Aiu :=
∫ u∧τi
t

hisds is a bounded

variation process, see Bielecki and Rutkowski (2003). Applying Doob’s sub-martingale inequality, we have

E

[
sup
[t,T ]

|H1
u −H2

u|

]
= E

[
sup
[t,T ]

|H1
u −H2

u|2
]

≤ 2E

[
sup
[t,T ]

|M1
u −M2

u |2 + sup
[t,T ]

|A1
u −A2

u|2
]

≤ 8E
[
|M1

T −M2
T |2
]

+ 2E

[
sup
[t,T ]

|A1
u −A2

u|2
]
.

Since h is a monotone function of s by Assumption 2.1, without loss of generality, we assume h is non-

increasing in s, then h1 ≥ h2 before the first default occurs. By the definition of τi, we have τ1 ≤ τ2 and

H1
t ≥ H2

t . Then∣∣A1
u −A2

u

∣∣ =

∣∣∣∣∫ u

t

h1
sds−

∫ u

t

h2
sds

∣∣∣∣ I{u≤τ1≤τ2} +

∣∣∣∣∫ τ1

t

h1
sds−

∫ u

t

h2
sds

∣∣∣∣ I{τ1<u≤τ2}
+

∣∣∣∣∫ τ1

t

h1
sds−

∫ τ2

t

h2
sds

∣∣∣∣ I{τ1≤τ2<u}
=

(∫ u

t

h1
sds−

∫ u

t

h2
sds

)
I{u≤τ1≤τ2} +

(
X −

∫ u

t

h2
sds

)
I{τ1<u≤τ2}

+ (X − X ) I{τ1≤τ2<u}
= A1

u −A2
u

for any u ∈ [t, T ]. Therefore,

sup
[t,T ]

|A1
u −A2

u|2 ≤ K sup
[t,T ]

|A1
u −A2

u| = K sup
[t,T ]

(A1
u −A2

u).

Note that A1
u −A2

u is non-decreasing before τ1 ∧ T and non-increasing after τ1 ∧ T , we conclude that

sup
[t,T ]

(A1
u −A2

u) = A1
τ1∧T −A

2
τ1∧T =

∫ τ1∧T

t

(h1
u − h2

u)du.
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By inequality (4.1), we have

E

[
sup
[t,T ]

|A1
u −A2

u|2
]
≤ KE

[∫ τ1∧T

t

(h1
u − h2

u)du

]
≤ K|s1 − s2|. (4.2)

Since H1
T −H2

T equals 0 or 1, we have

|M1
T −M2

T |2 ≤ 2|H1
T −H2

T |2 + 2|A1
T −A2

T |2

≤ 2(H1
T −H2

T ) +K(A1
T −A2

T )

≤ 2(M1
T −M2

T ) +K(A1
T −A2

T ).

Since M i is martingale, also note that τ1 ∧ T ≤ τ2 ∧ T , we have

E|M1
T −M2

T |2 ≤ KE[A1
T −A2

T ]

= KE

[∫ τ1∧T

t

h1
sds−

∫ τ2∧T

t

h2
sds

]

≤ KE

[∫ τ1∧T

t

(h1
s − h2

s)ds

]
≤ K|s1 − s2|.

(4.3)

Combining (4.3) and (4.2), we conclude that E
[
sup[t,T ] |H1

u −H2
u|
]
≤ K|s1 − s2|, which gives

|v0(t, x, s1, p)− v0(t, x, s2, p)| ≤ Kxγ |s1 − s2|
1
2 .

Therefore, v0 is continuous in s, uniformly in t, p.

Step 3. Fix 0 < p1 < p2 <∞ and t, x, s ∈ [0, T ]× [0,∞)× (0,∞), by same technique as in Step 2, we can

show

|v0(t, x, s, p1)− v0(t, x, s, p2)| ≤ Kxγ |p1 − p2|
1
2 .

Therefore, v0 is continuous in p, uniformly in t, s.

Step 4. For any 0 ≤ t1 < t2 ≤ T and x, s, p ∈ [0,∞) × (0,∞)2, by the definition of v0 and the dynamic

programming principle, ∀δ > 0, ∃π(δ) ∈ A such that

v0(t1, x, s, p)− δ ≤ E
[
v0

(
t2, X

t1,x,s,p,π(δ)
t2 , St1,st2 , P t1,pt2

)
I{t2<τ} + v1

(
t2, X

t1,x,π(δ)
t2

)
I{t2≥τ}

]
≤ v0(t1, x, s, p).

Rearranging the order, we have

|v0(t1, x, s, p)− v0(t2, x, s, p)| − δ

≤
∣∣∣E [v0

(
t2, X

t1,x,s,π(δ)
t2 , St1,st2 , P t1,pt2

)
I{t2<τ} + v1

(
t2, X

t1,x,π(δ)
t2

)
I{t2≥τ}

]
− v0(t2, x, s, p)

∣∣∣
≤ E

[∣∣∣v0

(
t2, X

t1,x,s,π(δ)
t2 , St1,st2 , P t1,pt2

)
I{t2<τ} − v0(t2, x, s, p)

∣∣∣]+ E
[∣∣∣v1

(
t2, X

t1,x,π(δ)
t2

)
I{t2≥τ}

∣∣∣] .
Using the Cauchy-Schwartz inequality, we have

E
[∣∣∣v1

(
t2, X

t1,x,s,π(δ)
t2

)
I{t2≥τ}

∣∣∣] ≤ E
[∣∣∣v1

(
t2, X

t1,x,s,π(δ)
t2

)∣∣∣2]1/2√
P
(
t2 ≥ τ

)
≤ K(1 + xγ)

√
P
(
t2 ≥ τ

)
,

which tends to 0 since P
(
t2 ≥ τ

)
→ 0 as t2 − t1 → 0.

Next we prove the first term E
[∣∣∣v0

(
t2, X

t1,x,s,p,π(δ)
t2 , St1,st2 , P t1,pt2

)
I{t2<τ} − v0(t2, x, s, p)

∣∣∣] goes to zero as

t2 − t1 → 0.

E
[∣∣∣v0

(
t2, X

t1,x,s,p,π(δ)
t2 , St1,st2 , P t1,pt2

)
I{t2<τ} − v0(t2, x, s, p)

∣∣∣]
≤ E

[∣∣∣(v0

(
t2, X

t1,x,s,p,π(δ)
t2 , St1,st2 , P t1,pt2

)
− v0

(
t2, x, S

t1,s
t2 , P t1,pt2

))
I{t2<τ}

∣∣∣]
+ E

[∣∣(v0

(
t2, x, S

t1,s
t2 , P t1,pt2

)
− v0(t2, x, s, P

t1,p
t2 )

)
I{t2<τ}

∣∣]
+ E

[∣∣(v0

(
t2, x, s, P

t1,p
t2

)
− v0(t2, x, s, p)

)
I{t2<τ}

∣∣]+ E
[∣∣v0(t2, x, s, p)I{t2≥τ}

∣∣] .
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As shown in Step 1,
∣∣∣v0

(
t2, X

t1,x,s,p,π(δ)
t2 , St1,st2 , P t1,pt2

)
− v0

(
t2, x, S

t1,s
t2 , P t1,pt2

)∣∣∣ ≤ K ∣∣∣Xt1,x,s,p,π(δ)
t2 − x

∣∣∣γ , and

by (2.2),

E
[∣∣∣Xt1,x,s,p,π(δ)

t2 − x
∣∣∣2] ≤ 2x2 + 2E

[∣∣∣Xt1,x,s,p,π(δ)
t2

∣∣∣2] <∞.
Therefore,

∣∣∣Xt1,x,s,p,π(δ)
t2 − x

∣∣∣γ is uniformly integrable, and we can exchange the order of expectation and limit

to get

lim
t2−t1→0

E
[∣∣∣v0

(
t2, X

t1,x,s,p,π(δ)
t2 , St1,st2 , P t1,pt2

)
− v0

(
t2, x, S

t1,s
t2 , P t1,pt2

)∣∣∣ I{t2<τ}]
≤ E

[
K lim

t2−t1→0

∣∣∣Xt1,x,s,p,π(δ)
t2 − x

∣∣∣γ] = 0.

The same argument can be applied to the term E
[∣∣v0

(
t2, x, S

t1,s
t2 , P t1,pt2

)
− v0(t2, x, s, P

t1,p
t2 )|I{t2<τ}

∣∣] based

on Step 2 and E
[∣∣v0

(
t2, x, s, P

t1,p
t2

)
− v0(t2, x, s, p)|I{t2<τ}

∣∣] based on Step 3, and we conclude that

lim
t2−t1→0

E
[∣∣v0

(
t2, x, S

t1,s
t2 , P t1,pt2

)
− v0(t2, x, s, P

t1,p
t2 )|I{t2<τ}

∣∣] ≤ E
[
Kxγ lim

t2−t1→0

∣∣St1,st2 − s
∣∣ 1

2

]
= 0

and

lim
t2−t1→0

E
[∣∣v0

(
t2, x, s, P

t1,p
t2

)
− v0(t2, x, s, p)|I{t2<τ}

∣∣] ≤ E
[
Kxγ lim

t2−t1→0

∣∣P t1,pt2 − p
∣∣ 1

2

]
= 0.

The last term |v0(t2, x, s, p)|P(t2 ≥ τ) ≤ K(1+xγ)P(t2 ≥ τ), which tends to zero when t2−t1 → 0. Therefore

E
[∣∣∣v0

(
t2, X

t1,x,s,p,π(δ)
t2 , St1,st2 , P t1,pt2

)
I{t2<τ} − v0(t2, x, s, p)

∣∣∣]→ 0

as t2 − t1 → 0 and we finally have

lim
t2−t1→0

|v0(t1, x, s, p)− v0(t2, x, s, p)| ≤ δ.

Since δ is arbitrary, we conclude that v0(t, x, s, p) is continuous in t. Combining Steps 1,2,3,4, we conclude that

v0(t, x, s, p) is continuous in [0, T ]× [0,∞)× (0,∞)2.

4.2 Proof of Theorem 2.7

Proof. For ∀π ∈ A, define a new process w (u,Xt,x,s,z,π
u , St,su ,Hu) :=

∑
z̄∈I wz̄ (u,Xt,x,s,z,π

u , St,su ) I{Hu=z̄} where

Xt,x,s,z,π
u denotes the wealth process starting with Xt = x, St = s,Ht = z associated with control process π,

and St,su denotes the prices of surviving stocks at time u starting with St = s.

As wz̄ is smooth in (t, x, s) for ∀z̄ ∈ I, we can apply Ito’s formula to w and get for any time u ∈ [t, T ]

w(u,Xt,x,s,zπ
u , St,su ,Hu) = wz(t, x, s) +

∫ u

t

∑
z̄∈I
Lπwz̄(ū, Xπ

ū , Sū)I{Hū=z̄} dū+Mu −Mt,

where Lπwz̄ is defined in (2.4), and M is a local martingale defined by

Mu :=
∑
z̄∈I

(∑
i∈Iz̄

∫ u

t

σiS
i
ū

∂wz̄
∂si

I{Hū=z̄}dW
i
ū +

∫ u

t

πTū σX
π
ū

∂wz̄
∂x

I{Hū=z̄}dWū

)

+
∑
z̄∈I

∑
i∈Iz̄

∫ u

t

wz̄i
ū, Xū−

1−
N∑
j=1

Ljiπ
j
ū

 , Siū−

− wz̄(ū, Xū−, Sū−)

(dHi
ū − hiz̄(Sū−)I{Hū=z̄}dū

)
Since wz̄ satisfies the HJB equation (2.3), we have Lπwz̄ ≤ 0. Define stopping times

τ̃n := inf

{
u ≥ t :

∣∣Xt,x,s,z,π
u − x

∣∣+
∑
i∈Iz

∣∣Siu − si∣∣ ≥ n
}
∧ (T − 1/n),

then Mu∧τ̃n is a martingale due to the boundedness of control set A and values and derivatives of wz̄. Letting

u = T and taking expectation on both sides, we have

E
[
w
(
τ̃n, X

π
τ̃n
, Sτ̃n ,Hτ̃n

)]
≤ wz(t, x, s)
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with equality if π = π̂. Next we show that

lim
n→∞

E
[
wz̄
(
τ̃n, X

π
τ̃n
, Sτ̃n

)
I{Hτ̃n=z̄}

]
= E

[
wz̄ (T,Xπ

T , ST ) I{HT=z̄}
]

= E
[
U (Xπ

T ) I{HT=z̄}
]
, (4.4)

for ∀z̄ ∈ I. Since |wz̄(t, x, s)| ≤ K(1 + xγ), also noting (2.2), we have

E
[∣∣wz̄ (τ̃n, Xπ

τ̃n
, Sτ̃n

)
I{Hτ̃n=z̄}

∣∣α] ≤ K (1 + E
[(
Xπ
τ̃n

)αγ]) ≤ K(1 + xαγ) <∞

for any α > 1. Since wz̄
(
τ̃n, X

π
τ̃n
, Sτ̃n

)
I{Hτ̃n=z̄} is uniformly integrable, we can take the limit under the

expectation to get (4.4). This shows that E[U(Xπ
T )] ≤ wz(t, x, s) with equality if π = π̂. Furthermore, SDE

(2.1) admits a unique strong solution by the assumption, therefore, wz coincides with the value function vz and

π̂ is the optimal control process.

4.3 Proof of Theorem 2.10

Lemma 4.1. Denote by Rz := Rz(t, x, s) the following function

Rz := sup
π∈A

θTπx∂wz∂x
+

1

2
πTΣπx2 ∂

2wz
∂x2

+
∑
i∈Iz

ρTi σπσixsi
∂2wz
∂x∂si

+
∑
i∈Iz

hiz(s)wzi

t, x
1−

N∑
j=1

Ljiπ
j

 , si

 ,

where wz ∈ C1,2,...,2 for ∀z ∈ I. Then Rz is continuous in (t, x, s).

Proof. Let z ∈ I and the point (t̄, x̄, s̄) ∈ [0, T )× (0,∞)Nz+1 and Bη(t̄, x̄, s̄) be the ball with center (t̄, x̄, s̄) and

radius η. By the definition of supremum function, for any δ > 0, there exists a control π ∈ A such that

Rz(t̄, x̄, s̄)− δ ≤ θTπx̄
∂wz
∂x

(t̄, x̄, s̄) +
1

2
πTΣπx̄2 ∂

2wz
∂x2

(t̄, x̄, s̄) +
∑
i∈Iz

ρTi σπσix̄s̄i
∂2wz
∂x∂si

(t̄, x̄, s̄)

+
∑
i∈Iz

hiz(s̄)wzi

t̄, x̄
1−

N∑
j=1

Ljiπ
j

 , s̄i

 , (4.5)

For any point (t, x, s) ∈ Bη(t̄, x̄, s̄), we have

Rz(t, x, s) ≥ θTπx
∂wz
∂x

(t, x, s) +
1

2
πTΣπx2 ∂

2wz
∂x2

(t, x, s) +
∑
i∈Iz

ρTi σπσixsi
∂2wz
∂x∂si

(t, x, s)

+
∑
i∈Iz

hiz(s)wzi

t, x
1−

N∑
j=1

Ljiπ
j

 , si

 , (4.6)

Subtracting (4.6) from (4.5), we have

Rz(t̄, x̄, s̄)−Rz(t, x, s)− δ ≤ θTπ

(
x̄
∂wz
∂x

(t̄, x̄, s̄)− x∂wz
∂x

(t, x, s)

)
+

1

2
πTΣπ

(
x̄2 ∂

2wz
∂x2

(t̄, x̄, s̄)− x2 ∂
2wz
∂x2

(t, x, s)

)
+
∑
i∈Iz

ρTi σπσi

(
x̄s̄i

∂2wz
∂x∂si

(t̄, x̄, s̄)− xsi
∂2wz
∂x∂si

(t, x, s)

)

+
∑
i∈Iz

hiz(s̄)wzi
t̄, x̄

1−
N∑
j=1

Ljiπ
j

 , s̄i

− hiz(s)wzi
t, x

1−
N∑
j=1

Ljiπ
j

 , si

 .

Taking the limit superior and then letting δ tend to 0, we have

Rz(t̄, x̄, s̄) ≤ lim inf
(t,x,s)→(t̄,x̄,s̄)

Rz(t, x, s). (4.7)

Similarly, using the smoothness of wz and boundedness of π and hiz for ∀z ∈ I and i ∈ {1, . . . , N}, we can get

Rz(t̄, x̄, s̄) ≥ lim sup
(t,x,s)→(t̄,x̄,s̄)

Rz(t, x, s). (4.8)

Inequalities (4.7) and (4.8) imply that Rz(t, x, s) is continuous in (t, x, s) for ∀z ∈ I.
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Combining Lemma 4.1 and the smoothness of w, we conclude that Fz given in Definition 2.9 is continuous

in (t, x, s). Based on this result, we prove the value function v := (vz)z∈I is a viscosity solution to the PDE

system (2.3).

Proposition 4.2. The value function v := (vz)z∈I is a viscosity supersolution to equation (2.3) on [0, T ) ×
(0,∞)N+1.

Proof. Let z̄ ∈ I, (t̄, x̄, s̄) ∈ [0, T ) × (0,∞)Nz̄+1 and ϕ := (ϕz)z∈I ∈ C1,2,...,2
(
[0, T )× (0,∞)Nz+1

)
be tuple of

test functions such that

0 = ((vz̄)∗ − ϕz̄) (t̄, x̄, s̄) = min
[0,T )×(0,∞)Nz̄+1

((vz̄)∗ − ϕz̄) (t, x, s), (4.9)

and (vz)∗ ≥ ϕz for ∀z ∈ I on [0, T )× (0,∞)Nz+1.

By definition of (vz̄)∗, there exists a sequence (tm, xm, sm) in [0, T )× (0,∞)Nz̄+1 such that

(tm, xm, sm)→ (t̄, x̄, s̄) and vz̄(tm, xm, sm)→ (vz̄)∗(t̄, x̄, s̄),

when m goes to infinity. By the continuity of ϕz̄ and by (4.9) we also have that

γm := vz̄(tm, xm, sm)− ϕz̄(tm, xm, sm)→ 0,

when m goes to infinity.

Let π ∈ A be a constant control process and Bη(xm, sm) ∈ (0,∞)Nz̄+1 be the ball with center (xm, sm)

and radius η > 0. Note that when m is large enough, (xm, sm) ∈ Bη(x̄, s̄), thus ∀(x, s) ∈ Bη(xm, sm), we have

(x, s) ∈ B2η(x̄, s̄). We denote by Xtm,xm
u the associated controlled wealth process. Let τπm be the stopping time

given by

τπm := inf
{
u ∈ [tm, T ) :

(
Xtm,xm
u , Stm,smu

)
/∈ Bη(xm, sm)

}
.

Let (hm) be a strictly positive sequence such that

hm → 0 and
γm
hm
→ 0,

when m goes to infinity. Then we can define a stopping time θm give by θm := τπm ∧ (tm + hm) ∧ τ̃m where τ̃m
is the first default time of the surviving stocks, starting from tm.

Next we use the weak dynamic programming principle (weak-DPP) proved in Bouchard and Touzi (2011),

that is,

vz̄(t, x, s) ≥ E

[∑
z∈I

(vz)∗
(
θ,Xt,x,s,z̄

θ , St,sθ
)
I{Hθ=z}

]
,

for any G-measurable stopping time θ ∈ [t, T ] such that Xθ and Sθ are L∞-bounded.

Since under stopping time θm, the processes S and X are both bounded, we can apply above weak dynamic

programming principle (weak-DPP) for vz̄(tm, xm, sm) to θm and get

vz̄(tm, xm, sm) ≥ E

[∑
z∈I

(vz)∗
(
θm, X

tm,xm,sm,z̄
θm

, Stm,smθm

)
I{Hθm=z}

]
.

Equation (4.9) implies (vz)∗ ≥ ϕz for ∀z ∈ I, thus

ϕz̄(tm, xm, sm) + γm ≥ E

[∑
z∈I

ϕz
(
θm, X

tm,xm,sm,z̄
θm

, Stm,smθm

)
I{Hθm=z}

]
.

Applying Ito’s formula to the whole term in bracket, we obtain

γm
hm
− E

[
1

hm

∫ θm

tm

∑
z∈I
Lπϕz(u,Xπ

u , Su)I{Hu=z}du

]
≥ 0 (4.10)

after noting that the stochastic integral term cancels out by taking expectations since the integrand is bounded.

Note that Lπϕz (u,Xtm,xm
u , Stm,smu ) is defined the same as (2.4).
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Next we investigate the stopping time θm when m is large enough. Firstly, for the stopping time τπm, denoting

Em := {τ̃m > tm + hm}, we have

P (τπm ≤ tm + hm | Em)

= P

(
sup

t∈[tm,tm+hm]

(∣∣Xtm,xm
t − xm

∣∣2 +
∑
i∈Iz̄

∣∣∣Si,tm,smt − sm,i
∣∣∣2) ≥ η2 | Em

)

≤ P

(
sup

t∈[tm,tm+hm]

∣∣Xtm,xm
t − xm

∣∣2 ≥ η2

Nz̄ + 1
| Em

)
+
∑
i∈Iz̄

P

(
sup

t∈[tm,tm+hm]

∣∣∣Si,tm,smt − sm,i
∣∣∣2 ≥ η2

Nz̄ + 1
| Em

)

≤ Nz̄ + 1

η2

(
E

[
sup

t∈[tm,tm+hm]

∣∣Xtm,xm
t − xm

∣∣2 | Em]+
∑
i∈Iz̄

E

[
sup

t∈[tm,tm+hm]

∣∣∣Si,tm,smt − sm,i
∣∣∣2 | Em]) .

By Pham (2009), Page 67, each term in the bracket converges to zero as m→∞, which gives

lim
m→∞

P (τπm ≤ tm + hm | Em) = 0.

By definition of conversion time τ̃m, we have

P
(
ECm
)

= 1− E
[
e−

∫ tm+hm
tm

∑
i∈Iz̄

hiz̄(Su)du
]
≤ 1− e−Khm

due to the boundedness of intensity function hiz̄. Thus

lim
m→∞

P(ECm) = 0.

Finally for the stopping time τπm ∧ τ̃m, we have

P (τπm ∧ τ̃m ≤ tm + hm) ≤ P (τπm ≤ tm + hm) + P
(
ECm
)

= P (τπm ≤ tm + hm, Em) + P
(
τπm ≤ tm + hm, E

C
m

)
+ P (Em)

≤ P (τπm ≤ tm + hm | Em) + 2P
(
ECm
)
. (4.11)

Combining above results, we get

lim
m→∞

P (τπm ∧ τ̃m ≤ tm + hm) = 0.

We now estimate

−γm
hm
≤ E

[
1

hm

∫ θm

tm

−
∑
z∈I
Lπϕz(u,Xπ

u , Su)I{Hu=z}du

]

≤ E

[
1

hm

∫ tm+hm

tm

−
∑
z∈I
Lπϕz(u,Xπ

u , Su)I{Hu=z}du | τπm ∧ τ̃m > tm + hm

]
P (τπm ∧ τ̃m > tm + hm)

+ E

[
1

hm

∫ τπm∧τ̃m

tm

−
∑
z∈I
Lπϕz(u,Xπ

u , Su)I{Hu=z}du | τπm ∧ τ̃m ≤ tm + hm

]
P (τπm ∧ τ̃m ≤ tm + hm)

≤ E

[
1

hm

∫ tm+hm

tm

−Lπϕz̄
(
u,Xtm,xm

u , Stm,smu

)
du | τπm ∧ τ̃m > tm + hm

]
+KP (τπm ∧ τ̃m ≤ tm + hm) .

By the mean value theorem and dominated convergence theorem, taking limit on both sides of the inequality,

we have

−Lπϕz̄(t̄, x̄, s̄) ≥ 0,

which implies

Fz̄

(
t̄, x̄, s̄, ϕ,∇(t,x,s)ϕz̄,∇2

(x,s)ϕz̄

)
≥ 0,

due to the arbitrariness of π ∈ A.

Proposition 4.3. The value function v := (vz)z∈I is a viscosity subsolution to equation (2.3) on [0, T ) ×
(0,∞)N+1.

20



Proof. Let z̄ ∈ I, (t̄, x̄, s̄) ∈ [0, T ) × (0,∞)Nz̄+1 and ϕ := (ϕz)z∈I ∈ C1,2,...,2
(
[0, T )× (0,∞)Nz+1

)
be tuple of

test functions such that

0 = ((vz̄)
∗ − ϕz̄) (t̄, x̄, s̄) = max

[0,T )×(0,∞)Nz̄+1
((vz̄)

∗ − ϕz̄) (t, x, s), (4.12)

and (vz)
∗ ≤ ϕz for ∀z ∈ I on [0, T )× (0,∞)Nz+1.

We prove the result by contradiction. Assume on the contrary that

Fz̄

(
t̄, x̄, s̄, ϕ,∇(t,x,s)ϕz̄,∇2

(x,s)ϕz̄

)
> 0

Then by the continuity of Fz̄, there exists δ > 0 and η > 0 such that

Fz̄

(
t, x, s, ϕ,∇(t,x,s)ϕ,∇2

(x,s)ϕ
)

= − sup
π∈A
Lπϕz̄(t, x, s) > δ

for (t, x, s) ∈ Bη(t̄, x̄, s̄). By definition of (vz̄)
∗, there exists a sequence (tm, xm, sm) taking values in B η

2
(t̄, x̄, s̄)

such that

(tm, xm, sm)→ (t̄, x̄, s̄) and vz̄(tm, xm, sm)→ (vz̄)
∗(t̄, x̄, s̄),

when m goes to infinity. By the continuity of ϕz̄ and by (4.12) we also have that

γm := vz̄(tm, xm, sm)− ϕz̄(tm, xm, sm)→ 0,

when m goes to infinity.

We denote by Xtm,xm,π
u the controlled wealth process associated with control process π ∈ A. Let τπ

m

m be

the stopping time given by

τπm := inf
{
u ∈ [tm, T ) :

(
u,Xtm,xm,π

u , Stm,smu

)
/∈ B η

2
(tm, xm, sm)

}
.

Let (hm) be a strictly positive sequence such that

hm → 0 and
γm
hm
→ 0,

when m goes to infinity. Then we can define a stopping time θm give by θm := τπm ∧ (tm + hm) ∧ τ̃m where τ̃m
is the first default time of surviving stocks starting from tm.

Next we use the weak dynamic programming principle (weak-DPP) proved in Bouchard and Touzi (2011),

that is, for any ε > 0, there exists a control process π ∈ A such that

vz̄(t, x, s)− ε ≤ E

[∑
z∈I

(vz)
∗ (θ,Xt,x,s,z̄,π

θ , St,sθ
)
I{Hθ=z}

]
,

for any G–stopping time θ ∈ [t, T ].

We apply above weak dynamic programming principle (weak-DPP) for vz̄(tm, xm, sm) to θm and get for

ε = δ hm2 > 0, there exists π ∈ A such that

vz̄(tm, xm, sm)− δ hm
2

≤ E

[∑
z∈I

(vz)
∗ (θm, Xtm,xm,sm,z̄,π

θm
, Stm,smθm

)
I{Hθm=z}

]
.

Equation (4.12) implies (vz)
∗ ≤ ϕz for ∀z ∈ I, thus

ϕz̄(tm, xm, sm) + γm − δ
hm
2

≤ E

[∑
z∈I

ϕz
(
θm, X

tm,xm,sm,z̄,π
θm

, Stm,smθm

)
I{Hθm=z}

]
.

Applying Ito’s formula to the whole term in bracket, we obtain

γm
hm
− δ

2
≤ E

[
1

hm

∫ θm

tm

∑
z∈I
Lπϕz(u,Xπ

u , Su)I{Hu=z}du

]

≤ E

[
1

hm

∫ tm+hm

tm

Lπϕz̄(u,Xπ
u , Su)du | τπm ∧ τ̃m > tm + hm

]
+KP (τπm ∧ τ̃m ≤ tm + hm)

(4.13)
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after noting that the stochastic integral term cancels out by taking expectations since the integrand is bounded.

By the similar technique as the supersolution proof, we can show that P (τπm ∧ τ̃m ≤ tm + hm)→ 0 as m→∞.

Since
(
u,Xtm,xm,π

m

u , Stm,smu

)
∈ Bη(t̄, x̄, s̄) in [tm, tm + hm] if τπm ∧ τ̃m > tm + hm, we have

Lπϕz̄
(
u,Xtm,xm,π

m

u , Stm,smu

)
< −δ

in [tm, tm + hm]. Thus

γm
hm
− δ

2
≤ E

[
1

hm

∫ tm+hm

tm

−δdu

]
+KP (τπm ∧ τ̃m ≤ tm + hm) .

Then we obtain

lim
m→∞

γm
hm
− δ

2
≤ −δ,

which implies 0 ≤ − δ2 . We thus get the desired contradiction with δ > 0.

4.4 Proof of Theorem 2.14

To prove the comparison principle, we need an alternative definition of viscosity solution in terms of the notions

of semijets defined as below.

Definition 4.4. For z ∈ I, given wz a function on [0, T ) × (0,∞)Nz+1, the superjet of wz at (t, x, s) ∈
[0, T )× (0,∞)Nz+1 is defined by:

P1,2,...,2,+wz(t, x, s) =
{

(R, q,Q) ∈ R× RNz+1 × S(Nz+1)×(Nz+1) such that

wz(t
′, x′, s′) ≤ wz(t, x, s) +R(t′ − t) + 〈q,X ′ −X〉+

1

2
〈Q(X ′ −X), X ′ −X〉

+ o(|t′ − t|2 + |X ′ −X|2)
}
,

where X = (x, s), X ′ = (x′, s′), and the bracket 〈·, ·〉 is the inner product of two vectors. We define its closure

P̄1,2,...,2,+wz(t, x, s) as the set of elements (R, q,Q) ∈ R × RNz+1 × S(Nz+1)×(Nz+1) for which there exists a

sequence (tm, Xm, Rm, qm, Pm) ∈ [0, T ) × (0,∞)Nz+1 × P1,2,...,2,+wz(t,X) satisfying (tm, Xm, Rm, qm, Qm) →
(t,X,R, q,Q). We also define the subjets

P1,2,...,2,−wz(t, x, s) = −P1,2,...,2,+(−wz)(t, x, s), P̄1,2,...,2,−wz(t, x, s) = −P̄1,2,...,2,+(−wz)(t, x, s).

By standard arguments, one has an equivalent definition of viscosity solutions in terms of semijets: w :=

(wz)z∈I is a viscosity subsolution (resp. supersolution) to (2.3) at (t, x, s) ∈ [0, T ) × (0,∞)N+1 if and only if

for all z ∈ I and (R, q,Q) ∈ P̄1,2,...,2,+wz(t, x, s) (resp. P̄1,2,...,2,−wz(t, x, s)).

Fz (t, x, s, w, (R, q), Q) ≤ (resp. ≥) 0.

We can now state and prove the following comparison principle which gives rise to the uniqueness of viscosity

solution.

Proposition 4.5. Let W := (Wz)z∈I (resp. V := (Vz)z∈I) be a u.s.c. viscosity subsolution (resp. l.s.c.

viscosity supersolution) of (2.3) on [0, T )×(0,∞)N+1 and satisfy the growth condition |Wz(t, x, s)|, |Vz(t, x, s)| ≤
K(1 + xγ), the terminal relation Wz(T, x, s) ≤ Vz(T, x, s), and the boundary relations Wz(t, x, s) ≤ Vz(t, x, s)

on the boundary of [0,∞)Nz+1 for ∀z ∈ I. Then we have Wz ≤ Vz for ∀z ∈ I on [0, T ]× [0,∞)Nz+1.

Proof. We prove the result in several steps.

Step 1. Let W̃z = eΓtWz and Ṽz = eΓtVz for constant Γ > 0, then a straightforward calculation shows that

W̃ (resp. Ṽ ) is a subsolution (resp. supersolution) of

− sup
π∈A
L̃πwz(t, x, s) = 0, on [0, T )× (0,∞)Nz+1,
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for z ∈ I, where L̃π is given by

L̃πwz(t, x, s) =
∂wz
∂t

+ (r + θTπ)x
∂wz
∂x

+
∑
i∈Iz

µisi
∂wz
∂si

+
1

2
πTΣπx2 ∂

2wz
∂x2

+
1

2

∑
i∈Iz

σ2
i s

2
i

∂2wz
∂s2
i

+
∑

i,j∈Iz,i<j
ρijσiσjsisj

∂2wz
∂si∂sj

+
∑
i∈Iz

ρTi σπσixsi
∂2wz
∂x∂si

+
∑
i∈Iz

hiz(s)

wzi
t, x

1−
N∑
j=1

Ljiπ
j

 , si

− wz
− Γwz. (4.14)

We will show that W̃z ≤ Ṽz for ∀z ∈ I on [0, T ] × [0,∞)Nz+1 in the next few steps, thus we conclude

Wz ≤ Vz. We further define F̃ function by

F̃z

(
t, x, s, w,∇(t,x,s)wz,∇2

(x,s)wz

)
= − sup

π∈A
L̃πwz(t, x, s).

Step 2. Define Ṽ nz := Ṽz + 1
nφz(t, x, s), where φz(t, x, s) = e−λt

(
1 + x2γ +

∑
i∈Iz s

2γ
i

)
. We claim that Ṽ n

is a viscosity supersolution to (4.14). Note that

P1,2,...,2,−Ṽ nz (t, x, s) = P1,2,...,2,−Ṽz(t, x, s) +
1

n
(R′, q′, Q′) ,

where R′ = −λφz, q′ = 2γe−λt
(
x2γ−1, s2γ−1

1 , . . . , s2γ−1
i , . . . , s2γ−1

N

)
for i ∈ Iz and

Q′ = 2γ(2γ − 1)e−λt


x2γ−2 0 . . . 0

0 s2γ−2
1 . . . 0

...
...

...
...

0 0 . . . s2γ−2
N

 .

We have that for all (R, q,Q) ∈ P1,2,...,2,−Ṽ nz (t, x, s),(
R− R′

n
, q − q′

n
,Q− Q′

n

)
∈ P1,2,...,2,−Ṽz(t, x, s).

Since Ṽ is a viscosity supersolution to (4.14), we have

F̃z

(
t, x, s, Ṽ ,

(
R− R′

n
, q − q′

n

)
, Q− Q′

n

)
≥ 0

for ∀z ∈ I by the equivalent definition of viscosity supersolution. Using the inequality sup{A−B} ≥ sup{A}−
sup{B} and the boundedness of controls and coefficients, we have

F̃z

(
t, x, s, Ṽ n, (R, q), Q

)
≥ F̃z

(
t, x, s, Ṽ ,

(
R− R′

n
, q − q′

n

)
, Q− Q′

n

)
+

1

n

(
λ+ Γ +

∑
i∈Iz

hiz(s)−K

)
φz

for a constant K > 0. Therefore, F̃z

(
t, x, s, Ṽ n, (R, q), Q

)
≥ 0 for a large enough λ, which implies that Ṽ n is

a viscosity supersolution of (4.14).

Step 3. We show that for all n ≥ 1, it is W̃z ≤ Ṽ nz for z ∈ I on [0, T )× (0,∞)Nz+1, and thus conclude that

W̃ ≤ Ṽ . Fix n ≥ 1 and define

Mz := sup
X∈[0,T )×(0,∞)Nz+1

[W̃z(X)− Ṽ nz (X)],

and

M := max
z∈I

Mz = Mz̄,

where X := (t, x, s). We next show that M ≤ 0. Suppose on the contrary that M > 0, by the growth condition

on W̃z̄ and Ṽz̄ we have

lim
x,s→∞

(W̃z̄ − Ṽ nz̄ )(t, x, s) = −∞
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for any t ∈ [0, T ). By the terminal and boundary conditions, we also have

(W̃z̄ − Ṽ nz̄ )(T, x, s) ≤ 0, (W̃z̄ − Ṽ nz̄ )(t, 0, s) ≤ 0, (W̃z̄ − Ṽ nz̄ )(t, x, 0) ≤ 0.

Note that here s = 0 denotes si = 0 for any i ∈ Iz.
Since W̃z̄ − Ṽ nz̄ is upper-semicontinuous and M > 0, there exists some open bounded set O ∈ [0, T ) ×

(0,∞)Nz̄+1 such that

M = max
X∈O

[W̃z̄(X)− Ṽ nz̄ (X)] > 0.

We now use the doubling variable technique. For any fixed ε > 0, define

Φ(X,Y ) := Φε(X,Y ) = W̃z̄(X)− Ṽ nz̄ (Y )− φ1(X,Y ),

where φ1(X,Y ) := 1
ε ‖X−Y ‖

2. Note that Φ is upper-semicontinuous and hence achieves its maximum M̃ = M̃ε

on the compact set Ō2 at (X̃, Ỹ ) = (X̃ε, Ỹε). We may write that, for all ε > 0,

M ≤ M̃ = W̃z̄(X̃)− Ṽ nz̄ (Ỹ )− φ1(X̃, Ỹ ) ≤ W̃z̄(X̃)− Ṽ nz̄ (Ỹ ).

The sequence (X̃, Ỹ ) converges, up to a subsequence, to some (X̂, Ŷ ) ∈ Ō2. Moreover, since Wz̄(X̃)−V nz̄ (Ỹ ) is

upper bounded due to the upper-semicontinuity of W̃z̄ and −Ṽ nz̄ , we know φ1(X̃, Ỹ ) is bounded, which implies

X̂ = Ŷ . Let ε tend to 0 and take the lim sup, we get M ≤ W̃z̄(X̂)− Ṽ nz̄ (Ŷ ) ≤ M . Therefore, X̂ = Ŷ ∈ O and

φ1(X̃, Ỹ )→ 0.

Step 4. Since (X̃, Ỹ ) converges to (X̂, X̂) with X̂ := (t̂, x̂, ŝ) ∈ O, we may assume that for ε small enough,

(X̃, Ỹ ) lies in O. We may write X̃ := (t1, x1, s1) and Ỹ := (t2, x2, s2). Then we have

∇X̃φ1 = −∇Ỹ φ1 =
2

ε
(X̃ − Ỹ ).

Applying Crandall-Ishii’s lemma (see Crandall et al. (1992)), we have that there exist Q and Q′ in SNz̄+1 such

that (
∇X̃φ1, Q

)
∈ P̄1,2,...,2,+W̃z̄(X̃),

(
−∇Ỹ φ1, Q

′) ∈ P̄1,2,...,2,−Ṽ nz̄ (Ỹ )

and the following matrix inequality holds in the non-negative definite sense:(
Q 0

0 −Q′

)
≤ 3

ε

(
INz̄+1 −INz̄+1

−INz̄+1 INz̄+1

)
.

By the viscosity subsolution (resp. supersolution) property of W̃ (resp. Ṽ n), we have

F̃z̄

(
t1, x1, s1, W̃ ,∇X̃φ1, Q

)
≤ 0 (4.15)

and

F̃z̄

(
t2, x2, s2, Ṽ

n,−∇Ỹ φ1, Q
′
)
≥ 0. (4.16)

Subtracting (4.15) from (4.16), using the fact that the difference of the supreme is less than the supreme of

the difference, we obtain

Γ
(
W̃z̄(X̃)− Ṽ nz̄ (Ỹ )

)
+
∑
i∈Iz̄

(
hiz̄(s1)W̃z̄(X̃)− hiz̄(s2)Ṽ nz̄ (Ỹ )

)
≤ sup
π∈A

{
J1(π) + J2(π) + J3(π)

}
,

where

J1(π) = (r + θTπ)
2(x1 − x2)2

ε
+
∑
i∈Iz̄

µi
2(s1i − s2i)

2

ε
,

J2(π) =
∑
i∈Iz̄

hiz̄(s1)W̃z̄i

t1, x1

1−
N∑
j=1

Ljiπ
j

 , si1

− hiz̄(s2)Ṽ nz̄i

t2, x2

1−
N∑
j=1

Ljiπ
j

 , si2

 ,

and

J3(π) =
1

2
πTΣπ

(
x2

1Q1,1 − x2
2Q
′
1,1

)
+

1

2

∑
i∈Iz̄

σ2
i

(
s2

1iQki,ki − s2
2iQ
′
ki,ki

)
+

∑
i,j∈Iz̄,i<j

ρijσiσj

(
s1is1jQki,kj − s2is2jQ

′
ki,kj

)
+
∑
i∈Iz̄

ρTi σπσi
(
x1s1iQ1,ki − x2s2iQ

′
1,ki

)
.
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Since φ1(X̃, Ỹ ) → 0, we can derive lim supε→0 J1(π) = 0 for any π. By the definition of M , we have

lim supε→0 J2(π) ≤
∑
i∈Iz̄ h

i
z̄(ŝ)M for any π. By the structure condition and Crandall Ishii’s inequality, we

have

J3(π) ≤ K

ε

(
|x1 − x2|2 +

∑
i∈Iz̄

|s1i − s2i|2
)
.

Thus we can derive that lim supε→0 J3(π) ≤ 0 for any π. Therefore

lim sup
ε→0

(
Γ
(
W̃z̄(X̃)− Ṽ nz̄ (Ỹ )

)
+
∑
i∈Iz̄

(
hiz̄(s1)W̃z̄(X̃)− hiz̄(s2)Ṽ nz̄ (Ỹ )

))
= ΓM +

∑
i∈Iz̄

hiz̄(ŝ)M ≤
∑
i∈Iz̄

hiz̄(ŝ)M.

Since Γ > 0, we have M ≤ 0, which is a contradiction to the assumption that M > 0. We conclude that M ≤ 0,

which implies Wz ≤ Vz for ∀z ∈ I on [0, T )× (0,∞)Nz+1.

5 Conclusions

In this paper we consider a utility maximization problem with looping contagion risk. We assume that the default

intensity of one company depends on the stock prices of other companies and the default of one company induces

immediate drops in the stock prices of the other surviving companies. In addition to the verification theorem,

we prove the value function is the unique viscosity solution of the HJB equation system. We also compare

and analyse the statistical distributions of terminal wealth of log utility based on two optimal strategies, one

using the full information of intensity process, the other a proxy constant intensity process. Our numerical

tests show that, statistically, using trading strategies based on stock price dependant intensities would achieve

higher return on average, especially when the difference of the stock dependent intensity and the proxy constant

intensity is big, but could also be more volatile in extreme scenarios. There remain many open questions in

utility maximization with contagion risk, for example, the BSDE simulation method for power utility. We leave

these and other questions to future research.
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