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Abstract. A high-order finite difference numerical scheme is developed for the ideal magnetohydrodynamic equations
based on an alternative flux formulation of the weighted essentially non-oscillatory (WENO) scheme. It computes a high-order
numerical flux by a Taylor expansion in space, with the lowest-order term solved from a Riemann solver and the higher-
order terms constructed from physical fluxes by limited central differences. The scheme coupled with several Riemann solvers,
including a Lax-Friedrichs solver and HLL-type solvers, is developed on general curvilinear meshes in two dimensions and
verified on a number of benchmark problems. In particular, a HLLD solver on Cartesian meshes is extended to curvilinear
meshes with proper modifications. A numerical boundary condition for the perfect electrical conductor (PEC) boundary is
derived for general geometry and verified through a bow shock flow. Numerical results also confirm the advantages of using low
dissipative Riemann solvers in the current framework.
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1. Introduction. The ideal magnetohydrodynamic (MHD) equations are a fluid model to describe
the dynamics of a perfectly conducting quasi-neutral plasma. The equations are a system of nonlinear
hyperbolic conservation laws with the constraint that its magnetic field is divergence free. In this work, we
describe a high-order finite difference schemes for ideal MHD based on an alternative flux formulation of
the weighted essentially non-oscillatory (WENO) scheme [41, 42, 54]. The resultant scheme is applicable to
general curvilinear meshes, which can be obtained by a smooth or non-smooth mapping, and compatible
with many approximate Riemann solvers.

In recent years, high-order numerical schemes using essentially non-oscillatory (ENO) and WENO ap-
proaches have been extended to the ideal MHD equations in [2, 5, 14, 17, 36, 40, 45, 52, 55] for example.
Many of those ENO/WENO approaches use the idea of reconstruction, in which a numerical flux is typically
reconstructed from the physical flux. We refer the reader to the review paper [53] for details. However,
the results in [48, 60] show that when a standard finite difference WENO scheme is applied to curvilinear
meshes, the free-stream preservation condition is not satisfied, which will cause large errors and even lead to
numerical instabilities for high-order schemes. This issue can be resolved by an alternative flux formulation
for the conservative finite difference WENO scheme in [54]. In this formulation, a WENO interpolation pro-
cedure is applied to the solution rather than to the flux functions. In [42], it has been theoretically proved
and numerically demonstrated that this scheme can preserve free-stream solutions on both stationary and
dynamically generalized coordinate systems, hence giving much better performance than the standard finite
difference WENO schemes on curvilinear meshes. In addition, the alternative flux formulation takes advan-
tage of monotone fluxes for the scalar case and approximate Riemann solvers for the system case, while the
standard finite difference WENO schemes can only use certain fluxes since its nonlinear stability relies on
a smooth flux splitting. Note that the most commonly used flux splitting in finite difference schemes is a
Lax-Friedrichs flux splitting, which is one of the most diffusive Riemann solvers. Therefore, in this work we
rely on the alternative flux formulation of the WENO schemes to solve the MHD equations on curvilinear
meshes.

The alternative flux formulation requires an approximated Riemann solver in the low-order terms. In this
work, a Lax-Friedrichs Riemann solver and HLL-type Riemann solvers are used. The HLL Riemann solver,
first proposed in [30], solves a Riemann problem by an approximate solution consisting of one intermediate
state that is connected to the left and right states by discontinuities. This intermediate state is obtained
by exploiting the conservation of the equations, commonly referred to as the consistency condition. When
applied to the Euler equations in hydrodynamics, the HLL solver exhibits excessive dissipations in the
presence of contact discontinuities. To remedy this, a HLLC (C stands for contact) solver is proposed for
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the Euler equations in [58]. It assumes two intermediate states in the approximate solution, which are
connected to each other by a contact discontinuity and connected to the left and right states by shocks. The
Rankine-Hugoniot condition, in addition to the consistency condition, is used to determine the intermediate
states. Similar ideas were later used in designing Riemann solvers for the ideal MHD equations in [29, 44, 46].
The solvers in [29, 44] were both named HLLC solvers for ideal MHD, because two intermediate states are
assumed to be connected to each other by a contact discontinuity. The solver in [46] was named HLLD
(D stands for discontinuities) solver for ideal MHD, since the solver involving four intermediate states can
exactly resolve most types of discontinuities, the only exception being the slow shocks. Note that the HLL
and HLLC solvers can be directly applied to general curvilinear meshes while the HLLD solver is previously
designed for Cartesian meshes. Besides the aforementioned one-dimensional Riemann solvers, we note that
there are recent developments of multidimensional Riemann solvers for ideal MHD, see [3, 4, 6] for instance.
In the current work, we experiment the HLL-type solvers when exploring the effects of the choice of Riemann
solver in the current framework. In particular, the HLLD solver is extended to curvilinear meshes.

One of the main numerical difficulties for simulating the ideal MHD equations is to control divergence
errors in the magnetic field. Failure to control the divergence error creates an unphysical force parallel
to the magnetic field (see [10] for instance), which may eventually result into numerical instabilities as its
effects accumulate. There are mainly four types of numerical approaches to address this issue, including (1)
the non-conservative eight-wave method [28], (2) the projection method [10], (3) the hyperbolic divergence
cleaning method [22], and (4) the various constrained transport methods [1, 8, 17, 18, 24, 25, 31, 32, 50].
See the review paper [59] for more discussions on the advantages and disadvantages of those approaches. In
this work, we use a finite difference constrained transport method proposed in [17] to address this issue.

The main motivation for using curvilinear meshes in the current work is that in certain MHD appli-
cations, the complex geometry is easier to describe using boundary-fitted grids in a curvilinear coordinate
system, see [12, 23, 27, 36, 49] for instance. In a curvilinear coordinate, it is also relatively easier for finite
difference methods to impose boundary conditions in the presence of curved surfaces, compared to some
other approaches such as cut-cell methods. In this work, we impose several boundary conditions in the
numerical tests for the ideal MHD equations, including the inflow and outflow boundary conditions, and a
perfect electrical conductor (PEC) condition. In particular, we derive a numerical compatibility boundary
condition for the PEC boundary for the both conserved quantities and magnetic potential, based on the
previous work in the Euler equations [34] and Maxwell’s equations [33]. Some discussions of the numerical
boundary conditions for the ideal MHD equations can be found in [35, 55], in which the PEC boundary is
implemented differently through a least-squares reconstruction to set the normal components of the velocity
and magnetic field to zero. Instead, we rely on the governing equations and a local characteristic analysis to
derive the numerical boundary condition.

The remaining sections of the paper are organized as follows. The governing equations are reviewed in
Section 2. The details of the alternative flux formulation are presented in Section 3, including an outline of
the base scheme, an additional limiter applied to higher order terms and its extensions to ideal MHD and
curvilinear meshes. Section 4 presents some numerical approaches applied to the ideal MHD simulations,
which include a brief outline of the constrained transport method and a positivity-preserving limiter, and
a derivation of numerical boundary conditions for the PEC boundary. Numerical results are presented in
Section 5. Conclusions and future directions are given in Section 6. A WENO interpolation is described in
Appendix A. Several HLL-type Riemann solvers are detailed in Appendix B, including our version of the
HLLD solver.

2. Governing equations. In this section we briefly review the ideal MHD equations, with an emphasis
on the hyperbolicity and discontinuities of the system. In a conservation form, the ideal MHD equations are

∂t


ρ
ρu
E
B

+∇ ·


ρu

ρu⊗ u + ptotI−B⊗B
u(E + ptot)−B(u ·B)

u⊗B−B⊗ u

 = 0,(1)

∇ ·B = 0,(2)

where ρ is the mass density, ρu = (ρu, ρv, ρw)T is the momentum density, E is the total energy density,
B = (B1, B2, B3)T is the magnetic field, p is the thermal pressure, ‖·‖ is the Euclidean vector norm, and
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ptot = p+ 1
2‖B‖

2 is the total pressure. Let γ = 5/3 be the ideal gas constant, and the pressure satisfies the
equation of state

E =
p

γ − 1
+
ρ ‖u‖2

2
+
‖B‖2

2
.

2.1. Waves in the ideal MHD equations. The wave speeds of the ideal MHD system (1) in some
arbitrary direction n (‖n‖ = 1) are

λ1,8 = u · n∓ cf (fast magnetosonic waves),(3a)

λ2,7 = u · n∓ ca (Alfvén waves),(3b)

λ3,6 = u · n∓ cs (slow magnetosonic waves),(3c)

λ4 = λ5 = u · n (entropy and divergence waves),(3d)

where

a =

√
γp

ρ
(sound speed),

ca =

√
(B · n)

2

ρ
(Alfvén speed),

cf =

1

2

a2 +
‖B‖2

ρ
+

√√√√(a2 +
‖B‖2

ρ

)2

− 4a2
(B · n)

2

ρ




1
2

(fast magnetosonic speed),

cs =

1

2

a2 +
‖B‖2

ρ
−

√√√√(a2 +
‖B‖2

ρ

)2

− 4a2
(B · n)

2

ρ




1
2

(slow magnetosonic speed).

The eigen-decomposition of the Jacobian matrix for ideal MHD equations is complicated and has its own
subtleties, see [9] for instance. More details of MHD waves can be found in many MHD literature, see [37, 9]
for example.

2.2. Discontinuities in the ideal MHD equations. The different types of discontinuities in the
ideal MHD equations (1) are reviewed in this section. Those discontinuities are used in the later discussion
of the Riemann solvers in Appendix B. Let q(t,x) denote the conserved quantities of the system, and assume
the Riemann problem has an initial condition given by

(4) q(0,x) =

{
qL, if n · x < 0,

qR, if n · x ≥ 0,

where qL and qR are constant vectors, and n is an arbitrary direction. The solution to such a problem is a
function q that depends only on t and n · x. We are interested in the case when the solution consists of a
single moving discontinuity given by

(5) q(t,x) =

{
qL, if (n · x)/t < S,

qR, if (n · x)/t ≥ S,

where S is the speed at which the discontinuity moves. Let F denote the flux in the direction n. The
Rankine-Hugoniot (RH) condition of the hyperbolic conservation law is

(6) S(qR − qL) = F(qR)− F(qL).

Note that the divergence condition (2) in the ideal MHD equations implies that the magnetic field in the
initial conditions (4) satisfy

(7) n ·BL = n ·BR.

3



The RH condition (6) and the constraint (7) imply that a single moving discontinuity in ideal MHD must
be one from the following list:

1. A (fast or slow) shock. In this case, the solutions satisfy

n · uα 6= S, α = L,R,

n · uL 6= n · uR,

ρL 6= ρR.

2. A rotational discontinuity. In this case, the solutions satisfy

n · uα 6= S, α = L,R,

n · uL = n · uR,

ρL = ρR,

ti · (uR − uL) =
1
√
ρ

ti · (BR −BL), i = 1, 2,

where t1 and t2 are the tangential vectors with respect to the discontinuity interface.
3. A contact discontinuity. In this case, the solutions satisfy

n ·Bα 6= 0, α = L,R,

BL = BR,

uL = uR,

pL = pR.

4. A tangential discontinuity. In this case, the solutions satisfy

n ·Bα = 0, α = L,R,

ptotL = ptotR.

Here the jumps in the tangential velocities and tangential magnetic fields can be arbitrary.
Note that shocks are the only types of discontinuities that can possibly admit jumps in the normal

velocities or the total pressures. Rotational, contact, and tangential discontinuities are linearly degenerate.
Rotational discontinuities correspond to Alfvén waves, while contact and tangential discontinuities corre-
spond to entropy and divergence waves. None of the discontinuities in this list is genuinely nonlinear. The
discussions on discontinuities in the ideal MHD equations can be also found in [56].

The divergence-free condition suggests n·B must be identical on both sides of the discontinuity. However,
this relation does not hold in multiple dimensions in numerical simulations. Therefore, Riemann solvers
need special treatments for such cases. The treatment in our version of the HLLD solver will be discussed
in Appendix B.

3. An alternative flux formulation of the WENO scheme. In this section, we describe a WENO
scheme based on an alternative flux formulation from [41, 42, 54]. The basic scheme is first given for a
system of conservation laws. Numerical experiments indicate that its direct extension to the MHD equations
causes oscillations in some benchmark problems. Hence, a limiter is introduced in Section 3.2 to control
those oscillations. The extensions of the base scheme to curvilinear coordinates are given in Sections 3.3.

3.1. Basic scheme. A one-dimensional system of conservation law takes the form

(8) ∂tq + ∂xf(q) = 0,

where the conserved variables q = (q1(t, x), . . . , qn(t, x))T is a vector function of t and x and f(q) =
(f1(q), . . . , fn(q))T is a flux function. A hyperbolic system (8) indicates the Jacobian ∂f/∂q has n real eigen-
values satisfying λ1(q) ≤ · · · ≤ λn(q) and a set of n independent (right) eigenvectors, {r1(q), . . . , rn(q)}.
Defining a matrix

R(q) = (r1(q), . . . , rn(q)),

4



we note that the Jacobian matrix satisfies

R−1(q)
∂f

∂q
R(q) = diag(λ1(q), . . . , λn(q)).

The system (8) is solved by a semi-discrete conservative finite difference scheme of the form

(9) ∂tqi +
1

∆x
(f̂i+1/2 − f̂i−1/2) = 0,

on a uniform mesh with xi = i∆x. Here qi(t) sits on xi, which is is the numerical approximation to the point

value q(xi, t), and f̂ is some numerical flux that sits on half grid points. Note that f̂ is a vector function and
the k-th component of the numerical flux satisfies

(10)
1

∆x

(
f̂k|i+1/2 − f̂k|i−1/2

)
= ∂xfk(q(x))|x=xi

+O(∆xm),

where m is the spatial order of accuracy of the scheme. The semi-discrete form (9) is then integrated in
time using a time-stepping method, such as Runge-Kutta (RK) methods. In the current work, a third-order
TVD-RK method is used.

The alternative flux formulation of the WENO scheme f̂ at xi+1/2, first proposed in [54], is given by

(11) f̂i+1/2 = fi+1/2 +

[(m−1)/2]∑
k=1

a2k∆x2k ∂2kx f |i+1/2

to guarantees m-th order accuracy in (10), where a2k’s are some constants obtained by Taylor expansions and

the accuracy constraint. In the current work, a truncation at m = 5 is used and f̂ is therefore approximated
by

(12) f̂i+1/2 = fi+1/2 −
1

24
∆x2 ∂2xf |i+1/2 +

7

5760
∆x4 ∂4xf |i+1/2.

The first term in (12) is approximated by

(13) fi+1/2 = F(q−i+1/2,q
+
i+1/2),

where F is a Riemann solver and q±i+1/2 are sufficiently high-order one-sided approximations to q at xi+1/2.

The WENO interpolation is used to obtain q±i+1/2, and the formulation of a fifth-order WENO interpolation

is given in Appendix A. Approximate Riemann solvers are used in the current work, including a Lax-Friedrich
solver and HLL-type Riemann solvers. For instance, a Lax-Friedrichs solver gives

(14) F(q−,q+) =
1

2

[
f(q−) + f(q+)− α

(
q+ − q−

)]
,

with α = max1≤k≤n |λk(q)| taken over the relevant range of q. Depending on the region where the maximum
is taken, there are two variations of the solver, the global and local Lax-Friedrichs solvers, both of which
are used in the numerical section. Note that its local version is commonly refered to as the Rusanov flux.
The HLL-type solvers are more complicated and the details are described in Appendix B. The HLL, HLLC
and HLLD solvers are all experimented in this framework, and unsurprisingly the HLL and HLLC solvers
are found to produce solutions better than the Lax-Friedrichs solver (the most dissipative one we test) and
worse than the HLLD solver (the least dissipative one we test) for most benchmark problems. Therefore,
to save the space, only the results of the Lax-Friedrichs and HLLD solvers are presented in the numerical
section.

The remaining higher order terms in (12) are constructed using the physical flux fi at the grid points
xi. For instance, if some central differences are used, the approximations become

∆x2∂2xf |i+1/2 ≈
1

48
(−5fi−2 + 39fi−1 − 34fi − 34fi+1 + 39fi+2 − 5fi+3) ,(15a)

∆x4∂4xf |i+1/2 ≈
1

2
(fi−2 − 3fi−1 + 2fi + 2fi+1 − 3fi+2 + fi+3) .(15b)
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Both approximations in (15) give a truncation error of O(∆x6), which guarantees a fifth order accuracy of
the numerical flux (12). More discussions on those terms are given in Section 3.2.

The extension to multiple dimensions can be treated in a dimension-by-dimension fashion. For example,
a system of hyperbolic conservation law in two dimensions takes the form

(16) ∂tq + ∂xf(q) + ∂yg(q) = 0,

where q is a vector function of t, x and y, and f and g are the fluxes in the x and y directions, respectively.
On a uniform mesh with xi = i∆x and yj = j∆y, the system (16) can be solved by using a semi-discrete
scheme,

(17) ∂tqi +
1

∆x
(f̂i+1/2,j − f̂i−1/2,j) +

1

∆y
(ĝi,j+1/2 − ĝi,j−1/2) = 0,

where i = (i, j) is a multi-index, and f̂ and ĝ are numerical fluxes approximated similarly as in 1D case,

f̂i+1/2,j = F(q−i+1/2,j ,q
+
i+1/2,j)−

1

24
∆x2∂2xf |i+1/2,j +

7

5760
∆x4∂4xf |i+1/2,j ,(18a)

ĝi+1/2 = G(q−i,j+1/2,q
+
i,j+1/2)− 1

24
∆y2∂2yg|i,j+1/2 +

7

5760
∆y4∂4yg|i,j+1/2.(18b)

Here q±i+1/2,j and q±i,j+1/2 are obtained by one-dimensional WENO interpolations, and F and G are Riemann

solvers corresponding to f and g.

3.2. Limiting the higher-order terms. In [41] the higher-order derivatives ∂2xf |i+1/2 and ∂4xf |i+1/2

are first expanded in terms of the derivatives of f with respect to q and spatial derivatives of q, and
central differences are then used for approximations. In [42] the central differences given in (15) are used
to approximate the higher-order terms directly. In [41, 42], good performance of the resulting schemes is
demonstrated through benchmark problems of the compressible Euler equations in hydrodynamics.

However, during the numerical experiment of the MHD equations, the linear approximations (15) are
found to cause oscillations near a strong discontinuity, which could result into instabilities. Hence, an extra
limiting procedure is needed to switch the high-order numerical flux (11) to a first-order flux for such a case,
while the resulting scheme is required to retain high-order accuracy in smooth regions. In this work, the
high order derivatives in (11) are multiplied by an additional limiter σ and the numerical flux (denoted by

f̂σ) becomes

(19) f̂σi+1/2 = fi+1/2 + σi+1/2

[(m−1)/2]∑
k=1

a2k∆x2k ∂2kx f |i+1/2.

Note that for the case of m = 5 used in the current work, σ needs to satisfy

σi+1/2 =

{
1 +O(∆x3), when q is smooth in the stencil Si+1/2 = {xi−2, . . . , xi+3},
O(∆x2), when q contains a strong discontinuity in Si+1/2.

(20)

To see the effect of such a limiter, we note that for smooth problems,

f̂i+1/2 − f̂σi+1/2 =
(
1− σi+1/2

) [(m−1)/2]∑
k=1

a2k∆x2k ∂2kx f |i+1/2 = Ci+1/2∆x5.

Moreover, the high order derivatives ∂2kx f and the coefficient of the O(∆x3) term in σ lead to a smooth
coefficient of Ci+1/2, meaning |Ci+1/2 − Ci−1/2| = O(∆x). Hence, a difference of (19) gives

f̂σi+1/2 − f̂σi−1/2

∆x
=

f̂i+1/2 − f̂i−1/2

∆x
−
Ci+1/2∆x5 − Ci−1/2∆x5

∆x

=
f̂i+1/2 − f̂i−1/2

∆x
+O(∆x5),

6



and it appears to be enough to maintain the fifth-order accuracy in (10). In the following, we use f̂i+1/2 to

represent f̂σi+1/2 without special declaration.

Here we employ the parameter introduced in [13] to control the oscillations. The parameter, based on
the idea of the WENO-Z scheme [11], is constructed from the smoothness indicators βk in (38) from the
WENO interpolation. In the process to obtain q−i+1/2, we set

σmax = 1 +
|β0 − β2|

ε+ min{β0, β2}
, σmin = 1 +

|β0 − β2|
ε+ max{β0, β2}

,

where ε is a small positive number (taken to be 10−6 in all the numerical examples) to avoid division by
zero. We can thus obtain a candidate for the coefficient σ by

σ− =
σmin

σmax
.

A similar formula for q+
i+1/2 gives rise to another candidate σ+. We finally set

(21) σi+1/2 = min{σ−, σ+}.

Using Taylor expansions, it is easy to verify the definition (21) satisfies the constraint (20). More details can
be found in [11, 13].

3.3. Curvilinear coordinates. Here we provide a brief discussion of using curvilinear coordinates as
the computational domain to solve a general hyperbolic system. Assume the coordinates x = (x, y) is related
to the curvilinear coordinates r = (ξ, η) via a continuous coordinate transformation x = x(r). As illustrated
in Figure 1, a uniform mesh in the computational domain is typically used in our implementation.

Jacobian = J

Jacobian = J-1

ξ

η

x

y

Computational DomainPhysical Domain

Fig. 1. A schematic diagram of the transformations between the physical and computational domain.

The two-dimensional system (16) in the curvilinear coordinates has a conservative form given by

(22) ∂tq̃ + ∂ξ f̃ + ∂ηg̃ = 0,

where

(23) q̃ =
q

J
, f̃ =

1

J
(∂xξ f + ∂yξ g), g̃ =

1

J
(∂xη f + ∂yη g),

and J is the determinant of the Jacobian matrix defined by

J := det

[
∂r

∂x

]
,

which indicates J−1 = ∂ξx ∂ηy − ∂ηx ∂ξy. The standard metrics satisfy

∂xξ

J
= ∂ηy,

∂yξ

J
= −∂ηx,

∂xη

J
= −∂ξy,

∂yη

J
= ∂ξx.

7



Note that the equation (22) in curvilinear coordinates is still hyperbolic. Therefore, the base scheme and
other numerical treatments discussed previously can be applied straightforwardly on the uniform divided
computational domain (ξi, ηj) after the numerical fluxes, f̃ and g̃, are defined properly through (23). It has
been suggested in [42] that to preserve the freestream condition, WENO interpolations should be applied to
q(r) instead of q̃. In the current work, we adopt this approach in the ideal MHD. In addition, the metrics
∂ξx, ∂ξy, ∂ηx and ∂ηy at half point are approximated by central differences given by

w|i+1/2,j =
1

256
(3wi−2,j − 25wi−1,j + 150wi,j + 150wi+1,j − 25wi+2,j + 3wi+3,j) ,

w|i,j+1/2 =
1

256
(3wi,j−2 − 25wi,j−1 + 150wi,j + 150wi,j+1 − 25wi,j+2 + 3wi,j+3) ,

with w stands the metrics, and have truncation errors O(∆ξ6) and O(∆η6), respectively. We note that the
HLLD flux requires some non-trivial extensions on curvilinear meshes and the details are given in Appendix B.

4. Numerical approach in the ideal MHD.

4.1. Constrained transport. A constrained transport framework is used to control the divergence
error of the magnetic field. In this framework, alongside evolving the conserved quantities of the ideal MHD
equations, a magnetic vector potential A, satisfying B = ∇×A, is evolved by

(24) ∂tA + (∇×A)× u = 0.

This evolution equation is derived from the magnetic induction equation, see [50] for details. In the case of
two dimensions considered in this work, the divergence-free condition (2) becomes

∇ ·B = ∂xB1 + ∂yB2 = 0.

It therefore suffices to only account for B1 and B2 in terms of controlling divergence errors in two dimensions.
This leads to a nice property that only the third component of A needs to be evolved. For ease of presentation,
a scalar quantity, A, is used to denote the third component of A. In 2D, the equation (24) leads to an
evolution equation for A given by

(25) ∂tA+ u ∂xA+ v ∂yA = 0

and B = ∇×A relates B1 and B2 with A by

B1 = ∂yA, B2 = −∂xA.

Many previous works show such a procedure can control the divergence error in B and improve numerical
stabilities of base schemes.

Same as our previous work [17], a WENO method designed for Hamilton-Jacobi equations [38] is modified
to solve the potential equation (25). The approximation form is given by

(26) ∂tAi = −ui
(
∂xA

−
i + ∂xA

+
i

2

)
− vi

(
∂yA

−
i + ∂yA

+
i

2

)
+ α1

(
∂xA

+
i − ∂xA

−
i

2

)
+ α2

(
∂yA

+
i − ∂yA

−
i

2

)
,

where α1 = maxi|ui| and α2 = maxi|vi|. Here ∂xm
A±i are defined by WENO reconstructions through

∂xm
A−i := φWENO (D+xm

Ai−3,j , D+xm
Ai−2,j , D+xm

Ai−1,j , D+xm
Ai,j , D+xm

Ai+1,j) ,

∂xm
A+

i := φWENO (D+xm
Ai+2,j , D+xm

Ai+1,j , D+xm
Ai,j , D+xm

Ai−1,j , D+xm
Ai−2,j) ,

and D+xm is the standard forward difference defined by D+xAi := (Ai+1,j − Ai,j)/∆x and D+yAi :=
(Ai,j+1−Ai,j)/∆y. The function φWENO is the classical fifth-order WENO reconstruction whose coefficients
can be found in many previous works such as [17, 38, 39]. In the current multistage setting, the constrained
transport is implemented through a predictor-corrector strategy, i.e., after the k-stage of the time integrator
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at time tn+1, the magnetic field is corrected by

B
n+1,(k)
1,i =

A
n+1,(k)
i,j−2 − 8A

n+1,(k)
i,j−1 + 8A

n+1,(k)
i,j+1 −An+1,(k)

i,j+2

12∆y
,

B
n+1,(k)
2,i = −

A
n+1,(k)
i−2,j − 8A

n+1,(k)
i−1,j + 8A

n+1,(k)
i+1,j −An+1,(k)

i+2,j

12∆x
.

Since the fourth-order central differences are used in the constrained transport step, the resulting scheme in
this work is fourth-order. More details on the constrained transport using this approach can be found in the
previous work [14, 17].

The potential A on curvilinear meshes are solved similarly. For instance, the evolution equation (25) in
the curvilinear coordinates becomes

∂tA+ (u ∂xξ + v ∂yξ)∂ξA+ (u ∂xη + v ∂yη)∂ηA = 0,

which is solved by a discretization similar to (26) but approximated in the curvilinear coordinates. We note
that while such discretization only guarantees the divergence-free condition of magnetic field to truncation
errors on general curvilinear meshes, in practice we find this is sufficient to suppress the unphysical oscillations
associated with the divergence error of B.

4.2. A positivity-preserving limiter. During numerical experiments, we find that some HLL-type
fluxes may cause the density or pressure becoming negative in some hard problems (such as the cloud-shock
interaction in Section 5.5) even with the constrained transport step turned on. It appears to be related to
the enhanced resolutions provided by the HLL-type solvers, since numerical solutions remain positive if the
Lax-Friedrichs flux is used in the scheme. For such a case, a positivity-preserving limiter for ideal MHD
equation in [16] is applied.

The limiter replaces the high-order flux f̂i+ 1
2

constructed in (19) with a corrected flux f̂new
i+ 1

2

given by

f̂newi+ 1
2

= θi+ 1
2
f̂i+ 1

2
+ (1− θi+ 1

2
)f̂ lowi+ 1

2
,

where f̂ low
i+ 1

2

is a low-order flux which could preserve positive density and pressure, and the parameter θi+ 1
2
∈

[0, 1]. The parameter θi+ 1
2

is determined through solving a single optimization problem, which is derived
from guaranteeing positivity of both density and pressure in the whole domain. It is very efficient to solve
this optimization problem compared to the base scheme due to the construction of the parameter. The Lax-
Friedrichs flux fi+ 1

2
given in (14) is typically used as the low-order flux f̂ low

i+ 1
2

, with q− = qi and q+ = qi+1. It

has been proved that the limiter will guarantee positive numerical solutions if the low-order flux is positivity-
preserving. For some simple problems such as scalar cases, it has been proved that a limiter using similar
ideas achieves the designed accuracy of based schemes for smooth problems, see [15] for instance. For the
ideal MHD equations, it has been numerically demonstrated in [14, 16] that the corrected flux maintains
the designed order of accuracy of the high-order flux. For more details on the positivity-preserving limiter,
see [14, 16, 51].

The implementation of the limiter on curvilinear meshes requires minor modifications. For instance,
curvilinear meshes require solving the ideal MHD equation in the form of (22). Therefore, some steps of
the limiter need to be modified accordingly. In the current multistage scheme, the limiter is applied at each
stage. While in [16] it was sufficient to apply the limiter only at the final stage of each time step, we find
it necessary to apply it at each stage in the current scheme. This, again, is possibly due to the enhanced
resolution provided by the HLL-type fluxes.

4.3. Numerical boundary condition for PEC. In this section we derive a numerical boundary
condition on a PEC boundary for the conserved quantities and the magnetic potential. A slip-wall numerical
boundary condition for the Euler equations was given in [34] and a PEC numerical boundary condition for
Maxwell’s equations was given in [33]. Following the ideas in [33, 34], we derive a numerical PEC boundary
condition for the ideal MHD equations. Note that the idea presented here is not limited to the PEC boundary
condition for ideal MHD and it is extendible to some non-ideal MHD cases and other physical boundary
conditions.
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Without loss of generality, assume the PEC boundary is located at ξ = ξ0. Its normal direction at the
boundary is n = −∇xξ/‖∇xξ‖. We further define the following quantities

ū1 := ∇xξ · (u, v)T , ū2 := ∇xη · (u, v)T ,

B̄1 := ∇xξ · (B1, B2)T , B̄2 := ∇xη · (B1, B2)T ,

which are proportional to the components normal to curves ξ or η being constant, respectively. On a PEC
boundary two normal components satisfy

ū1(ξ0, η, t) = 0,(27)

B̄1(ξ0, η, t) = 0.(28)

Those are the only analytical boundary conditions needed on a PEC boundary. A local characteristic
analysis reveals that there are one characteristic (forward fast magnetosonic waves) moving into the domain
and one characteristic (backward fast magnetosonic waves) moving out, with the rest propagating along the
boundary. Note that the magnetic boundary condition (28) is involved to guarantee four characteristics
(Alfvén and slow magnetosonic waves) moving along the boundary. Therefore, these boundary conditions
are still consistent with the local characteristic analysis, although there are two boundary conditions applied
but only one characteristic moving in. Due to many characteristic moving parallel to the boundary, some
careful treatments are needed to implement the conditions numerically.

Following the ideas in [34], we rely on the extrapolations and compatibility conditions to derive the
numerical boundary condition with the help of ghost points. Based on the boundary condition (27) and (28)
and the ideal MHD equations (1), a compatibility condition for the total pressure ptot can be derived as

∂nptot = −ρū2n · ∂ηu + B̄2n · ∂ηB.(29)

It is a direct extension of the well-known compatibility condition for the Euler equations involving the normal
derivative of the pressure along a curved slip wall. The details of the derivations are therefore omitted here.

Before discussing the numerical boundary conditions, we consider the analytical boundary condition for
the magnetic potential A in the constrained transport framework. Along the boundary ξ = ξ0, the magnetic
boundary condition (28) gives

B̄1 = ∂xξ ∂yA− ∂yξ ∂xA = (∂xξ ∂yη − ∂xη ∂yξ)∂ηA = 0,

which further leads to

∂ηA = 0.

Therefore, the potential at the boundary satisfies

∂tA+ (u ∂xξ + v ∂yξ)∂ξA = 0.

Due to u ∂xξ+ v ∂yξ = ∇xξ ·u and the velocity boundary condition (27), the analytical boundary condition
for the potential therefore is

A(ξ0, η, t) = A0,(30)

with A0 being some constant given in the initial condition.
Based on the above derivations for the PEC boundary, we propose a numerical compatibility boundary

condition for the PEC boundary as follows. First, the velocities on the boundary are projected such that

n · ui = 0, n ·Bi = 0, on i = 0.

A Dirichlet boundary condition is applied to the magnetic potential

Ai = A0, on i = 0.
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Note that the divergence in a general curvilinear coordinate can be written in a conservative form as

∇ ·B = J

d∑
m=1

∂rm(arm ·B), arm = J−1∇xrm.(31)

To implement the boundary condition numerically, 2nd-order discrete operators are defined as

D0ξqi :=
qi+1,j − qi−1,j

2∆ξ
, D0ηqi :=

qi,j+1 − qi,j−1
2∆η

.

Its normal derivative is defined as

D0nqi := n · (∂xξ D0ξ + ∂xη D0η, ∂yξ D0ξ + ∂yη D0η) qi.

The divergence-free condition can be used to determine the magnetic field in the normal direction as

D0ξ(aξ ·Bi) = −D0η(aη ·Bi), on i = 0.(32)

The compatibility condition is used to determine the total pressure at the ghost points

D0nptot,i = −ρiū2,i ni ·D0ηui + B̄2,i ni ·D0ηBi, on i = 0.(33)

Note that the conditions (32) and (33) are used to determine ptot and the magnetic field aξ ·B in the normal
direction at i = −1. The same procedure can be used to determine those values at i = −2 and −3 if centered
differences of wider stencils are used on the left-hand side of (32) and (33). In our implementation those
approximations are all implemented in second-order for simplicity. The rest quantities {ρ,u, Bt, B3, A} at
the ghost points i = −1,−2,−3 are determined by extrapolations. Here Bt stands for the magnetic field
in the transpose direction of the interface. The WENO extrapolation in [57] is used here as the limited
extrapolation. For the quantity q ∈ {ρ,u, Bt, B3, A}, let

p0(ξ) = q0,j ,

p1(ξ) =
q1,j − q0,j

∆ξ
ξ + q0,j ,

p2(ξ) =
q0,j − 2q1,j + q2,j

2 ∆ξ2
ξ2 +

−3q0,j + 4q1,j − q2,j
2 ∆ξ

ξ + q0,j ,

define the first, second and third-order extrapolations in the negative ξ direction, respectively. The limited
extrapolation is defined by

p̄(ξ) = ω̄0p0(ξ) + ω̄1p1(ξ) + ω̄2p2(ξ),

where

ω̄r =
ᾱr

ᾱ0 + ᾱ1 + ᾱ2
, ᾱr =

d̄r
(β̄r + ε)2

, r = 0, 1, 2,

d̄0 = ∆ξ2, d̄1 = ∆ξ and d̄2 = 1−∆ξ −∆ξ2. The smoothness indicators here are given by

β̄0 = ∆ξ2, β̄1 = (q1,j − q0,j)2, β̄2 =
13

12
(q0,j − 2q1,j + q2,j)

2 + (2q0,j − 3q1,j + q2,j)
2.

More details can be found in [57] and note that β2 therein contains a typo, which has been fixed here. We
find this WENO extrapolation is slightly more robust than the limited extrapolation (a weighted average of
first and third-order extrapolations) used in [34] for the current work.

Here the extrapolations are used to determine the transpose magnetic field Bt and B3. Note in [33] the
boundary conditions for the electric fields are implemented differently by taking another time derivative of
the evolution equations. However, for the MHD system we consider, it is easy to show that taking another
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time derivative of the magnetic induction equation does not provide a useful constraint. The primary reason
is that the electric field is fully determined by an ideal Ohm’s law E = B× u in the MHD system.

The idea of the compatibility boundary condition is similar to the idea of the so-called inverse Lax-
Wendroff method [57]. Both methods convert the normal derivatives of certain variables to the tangential
derivatives at the PEC or slip-wall boundary, see (32) and (33) for instance. To extend it to a boundary
condition of higher order (higher than the second-order version presented here), the compatibility condition
relies on high-order discrete operators of a wider stencil to approximate the conditions such as (32) and (33),
which typically results into global coupling of all the ghost points, see [33] for instance. On the other hand,
the inverse Lax-Wendroff approach relies on high-order time-derivatives to avoid global coupling, but for a
PEC boundary condition considered here, such a procedure leads to very complicated algebraic relations. In
practice, extrapolations are used to approximate those high-order time-derivatives, which may cause a new
issue of numerical stabilities. Therefore, the extension to a higher-order boundary condition is challenging
and remains an interesting line of future research.

In practice, a reflective boundary condition is typically used for the PEC boundary, see [20, 21] for
instance. The boundary condition is simply implemented by copying the solution at the grid points (i, j) to
the ghost points (−i, j) and changing the sign of the velocity and magnetic field that are perpendicular to
the interface. For the compressible Euler case, this boundary condition is only valid on straight walls and
introduces a low-order error on curved walls, see [34] for instance. For the ideal MHD equations considered
here, besides the same issue from hydrodynamics, another potential issue is that such a reflective magnetic
field will also affect the divergence of the magnetic field and may lead to numerical instabilities for certain
methods. In Section 5.8, we will use a bow shock benchmark to discuss those issues for high-order methods
in further details.

5. Numerical results. In this section, numerical results are presented to demonstrate the accuracy
and performance of the WENO scheme. For ease of reference, the WENO scheme based on the alternative
flux formulation is simply referred to as the WENO scheme here. Since the schemes using different Riemann
solvers produce similar solutions, we only present the numerical solutions using the Lax-Friedirchs and HLLD
fluxes. Throughout the simulations, a third-order TVD-RK method is used as the time integrator. A CFL
number of 0.5 is typically used, with the largest wave speed estimated in the curvilinear coordinates. Unless
otherwise stated, the constrained transport and positivity-preserving limiter are turned on in numerical
simulations, although those steps are not required for some easy problems.

5.1. 2D smooth Alfvén wave problem. We first consider the smooth Alfvén wave problem on a
curvilinear mesh. This problem is used to verify the accuracy of the numerical schemes on general curvilinear
meshes. The initial conditions is

(ρ, u, v, w, p,B1, B2, B3)(0, x, y) = (1, 0, 0.1 sin(2πx), 0.1 cos(2πx), 0.1, 1, 0.1 sin(2πx), 0.1 cos(2πx)),

and its initial magnetic potential is

A(0, x, y) = y + 0.1
cos(2πx)

2π
.

The exact solution is an Alfvén wave propagating along x-direction with a wave speed of one.
In previous work such as [14, 17] the direction of the Alfvén wave was rotated so that it is not parallel

to any grid lines in a Cartesian grid. In the current test, the same goal is achieved by keeping the direction
of the wave parallel to x-direction but perturbing the Cartesian grid. The computational domain is set to
be (ξ, η) ∈ [0, 1]

2
, with the grid lines perturbed according to the mapping

x = ξ + εx sin(2π η ax),

y = η + εy sin(2π ξ ay),

where εx and εy are the magnitude of perturbation and ax and ay are the wave numbers of the perturbation.
In the results presented below, the parameters are taking by εx = 0.01, εy = 0.02, ax = 2, and ay = 4. As an
illustration, a coarse grid of size 32 × 32 is presented in Figure 2. The boundary condition are all periodic
for this smooth test.
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Fig. 2. Computational grid for the 2D Alfvén wave problem. The (coarse) grid is of size 32 × 32 in the computational
domain of (ξ, η) ∈ [0, 1]2 with x = ξ + εx sin(2π η ax) and y = η + εy sin(2π ξ ay).

Table 1
L∞-errors of the 2D smooth Alfvén wave problem.

WENO with Lax-Friedrichs flux
Mesh Error in u Order Error in B Order Error in A Order

32× 32 3.324e-3 — 5.131e-3 — 1.560e-4 —
64× 64 8.234e-5 5.34 4.090e-4 3.65 8.394e-6 4.22

128× 128 6.713e-6 3.62 2.658e-5 3.94 5.266e-7 3.99
256× 256 4.544e-7 3.88 1.677e-6 3.99 3.322e-8 3.99

WENO with HLLD flux
Mesh Error in u Order Error in B Order Error in A Order

32× 32 3.415e-3 — 5.257e-3 — 1.604e-4 —
64× 64 8.260e-5 5.37 4.090e-4 3.68 8.388e-6 4.26

128× 128 6.716e-6 3.62 2.658e-5 3.94 5.264e-7 3.99
256× 256 4.542e-7 3.89 1.677e-6 3.99 3.322e-8 3.99

A refinement study is conducted on a sequence of grids of increasing resolution to verify the accuracy
of the WENO methods with two Riemann solvers. The numerical solutions are compared to the exact
solutions at t = 1. Throughout the refinement study, a fixed CFL number of 0.6 is used to determine
the time step. Table 1 presents the L∞-errors of u, B and A and the estimated convergence rates. The
error of the vector is the maximum taken over the Euclidean norm of the vector. The results are obtained
using the WENO methods with the Lax-Friedrichs flux and the HLLD flux. The results confirm that the
numerical schemes are both fourth-order accurate. Recall that a fourth-order constrained transport method
is used and the resulting scheme in this work is fourth-order (in space). Note that the difference between
the results of two fluxes is very small for this smooth problem. In the simulations, the constrained transport
and positivity-preserving limiter are both turned on.

5.2. Brio-Wu shock tube. The second problem we consider is a commonly tested Riemann problem
of the Brio-Wu shock tube test. The initial conditions in 1D are

(ρ, u, v, w, p,B1, B2, B3) =

{
(1, 0, 0, 0, 1, 0.75, 1, 0) if x < 0,

(0.125, 0, 0, 0, 0.1, 0.75,−1, 0) if x ≥ 0.

The schemes are first tested in 1D on both uniform and non-uniform meshes, and then they are tested on a
2D uniform mesh with the initial conditions rotated.

5.2.1. 1D shock tube. Figure 3 present the density on a uniform mesh of 200 grid points. The
solutions of the WENO schemes with the Lax-Friedrichs (WENO-LF) and HLLD (WENO-HLLD) fluxes are
presented. The results are compared to a reference solution on a very fine mesh solved using the scheme
in [17]. The numerical results of two fluxes match well with the reference solution as well as other numerical
results in the literature. As shown from the zoomed views in Figure 3, the numerical solutions of the HLLD
flux show less smeared structures around the contact discontinuity, shock and compound waves. The solutions
of the HLLD flux around rarefaction (not presented in the zoomed views) also show some improvements over
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Fig. 3. 1D Brio-Wu shock tube. Density solved using the WENO schemes with two fluxes at t = 0.2 and its three zoomed
views around the contact discontinuity, shock and compound waves. The solutions are computed on a uniform mesh of 200
points. The reference solution is a numerical solution on a fine mesh of 2000 points.

the solutions of the Lax-Friedrichs flux. This 1D results show the low-dissipative solver performs better in
problems involving shocks or contact discontinuities.
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Fig. 4. 1D Brio-Wu shock tube. Density solved using the WENO schemes with two fluxes at t = 0.2 and its three zoomed
views around the contact discontinuity, shock and compound waves. The solutions are computed on a non-uniform mesh of
200 points. The reference solution is a numerical solution on a fine mesh of 2000 points.

Next we examine the scheme on a non-uniform mesh given by the mapping

x =

{
5
9ξ if |ξ| ≤ 0.2,

sign(ξ)
(
1
9 + 10

9 (|ξ| − 0.2)
)

otherwise,

with −1 ≤ ξ ≤ 1. Note that the mesh is clustered around the region [−0.11, 0.11] by a factor of 9/5 and
coarsened by a factor of 0.9 at the remaining region. Figure 4 presents the density on a non-uniform mesh
of 200 grid points that are solved using the WENO schemes with two fluxes. The results are similar to the
results on uniform meshes. The solutions also resolve the contact discontinuity and compound waves better
due to the clustered grids points around those regions. We also note that both the WENO schemes can
handle the abrupt change in the grid spacing of the non-uniform meshes.

5.2.2. 2D rotated shock tube. The Brio-Wu shock tube is then solved in 2D. As illustrated in
Figure 5, the Riemann problem is rotated by an angle of tan−1(0.5) with respect to x-direction. The
computational domain is [−1, 1] × [−0.5, 0.5], an inflow boundary condition is used on the left and an
outflow boundary condition is used on the right. The top and bottom boundary conditions are zero-order
extrapolations along the tangential direction of the wave propagation for the conserved quantities and a
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Fig. 5. 2D rotated Brio-Wu shock tube. Density at t = 0.2. Left: constrained transport and positivity-preserving limiter
turned off. Right: constrained transport and positivity-preserving limiter turned on. The WENO scheme with the Lax-Friedrichs
flux is used on a uniform grid of size 200× 100.
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Fig. 6. 2D rotated Brio-Wu shock tube. Density solved using the WENO schemes at t = 0.2 and its three zoomed views
around the contact discontinuity, shock and compound waves. The solutions are computed on a uniform mesh of size 200×100.
The reference solution is a numerical solution on a fine mesh of 2000 points.

linear extrapolation along the same direction is used for the potential. The results presented in this section
use a uniform mesh of size 200 × 100. Since the direction of the wave propagation is not parallel to the
coordinate axes any more, this 2D Riemann problem requires the divergence-free condition to be handled
properly. Figure 5 presents the contour plot of density solved using the WENO schemes with the Lax-
Friedrichs flux. Note that there are spurious oscillations around the region of compound waves and contact
discontinuity in the solutions using the scheme with the constrained transport step turned off. For a low-
dissipative scheme, it is found that controlling the divergence error is even more important, since the scheme
with the HLLD flux becomes unstable before t reaches the final time when the constrained transport step
is turned off. Figure 6 shows the computed solutions along y = 0 that are projected to the direction of
the wave propagation. The solution without the constrained transport step has some oscillations which
are not observed in the solutions with the constrained transport step. The solutions of two schemes with
the constrained transport step show a good agreement with the reference solution. It is observed that the
solution of the HLLD flux is still better than the solution of the Lax-Friedrichs flux around the component
waves and contact discontinuity, while the improvement are not so obvious around the shock region. The
plausible reason is that the constrained transport step introduces extra dissipations around the shock. To
reduce the dissipations from the constrained transport step in those shock regions can be a challenging task,
since the dissipations may be important to maintain the stability of the schemes.

5.3. 2D field loop. In this section we consider a 2D advection of a weakly magnetized field loop
from [26]. The initial conditions are

(ρ, u, v, w, p) (0, x, y) =
(

1,
√

5 cos(θ),
√

5 sin(θ), 0, 1
)

15



with the advection angle of θ = tan−1(0.5). Magnetic field components are initialized by taking the curl of
the magnetic potential A

A(0, x, y) =

{
0.001(R− r), if r ≤ R,
0, otherwise.

with r =
√
x2 + y2 and R = 0.3. The example is solved on a stationary curve grid and a randomized grid.

The curve grid is mapped from the computational domain (ξ, η) ∈ [−1, 1]× [−0.5, 0.5]:

x =ξ + εx sin(2πη),

y =η + εy sin(2πξ).

where εx = −0.03 and εy = −0.05. The randomized grid is formed by randomizing the uniform computation
domain (ξ, η) with 10% magnitude grid spacing ∆ξ or ∆η in a random direction. Periodic boundary condi-
tions are used in both directions. In Figure 7, we present gray-scale images of B2

1 + B2
2 and contour plots

of the potential A at t = 2, with 200× 100 grid points. Note that the magnetic field maintains the circular
symmetry of the loop as expected. The numerical dissipations are observed around the center and edge of
the loop, which is similar to the results in [26]. Note that for this problem the schemes of different numerical
fluxes produce almost identical results, since the solutions are essentially determined by the constrained
transport step. Therefore, the results of the Lax-Friedrichs flux are not presented in Figure 7.

B2
1 +B2

2 A

B2
1 +B2

2 A

Fig. 7. 2D field loop. Top row: the solutions on the curve grid at t = 2. Bottom row: the solutions on the randomized
grid at t = 2. The computational grids of size 200× 100 are plotted (the light solid lines).

5.4. 2D Orszag-Tang vortex. We next consider a common benchmark problem of the 2D Orszag-
Tang vortex problem. The initial conditions are

(ρ, u, v, w, p,B1, B2, B3)(0, x, y) = (γ2,− sin(y), sin(x), 0, γ,− sin(y), sin(2x), 0),

and its initial magnetic potential is

A(0, x, y) = 0.5 cos(2x) + cos(y).

To examine the performance of the schemes on general curvilinear meshes, a mesh similar to the one in
Section 5.1 is used. In particular, the computational domain is (ξ, η) ∈ [0, 2π] × [0, 2π] and the curvilinear
grid is given by the mapping

x = ξ + εx sin(η ax),

y = η + εy sin(ξ ay),

16



where εx = 0.03, εy = 0.05, ax = 2 and ay = 4. The boundary conditions are all periodic.

Fig. 8. Orszag-Tang vortex problem. Contour plots of density at t = 3 are presented with 15 equally spaced contour lines.
A perturbed mesh of size 192 × 192 is used. Left: WENO with Lax-Friedrichs flux. Right: WENO with HLLD flux. The
constrained transport step and positivity-preserving limiter are turned on.

Figure 8 presents the contour plots of the density at time t = 3. The solutions of two schemes are
presented with 15 equally spaced contour lines. The problem starts from an smooth initial condition and
develops an vortex and several MHD shock waves. Those waves interacts with each other (see Figure 8)
and eventually result in turbulence. For such a problem, a low-dissipative scheme is preferred to capture
small structures. It is observed from Figure 8 that the HLLD flux produces the less dissipative solutions, for
instance, around the shock region. Although the previous Riemann problem test in Section 5.2 shows the
dissipation from the constrained transport problem may smear those shocks, the current results show that the
improvement of a low-disspative scheme is still significant for practical problems, such as MHD turbulence
simulations. The computed solutions match well with those found in the literature [17, 19, 50, 59, 61]. We
note that the simulations run successfully to a much later time of t = 10, which indicates that the divergence-
free condition is handled properly on a curvilinear mesh by the constrained transport approach. Without
the constrained transport step, the simulations becomes unstable as soon as discontinuities develop in the
solutions.

5.5. 2D cloud-shock interaction. In this section we consider the 2D cloud-shock interaction problem.
The initial conditions are

(ρ, u, v, w, p,B1, B2, B3)(0, x, y)

=


(3.86859, 11.2536, 0, 0, 167.345, 0, 2.1826182,−2.1826182) if x < 0.05,

(10, 0, 0, 0, 1, 0, 0.56418958, 0.56418958) if x > 0.05, r < 0.15,

(1, 0, 0, 0, 1, 0, 0.56418958, 0.56418958) otherwise,

where r =

√
(x− 0.25)

2
+ (y − 0.5)

2
. The initial magnetic potential is,

A(0, x, y) =

{
−2.1826182x+ 0.080921431 if x ≤ 0.05,

−0.56418958x if x > 0.05.

The problem models an MHD shock propagating toward a dense bubble, resulting into very complex struc-
tures as the shock passes through the bubble. Those structures around the bubble are very sensitive to the
numerical dissipations and low dissipative schemes are advantageous to obtain less smeared structures. Here
we use this problem to study the effects of the Riemann solvers on both the Cartesian and curvilinear grids.

The problem is first solved on a square domain of (x, y) ∈ [0, 1]× [0, 1]. A uniform Cartesian grid of size
256× 256 is used with an inflow boundary condition applied at the left boundary and the outflow boundary
condition applied at the other three boundaries. Figure 9 presents Schlieren plots of the logarithm of the
density, norm of the magnetic field and pressure at t = 0.06. The solution matches well with the results in
the literature, such as those in [14, 17, 19, 50]. It is observed that the HLLD flux resolves shocks and other
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ln ρ ‖B‖ p

ln ρ ‖B‖ p

Fig. 9. 2D cloud-shock interaction. Schlieren plots of the logarithm of the density, norm of the magnetic field and pressure
at t = 0.06. Top row: WENO with the Lax-Friedrichs flux. Bottom row: WENO with the HLLD flux. A uniform Cartesian
grid of size 256× 256 is used. The constrained transport step and positivity-preserving limiter are turned on.

complex features much better, although both schemes are fourth-order accurate and produce similar results
in the smooth Alfvén wave test in Section 5.1. In particular, the complex structures around the initial bubble
locations of the HLLD flux are less smeared than those in the Lax-Friedrichs flux.

cloud

shock

ln ρ

Fig. 10. Left: a diagram of the cloud-shock interaction in a sector domain. Middle: a coarse grid of size 32× 32. Right:
the density at t = 0.06 on a fine grid of size 256× 256.

We next consider the same problem but change the physical domain to a sector region. As illustrated
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in Figure 10, the domain is determined by the following mapping

x = (3− 2ξ) cos(π + (1− 2 η)π/4) + 3 cos(π/4),

y = (3− 2ξ) sin(π + (1− 2 η)π/4) + 0.5,

with (ξ, η) ∈ [0, 1] × [0, 1]. A uniform grid in the computational domain (ξ, η) is used for simulations as
illustrated in Figure 10. The same initial condition is used but the initial cloud becomes relatively smaller
compared to the computational domain, which can be also seen in the plot of density in Figure 10. An inflow
boundary condition applied at the left edge of the sector domain and the remaining boundary conditions are
outflow.

ln ρ ‖B‖ p

ln ρ ‖B‖ p

Fig. 11. 2D cloud-shock interaction. Schlieren plots of the logarithm of the density, norm of the magnetic field and
pressure at t = 0.06. Top row: WENO with the Lax-Friedrichs flux. Bottom row: WENO with the HLLD flux. A curvilinear
grid of size 256× 256 is used. The constrained transport step and positivity-preserving limiter are turned on.

Figure 11 presents the results on the curvilinear grids. The presented results are Schlieren plots of the
logarithm of the density, norm of the magnetic field and pressure. The presented results only focus on the
region near the location of the initial cloud, which contains most interesting structures. The schemes with
two numerical fluxes are used on a uniform grid of size 256 × 256 in the domain (ξ, η). The results on
the curvilinear grid are comparable to the results on the uniform grid, which verifies the solvers on general
curvilinear grids. The HLLD flux also produces less smeared solutions. Note that the solutions on the
curvilinear grid are more smeared because the effective grid spacing of the curvilinear grid is much larger
than that of the Cartesian grid. Same as the Cartesian grid results, the HLLD flux also performs better
than the Lax-Friedrichs flux in both the bubble region and shock region.

5.6. 2D rotor problem. The initial condition is given as

(ρ, u, v) =

 (10,−(y − 0.5)/r0, (x− 0.5)/r0), if r ≤ r0,
(1 + 9f(r),−f(r)(y − 0.5)/r, f(r)(x− 0.5)/r), if r0 < r ≤ r1,
(1, 0, 0), if r > r1,
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and

w = 0, B1 = 2.5/
√

4π, B2 = 0, B3 = 0, p = 0.5, A = 2.5/
√

4πy,

where r =
√

(x− 0.5)2 + (y − 0.5)2, r0 = 0.1, r1 = 0.115 and f(r) = (r1 − r)/(r1 − r0). Here we use the
same initial condition of the second rotor problem test in [59]. The problem is solved on a stationary curve
grid determined by the mapping

x =ξ − 0.5 + εx cos(π(η − 0.5)) sin(π(ξ − 0.5)),(34a)

y =η − 0.5 + εy cos(π(ξ − 0.5)) sin(π(η − 0.5)),(34b)

with εx = εy = 0.1 and (ξ, η) ∈ [0, 1] × [0, 1]. The mach number at t = 0.295 on a grid of 256 × 256
are presented in Figure 12. From the zoomed view, we note that there is a significant improvement of the
solutions computed by the HLLD flux.

‖u‖/c ‖u‖/c

Fig. 12. 2D rotor problem. Contour plots of the mach number and their zoomed views are presented with 20 equally
spaced contour lines in the range of [0.12, 2.8]. Left two: WENO with the Lax-Friedrichs flux. Right two: WENO with the
HLLD flux. The computational grid of size 256× 256 is plotted (the light solid lines).

5.7. 2D blast wave. Next we consider the blast wave problem in 2D. In this test strong shocks interact
with a low-β background, which could potentially cause negative density or pressure in numerical simulations.
The problem has been commonly used to test the positivity-preserving capabilities of numerical methods for
MHD equation, see [7, 8, 16, 43] for instance. The initial conditions contain a constant density, velocity and
magnetic field

(ρ, u, v, w,B1, B2, B3)(0, x, y) = (1, 0, 0, 0, 50/
√

2π, 50/
√

2π, 0)

and a piecewise defined pressure

p(0, x, y) =

{
1000, if r ≤ 0.1,
0.1, otherwise,

where r is the distance to the origin. The initial magnetic potential is

A(0, x, y) = 50/
√

2π(y − x).

Here we use the grid given in (34) and the boundary condition identical to the previous test in Section 5.6.
Figure 13 shows the numerical solutions at t = 0.01 solved on a grid of 256 × 256, which match well with
the previous work. Note that the solutions of the HLLD flux are slightly less diffusive than the solutions of
the Lax-Friedrichs flux.

5.8. Bow shock flow. We end our numerical investigation with a stationary bow shock flow. A bow
shock flow benchmark has been previously considered in [20, 21, 47] but low-order finite volume methods
were used therein. Here we use a similar problem to examine the performance of the WENO schemes when
applied to problems involving curved physical boundaries. The compatibility boundary condition derived in
Section 4.3 is also verified using this example.
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ρ ‖B‖2/2 ρ ‖B‖2/2

Fig. 13. 2D blast wave. Contour plots of the density and magnetic potential at t = 0.01 are presented with 20 equally
spaced contour lines. Left two: WENO with the Lax-Friedrichs flux. Right two: WENO with the HLLD flux. The computational
grid of size 256× 256 is plotted (the light solid lines).

The computational domain is determined by the mapping

x = (r1 − (r1 − r0)ξ) cos(π + (1− 2η)θ),

y = (r2 − (r2 − r0)ξ) sin(π + (1− 2η)θ),

with r1 = 0.3, r2 = 0.65, r0 = 0.125, θ = 5π/12 and (ξ, η) ∈ [0, 1] × [0, 1]. A constant initial condition was
used in [20, 21, 47] but it is not compatible with the PEC boundary initially. Typically, such a constant
magnetic field will be first projected to satisfy the boundary condition in a solver but note that its projected
field is not divergence-free. Although such a treatment is very common in the incompressible flow, it may
cause some troubles for high-order methods in the MHD equations, since controlling divergence errors is more
critical in the MHD equations. To avoid the potential issue, we modify the initial condition by ramping the
constant magnetic field in a small annular region of distance δr = 0.125, so that both the PEC boundary and
divergence-free condition are satisfied exactly in the initial condition. Assuming r =

√
x2 + y2, we impose

an initial condition of ρ = 1, p = 0.2, u = (2, 0, 0)T and the magnetic field

B =

{
(B1, B2, 0)T if r ≤ r0 + δr,

(0.1, 0, 0)T otherwise,

with

B1 = 0.1
πy2

2 δr r
cos

(
π(r − r0)

2 δr

)
+ 0.1 sin

(
π(r − r0)

2 δr

)
,

B2 = −0.1
πxy

2 δr r
cos

(
π(r − r0)

2 δr

)
.

The corresponding initial magnetic potential is

A =

0.1 y sin

(
π(r − r0)

2 δr

)
if r ≤ r0 + δr,

0.1 y otherwise,

The PEC boundary is applied at ξ = 1, i.e., r = r0. An inflow boundary condition is applied at ξ = 0, and
the outflow boundary condition is applied at the other two boundaries. A uniform grid of size 120× 160 in
the domain (ξ, η) is used for all the results presented in this section. Note that the results of this test are
axisymmetric, and therefore we only present the results in the top half-plane.

It is found that if α in the Lax-Friedrichs flux (14) is estimated from the whole domain, the resultant value
becomes too large for a reasonable CFL number in this case. This issue appears in the both WENO scheme
and first-order scheme using the Lax-Friedrichs flux. Therefore, the local Lax-Friedrichs flux (the Rusanov
flux) is used as one of two Riemann solvers tested for this problem. Note that the positivity-preserving
limiter used in the previous examples relies on the fact that the low-order flux is positivity-preserving. But
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for all the low-order fluxes (the local Lax-Friedrichs and HLL-type solvers) we test, a negative solution always
appear for a CFL number larger than 0.2. Therefore, a slightly smaller CFL number of 0.2 is used in this
case, which appears to be enough to eliminate numerical solutions becoming negative.

‖B‖ ‖B‖

Fig. 14. Bow shock flow. Contour plots of magnetic fields at t = 0.28 are presented with 20 equally spaced contour
lines from ‖B‖ = 0 to ‖B‖ = 0.7. Left: the solution using the reflective boundary condition. Right: the solution using the
compatibility boundary condition. The constrained transport step is not turned on.

We first use this problem to study the numerical boundary condition for the PEC boundary. In previous
work [20, 21], a reflective boundary condition was used and it produced a satisfactory results in those low-
order finite volume methods. This fact has been confirmed in our own implementation, when the problem
is simulated using the first-order numerical fluxes coupled with the forward Euler method. However, for
the high-order methods derived in the current work, the reflective boundary condition generates a spurious
magnetic field along the PEC surface. Figure 14 presents the magnetic fields at t = 0.28 generated by
the reflective boundary condition and the compatibility boundary condition we derive in Section 4.3. Note
that the magnetic field along the PEC surface is smooth for the solutions using the compatibility boundary
condition while there is a large magnetic field generated along the surface in the results using the reflective
boundary condition. This unphysical field becomes even larger as time evolves and eventually leads to a
negative pressure, causing the failure of the solver around t = 0.5, while the solver using the compatibility
boundary condition remains stable to produce a stationary bow shock profile, despite some oscillations due
to divergence errors found near the shock front. Here the WENO scheme with a local Lax-Friedrichs flux
is used with the constrained transport method turned off. The constrained transport method is not turned
on for two reasons. First, the constrained transport method or other approaches to control the divergence
errors, such as the non-conservative source terms used in the previous work [20, 21, 47], may diminish this
issue to some extent, by introducing some dissipations to damp the divergence errors. In order to isolate
different issues, those approaches are not used in the study of boundary conditions. Note that the base
scheme using the compatibility condition is stable for the whole simulation, which clearly indicates the issue
is not a direct consequence of the divergence error. Second, it is not clear how to implement a boundary
condition for the potential which is consistent with the reflective boundary condition of the magnetic field.

The full benchmark problem is then simulated to obtain a stationary bow shock. As illustrate in
Figure 14, the divergence errors can still lead to spurious oscillations around the bow shock front (see the
contours around y = 0.25 for instance). For the results presented in Figure 15, the constrained transport
step is turned on and the WENO schemes with the compatibility boundary condition are used to simulate
the problem up to t = 5. The compatibility boundary condition for the potential described in Section 4.3 is
also used for the PEC boundary. A steady bow shock profile are observed in the both density and magnetic
field in Figure 15. The contour plots are complemented by the plots of several instantaneous streamlines (the
dashed lines in the density plot), similarly to the previous work [20, 21, 47]. Our results match well with the
results therein and the bow shock is much less smeared compared to their results. Note that the constrained
transport method produces a much smoother profile of the magnetic field. During the simulations, it is found
that the compatibility boundary condition may lead to a negative pressure at the ghost points, which does not
require any extra care (note that the positivity-preserving limiter is not used in this case). The fundamental
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ρ ρ‖B‖ ‖B‖

Fig. 15. Bow shock flow. Contour plots of the density and magnetic field at t = 5 are presented with 20 equally spaced
contour lines. The selected streamlines (the dashed lines) are added to the density plots. Left two: WENO with the Lax-
Friedrichs flux. Right two: WENO with the HLLD flux. The computational grid of size 120 × 160 are also plotted (the light
solid lines). The constrained transport step is turned on.

reason is that the pressure computed from the step (33) is only used to convert the normal derivative of the
pressure to the tangential derivatives along the surface. Since the pressure at ghost points are only used
to constructed the numerical fluxes, the negative pressure at those points will not cause the solutions at
the computational domain become unphysical. Finally, the HLLD flux is also slightly advantageous over
the local Lax-Friedrichs flux in terms of resolving the bow shock, but some oscillations are observed in its
density plot, which is not surprising since the HLLD flux is much less dissipative.

6. Conclusions. In this work, we have extended an alternative flux formulation of the WENO scheme
to the ideal MHD equations. Several Riemann solvers including a HLLD Riemann solver are used to ap-
proximate the leading (low-order) term in the numerical flux. The higher-order terms in the numerical flux
are approximated by limited central differences of the physical flux and the limiter is based on the smooth-
ness indicators in WENO interpolations. An unstaggered constrained transport method is used to control
the divergence error of the magnetic field and a positivity-preserving limiter is implemented to increase the
robustness of the scheme. The resulting scheme is applicable to general curvilinear meshes. To solve some
benchmark problems involving a curved PEC boundary, we also derive a numerical compatibility boundary
condition for both conserved quantities and magnetic potential.

Several numerical benchmark problems are used to validate the resultant scheme and to confirm the
fourth-order accuracy of the scheme. The results show that when a low dissipative solver such as the
HLLD solver is used in the base scheme, shocks and other complex features are much better captured than
those in the solutions obtained using the base scheme with the Lax-Friedrichs solver. Through solving the
benchmark problems on different meshes, we further demonstrate the robustness of the scheme on general
curvilinear meshes. Using a bow shock flow benchmark, we confirm that the compatibility boundary condition
produces a solution consistent with the solutions obtained by other low-order finite volume methods. It also
demonstrates that a common implementation of the PEC boundary through a reflective boundary condition
may cause failure of high-order methods.

There are several future directions for the current work. We are interested in extending the current
scheme to three dimensions, which requires some work particularly in the constrained transport step. A
compatibility boundary condition for a vector potential requires some careful derivations, in order to sim-
ulate a three-dimensional bow shock problem. In addition, a single-stage single-step scheme based on the
alternative flux formulation of the WENO scheme can be further derived. Finally, the applications of the
current scheme will be further explored in areas involving complex geometry.

Acknowledgements. We would like to thank Professor J.W. Banks for valuable discussions and comments.

Appendix A. WENO interpolation for a system.
For the sake of completeness, a WENO interpolation used in the current work is described for a hyperbolic

system. Note that the WENO interpolation used here is performed on the local characteristic variables
instead of on the components of q. The resulting approximations to q±i+1/2 are fifth-order accurate.
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1. Compute an average state qi+1/2. In the current work, we use the arithmetic mean of primitive
variables by setting ψi+1/2 = (ψi + ψi+1)/2 with ψ in the range of {ρ,u, p,B}, and the conserved
variables q = {ρ, ρu, E ,B} are then recovered from ψ.

2. Compute the right and left eigenvectors of the Jacobian ∂f/∂q, and denote their matrices by

Ri+1/2 = R(qi+1/2), R−1i+1/2 = R−1(qi+1/2).

3. Project the conserved quantities q, which is in the stencil of computing the numerical flux fi+1/2,
to the local characteristic variables v,

(35) vj = R−1i+1/2qj , for j = i− 2, . . . , i+ 3.

4. Perform a scalar WENO interpolation on each component of the characteristic variable vj to obtain
the corresponding component of v±i+1/2. Here, the procedure of a fifth-order WENO interpolation

to obtain the k-th component v−k,i+1/2 is described:

(a) Choose one big stencil as S = {xi−2, . . . , xi+2}, and three small stencils as S(0) =
{xi, xi+1, xi+2}, S(1) = {xi−1, xi, xi+1}, and S(2) = {xi−2, xi−1, xi}. On those four stencils,
the standard interpolation gives

v
(0)
k,i+1/2 =

3

8
vk,i +

3

4
vk,i+1 −

1

8
vk,i+2,(36a)

v
(1)
k,i+1/2 = −1

8
vk,i−1 +

3

4
vk,i +

3

8
vk,i+1,(36b)

v
(2)
k,i+1/2 =

3

8
vk,i−2 −

5

4
vk,i−1 +

15

8
vk,i,(36c)

vbigk,i+1/2 = d0v
(0)
k,i+1/2 + d1v

(1)
k,i+1/2 + d2v

(2)
k,i+1/2,(36d)

with the linear weights being d0 = 5/16, d1 = 5/8 and d2 = 1/16.
(b) Compute nonlinear weights ωr from the linear weights dr,

(37) ωr =
αr

α0 + α1 + α2
, αr =

dr
(βr + ε)2

, r = 0, 1, 2,

where ε = 10−6 is used to avoid division by zero, and the smoothness indicators are given by

β0 =
13

12
(vk,i − 2vk,i+1 + vk,i+2)

2
+

1

4
(3vk,i − 4vk,i+1 + vk,i+2)

2
,(38a)

β1 =
13

12
(vk,i−1 − 2vk,i + vk,i+1)

2
+

1

4
(vk,i − vk,i+1)

2
,(38b)

β2 =
13

12
(vk,i−2 − 2vk,i−1 + vk,i)

2
+

1

4
(vk,i−2 − 4vk,i−1 + 3vk,i)

2
.(38c)

(c) The WENO interpolation is defined by

v−k,i+1/2 =

2∑
r=0

ωrv
(r)
k,i+1/2.

Note that the process to obtain v+
i+1/2 is mirror-symmetric to the procedure described above.

5. Finally, project v±i+1/2 back to the conserved quantities,

(39) q±i+1/2 = Ri+1/2v
±
i+1/2.

Appendix B. HLL-type Riemann solvers for MHD equations.
Several HLL-type Riemann solvers for ideal MHD equations are described for the Riemann problem given

by the initial conditions (4). Since the HLLD solver is an extension of the HLL and HLLC solvers, these
two solvers are first reviewed in B.1 and B.2, and our version of the HLLD solver is then introduced in B.3.
To save the space, the discussion here only focuses on the approximation solutions, and the corresponding
numerical flux, which can be easily worked out, are therefore not described.
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B.1. The HLL approximate Riemann solver. The approximate solution q̃ in the HLL solver,
consisting of three states, is given by

(40) q̃(t,x · n) =


qL, if (x · n)/t ≤ SL,

qHLL, if SL ≤ (x · n)/t ≤ SR,

qR, if SR ≤ (x · n)/t,

where SL and SR are the smallest and largest of all the signal speeds. The intermediate state satisfies

(41) qHLL =
SRqR − SLqL + FL − FR

SR − SL
,

which is given by the consistency condition of conservation laws

(42)

∫ ξR

ξL

q̃(t, ξ) dξ = ξRqR − ξLqL + T (FL − FR),

with ξL = TSL and ξR = TSR. qHLL is used in the numerical flux of the subsonic case where SL ≤ 0 ≤ SR.

B.2. The HLLC approximate Riemann solver. The approximate solution, consisting of two in-
termediate states connected by a contact discontinuity, is given by

(43) q̃(t,x · n) =


qL, if (x · n)/t ≤ SL,

q∗L, if SL ≤ (x · n)/t ≤ SM,

q∗R, if SM ≤ (x · n)/t ≤ SR,

qR, if SR ≤ (x · n)/t,

where SM is the estimated speed of an entropy wave, and q∗L and q∗R are the intermediate states. Consider
the subsonic case where SL ≤ 0 ≤ SR. In [44] it was assumed

SM = u∗L · n = u∗R · n = uHLL · n,(44)

ptot
∗
L = ptot

∗
R,(45)

since the normal velocities and total pressures are same across a contact discontinuity. It was also assumed

(46) B∗L · n = B∗R · n = BHLL · n.

Note that the RH condition (6) across Sα implies

(47) Sαq∗α − F∗α = Sαqα − Fα,

where α = L and R. Applying (47) to ρ gives Sαρ
∗
α − ρ∗αu∗α ·n = Sαρα − ραuα ·n, which, with (44), implies

(48) ρ∗α = ρα
Sα − uα · n
Sα − SM

.

Applying (47) to ρu gives

(49) Sαρ
∗
αu∗α−

[
ρ∗α(u∗α · n)u∗α + ptot

∗
αn− (B∗α · n) B∗α

]
= Sαραuα−

[
ρα(uα · n)uα + ptotαn− (Bα · n) Bα

]
.

Taking the normal component of (49) and using (48) give

(50) ptot
∗
α = ptotα + ρα(Sα − uα · n)(SM − uα · n) + (B∗α · n)

2 − (Bα · n)
2
.

Using the assumption (44) to eliminate u∗α · n in (49) gives

(51) ρ∗αu∗α =
ραuα(Sα − uα · n) + (ptot

∗
α − ptotα)n + (Bα · n)Bα − (B∗α · n)B∗α
Sα − SM
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Similarly, applying (47) to E and using the assumption (44) give

(52) E∗α =
Eα(Sα − uα · n) + ptot

∗
αSM − ptotα(uα · n) + (Bα · n)(Bα · uα)− (B∗α · n)(B∗α · u∗α)

Sα − SM
.

Here B∗α still needs to be determined. Note that the consistency condition in the HLLC solver gives

(53)
SM − SL

SR − SL
q∗L +

SR − SM

SR − SL
q∗R = qHLL.

Applying it to ρu and using (41) and (45) give (B∗L · n)B∗L = (B∗R · n)B∗R. Therefore, [44] suggested to set

(54) B∗L = B∗R = BHLL.

Finally, the intermediate states are completely determined by (44), (48), (50), (51), (52) and (54).

B.3. The HLLD approximate Riemann solver. In the previous version of the HLLD Riemann
solver [46], it was assumed that the normal vector to the discontinuity interface is parallel to one of the
coordinate axes and the magnetic field components normal to the discontinuity interface are identical across
the discontinuity. Neither of the assumptions holds on a curvilinear mesh. Therefore, we consider Riemann
problems with the initial conditions (4) where the normal vector n to the discontinuity interface may not be
parallel to the coordinate axes and there are jumps in the normal magnetic field. Note that the divergence-
free condition in multiple dimensions can be saved by the jumps in the tangential directions. We present
our version of the HLLD solver that can handle these issues. The approximate solution, consisting of four
intermediate states which are connected by two rotational discontinuities and one contact or tangential
discontinuity, is given by

(55) q̃(t,x · n) =



qL, if (x · n)/t ≤ SL,

q∗L, if SL ≤ (x · n)/t ≤ S∗L,
q∗∗L , if S∗L ≤ (x · n)/t ≤ SM,

q∗∗R , if SM ≤ (x · n)/t ≤ S∗R,
q∗R, if S∗R ≤ (x · n)/t ≤ SR,

qR, if SR ≤ (x · n)/t,

where S∗L and S∗R are the estimated speeds of rotational discontinuities, and SM is the estimated speed of a
contact or tangential discontinuity.

We first consider the subsonic case. Following the assumptions (44)–(46), we similarly assume

SM = u∗L · n = u∗∗L · n = u∗∗R · n = u∗R · n = uHLL · n,(56)

ptot
∗
L = ptot

∗∗
L = ptot

∗∗
R = ptot

∗
R,(57)

B∗L · n = B∗∗L · n = B∗∗R · n = B∗R · n = BHLL · n.(58)

Recall that rotational discontinuities are linearly degenerate and correspond to the Alfvén waves of speed

u · n∓
√

(B · n)
2
/ρ. Since densities are identical across rotational discontinuities, their speeds are

S∗α = SM ∓
√

(BHLL · n)
2
/ρ∗α,(59)

where − and + correspond to α = L and R respectively. Note that the four-intermediate-state solution (55)
degenerates to a two-intermediate-state solution when either S∗α is close to Sα for α = L and R, or S∗L and
S∗R are both close to SM, in which case the HLLD solver degenerates to the HLLC solver and no extra cares
are needed. Note ρ∗α can be determined similarly to (48) and remains the same as

(60) ρ∗α = ρα
Sα − uα · n
Sα − SM

.
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Now consider the non-degenerate case when all the speeds are sufficiently spread apart. We first obtain
q∗α from the RH condition across Sα. (50) and (51) also remain the same as

ptot
∗
α = ptotα + ρα(Sα − uα · n)(SM − uα · n) + (B∗α · n)

2 − (Bα · n)
2
,(61)

ρ∗αu∗α =
ρα(Sα − uα · n) + (ptot

∗
α − ptotα)n + (Bα · n)Bα − (B∗α · n)B∗α

Sα − SM
.(62)

Applying the RH condition across Sα to B gives

(63) SαB∗α −
[
(u · n)B− (B · n)u

]∗
α

= SαBα −
[
(u · n)B− (B · n)u

]
α
.

Here the notation [·]∗α stands for the flux of the corresponding solution state. The equations (62) and (63)
form a linear system for u∗α and B∗α, and the solutions are

u∗α =
[(

(Bα · n)(Sα − SM)− (BHLL · n)(Sα − uα · n)
)
Bα

+
(
ρα(Sα − uα · n)(Sα − SM)− (BHLL · n)(Bα · n)

)
uα + (ptot

∗
α − ptotα)(Sα − SM)n

]
/D,

(64)

B∗α =
[(
ρα(Sα − uα · n)

2 − (BHLL · n)(Bα · n)
)
Bα

+
(
ρα(Sα − uα · n)(Bα · n−BHLL · n)

)
uα − (ptot

∗
α − ptotα)(BHLL · n)n

]
/D,

(65)

with D = ρα(Sα − uα · n)(Sα − SM)− (BHLL · n)
2
. Applying the RH condition across Sα to E gives

(66) E∗α =
Eα(Sα − uα · n) + ptot

∗
αSM − ptotα(uα · n) + (Bα · n)(Bα · uα)− (B∗α · n)(B∗α · u∗α)

Sα − SM
,

which has the same form as (52). Note that whereas the consistency condition (53) on ρu is used to obtain
B∗α in the HLLC solver, here the RH condition across Sα is applied to ρu and B for determining ρu∗α and
B∗α, and a consistency condition similar to (53) is saved for determining (ρu)

∗∗
α and B∗∗α later.

Next consider the inner intermediate states q∗∗α . Applying the RH condition across S∗α to ρ gives
S∗αρ

∗∗
α − (ρu)

∗∗
α · n = S∗αρ

∗
α − (ρu)

∗
α · n, which, with (56), gives

(67) ρ∗∗α = ρ∗α.

Note that this is consistent with the fact that densities are identical across rotational discontinuities, which
is assumed in deriving the estimates of S∗L and S∗R in (59). Since S∗L and S∗R are sufficiently spread apart,
we assume BHLL · n 6= 0. Therefore, applying the RH condition across SM to ρu implies B∗∗L = B∗∗R and
applying it to B implies u∗∗L = u∗∗R . Note that the consistency condition here becomes

(68) (SR − S∗R)q∗R + (S∗R − SM)q∗∗R + (SM − S∗L)q∗∗L + (S∗L − SL)q∗L − SRqR + SLqL + FR − FL = 0,

and the RH condition across S∗α becomes

(69) Sα(q∗α − qα) = F∗α − Fα

Substituting (59) and (69) into (68) gives

(70) |BHLL · n|

(
q∗∗R√
ρ∗R

+
q∗∗L√
ρ∗L

)
+ F∗R − F∗L − S∗Rq∗R + S∗Lq∗L = 0.

Applying (70) to ρu and using (67) and u∗∗L = u∗∗R give

|BHLL · n|
(√

ρ∗R +
√
ρ∗L

)
u∗∗α

+
[
(u · n)ρu + ptotn− (B · n)B

]∗
R
−
[
(u · n)ρu + ptotn− (B · n)B

]∗
L
− S∗R(ρu)

∗
R + S∗L(ρu)

∗
L = 0,
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which, with (56)–(59), implies

(71) u∗∗α =

√
ρ∗Lu∗L +

√
ρ∗Ru∗R + sign (BHLL · n)(B∗R −B∗L)√

ρ∗L +
√
ρ∗R

.

Applying (70) to B and using B∗∗L = B∗∗R give

|BHLL · n|

(
1√
ρ∗R

+
1√
ρ∗L

)
B∗∗α +

[
(u · n)B− (B · n)u

]∗
R
−
[
(u · n)B− (B · n)u

]∗
L
− S∗RB∗R + S∗LB∗L = 0,

which, with (56), (58) and (59) gives

(72) B∗∗α =

√
ρ∗RB∗L +

√
ρ∗LB∗R + sign (BHLL · n)

√
ρ∗Lρ
∗
R(u∗R − u∗L)√

ρ∗L +
√
ρ∗R

.

The RH condition across S∗α on E gives

S∗αE∗∗α −
[
(E + ptot)(u · n)− (u ·B)(B · n)

]∗∗
α

= S∗αE∗α −
[
(E + ptot)(u · n)− (u ·B)(B · n)

]∗
α
,

which, with (56)–(59), gives

(73) E∗∗α = E∗α ∓
√
ρ∗α (u∗α ·B∗α − u∗∗α ·B∗∗α ) sign(BHLL · n),

where − and + correspond to α = L and R respectively.
Finally the intermediate states in the approximate solution are completely determined in (56)–(61),

(64)–(67), (71)–(73).
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