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Abstract

In this paper we focus on efficient implementations of the Multivariate Decom-
position Method (MDM) for approximating integrals of ∞-variate functions. Such
∞-variate integrals occur for example as expectations in uncertainty quantification.
Starting with the anchored decomposition f =

∑
u⊂N fu, where the sum is over

all finite subsets of N and each fu depends only on the variables xj with j ∈ u,
our MDM algorithm approximates the integral of f by first truncating the sum to
some ‘active set’ and then approximating the integral of the remaining functions fu
term-by-term using Smolyak or (randomized) quasi-Monte Carlo (QMC) quadra-
tures. The anchored decomposition allows us to compute fu explicitly by function
evaluations of f . Given the specification of the active set and theoretically derived
parameters of the quadrature rules, we exploit structures in both the formula for
computing fu and the quadrature rules to develop computationally efficient strate-
gies to implement the MDM in various scenarios. In particular, we avoid repeated
function evaluations at the same point. We provide numerical results for a test
function to demonstrate the effectiveness of the algorithm.

1 Introduction

The Multivariate Decomposition Method (MDM) is an algorithm for approximating the
integral of an ∞-variate function f defined on some domain DN with D ⊆ R, and this
paper presents the first results on the implementation of the MDM. The general idea of
the MDM, see [4, 7, 13, 16, 17] (as well as [9, 12] under the name of Changing Dimension
Algorithm), goes as follows. Assume that f admits a decomposition

f(x) =
∑
u⊂N

fu(xu), (1)

where the sum is taken over all finite subsets of

N := {1, 2, 3, . . .},
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and where each function fu depends only on the variables in xu = (xj)j∈u. With ρ a
given probability density function on D and ρu(x) :=

∏
j∈u ρ(xj), we define the integral

of f by

I(f) :=
∑
u⊂N

Iu(fu), with Iu(fu) :=

∫
D|u|

fu(xu)ρu(xu) dxu, (2)

and let I∅(f∅) := f∅. The MDM algorithm for approximating the integral is

A(f) :=
∑
u∈U

Au(fu), (3)

where U is the “active set”; for u 6= ∅, each Au is a |u|-dimensional quadrature rule, and
A∅(f∅) := f∅.

The error of the MDM algorithm satisfies the trivial bound

|I(f)−A(f)| ≤
∑
u/∈U
|Iu(fu)| +

∑
u∈U
|Iu(fu)−Au(fu)|. (4)

Given ε > 0, the strategy is to first choose an active set U such that the first sum in (4)
is at most ε/2, and then specify the quadrature rules such that the second sum in (4) is
also at most ε/2, giving a total error of at most ε. It is known that the sets u ∈ U have
cardinalities increasing very slowly with decreasing ε,

max
u∈U(ε)

|u| = O

(
ln(1/ε)

ln(ln(1/ε))

)
as ε→ 0,

see, e.g., [4, 12].
We would need to impose additional conditions on the class of functions to ensure that

the sum (1) is absolutely convergent, the integral (2) is well defined, and the quadrature
rules in (3) converge appropriately to the corresponding integrals. The precise details
will depend on the mathematical setting within which we choose to analyze the problem.
We will outline some variants below, but this is not the focus of the present paper.

The main focus of this paper is on the implementation of the MDM algorithm, which
involves the two following steps. The first step is to construct the active set given an
abstract definition of U from the theory. Then in the second step, supposing we are
given an active set and the choice of quadrature rules Au, we develop computationally
efficient strategies to evaluate (3) in certain scenarios by exploiting specific structures in
the MDM algorithm and the quadrature rules of choice. Specifically,

• we assume a product and order dependent (POD) structure in the definition of the
active set U ;

• we utilize the anchored decomposition of functions; and

• we consider quasi-Monte Carlo methods and Smolyak’s methods as two alternatives
for the quadrature rules Au.
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In Section 2 we explain the structure of our active set U and provide an efficient
strategy to construct it. Once the active set U has been constructed, we need to evaluate
the quadrature rules Au(fu) for each u ∈ U ; this is formulated in Section 3. In this paper
we use the anchored decomposition [10] of f so that the terms fu can be computed
explicitly via

fu(xu) =
∑
v⊆u

(−1)|u|−|v|f(xv; 0), (5)

where f(xv; 0) indicates that we evaluate the function at f(t) with components tj = xj
for j ∈ v and tj = 0 for j /∈ v. Throughout this paper, by a “naive” implementation of
the MDM algorithm, we mean an implementation which computes the sum in (3) term
by term, with each fu evaluated using (5).

We consider only linear algorithms Au as the quadrature rules and our MDM algo-
rithm can therefore be expressed as

A(f) =
∑
u∈U

∑
v⊆u

(−1)|u|−|v|Au(f(·v; 0)). (6)

Notice inside the double sum in (6) that we would be applying a |u|-dimensional quadra-
ture rule to a function which depends only on a subset v ⊆ u of the variables. Moreover,
the same evaluations of f could be repeated for different combinations of u and v, while
in practice the cost of evaluating f could be quite expensive. We will exploit structures
in the quadrature rules to save on repeated evaluations in (6).

In Section 3.1 we first consider Smolyak quadrature to be used as the quadrature
rules Au (see, e.g., [3, 15]). Then in Section 3.2 we consider instead an extensible quasi-
Monte Carlo (QMC ) sequence to be used for the quadrature rules (see, e.g., [1, 2]).
In both sections we explain how to regroup the terms by making use of the recursive
structure and how to store some intermediate calculations for the specific quadrature
rules to evaluate (6) efficiently.

Section 4 considers two different approaches to implement the Smolyak quadratures:
the direct method and the combination technique. In Section 5 we consider a randomized
quasi-Monte Carlo sequence for the quadrature rules. This enables us to obtain an
unbiased result and a practical estimate of the quadrature error for the MDM algorithm.

Each variant of our MDM algorithm involves three stages, as outlined in the pseu-
docodes; a summary is given as follows:

Pseudocodes 1 + 2A + 3A Smolyak MDM – direct implementation
Pseudocodes 1 + 2A′ + 3A′ Smolyak MDM – combination technique
Pseudocodes 1 + 2B + 3B Extensible QMC MDM
Pseudocodes 1 + 2B + 3B′ Extensible randomized QMC MDM

In Section 6 we derive a computable expression for estimating an infinite series that
may appear in the definition of the active set, which is another novel and significant
contribution of this paper. Finally in Section 7 we combine all ingredients and follow
the mathematical setting of [7] to construct the active set and choose the quadrature
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rules. We then apply the MDM algorithm to an example integrand that mimics the
characteristics of the integrands arising from some parametrized PDE problems (see,
e.g., [8]).

2 Constructing the active set

Letting w(u) be a measure of the “significance” of the subset u, we assume that the
mathematical analysis yields the definition of an active set of the general form

U := {u ⊂ N : w(u) > T}, (7)

where T > 0 is a “threshold” parameter that depends on the overall error demand ε > 0
and possibly on all of w(u). For example, w(u) can be related to the weight parameters
from a weighted function space setting (as in [16, 17, 13, 4]), or it can be related to the
bounds on the norm of fu (as in [7]).

In this section we will treat T and w(u) as input parameters (ignoring the mathe-
matical details of where they come from), and focus on the efficient implementation of
the active set given these parameters. Then in Section 6 we will consider a special form
of T (arising from analysis) which requires numerical estimation of an infinite series.

We assume w(∅) > T so that we always have ∅ ∈ U . Furthermore, we assume
specifically for u 6= ∅ that w(u) takes the product and order dependent (POD) form (a
structure that first appeared in [8]):

w(u) := Ω|u|
∏
j∈u

ωj , (8)

where ω1 ≥ ω2 ≥ · · · is a non-increasing sequence of nonnegative real numbers controlling
the “product aspect”, and Ω1,Ω2, . . . is a second sequence of nonnegative real numbers
controlling the “order dependent aspect”, with the restriction on Ω` that its growth is
controlled by ω`, i.e., Ω`+1ω`+1 ≤ Ω` for all ` ∈ N. This assumption is satisfied in
all practical cases that we are aware of. Further, in the theoretical framework for the
MDM (see, e.g., [7]), a sufficient condition for the infinite-dimensional integral to be
well-defined is for the parameters w(u) to be summable,

∑
u⊂Nw(u) < ∞, which will

not hold unless the condition Ω`+1ω`+1 ≤ Ω` holds (at least asymptotically in `).
With the active set defined by (7) and (8), we make a couple of obvious remarks:

1. If v ∈ U then u ∈ U for all sets u satisfying w(u) ≥ w(v).

2. If u /∈ U then v /∈ U for all sets v satisfying w(u) ≥ w(v).

We identify any finite set u ⊂ N with a vector containing the elements of u in increasing
order, i.e., if |u| = ` then

u := (u1, u2, . . . , u`), u1 < u2 < · · · < u`.

Then, due to our assumed POD structure in (8), we note that
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3. w(u) ≥ w(v) if |u| = |v| and ui ≤ vi for all i = 1, . . . , `.

4. w({1, . . . , `}) ≥ w({1, . . . , `+ 1}) for all ` ∈ N.

5. For any u ∈ U , a subset of u need not be included in U .

Note that if the opposite of Item 5 were true, i.e., every subset of u ∈ U also belongs
to U , then the set U is said to be “downward closed” in some papers; we do not impose
this condition.

Combining the above, we deduce the following simple lemma.

Lemma 1. Assume that the active set U is defined by (7) and (8).

• (“Superposition dimension”) Let σ∗ be the largest possible value of ` for which
(1, 2, . . . , `) ∈ U , i.e., w({1, 2, . . . , `}) > T . Then for all u ∈ U we have |u| ≤ σ∗.

• (“Truncation dimension for sets of order `”) For any ` = 1, . . . , σ∗, let τ` be
the largest possible value of j ≥ ` for which (1, 2, . . . , ` − 1, j) ∈ U , That is,
w({1, 2, . . . , ` − 1, j}) > T . Then for all u ∈ U with |u| = `, we have u` ≤ τ`;
and consequently, i ≤ ui ≤ τ` − `+ i for all 1 ≤ i ≤ `.

• (“Truncation dimension”) Let τ∗ be the largest possible value of j for which j ∈
u ∈ U , i.e., τ∗ = maxu∈U maxj∈u j. Then τ∗ = max1≤`≤σ∗ τ`.

Proof. For the first point, suppose on the contrary that u = (u1, . . . , uσ∗+1) ∈ U . Then
letting v := (1, . . . , σ∗ + 1) we have w(v) ≥ w(u) > T , which indicates that v ∈ U ,
contradicting the definition of σ∗.

To demonstrate the second point, suppose on the contrary that u = (u1, . . . , u`) ∈ U
with u` > τ`. Then we have v = (1, . . . , `−1, u`) with w(v) ≥ w(u) > T , which indicates
that v ∈ U , but this contradicts the definition of τ`. The bound on ui then follows easily.

The third point is straightforward.

We construct the active set as outlined in Pseudocode 1. The algorithm adds the
qualifying sets to the collection in the order of increasing cardinality. For each ` ≥ 1,
starting from the set (1, 2, . . . , `), the algorithm incrementally generates and checks sets
to be added to the collection. The algorithm terminates when it reaches a value of ` for
which (1, 2, . . . , `) /∈ U , i.e., w({1, 2, . . . , `}) ≤ T .

The assumptions on the structure of w(u) and properties 1–5 above ensure that this
stopping criteria is valid, and hence that Pseudocode 1 does indeed construct the active
set (7). In particular, property 3 implies w(u) ≤ w({1, 2, . . . , `}) for all sets with |u| = `,
and then Property 4 implies w(u) ≤ w({1, 2, . . . , `}) for all sets with |u| ≥ `. Thus, if
{1, 2, . . . , `} /∈ U then no set with cardinality ` or higher is in U .

We recommend storing the active set U as an array of hash tables, with one table
for each cardinality, since in the next section we will have to iterate over all subsets
v ⊆ u ∈ U and be able to update a table stored with each such v.
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Pseudocode 1 (Constructing the active set)

1: Add ∅ to U
2: for ` from 1 to `threshold do . `threshold is a computational threshold
3: u← (1, 2, . . . , `)
4: i← ` . i is the index for the next increment
5: loop
6: if w(u) > T then
7: i← `
8: Add u to U . add u to the active set
9: else

10: i← i− 1
11: end if
12: break the inner loop if i = 0 . move to next cardinality
13: for j from i to ` do . increment u from ui
14: uj ← ui + j − i+ 1
15: end for
16: end loop
17: break the outer loop if no sets of size ` found . terminate
18: end for

Remark 1. The paper [4] provides an efficient algorithm to construct the optimal active
set Uopt(ε), i.e., an active set that has the smallest cardinality among all active sets U(ε)
with the same error demand ε. The construction principle is based on sorting so is quite
different to Pseudocode 1, and it works only for parameters of product form. Once the
active set is constructed, the remaining steps for implementing the MDM algorithm will
be the same as we discuss below.

3 Formulating the MDM algorithm

In this section we outline how to formulate the MDM algorithm (6) in a way that is
specific to the quadrature rules used, so that the implementation can be as efficient as
possible. We do this by exploiting the structure in the anchored decomposition (5), and
also in the quadrature rules, which will be Smolyak’s methods (also known as sparse
grid methods) and quasi-Monte Carlo rules.

In each case we treat the parameters of the quadrature rules (i.e., the number of
quadrature points or levels) as input, and focus on the efficient implementation of the
MDM given these parameters. Specific choices of parameters for a test integrand follow-
ing the theoretical analysis in [7] are given in Section 7.

Recall from (6) that the MDM algorithm using the anchored decomposition is given
by

A(f) =
∑
u∈U

∑
v⊆u

(−1)|u|−|v|Au(f(·v; 0)) .
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Clearly there will be subsets v that will occur many times over, so implementing the
MDM in this way could be severely inefficient, because it would evaluate the same
functions f(·v; 0) at the same quadrature points over and over again. The goal of this
section is to detail how to implement the quadrature approximations in such a way that
each function f(·v; 0) is evaluated at each quadrature point once only.

The first step is to introduce the extended active set :

Uext := {v ⊂ N : v ⊆ u for u ∈ U} ,

that is, it includes all subsets of the sets in the active set. Then we can swap the sums
above to give

A(f) =
∑

v∈Uext

∑
u∈U
u⊇v

(−1)|u|−|v|Au(f(·v; 0))

= c∅ f(0) +
∑

∅6=v∈Uext

∑
u∈U
u⊇v

(−1)|u|−|v|Au(f(·v; 0)) , (9)

where we separated out the v = ∅ terms, with

c∅ :=
∑
u∈U

(−1)|u|.

After constructing the active set U , we go through it again to construct the extended
active set Uext, and at the same time store information regarding the superset structure
of each element in Uext. We would like to store just enough details so that for each
v ∈ Uext we can compute the approximation

∑
u∈U : u⊇v(−1)|u|−|v|Au(f(·v; 0)) without

the need to access the supersets of v. Specific details on how this is done will depend on
the quadrature rule used.

3.1 Quadrature rules based on Smolyak’s method

For a nonempty set u ⊂ N and integer m ≥ 1, Smolyak’s method (see, e.g., [3, 15, 18])
applied to a function gu of the variables xu takes the form

Qu,m(gu) :=
∑

iu∈N|u|
|iu|≤|u|+m−1

⊗
j∈u

(Uij − Uij−1)(gu), (10)

where |iu| :=
∑

j∈u ij , m ≥ 1, and {Ui}i≥1 is a sequence of one-dimensional quadrature
rules, not necessarily nested, with U0 := 0 denoting the zero algorithm. Furthermore we
assume that constant functions are integrated exactly, so that Ui(1) = 1 for i ≥ 1.

For a nonempty subset v ⊆ u, suppose now that the function gv depends only on the
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variables xv. Then we have

Qu,m(gv) =
∑

iu∈N|u|
|iu|≤|u|+m−1

(⊗
j∈v

(Uij − Uij−1)(gv)
)( ⊗

j∈u\v
(Uij − Uij−1)(1)

)

=
∑

iu∈N|u|
|iu|≤|u|+m−1, iu\v=1

⊗
j∈v

(Uij − Uij−1)(gv)

=
∑

iv∈N|v|
|iv|≤|v|+m−1

⊗
j∈v

(Uij − Uij−1)(gv) = Qv,m(gv). (11)

In the second equality above we used the assumption that the one-dimensional quadra-
ture rules integrate the constant functions exactly and thus (Uij −Uij−1)(1) is 1 if ij = 1
and is 0 otherwise. The above derivation (11) indicates how a Smolyak quadrature rule
is projected down when it is applied to a lower dimensional function. This property is
important in our efficient evaluation of (9).

In (9) we take
Au ≡ Qu,mu ,

where the level mu determines the number of quadrature points nu used by Qu,mu . The
exact relationship between mu and nu will depend on the choice of the one-dimensional
quadrature rules {Ui}.

Here we treat the levels mu, hence also the number of points nu, as input parameters
to our MDM algorithm. Then we define the maximum level to occur as

mmax := max{mu : ∅ 6= u ∈ U}.

For Smolyak grids based on one-dimensional rules {Ui} that each use O(2i) points (e.g.,
trapezoidal rules) the value of mu is roughly the logarithm of nu (see, e.g., [3]). Hence
in practice we observe that mmax is relatively small, e.g., mmax ≈ 25.

Using (11) we can rewrite (9) as follows (note the change from Qu,mu to Qv,mu):

AS(f) = c∅ f(0) +
∑

∅6=v∈Uext

∑
u∈U
u⊇v

(−1)|u|−|v|Qu,mu(f(·v; 0))

= c∅ f(0) +
∑

∅6=v∈Uext

∑
u∈U
u⊇v

(−1)|u|−|v|Qv,mu(f(·v; 0))

= c∅ f(0) +
∑

∅6=v∈Uext

mmax∑
m=1

c(v,m)6=0

c(v,m)Qv,m(f(·v; 0)) , (12)

where for v 6= ∅ and m = 1, . . . ,mmax we define

c(v,m) :=
∑

u∈U , u⊇v
mu=m

(−1)|u|−|v| . (13)
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Pseudocode 2A (Constructing the extended active set for Smolyak)

1: Initialize Uext ← U . start from the active set
2: Initialize c∅ ← 1 . for u = ∅
3: for ∅ 6= u ∈ U with |u| from 1 to σ∗ do . traverse in increasing cardinality
4: Calculate mu . formula for mu is given from theory
5: Update c∅ ← c∅ + (−1)|u|

6: Initialize c(u,m)← 0 for m from 1 to mmax

7: for ∅ 6= v ⊆ u do . generate nonempty subsets
8: if v 6∈ Uext then . look up and add missing subset
9: Add v to Uext

10: Initialize c(v,m)← 0 for m from 1 to mmax

11: end if
12: Update c(v,mu)← c(v,mu) + (−1)|u|−|v| . update relevant entry
13: end for
14: end for

Pseudocode 3A (Implementing the Smolyak MDM)

1: Initialize AS(f)← c∅ × f(0)
2: for ∅ 6= v ∈ Uext do
3: for m from 1 to mmax do
4: if c(v,m) 6= 0 then
5: Calculate Qv,m(f(·v; 0)) using (20)–(21) or (22)–(23)
6: Update AS(f)← AS(f) + c(v,m)×Qv,m(f(·v; 0))
7: end if
8: end for
9: end for

10: return AS(f)

The values of c(v,m) can be computed and stored while we construct the extended
active set Uext as follows. We work through the sets in the active set in order of increasing
cardinality. For each nonempty set u ∈ U with required level mu, we generate all
nonempty subsets v ⊆ u, add the missing subsets to Uext, and update c(v,mu) as we go.
This procedure is given in Pseudocode 2A.

This formulation (12)–(13) allows us to compute the Qv,m(f(·v; 0)) for different su-
persets u with the same value of mu only once. If the Smolyak MDM algorithm is
implemented in this way then there is no need to access the superset structure. Obvi-
ously, if c(v,m) = 0 then we do not perform the quadrature approximation.

Note that in practice calculating the number of Smolyak levels mu (or the number
of QMC points in the next subsection) normally requires knowledge of the entire active
set U , see, e.g., [7, Section 4.3], hence we compute them when constructing Uext.

Note also that we do not need a separate data structure for Uext: we can simply extend
U to Uext since Step 9 in Pseudocode 2A only adds subsets with lower cardinalities and
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would not interfere with Step 3 since we iterate in increasing cardinality. As we explained
in the previous section, we store the active set U , and by extension the extended active
set Uext, as an array of hash tables to easily retrieve the c(v, ·) table for each v.

A direct implementation of the MDM algorithm with Smolyak quadratures is given
in Pseudocode 3A. The different formulas (20)–(21) or (22)–(23) for implementing the
Smolyak quadrature, which depend on whether we have a non-nested or nested rule, will
be discussed in Section 4.

3.2 Quadrature rules based on quasi-Monte Carlo methods

Here we assume for simplicity that D = [0, 1] and ρ ≡ 1. A d-dimensional quasi-Monte

Carlo (QMC) rule with n points t(i) = (t
(i)
1 , t

(i)
2 , . . . , t

(i)
d ), i = 0, . . . , n− 1, approximates

the integral of a function g by the equal-weight average∫
[0,1]d

g(x) dx ≈ 1

n

n−1∑
i=0

g(t(i)). (14)

For more details on QMC methods we refer to [11, 14] and [2].
In (3) each Au could be a different |u|-dimensional QMC rule with nu points, but in

that case we would not be able to reuse any function evaluation. Instead, we consider
here an “extensible quasi-Monte Carlo sequence”. By “extensible” we mean that we can
take just the initial dimensions of the initial points in the sequence. By “quasi-Monte
Carlo” we mean that a quadrature rule based on the first n points of this sequence has
equal quadrature weights 1/n. We choose to use a QMC rule with σ∗ dimensions instead
of τ∗, since τ∗ can be really large (e.g., 30000) while σ∗ is rather small (e.g., 15), and
QMC rules with fewer dimensions are of better quality.

Then for any nonempty set u ∈ U and nonempty subset v ⊆ u we have

Au(f(·v; 0)) =
1

nu

nu−1∑
i=0

f
(
t
(i)
u|v→v; 0

)
, (15)

where, loosely speaking, t
(i)
u|v→v indicates that we map the quadrature point t(i) to the

variables xu and then to xv, which is not the same as mapping t(i) directly to xv. More

explicitly, recalling that u has ordered elements, t
(i)
u|v→v denotes that we take the first

|u|-dimensions of t(i) and apply them to the variables in xu, then retain only those
components in xv. The function f is then evaluated by anchoring all other components
outside of v to zero. Thus the algorithm (9) in this case is given by

AQ(f) = c∅ f(0) +
∑

∅6=v∈Uext

∑
u∈U
u⊇v

(−1)|u|−|v|
(

1

nu

nu−1∑
i=0

f
(
t
(i)
u|v→v; 0

))
. (16)

For example, take u = (1, 5, 7) and v = (1, 7). We get u|v = (1, 3) since the set v
originates from the position w = (1, 3) of its superset u. We assign the quadrature point
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(t
(i)
1 , t

(i)
2 , t

(i)
3 ) to the variables (x1, x5, x7). Then the point (t

(i)
1 , t

(i)
3 ) is assigned to the

variables (x1, x7), and hence we evaluate f(t
(i)
1 , 0, 0, 0, 0, 0, t

(i)
3 , 0, . . .).

Note that the same set v = (1, 7) can originate from the position w = (1, 3) of
different supersets u: for example, u = (1, 6, 7), u = (1, 4, 7, 13), and many others. We
can make use of this repetition to save on computational cost.

LetM(v) denote the set of all different positions that a nonempty set v can originate
from for all its supersets in the active set:

M(v) := {w ⊆ {1, . . . , σ∗} : w ≡ u|v for some u ∈ U with u ⊇ v} .

For simplicity and for convenience, we assume further that nu = 2mu , with 0 ≤ mu ≤
mmax (e.g., with mmax ≈ 25). This allows us to rewrite each QMC approximation as a
sum of blocks of points (recall that the QMC points are extensible)

1

2mu

2mu−1∑
i=0

f
(
t
(i)
u|v→v; 0

)
=

1

2mu

mu∑
m=0

2m−1∑
i=b2m−1c

f
(
t
(i)
u|v→v; 0

)
,

where the floor function is used specifically to take care of the m = 0 case. Substituting
this into (16) and introducing a sum over M(v), we have

AQ(f) = c∅ f(0) +
∑

∅6=v∈Uext

∑
w∈M(v)

∑
u∈U
u⊇v

u|v≡w

(−1)|u|−|v|
1

2mu

mu∑
m=0

2m−1∑
i=b2m−1c

f
(
t
(i)
w→v; 0

)
,

where in the third sum we have added the restriction that u|v is equivalent to the
position w. Collecting the sums

Sv,w,m(f) :=

2m−1∑
i=b2m−1c

f
(
t
(i)
w→v; 0

)
, (17)

we can then rewrite the QMC MDM (16) as

AQ(f) = c∅ f(0) +
∑

∅6=v∈Uext

∑
w∈M(v)

mmax∑
m=0

c(v,w,m) 6=0

c(v,w,m)
Sv,w,m(f)

2mmax
, (18)

where for a nonempty set v, a position w ∈M(v), and m = 0, . . . ,mmax we define

c(v,w,m) :=
∑

u∈U , u⊇v
u|v≡w,mu≥m

(−1)|u|−|v| 2mmax−mu . (19)

11



Pseudocode 2B (Constructing the extended active set for QMC)

1: Initialize Uext ← U . start from the active set
2: Initialize c∅ ← 1 . for u = ∅
3: for ∅ 6= u ∈ U with |u| from 1 to σ∗ do . traverse in increasing cardinality
4: Calculate mu . formula for mu is given from theory
5: Update c∅ ← c∅ + (−1)|u|

6: Initialize M(u)← ∅
7: for ∅ 6= v ⊆ u do . generate nonempty subsets
8: if v 6∈ Uext then . look up and add missing subset
9: Add v to Uext

10: Initialize M(v)← ∅
11: end if
12: Set w← u|v . identify the position where v originates from u
13: if w 6∈ M(v) then . look up and add missing position
14: Add w to M(v)
15: Initialize c(v,w,m)← 0 for m from 1 to mmax

16: end if
17: for m from 0 to mu do . update relevant entries
18: Update c(v,w,m)← c(v,w,m) + (−1)|u|−|v| × 2mmax−mu

19: end for
20: end for
21: end for

Pseudocode 3B (Implementing the QMC MDM)

1: Initialize AQ(f)← c∅ × f(0)
2: for ∅ 6= v ∈ Uext do
3: for w ∈M(v) do
4: for m from 0 to mmax do
5: if c(v,w,m) 6= 0 then
6: Calculate Sv,w,m(f) using (17)
7: Update AQ(f)← AQ(f) + c(v,w,m)× Sv,w,m(f)/2mmax

8: end if
9: end for

10: end for
11: end for
12: return AQ(f)

Note that we have chosen to multiply and divide by 2mmax to ensure that each c(v,w,m)
is integer valued.

We can compute and store a list of positions M(v) and the values c(v,w,m) when
we construct the extended active set Uext by extending the active set U , in a similar way
to the Smolyak case in the previous subsection. This is presented in Pseudocode 2B.
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The new algorithm is more complicated due to the need to store the positions M(v).
The MDM implementation using the formulation (17)–(19) does not require access to

any subsets or supersets. For each nonempty v ⊆ Uext and each position w ∈M(v) and
for the different m, with c(v,w,m) 6= 0, the sums Sv,w,m(f) are over disjoint sets of QMC
points. In this way we will only evaluate each function f(·w→v; 0) at each quadrature
point once. An implementation of the MDM algorithm with QMC quadratures is given
in Pseudocode 3B.

4 Two implementations of Smolyak MDM

Here we compare two approaches to implement Smolyak quadrature in the context of
MDM: the direct implementation and the combination technique.

4.1 Direct Smolyak implementation

From a practical point of view, it is more useful to write Smolyak’s method as an explicit
weighted quadrature rule as opposed to the tensor product form (10), see, e.g., [3]. We
summarize this formulation below.

For each one-dimensional rule Ui, let ni denote the number of quadrature points,
(wi,k)

ni−1
k=0 the quadrature weights, and (ti,k)

ni−1
k=0 the quadrature nodes. Here for simplic-

ity of notation we present the formula for a d-dimensional rule, with d ≥ 1, which would
need to be mapped to the set v appropriately. To this end we write Qd,m = Q{1,2,··· ,d},m.
The formula depends on whether the quadrature rules are nested, i.e., whether Ui in-
cludes all the quadrature points from Ui−1.

Non-nested case For non-nested one-dimensional rules, Smolyak’s method can be
written explicitly as

Qd,m(g) =
∑
i∈Nd

d≤|i|≤d+m−1

n(i1)
−1∑

k1=0

· · ·
n(id)

−1∑
kd=0

wi,k g(ti,k) , (20)

where the quadrature point ti,k ∈ Dd has coordinates (ti,k)j = tij ,kj for j = 1, 2, . . . , d
and

wi,k =
∑

p∈{0,1}d
d≤|i+p|≤d+m−1

d∏
j=1

(
(−1)pj wij ,kj

)
. (21)

Nested case When the Ui are nested, we assume that the quadrature points and
weights are ordered such that at level i the new points occur at the end of the point set,
from index ni−1 onwards. That is, for all i ∈ N we have ti,k = ti+1,k for k = 0, 1, . . . ni−1.

13



Then, to ensure that the function is only evaluated at each node once, (10) can be
rewritten as

Qd,m(g) =
∑
i∈Nd

d≤|i|≤d+m−1

n(i1)
−1∑

k1=n(i1−1)

· · ·
n(id)

−1∑
kd=n(id−1)

wi,k g(ti,k) , (22)

with weights

wi,k =
∑

q∈Nd, q≥i
d≤|q|≤d+m−1

d∏
j=1

(
wqj ,kj − wqj−1,kj

)
, (23)

where we set w0,k ≡ 0 for all k ≥ 0 and wq,k ≡ 0 when k ≥ nq. In particular, when
qj = ij in (23) the weight that is subtracted is 0, that is, wqj−1,kj = wij−1,kj = 0, since
in (22) kj ≥ nij−1.

4.2 Smolyak quadrature via the combination technique

The combination technique (it combines different straightforward tensor product rules,
hence the name) provides an alternative formulation to (10) as follows, see, e.g., [5, 18],

Qd,m(g) =
∑
i∈Nd

max(m,d)≤|i|≤d+m−1

(−1)d+m−1−|i|
(
d− 1

|i| −m

)( d⊗
j=1

Uij

)
(g)

=

m∑
r=max(m−d+1,1)

(−1)m−r
(

d− 1

d+ r − 1−m

) ∑
i∈Nd

|i|=d+r−1

( d⊗
j=1

Uij

)
(g)

=
m∑

r=max(m−d+1,1)

(−1)m−r
(
d− 1

m− r

) ∑
i∈Nd

|i|=d+r−1

( d⊗
j=1

Uij

)
(g) , (24)

where we have simplified using the symmetry of the binomial coefficient:
(
n
k

)
=
(
n

n−k
)
.

We adopt the usual convention that
(
0
0

)
:= 1.

Using (24), we can now rewrite the MDM algorithm from the second equality in (12)
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as

AC(f) = c∅ f(0) +
∑

∅6=v∈Uext

∑
u∈U
u⊇v

(−1)|u|−|v|

×
mu∑

m=max(mu−|v|+1,1)

(−1)mu−m
(
|v| − 1

mu −m

) ∑
iv∈N|v|

|iv|=|v|+m−1

(⊗
j∈v

Uij

)
(f(·v; 0))

= c∅ f(0) +
∑

∅6=v∈Uext

mmax∑
m=1

c̃(v,m)6=0

c̃(v,m) Q̃v,m(f(·v; 0)) , (25)

where for a nonempty set v and m = 1, . . . ,mmax we define

Q̃v,m(gv) :=
∑

iv∈N|v|
|iv|=|v|+m−1

(⊗
j∈v

Uij

)
(gv) , (26)

and

c̃(v,m) :=
∑

u∈U , u⊇v
mu−|v|+1≤m≤mu

(−1)|u|−|v|+mu−m
(
|v| − 1

mu −m

)
. (27)

The formulation (25)–(27) is very similar to the formulation (12)–(13), and the com-
putation of the values c̃(v,m) can also be done while constructing the extended active
set. This is shown in Pseudocode 2A′, which works in a similar way to Pseudocode 2A.
The key change is that Step 12 of Pseudocode 2A is replaced by Steps 12–14 of Pseu-
docode 2A′.

The quantity Q̃v,m(gv) is a straightforward tensor product quadrature rule

Q̃d,m(g) :=
∑
i∈Nd

|i|=d+m−1

n(i1)
−1∑

k1=0

· · ·
n(id)

−1∑
kd=0

wi,k g(ti,k) , (28)

with wi,k =
∏d
j=1wij ,kj and (ti,k)j = tij ,kj for j = 1, . . . , d. So the implementation of the

Smolyak MDM algorithm using the combination technique can be obtained analogously
by modifying Pseudocode 3A, shown in Pseudocode 3A′. The essential changes are in
Steps 5 and 6.
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Pseudocode 2A′ (The extended active set for Smolyak with combination technique)

1: Initialize Uext ← U . start from the active set
2: Initialize c∅ ← 1 . for u = ∅
3: for ∅ 6= u ∈ U with |u| from 1 to σ∗ do . traverse in increasing cardinality
4: Calculate mu . formula for mu is given from theory
5: Update c∅ ← c∅ + (−1)|u|

6: Initialize c̃(u,m)← 0 for m from 1 to mmax

7: for ∅ 6= v ⊆ u do . generate nonempty subsets
8: if v 6∈ Uext then . look up and add missing subset
9: Add v to Uext

10: Initialize c̃(v,m)← 0 for m from 1 to mmax

11: end if
12: for m from mu − |v|+ 1 to mu do . update relevant entries
13: Update c̃(v,m)← c̃(v,m) + (−1)|u|−|v|+mu−m( |v|−1

mu−m
)

14: end for
15: end for
16: end for

Pseudocode 3A′ (Implementing the Smolyak MDM with combination technique)

1: Initialize AC(f)← c∅ × f(0)
2: for ∅ 6= v ∈ Uext do
3: for m from 1 to mmax do
4: if c̃(v,m) 6= 0 then
5: Calculate Q̃v,m(f(·v; 0)) using (28)

6: Update AC(f)← AC(f) + c̃(v,m)× Q̃v,m(f(·v; 0))
7: end if
8: end for
9: end for

10: return AC(f)

4.3 Direct Smolyak vs combination technique

Here we compare the computational cost between the direct Smolyak implementation AS

given by (12)–(13) and the combination technique implementation AC given by (25)–
(27). Throughout, we will use the notation cost(·) to denote the whole cost, #(·) to
denote the number of function evaluations, and $(|v|) to denote the cost of evaluating
the original integrand f at some anchored point (xv; 0).
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The cost of the direct Smolyak implementation is

cost(AS) =
∑

∅6=v∈Uext

mmax∑
m=1

c(v,m)6=0

cost
(
Qv,m(f(·v; 0))

)
.

Similarly for the combination technique the cost is

cost(AC) =
∑

∅6=v∈Uext

mmax∑
m=1

c̃(v,m)6=0

cost
(
Q̃v,m(f(·v; 0))

)
.

We expect that c̃(v,m) will be nonzero more often than c(v,m) would be nonzero, so that
the combination technique approach needs to compute more quadrature approximations.
We need to account for both the cost to construct the quadrature weights and the cost
of function evaluations.

In terms of the number of function evaluations, we have for the direct Smolyak
implementation

#(Qd,m) =


∑
|i|≤d+m−1

∏d
j=1 nij if non-nested,∑

|i|≤d+m−1
∏d
j=1(nij − nij−1) if nested.

(29)

For the combination technique, we have

#(Q̃d,m) =
∑
|i|=d+m−1

∏d
j=1 nij

=
∑
|i|=d+m−1

∏d
j=1

(∑ij
pj=1 npj − npj−1

)
=
∑
|i|=d+m−1

∑
p∈Nd,p≤i

∏d
j=1(npj − npj−1)

=
∑
|p|≤d+m−1

(2d+m−|p|−2
d−1

)∏d
j=1(npj − npj−1).

So #(Qnested
d,m ) ≤ #(Q̃d,m) ≤ #(Qnon-nested

d,m ).
For the direct Smolyak implementation we note that (20) (or (22) in the nested case)

using the weights (21) (respectively (23)) is simply a grouping of all of the quadrature
points, but the total collection of one-dimensional weights that need to be evaluated is the
same as in (10); so the cost of computing the weights is

∑
|i|≤d+m−1 d

∏d
j=1(nij +nij−1).

On the other hand, the cost of computing the weights in (26) is clearly
∑
|i|=|v|+m−1 |v|

∏
j∈v nij .

Thus for the direct Smolyak implementation we have

cost(Qv,m) =
∑
|i|≤|v|+m−1

(
|v|
∏
j∈v(nij + nij−1) + $(|v|)

∏
j∈v nij

)
if non-nested,∑

|i|≤|v|+m−1
(
|v|
∏
j∈v(nij + nij−1) + $(|v|)

∏
j∈v(nij − nij−1)

)
if nested,
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and for the combination technique

cost(Q̃v,m) =
∑
|i|=|v|+m−1

(
|v|
∏
j∈v nij + $(|v|)

∏
j∈v nij

)
.

To summarize, the combination technique implementation is likely to require more
quadrature approximations than the direct method (more nonzero c̃(v,m) than c(v,m)),
and it uses more function evaluations than the direct method in the nested case, but
the cost of computing the weights is cheaper. It is not immediately clear which method
would be the overall winner.

5 MDM with randomized QMC

A randomly shifted version of the QMC approximation (14) takes the form (see, e.g.,
[2])

1

n

n−1∑
i=0

g
({

t(i) + ∆
})

,

where ∆ ∈ [0, 1)d is the random shift with independent and uniformly distributed com-
ponents ∆j ∈ [0, 1) for j = 1, . . . , d, and the braces around a vector indicate that we take
the fractional part of each component in the vector. The advantage of a randomly shifted
QMC method is that it provides an unbiased estimate of the integral, and moreover, one
can obtain a practical error estimate by using a number of independent random shifts.

In this section we outline how to implement randomized QMC (RQMC) versions
of the QMC MDM from Section 3.2 by random shifting. One approach that comes to
mind is to use a completely different set of independent shifts for each Au(f(·v; 0)) in
(15). But with this approach none of the function evaluations can be reused. Another
approach would be to use the same set of independent shifts for those Au(f(·v; 0)) with
the same cardinality |u|, in a similar way to how the QMC method is applied to the
MDM. But this approach also conflicts with our strategy to reuse function values based
on the position where a subset v originates from u. Furthermore, it is unclear in this
case how to obtain a valid error estimate of the overall MDM algorithm because of the
dependence between many shifts. So, instead of these two approaches, we will describe
a third approach which allows for a valid error estimate and the reuse of function values
as in the case of the non-randomized QMC MDM.

Instead, our approach is to randomize the MDM algorithm itself, by treating it as an
algorithm that acts on a function of τ∗ variables, and then independently shifting each
of the τ∗ variables (recall from Lemma 1 that τ∗ is the truncation dimension, i.e., the
largest index of the variables that appear in the active set). We generate r independent
random shifts ∆(1), . . . ,∆(r) ∈ [0, 1)τ

∗
, and we take

AR(f) =
1

r

r∑
q=1

Aq(f) , (30)
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where each Aq(f) is a shifted QMC MDM algorithm analogous to (17)–(19),

Aq(f) := c∅ f(0) +
∑

∅6=v∈Uext

∑
w∈M(v)

mmax∑
m=0

c(v,w,m) 6=0

c(v,w,m)
S̃
(q)
v,w,m(f)

2mmax
, (31)

but now with function values shifted by ∆(q) in

S̃
(q)
v,w,m(f) :=

2m−1∑
i=b2m−1c

f
({

t
(i)
w→v + ∆

(q)
v

}
; 0
)
. (32)

In this way, for each independent shift ∆(q) we can perform the MDM approximation
Aq(f) using the reformulation described in Section 3.2. Note that the reuse of function
values is only possible inside the approximation for a single shift, reuse across different
shifts will never be possible because the shifted approximations must be independent. As
such, the cost of our RQMC MDM using r shifts is r times the cost of the deterministic
QMC MDM from Section 3.2.

Pseudocode 3B′ (Implementing the RQMC MDM)

1: Initialize AR(f)← 0
2: Initialize E ← 0
3: for q from 1 to r do . compute MDM for each shift
4: Generate ∆(q) independently and uniformly from [0, 1)τ∗

5: Initialize Aq(f)← c∅ × f(0)
6: for ∅ 6= v ∈ Uext do
7: for w ∈M(v) do
8: for m from 0 to mmax do
9: if c(v,w,m) 6= 0 then

10: Calculate S̃
(q)
v,w,m(f) using (32)

11: Update Aq(f)← Aq(f) + c(v,w,m)× S̃(q)
v,w,m(f)/2mmax

12: end if
13: end for
14: end for
15: end for
16: Update AR(f)← AR(f) +Aq(f) . sum up from different shifts
17: Update E ← E + (Aq(f))2 . estimate error from different shifts
18: end for
19: Compute AR(f)← AR(f)/r . final MDM approximation
20: Compute E ←

√
[E − r × (AR(f))2]/[r(r − 1)] . final error estimate

21: return AR(f) and E
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Since A1(f), . . . ,Ar(f) are independent random variables each with the same mean∑
u∈U Iu(fu), their average AR(f) also has the same mean. Moreover, the variance

of AR(f) is 1/r times the variance of each Aq(f). The quadrature component of the

root-mean-square error, i.e.,
√

E |
∑

u∈U Iu(fu)−AR(f)|2, can be estimated from these

r sample values by√√√√ 1

r(r − 1)

r∑
q=1

(AR(f)−Aq(f))2 =

√√√√√ 1

r(r − 1)

 r∑
q=1

(Aq(f))2 − r (AR(f))2

.
The computation of M(v) and c(v,w,m) is exactly the same as in Pseudocode 2B.

We only need to replace Pseudocode 3B by Pseudocode 3B′, where we include also the
error estimation.

Note that due to linearity in (30)–(31), we can also interpret AR(f) as one MDM
algorithm where each of the quadrature approximations Au is obtained by the average of
r randomly shifted QMC rules. In this case we can also estimate the root-mean-square
error corresponding to each u. However, note that the shifts between different sets u are
correlated and an estimate for the total variance cannot be obtained by simply summing
up the individual variance estimates.

6 Computing the tolerance T

Under the theoretical setting of the paper [7], the threshold parameter T to construct
an active set (7) takes the form (see Formula (26) of [7])

T =

(
ε/2∑

u⊂N[w(u)]1/α

)α/(α−1)
, (33)

where ε > 0 is a given error tolerance parameter, while α > 1 is a free parameter with the
constraint that

∑
u⊂N[w(u)]1/α < ∞. Since the active set constructed by Pseudocode 1

is uniquely defined by T and w(u), computing the tolerance is another important step
in implementing the MDM. In this section we outline how to estimate T by presenting
novel estimates on the sum in (33).

In a practical implementation, we need to estimate the infinite sum in the denomi-
nator from above, to yield an underestimate of T , so that the required theoretical error
tolerance ε is guaranteed, at the expense of enlarging the active set. Understandably,
we should aim for a tight estimate of the infinite sum to avoid making the active set too
large and thus the algorithm too expensive. Similarly, the free parameter α should be
chosen so as to make the threshold parameter T as large as possible.

Here we derive upper bounds on the infinite sum by assuming further structure in
w(u), namely, that the POD form of w(u), see (8), is further parametrized for ` ≥ 0 and
j ≥ 1 by

Ω` = c1(`!)
b1 and ωj = c2j

−b2 , (34)
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with b1 ≥ 0, b2 > 1, b2 > b1, and c1, c2 > 0. Thus

∑
u⊂N

[w(u)]1/α =
∞∑
`=0

∑
|u|=`

(
c1(`!)

b1
∏
j∈u

(c2j
−b2)

)1/α

= c
1/α
1

∞∑
`=0

(`!)a c`
∑
|u|=`

∏
j∈u

j−b, (35)

with

a =
b1
α
, b =

b2
α
, and c = c

1/α
2 . (36)

We know from [7, Lemma 10] that the infinite sum in (35) is finite if b > 1 and b > a.
In turn this means that the free parameter α > 1 in (33) should satisfy α < b2.

In the next two lemmas we obtain an upper bound on the infinite sum in (35) for
somewhat general parameters a, b, c, without taking into account the constraints in how
they relate to each other or how they relate to α. After the two lemmas we will discuss
when and how the lemmas can be applied in our case.

Lemma 2. For any b > 1 and ` ≥ 1 we have∑
|u|=`

∏
j∈u

j−b ≤ z`−1

(`− 1)!

(
1 +

z

`

)
, z :=

(2/3)b−1

b− 1
. (37)

Proof. By identifying u with the vector (j1, j2, . . . , j`) with ordered elements j1 < j2 <
· · · < j`, we see that

∑
|u|=`

∏
j∈u

j−b =
∞∑
j1=1

j−b1

∞∑
j2=j1+1

j−b2 · · ·
∞∑

j`−1=j`−2+1

j−b`−1

∞∑
j`=j`−1+1

j−b` . (38)

For any k ∈ N and p > 1 we have

∞∑
j=k+1

j−p ≤
∫ ∞
k+1/2

x−p dx =
(k + 1/2)−(p−1)

p− 1
<

k−(p−1)

p− 1
,

which holds since the mid-point rule underestimates this integral. Therefore, the very
last sum in (38) is bounded by∫ ∞

j`−1+1/2
x−b dx =

(j`−1 + 1/2)−(b−1)

b− 1
<

j
−(b−1)
`−1
b− 1

,

and in turn the last two sums in (38) are bounded by

1

b− 1

∫ ∞
j`−2+1/2

x−(2b−1) dx =
(j`−2 + 1/2)−2(b−1)

2(b− 1)2
<

j
−2(b−1)
`−2

2(b− 1)2
.

Similarly, the last `− 1 sums are bounded by

(j1 + 1/2)−(`−1)(b−1)

(`− 1)! (b− 1)`−1
.
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The sum with respect to j1 has to be treated differently since we do not want to integrate
over [1/2,∞). For that purpose, we treat differently j1 = 1 and j1 ≥ 2, to obtain∑

|u|=`

∏
j∈u

j−b ≤ 1

(`− 1)! (b− 1)`−1

∞∑
j1=1

j−b1 (j1 + 1/2)−(`−1)(b−1)

<
(2/3)(`−1)(b−1)

(`− 1)!(b− 1)`−1
+

1

(`− 1)! (b− 1)`−1

∞∑
j1=2

j
−` b+(`−1)
1 .

Applying the integration estimate again to the sum over j1 ≥ 2, we get that

1

(`− 1)!(b− 1)`−1

∞∑
j1=2

j
−` b+(`−1)
1 ≤ 1

`!(b− 1)`

(
2

3

)`(b−1)
.

Combining the last two steps yields the estimate in (37).

Lemma 3. For every a ∈ (0, 1), b > 1, c > 0, s ∈ N and t ∈ (0, 1), we have

∞∑
`=0

(`!)a c`
∑
|u|=`

∏
j∈u

j−b ≤ 1 +

s∑
`=1

(`!)a c`
z`−1

(`− 1)!

(
1 +

z

`

)
+ Es,t,

with z := (2/3)b−1/(b− 1) as in (37), and

Es,t := c

(
1 +

z

s+ 1

)[
ts/a

1− t1/a

(
s+

1

1− t1/a

)]a
×
[

exp

((c z
t

)1/(1−a))
min

(
1,
(c z
t

)s/(1−a)) 1

s!

]1−a
. (39)

Proof. The result is obtained by applying Lemma 2 and then estimating the tail sum
from ` = s+ 1 by Es,t. Indeed, we have

∞∑
`=s+1

(`!)a c`
z`−1

(`− 1)!

(
1 +

z

`

)
≤ c

(
1 +

z

s+ 1

) ∞∑
`=s+1

`a t`−1
(c z
t

)`−1 1

[(`− 1)!]1−a

≤ c

(
1 +

z

s+ 1

) [ ∞∑
`=s+1

` t(`−1)/a
]a [ ∞∑

`=s+1

1

(`− 1)!

(c z
t

)(`−1)/(1−a) ]1−a
,

where the last step follows from Hölder’s inequality with the conjugate pair 1/a and
1/(1− a).

Consider the equality

∞∑
`=s+1

` x`−1 =
d

dx

(
xs+1

1− x

)
=

xs

1− x

(
s+

1

1− x

)
,
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which after substituting in x = t1/a yields the third factor in (39).
We also have

∞∑
`=s+1

y(`−1)/(1−a)

(`− 1)!
=

ys/(1−a)

s!

s−1∑
`=0

y`/(1−a)

`!
≤ exp(y1/(1−a)) min

(
1,
ys/(1−a)

s!

)
,

with last inequality due to Taylor’s theorem. Substituting y = c z/t yields the fourth
factor in (39).

The following corollary summarizes the upper bound on the sum. It introduces two
new free parameters: s ∈ N and t ∈ (0, 1).

Corollary 1. Let w(u) have product and order dependent components satisfying (34)
with b2 > 0, also let α ≥ 1 and α ∈ (b1, b2). Then for every s ∈ N and every t ∈ (0, 1)
we have ∑

u⊂N
[w(u)]1/α ≤ c1/α1

(
1 +

s∑
`=1

(`!)a c`
z`−1

(`− 1)!

(
1 +

z

`

)
+ Es,t

)
, (40)

where a, b, c are specified in (36), and z and Es,t are as defined in Lemma 3.

Note that when α = 1 the upper bound (40) on the sum is valid, even though in this
case the tolerance T in (33) is undefined.

Remark 2. If b1 = 0 so that w(u) is of product form, then a = 0 in (36) and the sum
can be bounded above using the same method as in [4, equation (7)], namely, for every
s ∈ N,

∑
u⊂N

[w(u)]1/α ≤ c
1/α
1 exp

(
c

(b− 1)(s+ 1
2)b−1

)
s∏
j=1

(
1 + cj−b

)
,

where b, c are as given in (36). In this case the size of the active set will be smaller than
the general case because with b1 = 0 each w(u) is smaller so the exact value of the sum∑

u⊂N[w(u)]1/α is smaller, and moreover our upper bound on the sum is tighter.
Note that the threshold parameter in the construction of optimal and quasi-optimal

active sets in [4] (see Remark 1) also requires a good upper bound on the sum with α = 1.

7 Numerical experiments

Until now we have ignored any theoretical details of the MDM and focussed purely on the
implementation given the arbitrary input parameters ε, {ω(u)}|u|<∞, T and {mu}u∈U .
Below we give some brief details on how to specify these parameter values for a particular
test integrand following the setting of [7]. We compare between QMC MDM and Smolyak
MDM, as well as demonstrate the speedup of our efficient implementations over the naive
implementations.
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7.1 Test integrand

We consider the integrand f : [−1
2 ,

1
2 ]N → R given by

f(x) =
1

1 +
∑

j≥1 xj/j
β
, (41)

with different parameters β > 1. This integrand with β = 2 has previously been consid-
ered in, e.g., [7, Example 5]. Although we do not know the exact value of the integral,
we are able to calculate a good approximation as a reference value and use this reference
value to calculate the total error of our MDM algorithms. This integrand is considered
a prototype function for some PDE applications, see e.g., [8].

In the theoretical setting of [7], it is assumed that each decomposition function
fu belongs to some normed space Fu, and that bounds on the norms are known, i.e.,
‖fu‖Fu ≤ Bu for all u 6= ∅.

In the particular case of the anchored decomposition combined with the anchored
norm over the shifted unit cube [−1

2 ,
1
2 ]|u|, we have

‖fu‖Fu
=

(∫
[−1

2 ,
1
2 ]
|u|

(
∂|u|

∂xu
fu(xu)

)2

dxu

)1/2

=

(∫
[−1

2 ,
1
2 ]
|u|

(
∂|u|

∂xu
f(xu; 0)

)2

dxu

)1/2

, (42)

and the induced operator norm of Iu in Fu is given by ‖Iu‖ = 12−|u|/2 =: Cu (see [7,
Subsection 5.3]). Moreover, for the integrand (41) this norm is bounded by (see [7,
Subsection 5.4] for derivation of the case β = 2)

‖fu‖Fu
≤
(
1− 1

2ζ(β)
)−(|u|+1) |u|!

∏
j∈u

j−β =: Bu,

where ζ(x) =
∑∞

k=1 k
−x for x > 1 is the Riemann zeta function.

7.2 Active set construction

We continue under the assumption that fu is in the Hilbert space whose norm is given
by (42).

Following [7, Formula (26)], the above description leads to an active set (7) with
w(u) := CuBu, which is in POD form (34) with

c1 =
1

1− 1
2ζ(β)

, c2 =
c1√
12
, b1 = 1, b2 = β ,

and where the tolerance T is given by (33). We estimate T by the upper bound (40),
which we compute by fixing s = 1000, t = 0.5, and then maximizing the estimated
tolerance for α over 100 equispaced points in (1, β).
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Table 1 presents details on the active set for the parameter values β = 4, 3, 2.5 and
ε = 10−1, 10−2, 10−3. The rows are labelled as follows: ε is the error request, T is
the computed tolerance for the active set, σ∗ is the superposition dimension, τ∗ is the
maximum truncation dimension, and the last ten rows display the number of sets of each
size in the active set.

We see that although there are many sets to consider in MDM, even in the hardest
case with β = 2.5 and ε = 10−2 we only ever deal with integrals up to 10 dimensions,
with the highest coordinate considered being 24724.

Below we will restrict ourselves to the case β = 3, with error request down to
ε = 10−6.

Actually, the above approach from [7] for prescribing the parameters w(u) and T
overestimates the truncation error for our test integrand and makes the active set much
larger than necessary. A tighter truncation error estimate can be done for this test
integrand using a Taylor series argument (see e.g., [7, Remark 13]) and this should yield
better input parameters w(u) and T to our efficient MDM algorithms. Analysis on the
best strategy to prescribe the active set parameters for any given practical integrand
falls outside the scope of this paper.

β = 4 β = 3 β = 2.5

ε 1e-1 1e-2 1e-3 1e-1 1e-2 1e-3 1e-1 1e-2
T 1.4e-4 2.8e-6 6.4e-8 4.0e-6 3.6e-8 3.8e-10 1.5e-8 4.9e-11
σ∗ 3 4 5 5 6 7 8 10
τ∗ 10 28 72 86 418 1907 2528 24724

size 1 9 26 68 76 370 1686 2019 19750
2 12 48 159 195 1285 7327 10077 126882
3 5 28 132 202 1828 13117 21996 354377
4 0 4 36 80 1234 11907 26258 559155
5 0 0 1 10 361 5578 17874 536133
6 0 0 0 0 32 1145 6513 313623
7 0 0 0 0 0 69 1088 106877
8 0 0 0 0 0 0 47 18582
9 0 0 0 0 0 0 0 1210

10 0 0 0 0 0 0 0 8

Table 1: Results from the active set construction for various β and ε.

7.3 QMC MDM

For the randomized QMC MDM we use an extensible rank-1 lattice rule with generating
vector

z = (1, 756581, 694385, 178383, 437131, 945527, 62405, 1079809,

991997, 750785, 187845, 1666795, 491701, 1092667,

1279469, 817683, 1946073, 1946073, 1530387, 686611, . . .),
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with n = 2m points for any m = 0, . . . , 25. It is constructed by a component-by-
component (CBC) algorithm as outlined in [1], but the search criterion was appropriately
modified to match the norm (42). Also, we apply the tent-transform (see [6]) x 7→
1 − |2x − 1| to each component of the shifted quadrature points in [0, 1], and then
translate it to [−1

2 ,
1
2 ].

Following [7], we assume that the quadrature error for each decomposition term fu to
be bounded by Gu,q (nu + 1)−q ‖fu‖Fu with appropriate constants Gu,q and q; a Lagrange
optimization argument then results in choosing the number of points nu ≥ hu, with

hu =

(
2

ε

∑
v∈U

£(|v|)q/(q+1) (Gv,q Bv)
1/(q+1)

)1/q (Gu,q Bu

£(|u|)

)1/(q+1)

, (43)

where £(|u|) is the cost of evaluating the decomposition term fu.
Although the above formula for hu is precisely [7, Formula (28)], how we specify the

other parameters here will deviate from [7]. Based on (5) we set £(|u|) = max(2|u||u|, 1).
The constant Gu,q arising from the theoretical error bound is far too large, so we set
instead Gu,q = 1 after some experiments (see below). In the theoretical setting with the
norm (42) involving mixed first order derivatives, we expect only up to first order conver-
gence, leading to the choice q = 1. However, it is known from [6] that randomly-shifted
and then tent-transformed lattice rules can achieve nearly second order convergence if
the integrand has mixed second order derivatives; thus we take instead q = 2 (see jus-
tification by experiments below) without formally switching the setting. Finally we set
nu = 2mu with mu = max(dlog2(hu)e, 0).

In Figure 1 on the left we plot the error request ε against the estimated standard error
obtained using 16 random shifts. This gives an idea of the quadrature error alone. By
taking q = 2 instead of q = 1, we see that the error request ε and the estimated standard
error are in agreement up to a constant factor. It is possible to tune this constant factor
by changing the value of Gu,q (it should be at least as large as ‖Iu‖ = 12−|u|/2 and indeed
the theoretical bound yields Gu,q = g|u| with some g > 1), but taking Gu,q = 1 appears
to give reasonable results in practice (if it is too big then the quadrature rules will do
too much work, while if it is too small they will underperform).
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Figure 1: Error request ε against estimated standard error (left) and total error (right).
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In Figure 1 on the right we plot the error request ε against the estimated total error
(combining both the truncation error and the quadrature error) by comparing the results
with a reference solution obtained using a higher precision QMC quadrature rule. The
reference solution was computed using 222 QMC points and 16 shifts in quad precision
in 600 dimensions and resulted in a standard error of 8× 10−13. A similar computation
in 800 dimensions with 220 QMC points agreed up to 10 digits. The two graphs in
Figure 1 show the same trend, indicating that the truncation error is no worse than the
quadrature error.

7.4 Smolyak MDM

For the Smolyak MDM we will use the composite trapezoidal rule as the one-dimensional
rules. These rules are nested. We set U0 := 0 to be the zero algorithm, and following [3,
Section 3] we take the first one-dimensional quadrature rule U1 to be the single (mid-
)point rule, i.e., n1 := 1 with point t1,0 := 0 and weight w1,0 := 1. This extra level
ensures that the number of points does not grow too quickly. Then for each i ≥ 2 we
take the one-dimensional quadrature rule Ui to be the composite trapezoidal rule in
[−1

2 ,
1
2 ] with ni := 2i−1 + 1 points at multiples of 1/2i−1, with the weights being 1/2i−1

for the interior points and 1/2i at the two end points ±1/2.
To ensure that we iterate the points in a nested fashion, we label the points in the

order of 0, ±1/2, ±1/4, ±1/8, ±3/8, . . . and so on. Explicitly, for i ≥ 2 we can write

ti,k :=

{
k/2p − 1/2 if k is odd, and p is such that 2p−1 < k < 2p,

−ti,k−1 if k is even,

with the corresponding weights

wi,k :=

{
1/2i if k = 1, 2,

1/2i−1 if k = 0, 3, 4, . . . , ni − 1 .

We choose the approximation levels mu of our quadrature rules in the direct Smolyak
MDM implementation to be such that the number of function evaluations, see (29) with
nested points, is at least hu given by the formula (43), with the same definitions of
£(|u|) = max(2|u||u|, 1), Gu,q = 1 and q = 2. The justification for taking q = 2 here is
that composite trapezoidal rules are known to give second order convergence for suffi-
ciently smooth integrands in one dimension, and this convergence is transferred, modulo
log-factors, to the Smolyak rule for multivariate integrands with sufficient smoothness,
see e.g., [3]. We use the same values of mu for the combination technique variant even
though the actual numbers of function evaluations are higher.

In particular, our chosen values of mu mean that the naive implementations of
Smolyak MDM and QMC MDM would use roughly the same number of function evalu-
ations for each fu. However, the actual number of function evaluations for our efficient
implementations would be lower and hence achieve the savings we aim for; see the timings
in the next subsection.
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In Figure 1 on the right we also plot the error request ε against the estimated total
error of the direct Smolyak MDM implementation compared with the same reference
solution as for QMC MDM. We see that all results are comparable.

7.5 Timing results

In Table 2 we present results on the run-time of our efficient MDM implementations
compared with the naive implementations for error request ε from 10−1 down to 10−6.
We include results for QMC MDM with a single random shift, direct Smolyak MDM,
and Smolyak MDM based on combination technique (CT-Smolyak). We report the total
error with respect to the same reference solution in each case, as well as the run-time
in seconds. The QMC results can vary between runs depending on the random shift.
All calculations were done in x86 long double precision on a single node of the UNSW
Katana cluster with an Intel Xeon X5675 3.07GHz CPU.

The values of tact in the first column are the time in seconds used to construct
the active set (Pseudocode 1), while the values of text are the average time used to
construct the extended active set and compute the three sets of coefficients (13), (27),
(19) (Pseudocode 2A, 2A′, 2B).

We clearly see increasing speedup of the efficient implementations over the naive ones
as ε decreases. The reformulation of the MDM algorithm into this efficient formulation
is the main result of this paper.

We see more speedup in the case of Smolyak MDM compared with QMC MDM. This
is as expected, because for QMC MDM there is extra work in managing the different
positions that a nonempty set can originate from as a subset of another set in the active
set: we need to cope with a more complicated data structure for (19) compared with
(13) or (27), and we need more function evaluations. Additionally, we expect the QMC
algorithms to be much more efficient when the truncation dimension goes up (i.e., when ε
goes down), since the sizes of the Smolyak grids based on trapezoidal rules then increase
faster than the powers of 2 of the QMC algorithms.

If we compare the direct Smolyak MDM with the combination technique Smolyak
MDM then we notice that for our efficient reformulation the two methods have very
similar running times, with a very minor advantage for the direct method, but with the
naive formulation the direct method is the clear winner. Note that we can see the effect
of rounding errors in the calculations for ε = 10−5 and 10−6, since the total errors should
remain the same between the naive and efficient implementations of the same algorithm,
while the direct Smolyak and combination technique should also have the same total
errors.

In Figure 2 we plot the total error against time for the results in Table 2 to demon-
strate the speedup of the efficient implementations. For each pair of efficient and naive
results, we expect the data points to be at the same horizontal level (same total error)
but with bigger and bigger gaps in time (the speedup factor increases) as the errors go
down.

28



β = 3, reference value = 1.1011984577041

efficient naive
ε method total error time (s) total error time (s) speedup

1e-01 QMC 7.57e-05 0.0017576 7.57e-05 0.0032837 1.9
tact = 0.000768 Smolyak 3.26e-05 0.0047466 3.26e-05 0.0063622 1.3
text = 0.00339 CT-Smolyak 3.26e-05 0.0042816 3.26e-05 0.0088774 2.1

1e-02 QMC 3.66e-05 0.062643 3.66e-05 0.067456 1.1
tact = 0.00899 Smolyak 9.34e-06 0.074826 9.34e-06 0.12321 1.6
text = 0.049 CT-Smolyak 9.34e-06 0.073692 9.34e-06 0.19568 2.7

1e-03 QMC 1.26e-06 0.4301 1.26e-06 1.1336 2.6
tact = 0.0401 Smolyak 9.92e-07 0.49712 9.92e-07 1.9859 4.0
text = 0.339 CT-Smolyak 9.92e-07 0.48502 9.92e-07 3.4984 7.2

1e-04 QMC 5.90e-08 4.8547 5.90e-08 15.766 3.2
tact = 0.34 Smolyak 6.39e-08 5.5186 6.39e-08 27.89 5.1
text = 4.08 CT-Smolyak 6.39e-08 5.5692 6.39e-08 53.191 9.6

1e-05 QMC 4.41e-09 47.64 4.51e-09 188.61 4.0
tact = 2.79 Smolyak 2.13e-09 54.331 2.12e-09 346.79 6.4
text = 41.7 CT-Smolyak 2.11e-09 56.083 2.12e-09 734.87 13.1

1e-06 QMC 7.01e-10 442.8 4.31e-10 2163.1 4.9
tact = 20.2 Smolyak 8.76e-10 504.78 1.14e-09 4093.9 8.1
text = 435 CT-Smolyak 2.08e-09 535.74 1.14e-09 9255.4 17.3

Table 2: Timing comparisons between efficient and naive MDM implementations. tact is the
time to construct U and text is the average time to construct Uext for the 3 reformulations.
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Figure 2: Estimated total error against time.

8 Conclusion

The MDM is a powerful algorithm for approximating integrals of ∞-variate functions,
but care must be taken to ensure the implementation is efficient. In this paper we have
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provided details and explicit pseudocodes explaining how to efficiently run all compo-
nents of the algorithm: from constructing the active set to running the MDM for both
randomized QMC rules and Smolyak quadrature rules. By reformulating the MDM we
are able to save cost by reducing the amount of repeated function evaluations incurred
because of the recursive structure of the anchored decomposition. We applied the MDM
to an example integrand that possesses similar properties to those that arise in recent
PDE problems with random coefficients. The numerical results clearly support the cost
savings of the efficient reformulations.
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