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PRIMAL DUAL MIXED FINITE ELEMENT METHODS FOR
INDEFINITE ADVECTION-DIFFUSION EQUATIONS *

ERIK BURMAN ¥ AND CUIYU HE #

Abstract. We consider primal-dual mixed finite element methods for the advection—diffusion
equation. For the primal variable we use standard continuous finite element space and for the flux
we use the Raviart-Thomas space. We prove optimal a priori error estimates in the energy- and the
L2-norms for the primal variable in the low Peclet regime. In the high Peclet regime we also prove
optimal error estimates for the primal variable in the H(div) norm for smooth solutions. Numerically
we observe that the method eliminates the spurious oscillations close to interior layers that pollute
the solution of the standard Galerkin method when the local Peclet number is high. This method,
however, does produce spurious solutions when outflow boundary layer presents. In the last section
we propose two simple strategies to remove such numerical artefacts caused by the outflow boundary
layer and validate them numerically.
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1. Introduction. Advection—diffusion problems have been extensively studied
in the last decades for its wide applications in the area of weather-forecasting, oceanog-
raphy, gas dynamics, contaminant transportation in porous media, to name a few.
Many numerical methods for advection—diffusion equations have been explored in the
literature. The two main concerns when designing a numerical method for advection—
diffusion problems are robustness in the advection dominated limit and satisfaction of
local conservation. The standard Galerkin method, using globally continuous approx-
imation, is known to fail on both points and therefore much effort has been devoted
to the design of alternative formulations. Typically to make the method stable in
the limit of dominating advection some stabilizing operator is introduced to provide
sufficient control of fine scale fluctuations. The most well known stabilized method
is the Streamline upwind Petrov Galerkin method (SUPG) introduced by Hughes
and co-workers [6] and first analyzed by Johnson and co-workers [32]. In order to
avoid disadvantages associated to the Petrov-Galerkin character, for instance related
to time discretization, the discontinuous Galerkin method was introduced, first in the
context of hyperbolic transport [33, 22]. In this case the stabilizing mechanism is due
to the upwind flux, which controls the solution jump over element faces and adds a
dissipation proportional to this jump. In the context of finite element methods using
H'-conforming approximation several stabilized methods using symmetric stabiliza-
tion have been proposed, for instance the subgrid viscosity method by Guermond
[30], the orthogonal subscale method by Codina [23], the continuous interior penalty
method (CIP), introduced by Douglas and Dupont [27] and analyzed by Burman
and Hansbo [13]. It is well known that for both cases of discontinuous and continu-
ous approximation spaces a local conservative numerical flux can be defined. In the
continuous case, however, it must be reconstructed using post processing [31, 16].

In this work, to ensure local conservation of the computed flux we design a method
in the mixed setting: we approximate the primal variable in the standard conform-
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ing finite element space and the flux in the Raviart-Thomas space. The numerical
scheme is based on a constrained minimization problem in which the difference be-
tween the flux variable and the flux evaluated using the primal variable is minimized
under the constraint of the conservation law. The method is very robust and was
initially introduced for the approximation of ill-posed problems, such as the ellip-
tic Cauchy problem, see [14]. Herein we consider well-posed, but possibly indefinite
advection—diffusion equations. However, the results extend to ill-posed advection—
diffusion equations using the ideas of [14] and [15].

Indefinite, or noncoercive, elliptic problems with Neumann boundary conditions
were considered first in [17] and more recently in [18, 34, 8] using finite volume and
finite element methods. The method proposed herein is a mixed variant of the primal-
dual stabilized finite element method introduced in [8, 11] for the respective indefinite
elliptic and hyperbolic problems, drawing on earlier ideas on H ~'-least square meth-
ods from [4]. Contrary to those work we herein consider a formulation where the
approximation spaces are chosen so that it is inf-sup stable. Hence no stabilizing
terms are required. Primal dual methods without stabilization were proposed for the
advection—diffusion problem in [19] and for second order PDE in [3, 2], inspired by
previous work on Petrov-Galerkin methods [26, 25]. Similar ideas have recently been
exploited successfully in the context of weak Galerkin methods for elliptic problems
on non-divergence form [40], Fokker-Planck equations [39], and the ill-posed elliptic
Cauchy problem in [41]. In [35] a method was introduced which is reminiscent of
the lowest order version of the method we propose herein. The case of high Peclet
number was, however, not considered in [35], so our analysis is likely to be useful for
the understanding of the method in [35] in this regime.

1.1. Main results. For the error analysis, in the low Peclet regime, we prove
optimal convergence orders for the L2- and H'- norms for the primal variable for all
polynomial orders. For the analysis we do not use coercivity, but only the stability
of the solution, showing the interest of the method for indefinite (or T-coercive [20])
problems. In the high Peclet regime we assume that the data of the adjoint operator
satisfy a certain positivity criterion, which is different to the classical one for coercivity.
We then prove an error estimate in negative norm and optimal order convergence of
the error in the streamline derivative of the primal variable measured in the L2- norm,
for smooth solutions.

Numerical results for both the diffusion- and advection-dominated problems are
presented. Optimal convergence is verified on smooth problems and on a problem
with reduced regularity due to a corner singularity. We note that for problems with
an internal layer only mild and localized oscillations are observed (see Figure 2).
However, for problems with under-resolved outflow boundary layers the effect of the
layer causes global pollution of the solution (see Figure 1). In section 6 we propose
two simple strategies to improve the method in this case. More specifically, one
method imposes the boundary condition weakly and the second approach introduces
a weighting of the stabilizer such that the oscillation is more “costly” closer to the
inflow boundary. This latter variant introduces a notion of upwind direction.

This paper is organized as follows. In section 2, the model problem is presented.
The numerical scheme is proposed and its stability and continuity is analyzed in sec-
tion 3. In section 4, we prove the error estimation results for both problems with
either low or high Peclet numbers. Numerical results are presented in section 5. In
section 6 we propose two strategies to improve accuracy in the presence of under-
resolved outflow boundary layers. Numerical results are also presented to test their
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effectiveness.

2. The Model Problem. Let Q € R? d € {2,3}, be a polygonal/polyhedral
domain, with boundary 92 and outward pointing unit normal n. We consider the
following advection—diffusion equation,

(2.1) V- (Bu— AVu) + pu = f
with the boundary conditions

(2.2) u = gonlp, and
’ (AVu—Bu)-n = 1 only.
where T'p, 'y C 9Q, Tp NIy =0 and Tp UTy = 9. For simplicity, we assume
that T'p # 0. The problem data is given by f € L2(Q), g € Hz(I'p), ¢ € H 3(T'y),
AeR™ e Rand 8 € [L™(Q)4 with B, = |8 1=(). For the analysis in
the advection dominated case we will strengthen the assumptions on the parameters.
Furthermore, we assume that the matrix A is symmetric positive definite. With
the smallest eigenvalue Ap,in,4 > 0 and the largest eigenvalue Apax,4 We assume
that Amax,4/Amin,a is bounded by a moderate constant. The below analysis holds
also in the case of variable A and u, that are piecewise differentiable on polyhedral
subdomains, provided ajustements are made for loss of regularity in the exact solution.
Let

(2.3) Vyp={ve H(Q):v=gonlp} and Vop={ve H(Q):v=00nTp}
Consider the weak form: find u € V; p such that
(2.4) a(u,v) =1l(v), VveWp,

with
a(u,v) := (pu,v)q + (AVu — Bu, Vo)q,
and

l(v) := (f;v)a + (¥, v)p,,

where (-, -),, denotes the L? inner product on w. When w coincides with the domain
Q the subscript is omitted below. We will only assume that the problem satisfies
the Babuska-Lax-Milgram theorem [1], which, in the case of homogenous Dirichlet
condition, implies the existence and uniqueness and the following stability estimate

lullv < o Uy,

where || - ||y is the H'-norm, « is the constant of the inf-sup condition and the dual
norm is defined by
Iy := sup I(v).
veV
lvllv=1

Observe that in the case of heterogenous Dirichlet condition we may write u = ug+u,
where uy € Vp,p is unknwon and ug € V p is a chosen lifting of the boundary data
such that ||ug|lv < |9l 1 . In that case the stability may be written as
H2(T'p)

-1
(2.5) luollv < a™ llgllv,

where I;(v) = l(v) — a(ug, v).
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3. The Mixed Finite Element Framework.

3.1. Some preliminary results. Let {7}, be a family of conforming, quasi
uniform triangulations of  consisting of shape regular simplices T = {K}. The
diameter of a simplex K will be denoted by hx and the family index h is the mesh
parameter defined as the largest diameter of all elements, i.e, h = rélg%g{h;(} We
denote by F the set of all faces in T, by F; the set of all interior faces in 7 and by
Fp and Fn the sets of faces on the respective I'p and I'y. For each F' € F denote
by mp a unit vector normal to F' and npg is fixed to be outer normal to 92 when F
is a boundary face.

Frequently, we will use the notation a < b meaning a < Cb where C' is a non-
essential constant, independent of h. Significant properties of the hidden constant
will be highlighted.

We denote the standard H'-conforming finite element space of order k by

ViF = {v, € HY(Q) :v|x € Pp(K), VK eT}

where P (K) denotes the set of polynomials of degree less than or equal to k in
the simplex K. Let iy : C°(Q) — V¥ be the nodal interpolation. The following
approximation estimate is satisfied by 4y, see e.g., [28]. For v € H**1(Q) there holds

(3.1) |lv —ipv|| + AV (v —ipv)|| < hk+1‘7}|H}c+l(Q), k>1.
For the primal variable we introduce the following spaces
Vg’fD ={v, €VF v, =gyonTp} and VOIfD ={v, €V v, =00nTp},

where gy, is the nodal interpolation of g (or if ¢ has insufficient smoothness, some other
optimal approximation of g) on the trace of T'p so that gy, is piecewise polynomial of
order k with respect to Fp.

For the flux variable we use the Raviart-Thomas space

RT' :={q), € Haiv(Q) : qylx € Pi(K)? @ 2(By(K) \ Py (K)), VK € T},

with & € R? being the spatial variable, I > 0 and P_;(K) = (). We recall the
Raviart-Thomas interpolant Ry, : H'(div, Q) — RT', where

H™(div, Q) :== {w € [H™()]* : V-w e H™(Q)},

and its approximation properties [28]. For ¢ € H™(div,Q), m > 1 and Ryq € RT",
there holds

(3.2) lg — Ruglla + 1|V (@ — Rug)lla S A" (IV - qlur@) + |q|ar )

where r = min(m, [ + 1).
We also introduce the L?-projection on the face F of some simplex K € T,

TR : L2(F) — PI(F)
such that for any ¢ € L2(F)

(¢ —7ri(9),ph)p =0, Vpu € P(F).
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Then by assuming that the Neumann data 1 is in L?(T'x) we define the discretized
Neumann boundary data by its L?-projection such that for each F € Fy we have
Yu|r = mri(1). With the satisfaction of the Neumann condition built in, we define

RTé,’N ={q, € RT': q;, -n =1, on Ty}

and
RT(I),N ={q; € RT": g, - n=0onTx}.

For the Lagrange multiplier variable, we introduce the space of functions in L?(Q)
that are piecewise polynomial of order m in each element by

X = {an, € LA(Q) : wp|x €P(K), VK €T}
We define the L?-projection mx,, : L?(2) — X/ such that
(y—7mxm(y),zn) =0, VYV, € X/

For functions in X;"* we define the broken norms,

(NI

(33)  laln = (Z ||x%() and (2], = (IVall? + 102113, 0, )

KeT

where [[h=1/22(|% - =z hp'||z[|3 and

€FIUFDp

lim (x(z — enp) —x(z + enp)) for F € Fy,

[2]|r(2) = { ;_(;?;— for FF € Fp U Fn.

Also recall the discrete Poincaré inequality [5],

(3.4) Izl < llzllin, Ve X,

which guarantees that || - ||1,5 is a norm.
Given a function z;, € X]* we define a reconstruction, n;, (zy) € RTé N of the
gradient of xp such that for all F' € F; U Fp

(3.5) (p(xn) - np,pn)p = (W' len],pn) o Von € Pu(F),
where hp is the diameter of F', and if [ > 1, for all K € T,
(3.6) (n(zn) an) e = —(Van, @)k, Vay, € [P (K))

We prove the stability of n;, with respect to the data in the following proposition.

PROPOSITION 3.1. There exists an unique 1, € RT&N such that (3.5)—(3.6) hold.
Moreover m;, satisfies the following stability estimate

N|=

1
(3.7) 4l < Cas (ImxaaVenll + 10 drera(EnD) i, )

here Cys > 0 is a constant depending only on the element shape regularity.
Proof. We refer to [14] for the proof. d
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We will also frequently use the following inverse and trace inequalities,

(3.8) IVollx S h Yollx, Yo ePy(K)
and
(3.9) lvllox S h 2]k +hE|Volg, Yve HY(K).

For a proof of (3.8) we refer to Ciarlet [21], and for (3.9) see, e.g., Monk and Siili [38].

3.2. The finite element method. The problem takes the form of finding the
critical point of a Lagrangian L : (vp, gy, zn) € Vg’fD X RTfN\, x X3 +— R defined by

(3~10) E[Uha dhs xh] = %S[(Uha qh), (vfu qh)] + b<qh7 Uh,s xh) - (f’ xh)'

Here zj, € X}" is the Lagrange multiplier, s(-,-) denotes the primal stabilizer

(3.11) sl(v, @), (v, @) i= 5180~ AV0 — g,

and b(-, -) is the bilinear form defining the partial differential equation, in our case the
conservation law,
b(qy, vn,xp) := (V - qp, + pon, zp).
By computing the Euler-Lagrange equations of (3.10) we obtain the following
linear system: find (up,py,,2n) € Vg’fD X RT127N x X" such that

(3.12) s[(un, Pp), (Vh, @p)] + b(qy, Vhs 21) = 0,
(313) b(phvuhvmh) - (f7 xh) =0,

for all (vn, gy, xn) € Vip X RT{ 5 x Xj*. The system (3.12)~(3.13) is of the same form
as that proposed in [9, 12] but without the adjoint stabilization. Therefore, to ensure
that the system is well-posed the spaces th x RT" x X i must be carefully balanced.
Herein we will restrict the discussion to the equal order case k = [ = m that is stable
without further stabilization. The arguments can be extended to other choices of
spaces provided suitable extra stabilizing terms are added (see [14] for details).

Observe that the stabilizer in equation (3.11) connects the flux and the primal
variables and, more precisely, brings p; and Bup — AVuy to be close. In the low
Peclet regime this introduces an effect similar to the penalty on the gradient of the
primal variable used in [8]. In the high Peclet regime, on the other hand, the stability
of the streamline derivative is obtained by the strong control of the conservation law
residual obtained through equation (3.13).

Remark 3.1. The constrained-minimization problem introduces an auxiliary vari-
able, i.e., the Lagrange multiplier, which for stability reasons must be chosen as the
discontinuous counterpart of the discretization space for the primal variable (unless
stabilization is applied, see [14]). This results in a system with a substantially larger
number of degrees of freedom than the standard Galerkin and the classical mixed
method. Nevertheless, it is possible to reduce the system used in the iterative solver
to a positive definite symmetric matrix where the Lagrange multiplier has been elim-
inated. This is achieved by iterating on a least square formulation and the solution
of which is not locally mass conservative but has similar approximation properties.
The number of degrees of freedom of the reduced system is comparable to that of the
mixed method using the Raviart-Thomas element. For a detailed discussion of this
approach we refer to [14].
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3.3. Approximation, continuity and inf-sup condition. For the analysis
we introduce the energy norms on H'(Q) x H(div, ),

(3.14) . @)1 = (31w @), (v.@)) + (Y - g+ 0)[[?)* .
(3.15) @, @)l = lll(v, @)lll -1 + Il + A2 gl = + [lglle.

To quantify the dpendence of the physical parameters in the bounds below we intro-
duce the factor ¢, := B h + || Al + || P

LEMMA 3.1 (Approximation). For any v € H**1(Q) and ¢ € H'TH(Q)? the
following approximation properties hold:
(3.16)
[1(v = inv,q — Rag)lll-1 < (v — inv,q — Rr@)|lls S cuh®|v] g9y + gl g )

Proof. Applying the triangle inequality and the approximation properties (3.1)
and (3.2) gives

(3.17)
(v = inv, @ — Ra@)lll-1 S (Boch + [[Alloc + |1|h?) WF || s o) + W ] i -

To estimate the remaining terms note that the trace inequality (3.9) implies
|hY2(q — Rrq)ll < llg — Rugll + 1|V (g — Ruq)ll,

which, combining with the approximation properties, gives

(v = inv)|| + 1% (@ = Rua)ll 7 + g — Rugll < [ulh* ol i o) + b gl @)

(3.16) is then a direct consequence of the above inequality and (3.17). This completes
the proof of the lemma. ]

To facilitate the analysis we rewrite the system (3.12)—(3.13) in the following
compact form: finding (un, py,, 21n) € Vg’f’D X Rbe’N x X" such that

(318) A[(uhapha Zh)) (’Uhv qhvxh)] = lh(ﬂ?h), \V/(Uh,qh,l'h) S ‘/OITD ><fgj—‘0l7N XX;Ln7
where

Al(un, s 2n), (n, @y, xn)] = b(qy,, v, 20) + 0(Dy, un, ©n) + s[(un, py), (Vn, @)

and
In(zn) = (f,zn).
Note that for the exact solution, (u,p), there holds

(319) A[(U,p, O)’ (’l}h, dp; Ih)] = l(xh)

PROPOSITION 3.2 (Inf-sup Condition). Let k =1 = m in (3.18). Then there
exists a. > 0 such that, for all (vn,qp,xp) € VolfD X RT&N X X’,i, there exists
(O, @y, Tn) € VOIfD X RT&N x XK satisfying
(3:20) ac(lll(wn, gn)lliZy + llznllf n) < Al(vn, s 2n), (On, @y T0)]

and

(3.21) 1@n, @)l + 120 llen S Ml (vns gu)lll-1 + lznll1n-
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Proof. Define n;, = ny(xn) € RT§ y by taking | = m = k in (3.5)-(3.6) and
&, = h*(V - q, + pvy) € XF. We claim that, by choosing 9, = v, € ngD, q, =
q, +en, € RTOIfN and 7, = —xp, + &, € XF, there holds (3.20) and (3.21), where € is
to be determined later.

By the above definitions, we have

Al(vn, an, n), (Vn, gy + €Ny, =20 + &n)]
(3.22) =@, — Bun + AV ||* + [|L(V - g, + pon) ||
+e(qy, — Bun + AV, my,) +€(V -y, ).

For the last term, it follows from integration by parts, (3.5), (3.6) and the facts that
N, -n=0onTy, Vo, € Pk_l(K)d and x| € Pk(F) that

_1
(Vompzn) = Y (=n Van)k + My - ncwn)or) = IVanl* + Y0 172 ]|l
KeT FeFUFp

which, combining with (3.22), the Cauchy-Schwartz inequality and (3.7), gives
A[(Uh, qy, xh)a (vha qp + €Ny, —Th + fh)]
1
> |lgy, — Bo + AV || + |h(V - @y, + pvn)||* — 7lan — Bon + AV |

(3.23) 1
= ElmplP+e [ [IVanl®*+ Y a2 [zlllF
FeFrUFp
3
>~ lan=Bon+ AVo|*+[A(V - @, + pon) [ +€(1 = eCg)lon i -
. . . 1 .5 . (31
(3.20) is then a direct result of (3.23) by choosing e = §C’ds and o, = min 73¢)

To prove (3.21) first applying the triangle inequality gives

(3:24)  l(@n, @)l -2+ 1Znlln < ll[(on, @)lll-x+llznllen + 100, emp)lll -1 +11€n 111,

Then applying the trace and inverse inequalities and (3.7) yields

(3.25) 110, enp) Il = e(llnpll + 1AV - m, 1) S [0l < lznllsn,

and

(3.26) I€r Tl S B7HIER] = 1(V - @y, + pon) | < [llon, g ll-1-

Combining (3.24)—(3.26) results in (3.21). This completes the proof of the proposi-
tion. a

PROPOSITION 3.3 (Existence and Uniqueness). The linear system defined by (3.18)J]
admits an unique solution (up, Py, 2n) € ng,D X RTZZ,N X X,]f.

Proof. In order to prove the invertibility of the square linear system it is equivalent
to prove the uniqueness. Assume that there exist two sets of solutions, (u1 p, D1ns Z1,h)
and (u2,h, P2 p» 22,1), both in ng,D X RTéf’N x XF. We then have that for all (v, q,,, 1)
in the space of VOIfD X RT&N x XK there holds

Al(u1,n — u2,h,P1 = Paps 210 — 22,0)s (Vn, @y Tn)] = 0.
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By Proposition 3.2, the following must be true:
[ (u1,n — w2,y P1p — Pop)ll-1 + 20,0 — 22,0110 =0,
which immediately implies
zip =225 and V- (B(urp —ugpn) — AV(urp —u2p)) + plur,, — uzp) = 0.

Since (2.1)—(2.2) admits an unique trivial solution for zero datum we conclude that
u1,p = uz and, hence, py , = p, ;. This completes the proof of the proposition. [

We end this section by proving the continuity of the bilinear form.

PROPOSITION 3.4 (Continuity). For all (v,q) € H'(Q) x Ho ny(div,Q) and for
all (vn, qy,wn) € ViF x RT! x X;™ there holds

(3.27) Al(v, q,0), (vn, g, wn)] < [lI(v, @lllg ([1(vn; gp)lll -2 + [lznllL.n)-

Proof. The inequality (3.27) follows by first using the Cauchy-Schwarz inequality
in the symmetric part of the formulation,

s[(v. q), (vn, @,)] < sl(v, ), (v, @) 2 s[(vn, @), (vn, )]

For the remaining term we use the divergence formula elementwisely to obtain

(Vog+po,zp) =Y —(q,Van)k+ Y (g np [zl)p + (po,z3).
KeT FeFrUFp

(3.27) then follows by applying the Cauchy-Schwartz inequality and (3.4). This com-
pletes the proof of the proposition. a0

4. Error Estimation. In this section we will prove optimal error estimates
for smooth solutions, both in the diffusion dominated and the advection dominated
regimes. When the diffusion dominates we prove optimal error estimates in both the
H'- and L?-norms under very mild stability assumptions on the continuous problem.
In this part constants may blow up as the Peclet number becomes large.

For dominating advection we need to make an assumption on the problem data
to prove an error estimate in the H'-norm. This is then used to prove an estimate
that is optimal for the error in the divergence of the flux, computed using the primal
variable, or the “streamline derivative”. However, we can not improve on the order
for the L2-error as for typical residual based stabilized finite element methods. In this
part constants remain bounded as the Peclet number becomes high.

4.1. Error estimate for the residual. First we prove the optimal convergence
result for the residual, i.e., the optimal convergence for the triple norm (3.14). This
estimate will then be of use in both the high and low Peclet regimes.

LEMMA 4.1 (Estimate of Residual). Assume that (u,p) is the solution to (2.4)
withu € H* 1NV, p(Q), p € HTHQ)INHy n () and | < k, and that (up, Py, 21) €
ng,D X RTZZ,N x XK is the solution of (3.18). Then there holds

(4.1) 1(w = un, = pp)lll=1 + lznllin S cuhFlulgre @y + B Dl i o)-

Proof. Firstly, applying the triangle inequality gives

(4.2) Il(w=un,p—2p)|ll-1 < |[[(w = inu, p— Rpp)||| -1 + ||| (ur — inu, o), — Rup)|l|-1.
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Note that up, — ipu € VolfD and p;, — Ryp € RT&N. Then by Proposition 3.2 there
exists (vp, gy, wn) € ngD X RT&N x XF such that

120+ llenllE

Il (un — inu, p, — Rnp)
SA[(uh - ihuaph - th, Zh))a (Uha qha wh)] = .A[(’LL - ihuap - tha O)a (’Uha qh7 ’U)h)]
Sl(uw = inu,p — Rup)|lls (Il (un — inu, pp, — Rep)ll—1 + [1znll1n) -

The last equality and inequality follows from (3.18), (3.19) and Proposition 3.4.
Therefore, we immediately have that

l(un — inu, pp, — Bup)lll-1 S Il(w — inu, p — Rup)|lly

which, combing with (3.16) and (4.2), implies (4.1). This completes the proof of the
lemma. |

Observe that the hidden constant in (4.1) has no inverse powers of the diffusivity.
Hence we have the following corollary.

COROLLARY 4.1. Under the same assumptions as in Lemma 4.1, if ||Allcc << h,
B = O(1), |u| = O(1), there holds

(4.3) 1w = un, 2 = Pp)lll=1 + lznllin S A5 ul s @) + R Pl q)-

4.2. Error estimates in the diffusion dominated regime. In this subsection
we provide results for the error estimation in the diffusion dominated regime, i.e.,
o0

is of order 1 where Ap,in 4 is the smallest eigenvalue of A.
)\min,A

PROPOSITION 4.1 (H'-norm estimate). Assume that (u,p) is the solution to
(2.4), u € HFY Q) NV, p(Q) and p € HFH Q)4 N Hy n(Q) with | < k, and that
(up,py,) is the solution of (3.18). Then the following estimate holds,

(4.4) Ju—unllv < C (cuh®lulgrer) + B (1Pl @) + [l ey))
where the constant C' depends on the datum in the following manner

1810

C= .
)\min,A

REMARK 4.1. Since the above constant C' blows up as Amin,a goes to zero, the
above estimation is valid only for diffusion dominated problem.

Proof. To avoid using coercivity arguments, our starting point for the error anal-
ysis below is the stability estimate (2.5). Let e = u — up. we note that e is a solution
to (2.4) with the right hand side linear operator being r(v) := {(v) — a(up, v), i.e.,

a(e,v) = r(v).

Now apply the decomposition e = ey + ¢, such that ey|r, = e|r, and that |leg]lv <
lell gr1/2(r,,)- 1t then follows from (2.5) that

(U) — a’(€97v> < C(

-
leollv < C sup [ llve + llegllv)-
vev iy
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Hence
lellv < lleollv + llegllv < Clrllv: + llegllv).

For the term ||eg4||v, by definition and a standard trace inequality, we have

(4.5) lleglly < Cllu —ipul| < C|lu —ipul|v < ChE || g1 ()

H2(Tp) =

To prove the bound on ||r||ys we recall that

a(u — up, v

Il = sup 20— te)
ve [ollv

Then by integration by parts, (3.13) and Cauchy Schwartz inequality, we have

a(u — up,v) = l(v) — a(up,v)
= (f,0) + (¥, v)ry — (AVup — Bun, Vo) = (pun, v)
= (f =V p, — pup,v) + (Y +py -n,0)ry — (P, — Bun + AVuyp, Vo)
= (f =V py — pun,v = 7x,00) + (P = pp, — Blu —upn) + AV(u = up), Vv)
+(¥ = Yn,v — TEOV)ry
S = pa), (w = w11 Vo]l + 172 (@ = n) oy | Vo
which, combining with (4.5), (4.1) and the following observation (see e.g., Lemma 5.2
of [29])
112 (¢ = dn)lley S Rl
gives (4.4). This completes the proof of the proposition. 0

In the remaining part of this subsection we will focus on the convergence of the
L2?-norm error in the primal variable. For simplicity we here restrict the discussion to
the case of a convex polygonal domain 2 and homogeneous Dirichlet condition. We
first prove the convergence result for the L?-norm of the Lagrange multiplier.

PROPOSITION 4.2. Assume that u € H}(Q) N H*1(Q) and p € H*(Q)?. Let 2,
be the Lagrange multiplier of the system (3.18). We have the following error estimate

(4.6) lznlle S R (Julge ) + gl ae@)) -
Proof. Let ¢ be the solution such that
V- (Bp—AVQ) + g = 2z,

with boundary condition ¢ = 0 on 9€2. Then by the well-posedness assumption on
the equation (2.1) and the assumption on €2 we have the following stability result:

(4.7) a2 < ll2nll-
Let g = Bp — AV¢. By adding and subtracting suitable interpolates we have
(4.8) z0l1> = (20, V - (@ — Rn@) + p1(¢ — in®)) + (21, V - Rnq + pin).

For the first term in (4.8) using the element-wise divergence theorem, the facts that

/Zh(q*RhQ)'anSZO, VK eT,VF C 0K,
F
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and that

lg — Ruall S hllgllazio) S bllzull and  [l¢ —ingll S k|6l m2(a) < h2[l2ll.

and (3.4) gives
(4.9) (21, V - (@ = Rnq) + (¢ —ind)) S h(1+ [lulloch) |20 ll1,nll 20 -
For the second term in (4.8) we first apply equation (3.12) with q, = Ry(q) € RT*
and v, = ipp € Volf p with 'y = 0, then applying the Cauchy-Schwarz inequality,
(3.1) and (3.2) that

(20, V - Rpq + pin®) = — (py,—Bun + AVuy, Rynq — Bing + AV (in¢))
Slipn = Bun + AVur || ([ Al V(¢ = ind) | +[1Bllsc |6 — indl +[la — Rrall)
Sy — Bun + AVuL)|| (| Allsch + [Blloch® + R) (|61l 2(c2)
Shll(pn — Bun + AVu)|ll|zn]]-

(4.6) is then a direct consequence of (4.9), (4.10) and (4.1). This completes the proof
of the proposition. ]

(4.10)

We now proceed to prove the error estimation of the primal variable in the L?
norm. To estimate the error of the primal variable in the L? norm we require that
the adjoint problem is well-posed and satisfies a shift theorem for the H? semi-norm.

ASSUMPTION 4.1. Consider the adjoint problem for (2.1). For each ¢ € L*(Q),
we assume that the data are such that the following adjoint problem admits an unique
solution, using Fredholm’s alternative,

(4.11) -V -AVp—-B-Vo+pup=_inQ
with plog = 0. Furthermore, the following regularity result holds true:

(4.12) lellae < I

PROPOSITION 4.3. Let u € HFTY(Q) N HY(Q), p € H*(Q)? and (up,py, zn) be
the solution of (3.12)—(3.13). Under the Assumption 4.1 we have
(4.13) l[u = up|| S BFF (\U|Hk+1(9) + |P|Hk(Q)) .

Proof. Let ¢ be the solution of the dual problem (4.11) with right hand side being
e := u—uy,. Then by integration by parts, the assumption that ¢ = 0 on 92, we have
lell* = (f,9) + (un, V- AV + B - Vo — )

= (f =V p — pun, ) — (pp, + AVuy, — Bup, V).
The first term can be estimated by applying (3.13) and the Cauchy-Schwartz inequal-
ity:
(4.15)
(f =V py—pun, 0) = (f =V pp—pun, o =mx5¢) S hll[(w—un, p—pp)lll-1ll¢llm2@)-
To estimate the second term we apply (3.12) with q,, = Ry(Vp) € RT* and the fact
that V- (R, V) = mx 1 Ae:

(py, + AVup, — Bup, V)

=~ (20, V- (RrV@)) + (py, + AVup, — Bup, (Vo — RpV))
Slznlllmx w Aol + hllpy + AVun — Buallllel n2 (o)
S (lznll + hllpy + AV = Bun|) |l r2(0)-

(4.14)

(4.16)
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Combing (4.14)—(4.16) gives

(4.17) llell < Alll(w = un, p = pp)lll-1 + [lznll-
(4.13) is then a direct consequence of (4.17), (4.1) and (4.6). This completes the proof
of the proposition. 0

REMARK 4.2. Observe that the hidden constants in (4.7) and (4.12) typically blow
up in the advection dominated regime. Therefore the above L?-analysis is relevant only
in the low Peclet regime.

4.3. Error estimates in the advection dominated regime. In this section,
we analyze the error estimates in the advection dominated regime. For the stability
we make the following assumption on the data that ensures stability of the adjoint
equation independent of the diffusivity, see [24].

ASSUMPTION 4.2. We assume that the the domain Q is convez, that the diffusivity
A is a scalar and By, = O(1). We also introduce the following condition on data. Let
T denote the identity matriz and VsB :=1/2(VB+ (VB)T), i.e., the symmetric part

1

of VB. Then assume that uZ — (Vg3 — iv - BI) is symmetric positive definite and
denote by M,in its smallest eigenvalue. Moreover we assume that 3-n =0 on 0N).

We first prove the following inverse inequality regarding the H~1(2) norm.

LeEMMA 4.2. For any vy, € V}f the following inverse inequality holds:
(4.18) lonllz2@) S B Hlonll a1

Proof. Let E € H}(Q) be the weak solution to

—AE+ FE =, in Q.

Then by the definition and duality inequality we have

1Bz = sup  ((VE,Vw)+ (E,w))
weH ()
lwll g1 @=1
(4.19) e
= sup (“AE+E,w) <|lvpllg-1q)-
wEH;(2)

HwHHl(sz):l
By integration by parts we also have
lonl* = (vn, =AE + E) = (g, E) + (Von, VE) < [[on]l o) | Ell (s,

which, combining with (4.19) and the inverse inequality, gives (4.18). This completes
the proof of the lemma. 0

LEMMA 4.3. Let ¢ € H}(2) be the solution to (4.11) with the right side being
W € HY(Q). Then under the Assumption 4.2 the following stability result holds:

(4.20) Apmin VoI < (V|-
Proof. By the definition and integration by parts we have
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Using the relation of [10, equation (3.6)] we have for the second term of the right
hand side

(4.21) (B-Vo, M) = <(;V - B — Vg,@) Vo, V¢> .

Combining similar terms we then have
(4.22)

((uf (VB 5V BI)) vo, w) T (ADG, 50) = (1, —Ag) = (Y4, V9),

and, therefore,
and, as a by product,

|AY2D%6] S IA2 00| < A, L2194

This completes the proof of the lemma. ]

PROPOSITION 4.4. Let u and uy, be the solution of (2.4) and (3.18), respectively.
Then under the Assumption 4.2 we have the following estimate:

(4.24) lu = unllz-10) < CrALL e — un,p = py|

min

where Cp is the constant of the Poincaré inequality
> kg (¢ = mx.00) 1> < CBIIVEI
K

1

and Apin is defined in Assumption 4.2. Cp =7~ on conver domains, see [?].

Proof. By definition we have

llu — uhHH*l(Q) = sup  (eu,w).
weH(Q)
”w”Hl(Q):l

Let p € H}(Q) be the solution of (4.11) with the right hand side an arbitrary function
Y € Hi(Q) with [|¢]|gi) = 1. Applying the integration by parts, (3.13) and the
Cauchy-Schwartz inequality gives

(ew, V) = (eu, o — B+ Vip — ADyp)

= (e, +V-ep,0) + (e, + AVe, — Be,, Vo)

= (pey +V-ep, ¢ —mx,00) + (e, + AVe, — Bey, Vo)
(Cpllh(pew +V - ep)ll + llep + AVey — Beu||) [Vl

<
< Cplll(u = un,p = pp) -1 Vel < CrALL NI (w = un,p = pp)[l|-1-

where in the last inequality we also applied the stability result of Lemma 4.3. This
completes the proof of the proposition, since the bound is valid for arbitrary ¥ €
HA(Q) with [0 = 1. "
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COROLLARY 4.2 (Negative norm, a posteriori and a priori bounds). Under the
same hypothesis as Proposition /.j the following a posteriori and a priori error esti-
mates hold:

(4.25)  Ju = unllu-1(@) < CpAni, (1h(f — pun =V - pp)|| + | Bun — AVup — py )
S CpAL (W ul s ) + B Pl (@)
Proof. The proof is immediate using Proposition 4.4 and Corollary 4.1. O

We are now ready to prove the main result.

THEOREM 4.1. Let u € H*1(Q) N HE(Q), p € H*Y(Q)? and (un, py,, 2n) be the
solution of (3.12)—(3.13). Assume that A < h%. Then under the Assumption 4.2 we
have the following error estimate:

(4.26) lu—up| + V- (p—py)|| S A (|U|Hk+1(9) + |P|Hk+1(9)) .
Furthermore, if V - p € H**1(Q) we have
(4.27) IV - Bu— up)|| S 1* (|ul sy + [Plari ) + [V - Plasia) -
Here the hidden constants are bounded in the limit as A — 0.
Proof. Applying the triangle inequality, (4.18), (4.24) and Corollary 4.1 gives
lu—unll < llu = inul + h™up — inul m-1(9)
S W ul e ) + b7 = unll ) + e = il g
(4.28) S hk+1|u|Hk+1(sz) +h7Hu - upl| 1) + A u— inu L2 ()
S Wl e ) + B (w = un,p — 2y )|

S B (Jul e @) + [Plas ) -
Applying the triangle inequality, (4.28) and (4.1) gives
V- (@ =2 )l <V - (p—pn) + p(u—up)| + [[n(u — up)|
(4.29) S AT = un,p — )|+ [lpe(u — ) |
S KF (Julgrsr ) + [Pl (o) -

(4.26) is then a direct result of (4.28) and (4.29).
To prove (4.27) we first apply the triangle inequality,

(4.30) IV - (Bu—un)ll < IV - (B(u—inu)[| + V- (B(un — inu))|.

The first term in (4.30) can be easily estimated using (3.1). For the second term in
(4.30) applying the triangle and inverse inequalities gives

IV - (B(up, — ipw))|| < | B(up — inu) — (Rpp — p) — AV (up — inu)||
(4.31) + 172 Alloo (II(un — w) || + [|(inu — u)])
+V- (=Pl + V- (p— Rup)ll.

By the triangle inequality, Corollary 4.1 and (3.17) we have

(4.32) WM 1B(un — inu)=(Rp — pp) = AV (un — inw)|| S h* (Jul i o) + [Pl o).
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By the smallness assumption || Al < k2, (3.1), (3.2), (4.28) and (4.29) the remaining
terms in (4.31) can be estimated as follows:

h=2 Al (I un = w)l + |G = w)l) + 1V - (p = pu) | + IV - (p — Rup)|

(4.33) L
gh ’ (|U|Hk+1(Q) + |p|Hk+1(Q) + |V : lek+1(Q)) .

Finally, (4.27) is a direct consequence of (4.30)—(4.33). This completes the proof of
the lemma. O

Remark 4.1. Tt is possible to prove Theorem 4.1 under the standard coercivity
assumption for advection-diffusion problems, but not Proposition 4.4. Also note that
we need the diffusivity to be O(h?) to ensure that the high Peclet result holds. This
is a stronger assumption than is usual for convection—diffusion equations.

5. Numerical Experiments. In this section we present results for numerical
experiments in both the diffusion dominated and convection dominated regimes. The
numerical results are produced using the FEniCS software [36].

EXAMPLE 5.1 (Boundary Layer). In this example we consider the boundary layer
problem [37]
ou  Ou
—eA 2— + — =
cout Ox * dy /
on the domain Q = (=1,1) x (=1,1) where the true solution has the following repre-
sentation:

u=(1—exp(=(1—=)/€)) * (1 —exp(=(1 —y)/e)) * cos(m(x +y))

and € € R. The solution has a O(e) boundary layer along the right top sides of the
domain and the value of € determines the strength of the boundary layer.

We first test the value € = 1 in which case the solution is smooth and we aim to test
the optimal convergence rates of our method for smooth problems. The magnitude
of the errors and their corresponding convergence rates are listed in Table 1 for the
first and second orders, i.e., k = 1 and k = 2. For both orders we observe the optimal
convergence performance for the primal variable in both the L? and H' norms. For the
flux variable we are able to observe the optimal rate for the linear order, and, however,
a slightly suboptimal rate for the second order. Nevertheless the flux variable provides
an approximation of the flux that is more accurate than that using the primal variable
by two orders of magnitude.

We then test the method in the advection dominated regime with boundary layer
by letting € = 0.01 (see performance results in Table 2). For both the first and second
orders, the method produce the optimal convergence rate for the streamline derivative
when the layer is resolved. For the flux variable we observe the optimal convergence
for both orders 1 and 2 (with even super convergence result for order 2). For the
primal variable we observe the optimal convergence rates both in the L2- and H'-
norms (with super convergence for the L2- norm in the second order case).

To test the robustness of our method, Figure 1 shows the numerical solutions on
structured meshes of various element sizes using the first order method for the problem
with € = 0.002 in which case the boundary layer is extremely sharp. More precisely
the mesh sizes are chosen such that the boundary layer are under resolved (h = 1/64),
half resolved (h = 1/512) and fully resolved (h = 1/1024). We observe that when the
mesh size could not resolve the boundary layer fully global oscillations appear in the
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TABLE 1

Errors and convergence performance for Fxample 5.1 with e = 1

lu —up|l  rate | [[u—unllgr) rate | |[p—pull rate
1/32 1.975E-3  1.99 1.644E-1 1.00 | 3.346E-3 2.00
1/64 | 4.942E-4 2.00 8.229E-2 1.00 | 8.367E-4 2.00
1/128 | 1.235E-4 2.00 4.115E-2 1.00 | 2.091E-4 2.00
(a) order =1
lu—un|l  rate | [[u—unllmi) rate | |[p—pull rate
1/32 | 1.605E-5 2.99 3.857E-3 2.00 | 7.368E-5 2.64
1/64 | 2.008E-6 3.00 9.650E-4 2.00 | 1.230E-5 2.60
1/128 | 2.510E-7 3.00 2.412E-4 2.00 | 2.109E-6 2.54
(b) order =2
TABLE 2
Errors and convergence rates for Erample 5.1 with € = 0.01
h Il — wp| rate |lu — u||H1(Q) rate | ||p— p,ll rate
1/32 1.979E-1 0.86 6.073 0.13 | 4.394E-1 0.86
1/64 7.195E-2 1.46 4.009 0.60 | 1.599E-1 1.46
1/128 2.044E-2 1.82 2.189 0.87 | 4.547E-2 1.81
1/256 5.296E-3 1.95 1.120 097 | 1.178E-2 1.95
L IV 0 -_pyl rate | IV (Blu—un)] tate | [l rate
1/32 1.277E-0 1.04 9.462 0.09 | 2.592E-3 1.30
1/64 4.354E-1 1.55 6.314 0.58 | 7917E-4 1.71
1/128 1.206E-1 1.85 3.452 0.87 | 2.092E-4 1.92
1/256 3.100E-2 1.96 1.766 0.97 | 5.300E-5 1.98
(a) order =1
h lu — up| rate lu — ull g (o rate | ||p —p,| rate
1/32 3.461E-2 1.88 2.228E-1 0.87 | 7.666E-2 1.90
1/64 4.772E-3 2.86 7.838E-1 1.51 | 1.036E-2 2.89
1/128 4.483E-4 3.41 2.194E-1 1.84 | 9.210E-4 3.49
1/256 4.186E-5 3.42 5.665E-2 1.95 | 7.772E-5 3.57
b [V @ pyl_rate [V (B _w))] raie | [ rate
1/32 3.133E-1 1.79 3.505E-0 0.84 | 3.589E-4 2.10
1/64 5.672E-2 2.47 1.235E-0 1.50 | 4.582E-5 2.97
1/128 7.992E-3 2.83 3.456E-1 1.84 | 3.880E-6 3.56
1/256 1.032E-3 2.95 8.919E-2 1.95 | 2.935E-7 3.72
(b) order=2

17

approximation solution and jeopardize the quality of the approximations. Observe
that the oscillations here are different to those appearing in the standard Galerkin
method. In section 6 we propose two simple strategies to tackle this issue.

ExaMPLE 5.2 (Reentrant Corner). In this example we test a pure diffusion prob-
lem, i.e., e =1, 3 =0 and u = 0, on the L-shaped doman Q = (—1,1)%\ (=1, —1)2.
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Exact Solution h=1/64 l

7‘.

h=1/512 h=1/1024

Fic. 1. Various numerical solutions for Example 5.1 with e = 0.002

We consider the problem with solution being
u(r,0) = r*3sin(20/3), 0 € [0,37/2],
in polar coordinates. It is well known that the solution satisfies
—Au=0 inQ

and belongs to H/3¢(Q) for e > 0 with the singularity located at the reentrant corner,
i.e., (0,0). The numerical scheme takes the pure Dirichlet boundary condition.

TABLE 3
Errors and convergence rates for Example 5.2 with order = 1

h |lu—un| rate | [[u—un|giq) rate | |[p—mp,| rate
1/16 | 3.025E-3 1.35 7.790E-2 0.65 | 4.110E-2  0.67
1/32 | 1.189E-3 1.35 4.949E-2 0.65 | 2.589E-2 0.67
1/64 | 4.689E-4 1.34 3.315E-2 0.66 | 1.631E-2 0.67

The magnitude of errors and their corresponding convergence rates are presented
in Table 3. For this pure diffusion problem, where the solution has singularity and
with limited smoothness, we observe the optimal convergence performance for both
the primal and flux variables. The flux variable is still a superior approximation of
the fluxes, but here only by a factor two.

EXAMPLE 5.3 (Internal Layer). In this example we consider a pure advection
problem [28, Section 5.2.3]. The solution has the following representation:

(5.1) u(z,y) = exp(—op(z, y)arccos (py(%yl)) arctan (Wf_l"r’)

where o = 0.1, p(z,y) = /22 + (y+ 1)2. It is easy to verify that
V-8=0, B-Vu+ou=0
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1
for B8 = m(y+ 1,z), and that the inflow boundary, T~ = {x € 9Q, B(z) -n < 0},

isx =0 and y = 1. The finite element scheme we use for this problem is to find
u € ngr,, p € RT*, and z, € X} such that (3.12) and (3.13) hold.

We first test the case when § = 1 to test the performance of our method on
smooth problems (see performance results in Table 4). We further test the case for
0 = 0.01 in which case the solution has a sharp internal layer (see performance results
in Table 5).

TABLE 4
Errors and convergence rates for Erxample 5.3 with § = 1 and order = 1

h [u—un  rate | Jlu—ulsg  tate | [[p—p,] rate
1/32 6.021E-5 2.04 8.591E-3 1.00 | 6.939E-5 2.03
1/64 1.475E-5 2.03 4.281E-3 1.00 | 1.711E-5 2.02
1/128 3.638E-6 2.02 2.135E-3 1.00 | 4.235E-6 2.01

b [[V-(p—p)l rate [ [V-(Blu—u))[ rate | [zl rate
1/32 6.021E-6 2.04 5.343E-3 1.00 | 1.084E-7 2.99
1/64 1.475E-6 2.03 2.669E-3 1.00 | 1.360E-8 3.00
1/128 3.638E-7 2.02 1.333E-3 1.00 | 1.703E-9 3.00

TABLE 5

Errors and convergence rates for Example 5.3 with § = 0.01

h [l — up] rate lu — ull g (o rate | ||[p —p,| rate
1/128 2.616E-2 1.17 3.801E-0 0.64 | 2.615E-2 1.17
1/256 9.421E-3 1.47 2.012E-0 0.91 | 9421E-3 1.47
1/512 2.515E-3 1.91 8.461E-1 1.25 | 2.,515E-3 191

h [V -(p—py)l rate | [[V-(B(u—wupn))l[ rate | [zn]|  rate
1/128 2.616E-3 1.17 3.435E-1 0.36 | 1.375E-6 2.25
1/256 9.421E-4 1.47 2.362E-1 0.54 | 2.367TE-7 2.54
1/512 2.515E-4 191 1.423E-1 0.73 | 3.200E-8 2.89

(a) order=1

h llu — upl| rate |lu — ull g0 rate | |p—pyl| rate
1/128 4.470E-3 1.77 1.123E-0 1.25 | 4.470E-3 1.77
1/256 8.402E-4 241 3.103E-1 1.86 | 8.402E-4 241
1/512 8.442E-5 3.31 5.018E-2 2.63 | 8.441E-5 3.32

h [ IV-p—py)ll rate | [V-(B(u—un))| rate | [lzn]|  rate
1/128 4.470E-4 1.77 6.839E-2 1.06 | 8.267E-8 2091
1/256 8.402E-5 241 2.610E-3 1.39 | 7.847E-9 3.39
1/512 8.442E-6 3.32 7.817E-3 1.74 | 5.088E-10 3.94

(b) order =2

To test the robustness of our method for the pure convection problem, in Figure 2
we show the numerical solutions for Example 3 with £ = 1 and upon § = 0.001 on
structured meshes with various mesh sizes. We observe that, even for the highly sharp
internal layer problem on relatively coarse meshes, the numerical solutions show no
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sighs of global spurious oscillation. When the mesh size does not resolve the layer
only mild and localized oscillation presents around the internal layer.

Exact Solufion h=1/128
i I
i i
t- i
S
h=1/512 h=1/1024
I |
?\v
i i

F1a. 2. Various numerical solutions for Example 5.2 with § = 0.001

\
t.
S

6. Outflow Boundary Layers. From Figure 1 we see that the current method
does not handle outflow boundary well because its lack of upstream mechanism. In this
section we propose two simple modifications of the method based on the current set-
ting that removes the global spurious oscillation. More specifically, one method impose
the boundary condition weakly, whereas the other takes the approach of weighting

the stabilizer such that the oscillation is more “costly” closer to the inflow boundary,
and, hence, introduces a notion of upwind direction.

6.1. Weakly imposed boundary conditions. In this approach we weakly
impose the Dirichlet boundary conditions, giving different weight to the inflow and
outflow boundary. The modified weak formulation is to find (up, py,, zn) € V¥ x RT* x
X ,’f such that

(61) Al[(uhaphvzh)a(vh,qh,zh)] = lh(xh)7 v(Uhaqhaxh) € V}ZCXRT]CXX;Z:?
where

Al[(uhaphv Zh)v (U}‘H dp; xh)] = b(qh7 Uh, Zh) + b(pha Uh, xh) + S[(uh’ph)’ (Uh’ qh)]
+ ((h[B - n]® + v /h)u,v)

and
In(an) = (foxn) + ((hB - n]2 + 7€ /h)g,v) 5, -
In the above formulation [ - n]- = min(0,8 - n) and € = min(A4), i.e., the smallest
eigenvalue of A.
Remark 6.1. Note that in the above method the Dirichlet boundary condition is

enforced weakly everywhere. Alternatively one may impose the Dirichlet conditions
strongly on the inflow boundary. The outcome turns out to be similar.



PRIMAL DUAL MIXED METHOD FOR ADVECTION-DIFFUSION EQUATIONS 21

Exact Solution h=1/64 v=0.01

W W

h=1/512 v=0.01 h=1/1024 7=0.01

W W

Fi1c. 3. Various numerical solutions of Example 5.1 with weakly imposed Dirichlet condition

Figure 3 shows the numerical solutions for Example 5.1 computed by using the
method (6.1) on the same meshes in Figure 1 for e = 0.002. Comparing to Figure 1 the
spurious oscillation is completely removed and only a mild local oscillation is observed
for the coarsest mesh on the outflow boundary layers.

We also test the method on a commonly used benchmark problem with an internal
and outflow boundary layers [7].

EXAMPLE 6.1. Let u be the solution that satisfies

V- (Bu—eVu) =0 onf,
u=1 onlyp,
u=0 ondQ\I'g

where Q is the unit square domain (0,1)2, 8 = (1,—0.5) and I'y, is the left boundary
of the square, i.e., x = 0. € is the diffusion coefficient and in out test we choose
€ = 0.001 in which case the internal and boundary layers are very sharp.

In Figure 4 we compare the results between the original method (see figures on
the top) and the method of (6.1) (see figures at the bottom). We observe that the
weak boundary condition method results in an accurate solution in the bulk, with
unresolved layers, that are resolved as the mesh-size is small enough, whereas the
approximation with strongly imposed conditions has a globally large error.

6.2. Weighted stabilization method. In this subsection we propose a method
where a weight function is introduced in the stabilizing term s. The motivation here
is to change the stabilization making oscillations more “costly” closer to the inflow
boundary, this way introducing a notion of upwind direction. More precisely, we
introduce a weight function 7 : Q — R such that

(6.2) >0 and B-(Vn) <O0.

For Example 5.3 we choose
n= 3 - ﬁ : (117, y)

and for Example 6.1 we choose

77:2*,3(%3/)
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h=0.02 h=0.002 h=0.001

h=0.02 v=0.01 h=0.002 y=0.01 h=0.001 ~=0.01

(a) (b) (c)

F1c. 4. Numerical performance of the weak boundary method for Example 6.1.

It is easy to check that (6.2) holds for both problems. We then introduce n?, for some
p > 0 to be specified, as a weight in s.

The finite element setting is then to find (up,py,, 2n) € ng,D x RT® x X} such
that

(63) A2[(Uh,ph72h),("Uh,qh,xh)] = lh(mh)’ V('Uhthaxh) € VkXRTkXXilfv

where

AZ[(uhaph’ Zh)? (Uh7 qh7 l'h)] = b(qh7 Uh, Zh) + b(ph7 Up, fL'h) + SW[(uhvph)7 (Uh7 qh)]a

sﬂ[(uh’ph)’ (U}H qh)] = (UP(P + AVu — ﬁu)a (q + AVv — ﬂ?]))

and
In(zn) = (f,zn)-

Figure 5 shows the numerical solutions for Example 5.1 computed by using the
method of (6.3) on the same meshes in Figure 1 for ¢ = 0.002. Comparing to Figure 1
we observe that the global spurious oscillation has been eliminated even for very coarse
mesh. Local oscillations along the outflow boundary does appear when the layer is
not completely resolved. We also test this method for Example 6.1 (see results in
Figure 6).



PRIMAL DUAL MIXED METHOD FOR ADVECTION-DIFFUSION EQUATIONS 23

Exact Solution h=1/64 p=10

h=1/512 p=10 h=1/1024 p=10

Fia. 5. Various numerical solutions with weighted stabilization method for Example 5.1

h=0.02 p=10 h=0.002 p=10 h=0.001 p=10

(a) (b) (c)

F1G. 6. Numerical performance of the weighted stabilization method.
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