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ON OPTIMAL CONTROL PROBLEMS WITH CONTROLS
APPEARING NONLINEARLY IN AN ELLIPTIC STATE EQUATION\ast 
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Abstract. An optimal control problem for a semilinear elliptic equation is discussed, where the
control appears nonlinearly in the state equation but is not included in the objective functional. The
existence of optimal controls is proved by a measurable selection technique. First-order necessary
optimality conditions are derived and two types of second-order sufficient optimality conditions are
established. A first theorem invokes a well-known assumption on the set of zeros of the switching
function. A second relies on coercivity of the second derivative of the reduced objective functional.
The results are applied to the convergence of optimal state functions for a finite element discretizion
of the control problem.
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1. Introduction. In this paper, we consider the following optimal control
problem:

(P) min
u\in \scrU ad

J(u),

where
\scrU ad = \{ u \in L\infty (\Omega ) : \alpha \leq u(x) \leq \beta for a.a. x \in \Omega \} 

with  - \infty < \alpha < \beta < +\infty , and

J(u) =

\int 
\Omega 

L(x, yu(x)) dx.

Above L : \Omega \times \BbbR  - \rightarrow \BbbR is a given function, and yu is the solution of the following
elliptic equation: \biggl\{ 

Ay = f(x, y, u) in \Omega ,
\partial nA

y = 0 on \Gamma .
(1.1)

Precise assumptions on the data of the control problem (P) will be given in section
2. However, it is important to mention here that f is assumed to be monotone non-
increasing with respect to the variable y so that (1.1) has a unique solution.

This paper has two main features: the control appears nonlinearly in the state
equation and the objective functional only depends on the state. In mainstream
papers, the control appears linearly in the state equation and often in a quadratic
Tikhonov regularization term in the objective functional.
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1962 EDUARDO CASAS AND FREDI TR\"OLTZSCH

Our setting has several consequences:
\bullet The existence proof of optimal controls must differ from the standard one that
is based on minimizing sequences of controls and their weak convergence. We
will prove existence by a measurable selection theorem. In the framework
of optimal control theory of ODEs similar techniques have been used. We
refer, e.g., to the textbooks [19] and [13]. In PDE control, this issue has been
addressed in [14], [15], or [21].
Using the mentioned measurable selection theorem, we are able to prove the
convergence of a numerical approximation of the control problem. Indeed,
in section 7 we consider a discretization of (P) by finite elements. We prove
the strong convergence in H1(\Omega ) of optimal discrete states to associated ones
of the original continuous problem. To our knowledge, this application of
measurable selection theorems is new for the numerical approximation of
problems like (P).

\bullet For optimality conditions, the superposition operator u \mapsto \rightarrow f(\cdot , y, u) should
be Fr\'echet-differentiable. In view of this, the only useful space that does
not need strong growth conditions on f is L\infty (\Omega ). Then, however, the well-
known two-norm discrepancy is unavoidable in the discussion of second-order
sufficient optimality conditions.

\bullet Moreover, and this is another issue, second-order optimality conditions are
delicate when the control is not explicitly included in the cost functional.
Actually, the classical assumption J \prime \prime (\=u)v2 \geq \delta \| v\| 2 \forall v in the critical cone
is not satisfied when u appears linearly in the state equation; see, e.g., [24,
Lemma 5.1]. Nevertheless, due to the fact that f is nonlinear with respect to
the control, the coercivity of J \prime \prime (\=u) can be fulfilled as we show in one example.
This fact is crucial for some of our results on second-order conditions.

We will prove sufficient optimality conditions in two ways. In the first, we rely
on the fact that bang-bang controls can be expected as optimal. This is due to
the missing control in the objective. Here, by using a structural assumption on the
optimal adjoint state, we show that the control satisfying the first-order optimality
conditions is locally optimal in the sense of L\infty (\Omega ). Additionally, a quadratic growth
condition of J can be deduced; see Theorem 5.3.

The second way is based on coercivity of J \prime \prime and a Legendre Clebsch condition on
the Hamiltonian. Similar assumptions are known from ODE control. We refer to [20]
and to the references therein. Under these hypotheses, we show local optimality of
stationary controls in the sense of L2(\Omega ), although the differentiability relies on the
space L\infty (\Omega ).

Summarizing, our paper contains the following main novelties. We show the
existence of optimal controls by a measurable selection theorem. We prove different
types of results on second-order sufficiency---one for bang-bang controls and one based
on some hidden coercivity of J \prime \prime , all for the case of controls appearing nonlinearly in
the state equation. Finally, we discuss basic convergence properties for numerical
discretizations of our problem.

2. Assumptions and preliminary results. In this paper we make the follow-
ing assumptions.

Assumption 1. \Omega is a bounded domain in \BbbR n with n = 2 or 3 having a Lipschitz
boundary \Gamma . A stands for the following partial differential operator in \Omega 

Ay =  - 
n\sum 

i,j=1

\partial xj
(aij(x)\partial xi

y) + a0y,
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CONTROLS APPEARING NONLINEARLY 1963

where aij , a0 \in L\infty (\Omega ), a0 \geq 0, a0 \not \equiv 0, and

\exists \Lambda > 0 such that

n\sum 
i,j=1

aij(x)\xi i\xi j \geq \Lambda | \xi | 2 \forall \xi \in \BbbR n and for a.a. x \in \Omega .

By \partial nA
y we denote the boundary operator

\partial nA
y =

n\sum 
j=1

\Biggl[ 
n\sum 

i=1

aij(x)\partial xi
yi

\Biggr] 
nj ,

where n(x) = (nj(x))
n
j=1 is the unit outward normal vector to \Gamma at the point x \in \Gamma .

In what follows, we denote with A\ast the adjoint differential operator of A,

A\ast \varphi =  - 
n\sum 

i,j=1

\partial xj
(aji(x)\partial xi

\varphi ) + a0\varphi .

Assumption 2. We suppose that f : \Omega \times \BbbR 2  - \rightarrow \BbbR is a Carath\'eodory function of
class C2 with respect to the last two components satisfying

\bullet f(\cdot , 0, 0) \in L\=p(\Omega ) for some \=p > n
2 and

\partial f

\partial y
(x, y, u) \leq 0 a.e. in \Omega and \forall (y, u) \in \BbbR 2,(2.1)

\bullet \forall M > 0 \exists Cf,M such that

\sum 
1\leq i+j\leq 2

\bigm| \bigm| \bigm| \bigm| \partial i+jf

\partial yi\partial uj
(x, y, u)

\bigm| \bigm| \bigm| \bigm| \leq Cf,M(2.2)

for a.a. x \in \Omega and \forall (y, u) \in \BbbR 2 with | y| \leq M and u \in [\alpha , \beta ] ,
\bullet \forall \varepsilon > 0 and \forall M > 0 \exists \rho > 0 such that, if | y1| , | y2| \leq M, | y1  - y2| < \rho ,
ui \in [\alpha , \beta ], | u1  - u2| < \rho , then

\sum 
i+j=2

\bigm| \bigm| \bigm| \bigm| \partial i+jf

\partial yi\partial uj
(x, y2, u2) - 

\partial i+jf

\partial yi\partial uj
(x, y1, u1)

\bigm| \bigm| \bigm| \bigm| < \varepsilon for a.a. x \in \Omega .(2.3)

Assumption 3. We suppose that L : \Omega \times \BbbR  - \rightarrow \BbbR is a Carath\'eodory function of
class C2 with respect to the second component that satisfies

\bullet L(\cdot , 0) \in L1(\Omega ),(2.4)

\bullet \forall M > 0 \exists \psi M \in L\=p(\Omega ) and \exists CL,M > 0 such that

\bigm| \bigm| \bigm| \bigm| \partial L\partial y (x, y)
\bigm| \bigm| \bigm| \bigm| \leq \psi M (x) and

\bigm| \bigm| \bigm| \bigm| \partial 2L\partial y2 (x, y)
\bigm| \bigm| \bigm| \bigm| \leq CL,M \forall | y| \leq M and a.a. x \in \Omega ,

(2.5)

\bullet \forall \varepsilon > 0 and \forall M > 0 \exists \rho > 0 such that, if | y1| , | y2| \leq M and | y1  - y2| < \rho ,\bigm| \bigm| \bigm| \bigm| \partial 2L\partial y2 (x, y2) - \partial 2L

\partial y2
(x, y1)

\bigm| \bigm| \bigm| \bigm| < \varepsilon for a.a. x \in \Omega .(2.6)
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1964 EDUARDO CASAS AND FREDI TR\"OLTZSCH

These assumptions are obviously satisfied by the classical tracking cost functional
L(x, y) = 1

2 (y  - yd(x))
2 provided that yd \in L2(\Omega ).

Theorem 2.1. Suppose that Assumptions 1 and 2 hold. Then, for every u \in 
L\infty (\Omega ), the state equation (1.1) has a unique solution yu \in H1(\Omega )\cap C0,\mu (\=\Omega ) for some
\mu \in (0, 1] independent of u. Moreover, with some constant Cu, we have the estimate

\| yu\| H1(\Omega ) + \| yu\| C0,\mu (\=\Omega ) \leq Cu

\Bigl( 
\| f(\cdot , 0, 0)\| L\=p(\Omega ) + 1

\Bigr) 
,(2.7)

where Cu depends on \| u\| L\infty (\Omega ). Further, there exists a constant C\alpha ,\beta such that

\| yu\| H1(\Omega ) + \| yu\| C0,\mu (\=\Omega ) \leq C\alpha ,\beta 

\Bigl( 
\| f(\cdot , 0, 0)\| L\=p(\Omega ) + 1

\Bigr) 
\forall u \in \scrU ad.(2.8)

Finally, if \{ uk\} \infty k=1 is a bounded sequence in L\infty (\Omega ) converging to u in L1(\Omega ), then

lim
k\rightarrow \infty 

\Bigl( 
\| yuk

 - yu\| H1(\Omega ) + \| yuk
 - yu\| C0,\mu (\=\Omega )

\Bigr) 
= 0.(2.9)

Proof. Due to the monotonicity of f with respect to y, the existence of a unique
solution of (1.1) in H1(\Omega ) \cap L\infty (\Omega ) is a classical result; see, for instance, [3] or [25,
Theorem 4.7]. In these references, the estimate

\| yu\| L\infty (\Omega ) \leq M1\| f(\cdot , 0, u)\| L\=p(\Omega )(2.10)

is proved with some constant M1 > 0. Taking M2 = \| u\| L\infty (\Omega ) we infer from (2.2)
and the mean value theorem

| f(x, 0, u(x))| \leq | f(x, 0, 0)| +
\bigm| \bigm| \bigm| \bigm| \partial f\partial u (x, 0, \theta (x)u(x))

\bigm| \bigm| \bigm| \bigm| | u(x)| \leq | f(x, 0, 0)| + Cf,M2
M2,

(2.11)

where \theta : \Omega  - \rightarrow [0, 1] is a measurable function. Combining (2.10) and (2.11), and
using again (2.2), we obtain with

M = max
\Bigl\{ 
M2,M1\| f(\cdot , 0, 0)\| L\=p(\Omega ) +M1M2Cf,M2

| \Omega | 
1
\=p

\Bigr\} 
the estimate

| f(x, yu(x), u(x))| \leq | f(x, 0, 0)| +
\bigm| \bigm| \bigm| \bigm| \partial f\partial y (x, \vargamma (x)yu, \vargamma (x)u(x))

\bigm| \bigm| \bigm| \bigm| | yu(x)| 
+

\bigm| \bigm| \bigm| \bigm| \partial f\partial u (x, \vargamma (x)yu, \vargamma (x)u(x))
\bigm| \bigm| \bigm| \bigm| | u(x)| \leq | f(x, 0, 0)| + 2Cf,MM

for some measurable function \vargamma : \Omega  - \rightarrow [0, 1]. Then the C0,\mu (\=\Omega ) regularity for some
\mu \in (0, 1] is proved in [18, section 3.14] and the estimate (2.7) holds. The inequality
(2.8) is an immediate consequence of (2.7) and the boundedness of \scrU ad in L\infty (\Omega ). It
remains to prove (2.9). First, we observe that the boundedness of \{ uk\} \infty k=1 in L\infty (\Omega )
and the strong convergence in L1(\Omega ) imply that uk \rightarrow u in every space Lp(\Omega ) with
p < +\infty . In particular, this convergence holds in L\=p(\Omega ). Moreover, from (2.7) we
deduce the existence of a constant M such that

\| yuk
\| L\infty (\Omega ) + \| uk\| L\infty (\Omega ) + \| yu\| L\infty (\Omega ) + \| u\| L\infty (\Omega ) \leq M \forall k \geq 1.

Let a : H1(\Omega ) \times H1(\Omega )  - \rightarrow \BbbR be the variational form associated to the elliptic
operator A. Subtracting the equations satisfied by yuk

and yu, multiplying them by
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CONTROLS APPEARING NONLINEARLY 1965

yuk
 - yu, and integrating by parts, we get with Assumption 1, the monotonicity of f

with respect to y, and (2.2)

\Lambda \| yuk
 - yu\| 2H1(\Omega ) \leq a(yuk

 - yu, yuk
 - yu)

=

\int 
\Omega 

[f(x, yuk
, uk) - f(x, yu, u)](yuk

 - yu) dx

=

\int 
\Omega 

[f(x, yuk
, uk) - f(x, yu, uk)](yuk

 - yu) dx

+

\int 
\Omega 

[f(x, yu, uk) - f(x, yu, u)](yuk
 - yu) dx

\leq 
\int 
\Omega 

[f(x, yu, uk) - f(x, yu, u)](yuk
 - yu) dx \leq Cf,M

\int 
\Omega 

| uk  - u| | yuk
 - yu| dx

\leq Cf,M\| uk  - u\| L\=p(\Omega )\| yuk
 - yu\| L\=p\prime (\Omega ) \leq Cf,MC\=p,\Omega \| uk  - u\| L\=p(\Omega )\| yuk

 - yu\| H1(\Omega ),

where we have used that \=p > n
2 and consequently its conjugate satisfies \=p\prime < n

n - 2 .

We also invoked the continuity of the embedding H1(\Omega ) \subset L
2n

n - 2 (\Omega ) \subset L\=p\prime 
(\Omega ). The

above estimate leads to

\| yuk
 - yu\| H1(\Omega ) \leq 

Cf,MC\=p,\Omega 

\Lambda 
\| uk  - u\| L\=p(\Omega ) \rightarrow 0, k \rightarrow \infty .

Now, (2.7) implies that \{ yuk
\} \infty k=1 is bounded in C0,\mu (\=\Omega ). Hence, the compactness of

the embedding C0,\mu (\=\Omega ) \subset C(\=\Omega ) and the convergence yuk
\rightarrow yu in H1(\Omega ) imply that

yuk
\rightarrow yu in C(\=\Omega ), k \rightarrow \infty . Finally, taking into account that

A(yuk
 - yu) = f(x, yuk

, uk) - f(x, yu, u)

and using again the results in [18, section 3.14] along with (2.2) we obtain

\| yuk
 - yu\| C0,\mu (\=\Omega ) \leq C\| f(x, yuk

, uk) - f(x, yu, u)\| L\=p(\Omega )

\leq CCf,M

\Bigl( 
\| yuk

 - yu\| L\=p(\Omega ) + \| uk  - u\| L\=p(\Omega )

\Bigr) 
\rightarrow 0.

In what follows, we will set Y = H1(\Omega )\cap C0,\mu (\=\Omega ) and denote by G : L\infty (\Omega )  - \rightarrow Y
the mapping associating to each control u the corresponding state yu, G(u) = yu.
This mapping is well defined according to the previous theorem. The next theorem
establishes the differentiability of G.

Theorem 2.2. Under Assumptions 1 and 2, the mapping G is of class C2. For
every u, v, v1, v2 \in L\infty (\Omega ), zv = G\prime (u)v and zv1,v2 = G\prime \prime (u)(v1, v2) are the solutions
of the problems \left\{   Az =

\partial f

\partial y
(x, yu, u)z +

\partial f

\partial u
(x, yu, u)v in \Omega ,

\partial nA
z = 0 on \Gamma ,

(2.12)

and, respectively,\left\{           
Az =

\partial f

\partial y
(x, yu, u)z +

\partial 2f

\partial y2
(x, yu, u)zv1zv2

+
\partial 2f

\partial y\partial u
(x, yu, u)(zv1v2 + v1zv2) +

\partial 2f

\partial u2
(x, yu, u)v1v2 in \Omega ,

\partial nA
z = 0 on \Gamma ,

(2.13)

where zvi = G\prime (u)vi, i = 1, 2.
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1966 EDUARDO CASAS AND FREDI TR\"OLTZSCH

Proof. Let us consider the vector space

X = \{ y \in H1(\Omega ) : Ay \in L\=p(\Omega )\} .

Endowed with the graph norm

\| y\| X = \| y\| H1(\Omega ) + \| Ay\| L\=p(\Omega ),

(X, \| \cdot \| X) is a Banach space. If we take q = min\{ 2, \=p\} , then \partial nA
: X  - \rightarrow W - 1

q ,q(\Gamma )
is a linear and continuous mapping; see [6].

Now, we define

V = \{ y \in Y : Ay \in L\=p(\Omega ) and \partial nA
y = 0 on \Gamma \} 

and take
\| y\| V = \| y\| Y + \| Ay\| L\=p(\Omega ).

Then (V, \| \cdot \| V ) is a Banach space. We consider the mapping

\scrF : V \times L\infty (\Omega )  - \rightarrow L\=p(\Omega ), \scrF (y, u) = Ay  - f(x, y, u).

It is easy to check with (2.2) that x \mapsto \rightarrow f(x, y(x), u(x)) is a function belonging to
L\=p(\Omega ) for every (y, u) \in V \times L\infty (\Omega ). Moreover, \scrF is of class C2. In addition, if
yu = G(u), then \scrF (yu, u) = 0 holds. We also have that

\partial \scrF 
\partial y

(yu, u) : V  - \rightarrow L\=p(\Omega ),
\partial \scrF 
\partial y

(yu, u)z = Az  - \partial f

\partial y
(x, yu, u)z

is an isomorphism. Indeed, this is a consequence of the fact that the Neumann problem\left\{   Az  - \partial f

\partial y
(x, yu, u)z = v in \Omega ,

\partial nA
z = 0 on \Gamma 

has a unique solution z \in V depending continuously on v \in L\=p(\Omega ). Now, the theorem
follows easily by applying the implicit function theorem.

Thanks to the chain rule, we deduce the differentiability of J from the previous
theorem.

Theorem 2.3. Under Assumptions 1 and 2, the mapping J : L\infty (\Omega )  - \rightarrow \BbbR is of
class C2 and we have

J \prime (u)v =

\int 
\Omega 

\varphi u
\partial f

\partial u
(x, yu, u)v dx \forall u, v \in L\infty (\Omega ),

(2.14)

J \prime \prime (u)(v1, v2) =

\int 
\Omega 

\partial 2L

\partial y2
(x, yu)z

2
v dx

(2.15)

+

\int 
\Omega 

\varphi u

\biggl( 
\partial 2f

\partial y2
(x, yu, u)zv1zv2 +

\partial 2f

\partial y\partial u
(x, yu, u)(v1zv2 + v2zv1) +

\partial 2f

\partial u2
(x, yu, u)v1v2

\biggr) 
dx

\forall u, v, v1, v2 \in L\infty (\Omega ), where zv = G\prime (u)v and zvi = G\prime (u)vi, i = 1, 2, and \varphi u \in 
H1(\Omega ) \cap C0,\mu (\=\Omega ) is the adjoint state associated with u, defined as the solution of the
adjoint equation
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CONTROLS APPEARING NONLINEARLY 1967\left\{   A\ast \varphi =
\partial f

\partial y
(x, yu, u)\varphi +

\partial L

\partial y
(x, yu) in \Omega ,

\partial n\ast 
A
\varphi = 0 on \Gamma .

(2.16)

We finish this section with the following observation: from (2.16) and (2.5) we
deduce the existence of a constant M\ast such that

\| \varphi u\| H1(\Omega ) + \| \varphi u\| C0,\mu (\=\Omega ) \leq M\ast \forall u \in \scrU ad.(2.17)

3. Existence of optimal controls. If the control appears linearly in the state
equation, the standard method for proving existence of an optimal control is as fol-
lows. An infimal sequence of controls is considered that is bounded. Then a weakly
converging subsequence is selected that eventually converges to an optimal control.
This method cannot in general be applied to controls appearing nonlinearly.

We will use a technique that is based on measurable selection theorems, in partic-
ular on the well-known Filippov theorem. This method was often applied to control
problems with ordinary differential equations but rarely used for partial differential
equations.

Let us start with some examples that introduce some specific difficulties with
controls appearing nonlinearly.

Example 3.1. Our first example illustrates an important effect that is related to
the nonlinear appearance of controls. We consider the following linear state equation
with control u \in L2(\Omega ):\biggl\{ 

 - \Delta y(x) + y(x) = u(x)2 in \Omega ,
\partial ny = 0 on \Gamma .

Select a sequence of bang-bang control functions uk \in L\infty (\Omega ) such that

uk(x) \in \{  - 1, 1\} a.e. in \Omega 

and uk \rightharpoonup 0 (weakly) in L2(\Omega ). It is easy to construct such a sequence.
Obviously, we have uk(x)

2 = 1 \forall k, hence the associated states yk = yuk
are

yk(x) = 1 a.e. in \Omega . This stationary sequence converges uniformly to y = 1, but this
function y is not the state associated with the weak limit control \~u = 0.

The reader might object that the nonlinearity u2 is too simple, since u2k \equiv 1 does
not depend on k. Therefore, we discuss also a less naive example.

Example 3.2. Here, we consider the nonlinear equation\biggl\{ 
 - \Delta y(x) + y(x) = e - y(x)u(x)2 + u(x) in \Omega ,

\partial ny = 0 on \Gamma ,

where we insert the sequence uk defined in Example 3.1. The associated states yk
solve the equation\biggl\{ 

 - \Delta yk(x) + yk(x) = e - yk(x) + uk(x) in \Omega ,
\partial nyk = 0 on \Gamma .

The states yk converge strongly in H1(\Omega ) \cap L\infty (\Omega ) to the solution y of\biggl\{ 
 - \Delta y(x) + y(x) = e - y(x) in \Omega ,

\partial ny = 0 on \Gamma ,

but not to the state y\~u = 0 that is associated with the weak limit control \~u = 0.
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1968 EDUARDO CASAS AND FREDI TR\"OLTZSCH

Theorem 3.3. Under Assumptions 1--3, the optimal control problem (P) has at
least one solution.

Proof. Let \{ uk\} \infty k=1 \subset \scrU ad be a minimizing sequence of (P): J(uk) \searrow inf (P)
as k \rightarrow \infty . From (2.8) we deduce that \{ yuk

\} \infty k=1 is bounded in H1(\Omega ) \cap C0,\mu (\=\Omega ).
Therefore, there exists a subsequence, denoted in the same way, and a function \=y \in 
H1(\Omega )\cap C(\=\Omega ) such that yuk

\rightharpoonup \=y in H1(\Omega ) and yuk
\rightarrow \=y in C(\=\Omega ). Moreover, \=y satisfies\int 

\Omega 

L(x, \=y(x)) dx = lim
k\rightarrow \infty 

\int 
\Omega 

L(x, yuk
(x)) dx = lim

k\rightarrow \infty 
J(uk) = inf (P).

The first identity follows from Lebesgue's dominated convergence theorem. Indeed,
taking M = maxk\geq 1 \| yuk

\| C(\=\Omega ) we deduce from (2.5) and the mean value theorem

| L(x, yuk
(x))| \leq | L(x, 0)| + | \psi M (x)| M for a.a. x \in \Omega .

Hence, we have with (2.4) that \{ L(\cdot , yuk
)\} \infty k=1 is dominated by an L1(\Omega )-function.

To conclude the proof, it is enough to show that \=y is the solution of (1.1) associated
to some control \=u \in \scrU ad. Then, \=u is a solution of (P). To this end, we introduce the
multifunction

F : \Omega  - \rightarrow \scrP (\BbbR ), F (x) = \{ f(x, \=y(x), s) : s \in [\alpha , \beta ]\} .

Since f is continuous respect to the last variable, we have that F (x) is a closed and
bounded interval of \BbbR for almost all x \in \Omega . Now, we define

S = \{ g \in L\=p(\Omega ) : g(x) \in F (x) for a.a. x \in \Omega \} .

It is obvious that S is a convex and closed subset of L\=p(\Omega ). Finally, setting gk(x) =
f(x, \=y(x), uk(x)), we have that \{ gk\} \infty k=1 is a sequence contained in S. Indeed, it is
obvious that gk(x) \in F (x) for almost all x \in \Omega . Let us prove that every function gk
belongs to L\=p(\Omega ). From (2.8) we have that

M = \| \=y\| C(\=\Omega ) +max\{ | \alpha | , | \beta | \} <\infty 

holds. Then, from (2.2) and using the mean value theorem we infer that | gk(x)| \leq 
| f(x, 0, 0)| + Cf,M2M , hence \| gk\| L\=p(\Omega ) \leq \| f(\cdot , 0, 0)\| L\=p(\Omega ) + Cf,M2M | \Omega | 

1
\=p . Thus,

\{ gk\} \infty k=1 is a bounded sequence in L\=p(\Omega ). Therefore, we can extract a subsequence,
denoted in the same form, such that gk \rightharpoonup \=g in L\=p(\Omega ). Since S is weakly closed in
L\=p(\Omega ) we have that \=g \in S. Now, from the classical Filippov theorem (see [16] or [19]),
we deduce the existence of a measurable function \=u : \Omega  - \rightarrow [\alpha , \beta ], i.e., \=u \in \scrU ad, such
that \=g(x) = f(x, \=y(x), \=u(x)) for almost all x \in \Omega . We conclude the proof by showing
that \=y = y\=u. It is obvious that

Ayuk
= gk + [f(x, yuk

, uk) - f(x, \=y, uk)] in \Omega .

Using again (2.2) we get

\| f(x, yuk
, uk) - f(x, \=y, uk)\| L\infty (\Omega ) \leq Cf,M\| yuk

 - \=y\| L\infty (\Omega ) \rightarrow 0, when k \rightarrow \infty .

Hence, passing to the limit in the above equation, we obtain that A\=y = f(\cdot , \=y, \=u) in
\Omega , as desired.
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4. First- and second-order necessary optimality conditions. The goal of
this section is to derive the first- and second-order necessary optimality conditions to
be fulfilled by any local solution of (P). Given p \in [1,\infty ], we say that \=u is a local
minimum of (P) in the Lp(\Omega )-sense if

J(\=u) \leq J(u) \forall u \in \scrU ad \cap B\varepsilon (\=u),

where B\varepsilon (\=u) = \{ u \in Lp(\Omega ) : \| u  - \=u\| Lp(\Omega ) \leq \varepsilon \} . We say that \=u is a strict local
minimum if the above inequality is strict whenever u \not = \=u.

The Hamiltonian of (P) is given by

H : \Omega \times \BbbR 3  - \rightarrow \BbbR , H(x, y, \varphi , u) = L(x, y) + \varphi f(x, y, u).

Now we formulate the first-order necessary optimality conditions for (P).

Theorem 4.1. Suppose that Assumptions 1--3 hold. Let \=u be a local minimum of
(P) in the Lp(\Omega )-sense (1 \leq p \leq \infty ), then\int 

\Omega 

\partial H

\partial u
(x, \=y, \=\varphi , \=u)(u - \=u) dx \geq 0 \forall u \in \scrU ad.(4.1)

Moreover, if p <\infty , then the Pontryagin principle holds,

H(x, \=y(x), \=\varphi (x), \=u(x)) = min
s\in [\alpha ,\beta ]

H(x, \=y(x), \=\varphi (x), s) for a.a. x \in \Omega .(4.2)

Proof. Due to the convexity of \scrU ad, it is well known that any local solution \=u
satisfies J \prime (\=u)(u - \=u) \geq 0 \forall u \in \scrU ad. Then the inequality (4.1) follows from (2.14) and
the definition of H.

Now we assume that p <\infty and prove (4.2). Let u \in \scrU ad be a fixed control. We
define h(x) = f(x, \=y(x), u(x)) - f(x, \=y(x), \=u(x)). From (2.1) and (2.2) we deduce that
h \in L\=p(\Omega ). Let \{ vj\} \infty j=1 be a dense sequence in L1(\Omega ). For every k \geq 1 we define

the function gk \in L1(\Omega )k+1 by gk = (1, v1, . . . , vk). Given \rho \in (0, 1) arbitrarily, we
deduce from Lyapunov's convexity theorem the existence of measurable sets Ek

\rho \subset \Omega 
such that \int 

Ek
\rho 

gk(x) dx = \rho 

\int 
\Omega 

gk(x) dx \forall k \geq 1.(4.3)

Looking at the first component of the above vector identity, we infer that

| Ek
\rho | = \rho | \Omega | \forall k \geq 1.(4.4)

Now, considering the remaining components, we observe that\int 
\Omega 

1

\rho 
\chi Ek

\rho 
vj dx =

1

\rho 

\int 
Ek

\rho 

vj dx =

\int 
\Omega 

vj(x) dx \forall j \geq 1.

This implies that

lim
k\rightarrow \infty 

\int 
\Omega 

1

\rho 
\chi Ek

\rho 
vj dx =

\int 
\Omega 

vj(x) dx \forall j \geq 1.

From the density of \{ vj\} \infty j=1 in L1(\Omega ) we conclude that

lim
k\rightarrow \infty 

\int 
\Omega 

1

\rho 
\chi Ek

\rho 
v dx =

\int 
\Omega 

v(x) dx \forall v \in L1(\Omega ).
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1970 EDUARDO CASAS AND FREDI TR\"OLTZSCH

This means that 1
\rho \chi Ek

\rho 

\ast 
\rightharpoonup 1 in L\infty (\Omega ) as k \rightarrow \infty . Therefore, since h \in L\=p(\Omega ), it

holds that (1 - 1
\rho \chi Ek

\rho 
)h \rightharpoonup 0 in L\=p(\Omega ). Due to the fact that \=p > n

2 , there exists some

1 < q < n
n - 1 such that L\=p(\Omega ) is compactly embedded in W 1,q(\Omega )\ast . Consequently,

we have the strong convergence (1  - 1
\rho \chi Ek

\rho 
)h \rightarrow 0 in W 1,q(\Omega )\ast . Thus, we can select

E\rho = Ek
\rho with some sufficiently large k, so that\bigm\| \bigm\| \bigm\| \bigm\| \biggl( 1 - 1

\rho 
\chi E\rho 

\biggr) 
h

\bigm\| \bigm\| \bigm\| \bigm\| 
W 1,q(\Omega )\ast 

< \rho .(4.5)

Now, we define

u\rho (x) =

\biggl\{ 
u(x) if x \in E\rho ,
\=u(x) otherwise.

(4.6)

The reader is referred to [4, 5, 8, 12, 22] for some previous papers using this type of
diffuse perturbations. Obviously, u\rho belongs to \scrU ad. Let us denote by y\rho and \=y the
states associated with u\rho and \=u, respectively. We also set z\rho = 1

\rho (y\rho  - \=y). Subtracting
the equations satisfied by y\rho and \=y and dividing by \rho , using the mean value theorem
and definition (4.6), we get

Az\rho =
1

\rho 
[f(x, y\rho , u\rho ) - f(x, \=y, \=u)]

=
1

\rho 
[f(x, y\rho , u\rho ) - f(x, \=y, u\rho )] +

1

\rho 
[f(x, \=y, u\rho ) - f(x, \=y, \=u)]

=
\partial f

\partial y
(x, \=y + \theta \rho (y\rho  - \=y), u\rho )z\rho +

1

\rho 
\chi E\rho 

[f(x, \=y, u) - f(x, \=y, \=u)].

Since u\rho \rightarrow \=u in L\=p(\Omega ) when \rho \rightarrow 0, we know by Theorem 2.1 that y\rho \rightarrow \=y in
H1(\Omega ) \cap C0,\mu (\=\Omega ). Then, using again [18, section 3.14], we deduce from (4.5) that
z\rho \rightarrow z in H1(\Omega ) \cap C0,\mu (\=\Omega ), where z is the solution of\left\{   Az =

\partial f

\partial y
(x, \=y, \=u)z + [f(x, \=y, u) - f(x, \=y, \=u)] in \Omega ,

\partial nA
z = 0 on \Gamma .

(4.7)

Now we take into account that, due to (4.4), the next inequality holds,

\| u\rho  - \=u\| Lp(\Omega ) = \| u - \=u\| Lp(E\rho ) \leq (\beta  - \alpha )| E\rho | 
1
p < (\beta  - \alpha )(\rho | \Omega | )

1
p .

It implies that u\rho \in B\varepsilon (\=u) holds for every \rho sufficiently small. Therefore, from the
local optimality of \=u we obtain

0 \leq lim
\rho \rightarrow 0

J(u\rho ) - J(\=u)

\rho 
= lim

\rho \rightarrow 0

\int 
\Omega 

\partial L

\partial y
(x, \=y + \vargamma \rho (y\rho  - \=y))z\rho dx =

\int 
\Omega 

\partial L

\partial y
(x, \=y)z dx.

Taking the adjoint state \=\varphi associated with \=u and using (4.7), we get from the above
inequality that

0 \leq 
\int 
\Omega 

\partial L

\partial y
(x, \=y)z dx =

\int 
\Omega 

\biggl[ 
A\ast \=\varphi  - \partial f

\partial y
(x, \=y, \=u) \=\varphi 

\biggr] 
z dx

=

\int 
\Omega 

\biggl[ 
Az  - \partial f

\partial y
(x, \=y, \=u)z

\biggr] 
\=\varphi dx =

\int 
\Omega 

[f(x, \=y, u) - f(x, \=y, \=u)] \=\varphi dx.
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This leads to\int 
\Omega 

H(x, \=y(x), \=\varphi (x), \=u(x)) dx \leq 
\int 
\Omega 

H(x, \=y(x), \=\varphi (x), u(x)) dx.

Since u \in \scrU ad was arbitrary, we conclude that\int 
\Omega 

H(x, \=y(x), \=\varphi (x), \=u(x)) dx = min
u\in \scrU ad

\int 
\Omega 

H(x, \=y(x), \=\varphi (x), u(x)) dx.(4.8)

Finally, by using the classical spike perturbations, we deduce (4.2) from (4.8); see
[1, Proposition 4.6] for details.

Next we formulate the second-order necessary conditions for local optimality. To
this end, we first observe that by the representation (2.14) the functional J \prime (\=u) :
L\infty (\Omega )  - \rightarrow \BbbR can be extended to a linear continuous form J \prime (\=u) : L2(\Omega )  - \rightarrow \BbbR . Now,
we define the cone of critical directions

C\=u = \{ v \in L2(\Omega ) : J \prime (\=u)v = 0 and v satisfies the sign conditions (4.9) below\} ,

v(x)

\biggl\{ 
\geq 0 if \=u(x) = \alpha ,
\leq 0 if \=u(x) = \beta .

(4.9)

We have the following well-known result; see, for instance, [9] for a proof.

Theorem 4.2. Under Assumptions 1--3, if \=u is a local solution of (P) in the
Lp(\Omega ) sense (1 \leq p \leq \infty ), then J \prime \prime (\=u)v2 \geq 0 \forall v \in C\=u.

5. Second-order sufficient optimality conditions for \bfitL \infty -local solutions.
In this section, following [10] and [11], we are going to impose a structural assumption
on \partial H

\partial u (x, \=y, \=u), where \=u \in \scrU ad is a control satisfying the optimality condition (4.1).

Assumption 4. There exist three constants K > 0, \varepsilon 0 > 0, and \gamma \in (0,+\infty ] such
that \bigm| \bigm| \bigm| \bigm| \biggl\{ x \in \Omega :

\bigm| \bigm| \bigm| \bigm| \=\varphi (x)\partial f\partial u (x, \=y(x), \=u(x))
\bigm| \bigm| \bigm| \bigm| < \varepsilon 

\biggr\} \bigm| \bigm| \bigm| \bigm| \leq K\varepsilon \gamma \forall \varepsilon \leq \varepsilon 0.(5.1)

Remark 5.1. It is obvious that \=u is a bang-bang control if it fulfills Assumption
4. Moreover, let us observe that (5.1) is satisfied with \gamma = +\infty and some \varepsilon 0 > 0 if
and only if there exists a number \sigma > 0 such that\bigm| \bigm| \bigm| \bigm| \biggl\{ x \in \Omega :

\bigm| \bigm| \bigm| \bigm| \=\varphi (x)\partial f\partial u (x, \=y(x), \=u(x))
\bigm| \bigm| \bigm| \bigm| < \sigma 

\biggr\} \bigm| \bigm| \bigm| \bigm| = 0.

We have the following result.

Theorem 5.2. Suppose that Assumptions 1--4 hold and \=u \in \scrU ad satisfies the vari-
ational inequality (4.1). Then, there exists a constant \kappa > 0 such that

J \prime (\=u)(u - \=u) \geq \kappa \| u - \=u\| 1+
1
\gamma 

L1(\Omega ) \forall u \in \scrU ad(5.2)

with \kappa = 1

2[2(\beta  - \alpha )K]
1
\gamma 
.

Proof. By standard arguments we infer that (4.1) holds pointwise, i.e.,
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1972 EDUARDO CASAS AND FREDI TR\"OLTZSCH

\partial H

\partial u
(x, \=y(x), \=\varphi (x), \=u(x))(u(x) - \=u(x))

= \=\varphi (x)
\partial f

\partial u
(x, \=y(x), \=u(x))(u(x) - \=u(x)) \geq 0 \forall u \in \scrU ad and for a.a. x \in \Omega .

Now, given \varepsilon > 0, we define

\Omega \varepsilon =

\biggl\{ 
x \in \Omega :

\bigm| \bigm| \bigm| \bigm| \=\varphi (x)\partial f\partial u (x, \=y(x), \=u(x))
\bigm| \bigm| \bigm| \bigm| \geq \varepsilon 

\biggr\} 
.

From (5.1) we know that
| \Omega \setminus \Omega \varepsilon | \leq K\varepsilon \gamma ,

hence, we have

J \prime (\=u)(u - \=u) =

\int 
\Omega 

\=\varphi (x)
\partial f

\partial u
(x, \=y(x), \=u(x))(u(x) - \=u(x)) dx

\geq 
\int 
\Omega \varepsilon 

\bigm| \bigm| \bigm| \bigm| \=\varphi (x)\partial f\partial u (x, \=y(x), \=u(x))
\bigm| \bigm| \bigm| \bigm| | u(x) - \=u(x)| dx \geq \varepsilon \| u - \=u\| L1(\Omega \varepsilon )

= \varepsilon \| u - \=u\| L1(\Omega )  - \varepsilon \| u - \=u\| L1(\Omega \setminus \Omega \varepsilon )

\geq \varepsilon \| u - \=u\| L1(\Omega )  - \varepsilon (\beta  - \alpha )| \Omega \setminus \Omega \varepsilon | \geq \varepsilon \| u - \=u\| L1(\Omega )  - (\beta  - \alpha )K\varepsilon 1+\gamma .

Now, choosing

\varepsilon = [2(\beta  - \alpha )K] - 
1
\gamma \| u - \=u\| 

1
\gamma 

L1(\Omega ),

we get

J \prime (\=u)(u - \=u) \geq 1

2[2(\beta  - \alpha )K]
1
\gamma 

\| u - \=u\| 1+
1
\gamma 

L1(\Omega ).

Theorem 5.3. Let Assumptions 1--4 and the condition \gamma = +\infty be fulfilled. If
\=u \in \scrU ad satisfies (4.1), then there exists \varepsilon > 0 such that

J(\=u) +
\kappa 

2
\| u - \=u\| L1(\Omega ) \leq J(u) \forall u \in \scrU ad \cap \=B\varepsilon (\=u),(5.3)

where \=B\varepsilon (\=u) is the closed ball in L\infty (\Omega ) and \kappa is taken from (5.2). Therefore, \=u is
strictly locally optimal in the sense of L\infty (\Omega ).

Proof. Let us take u \in \scrU ad \cap \=B\varepsilon (\=u) with \varepsilon > 0 to be fixed later. We perform
a second-order Taylor expansion of J at \=u and insert the expression of J \prime \prime given in
(2.15). Invoking the growth condition (5.2), in view of the assumptions (2.8), (2.2),
and (2.5) we obtain that

J(u) = J(\=u) + J \prime (\=u)(u - \=u) +
1

2
J \prime \prime (\=u+ \theta (u - \=u))(u - \=u)2

\geq J(\=u) + \kappa \| u - \=u\| L1(\Omega )  - C\alpha ,\beta \| u - \=u\| 2L2(\Omega )

\geq J(\=u) + [\kappa  - C\alpha ,\beta \| u - \=u\| L\infty (\Omega )]\| u - \=u\| L1(\Omega ) \geq J(\=u) + [\kappa  - C\alpha ,\beta \varepsilon ]\| u - \=u\| L1(\Omega )

holds for some \theta \in (0, 1) and a constant C\alpha ,\beta independent of u. Then, it is enough to
take \varepsilon \leq \kappa 

2C\alpha ,\beta 
to obtain (5.3).

The reader might be surprised that we admit the possibility of the value \gamma = +\infty .
The next example shows that this is possible for our control problem, indeed.
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Example 5.4 (a local solution in the sense of L\infty (\Omega )). We consider the optimal
control problem

min

\int 
\Omega 

(yu  - yd)
2 dx,

\biggl\{ 
 - \Delta y(x) + y(x) = e - y(x)u(x)2 + 2 eu(x) - 2 + e\Omega (x) in \Omega ,

\partial ny = 0 on \Gamma ,

 - 1 \leq u(x) \leq 1 a.e. in \Omega ,

posed in \Omega = (0, 2\pi )\times (0, 2\pi ). Let us introduce the subdomains \Omega 1 = (0, \pi )\times (0, \pi ),
\Omega 2 = (\pi , 2\pi )\times (0, \pi ), \Omega 3 = (0, \pi )\times (\pi , 2\pi ), \Omega 4 = (\pi , 2\pi )\times (\pi , 2\pi ).

First, we select a state \=y \in H2(\Omega ) with homogeneous Neumann data and satisfying
\| \=y\| C(\=\Omega ) < 3. For instance, \=y(x) \equiv 1 or \=y(x) = cos(x1) cos(x2) fulfill these conditions.
We will construct the example so that \=y is optimal. To this end, we also define the
adjoint state \=\varphi (x) =  - 1 and the following bang-bang control \=u(x):

\=u(x) =

\Biggl\{ 
+ 1 in \Omega 1 \cup \Omega 4,

 - 1 in \Omega 2 \cup \Omega 3.

We will now fix yd and e\Omega such that the triplet (\=y, \=\varphi , \=u) obeys the first-order optimality
system. Inserting \=u and \=y in the state equation, we find

e\Omega =  - \Delta \=y + \=y  - e - \=y  - 2e\=u - 2.

Inserting \=\varphi =  - 1 in the adjoint equation (2.16), we obtain  - 1 = e - \=y + \=y  - yd, hence
yd = 1 + \=y + e - \=y.

Next, we check the variational inequality (4.1) for \=u. We find\biggl[ 
\=\varphi 
\partial f

\partial u
(\cdot , \=y, \=u)

\biggr] 
(x) =  - 

\bigl( 
2e - \=y\=u+ 2e\=u - 2

\bigr) 
(x) =

\biggl\{ 
 - 2e - \=y(x)  - 2e - 1 if \=u(x) = +1,
2e - \=y(x)  - 2e - 3 if \=u(x) =  - 1.

In \Omega 1 \cup \Omega 4, we have fixed \=u = 1 and hence we need that \=\varphi (x)\partial f\partial u (x, \=y(x), \=u(x)) \leq 0
to satisfy the variational inequality. This, however, is an immediate consequence of
 - 2e - \=y(x) - 2e - 1 \leq 0. In \Omega 2\cup \Omega 3, from \=u =  - 1 we deduce that \=\varphi (x)\partial f\partial u (x, \=y(x), - 1) \geq 0

must hold, hence the inequality 2e - \=y(x)  - 2e - 3 \geq 0 is needed. This follows from our
assumption \| \=y\| C(\=\Omega ) < 3. Therefore, \=u satisfies the first-order necessary optimality
conditions.

Finally, we prove that \=u satisfies (5.1) with \gamma = +\infty . Let us set

\sigma = 2
\Bigl[ 
e - \| \=y\| C(\=\Omega )  - e - 3

\Bigr] 
> 0.

Then, for \=u(x) = +1 we have\bigm| \bigm| \bigm| \bigm| \=\varphi (x)\partial f\partial u (x, \=y(x), \=u(x))
\bigm| \bigm| \bigm| \bigm| = 2

\Bigl[ 
e - \=y(x) + e - 1

\Bigr] 
\geq 2

\Bigl[ 
e - \| \=y\| C(\=\Omega ) + e - 1

\Bigr] 
> \sigma .

If \=u(x) =  - 1, we get\bigm| \bigm| \bigm| \bigm| \=\varphi (x)\partial f\partial u (x, \=y(x), \=u(x))
\bigm| \bigm| \bigm| \bigm| = 2

\Bigl[ 
e - \=y(x)  - e - 3

\Bigr] 
\geq 2

\Bigl[ 
e - \| \=y\| C(\=\Omega )  - e - 3

\Bigr] 
= \sigma .
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1974 EDUARDO CASAS AND FREDI TR\"OLTZSCH

Thus, we conclude that\bigm| \bigm| \bigm| \bigm| \biggl\{ x \in \Omega :

\bigm| \bigm| \bigm| \bigm| \=\varphi (x)\partial f\partial u (x, \=y(x), \=u(x))
\bigm| \bigm| \bigm| \bigm| < \sigma 

\biggr\} \bigm| \bigm| \bigm| \bigm| = 0.

Therefore, \gamma = +\infty can be taken and Theorem 5.2 yields that \=u is a strict local
minimum of (P) in the L\infty (\Omega )-sense.

6. Second-order sufficient optimality conditions for \bfitL \bftwo (\Omega )-local solu-
tions. The goal of this section is to provide sufficient conditions for L2(\Omega )-local opti-
mality of a feasible control \=u \in \scrU ad that satisfies the first-order necessary optimality
conditions. The following theorem is the main result of this section.

Theorem 6.1. Let \=u \in \scrU ad satisfy the first-order optimality conditions (4.1)
along with its associated state \=y and the adjoint state \=\varphi . Besides Assumptions 1--
3, we suppose that

\exists \nu > 0 such that
\partial 2H

\partial u2
(x, \=y(x), \=\varphi (x), s) \geq \nu for a.a. x \in \Omega , \forall s \in [\alpha , \beta ].(6.1)

1. Under the hypothesis that

assumption (5.1) is fulfilled with \gamma > 1,(6.2)

there exists \varepsilon > 0 such that

J(\=u) +
\kappa 

2
\| u - \=u\| 1+

1
\gamma 

L1(\Omega ) +
\nu 

8
\| u - \=u\| 2L2(\Omega ) \leq J(u) \forall u \in \scrU ad \cap \=B\varepsilon (\=u).(6.3)

Here and below, \=B\varepsilon (\=u) denotes the closed ball of L2(\Omega ) with radius \varepsilon centered
at zero, and \kappa is given in (5.2).

2. Under the hypothesis

J \prime \prime (\=u)v2 > 0 \forall v \in C\=u \setminus \{ 0\} ,(6.4)

there exist \varepsilon > 0 and \delta > 0 such that

J(\=u) +
\delta 

2
\| u - \=u\| 2L2(\Omega ) \leq J(u) \forall u \in \scrU ad \cap \=B\varepsilon (\=u).(6.5)

For the proof of this theorem we will use the following two lemmas.

Lemma 6.2. Let (X,\Sigma , \mu ) be a measure space with \mu (X) < +\infty . Suppose that
\{ gk\} \infty k=1 \subset L\infty (X) and \{ vk\} \infty k=1 \subset L2(X) satisfy the assumptions

\bullet gk \geq 0 a.e. in X, \forall k \geq 1, \{ gk\} \infty k=1 is bounded in L\infty (X), and gk \rightarrow g in
L1(X), k \rightarrow \infty ,

\bullet vk \rightharpoonup v in L2(X), k \rightarrow \infty .
Then, there holds the inequality\int 

X

g(x)v2(x) d\mu (x) \leq lim inf
k\rightarrow \infty 

\int 
X

gk(x)v
2
k(x) d\mu (x).(6.6)

The reader is referred to [9, Lemma 3.5] for the proof.

Lemma 6.3. Under Assumptions 1--3 and given p > n
2 , there exist constants C1

and Cp such that \forall u, \=u \in \scrU ad the following inequalities hold:
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\| yu  - \=y\| L2(\Omega ) \leq C1\| u - \=u\| L1(\Omega ),(6.7)

\| yu  - \=y\| L\infty (\Omega ) \leq Cp\| u - \=u\| Lp(\Omega ),(6.8)

\| \varphi u  - \=\varphi \| L\infty (\Omega ) \leq Cp\| u - \=u\| Lp(\Omega ),(6.9)

\| zu,v\| L2(\Omega ) \leq C1\| v\| L1(\Omega ) \forall v \in L1(\Omega ),(6.10)

where yu and \=y, \varphi u and \=\varphi are the states and adjoint states associated with u and \=u,
respectively. Moreover, we denote zu,v = G\prime (u)v.

Proof. From (2.8) we deduce the existence of a constant M such that

\| yu\| C(\=\Omega ) + \| u\| L\infty (\Omega ) \leq M \forall u \in \scrU ad.(6.11)

Subtracting the equations satisfied by yu and \=y, we obtain with the mean value the-
orem

A(yu  - \=y) = [f(x, yu, \=u) - f(x, \=y, \=u)] + [f(x, yu, u) - f(x, yu, \=u)]

=
\partial f

\partial y
(x, \=y + \theta (yu  - \=y), \=u)(yu  - \=y) + [f(x, yu, u) - f(x, yu, \=u)].

Using the well-known estimates for linear systems, assumption (2.2), and the bound-
edness of \scrU ad in L\infty (Q), we infer

\| yu  - \=y\| L2(\Omega ) \leq C\| f(x, yu, u) - f(x, yu, \=u)\| L1(\Omega ) \leq CCf,M\| u - \=u\| L1(\Omega ),

which implies (6.7).
To prove (6.8) we use again the equation satisfied by yu - \=y, the classical L\infty (\Omega )-

estimates for linear systems (see [23]), and again (2.2) to obtain

\| yu  - \=y\| L\infty (\Omega ) \leq C(p)\| f(x, yu, u) - f(x, yu, \=u)\| Lp(\Omega ) \leq C(p)Cf,M\| u - \=u\| Lp(\Omega ),

which proves (6.8).
To prove (6.9) we subtract the equations satisfied by \varphi u and \=\varphi to get

A\ast (\varphi u  - \=\varphi ) =
\partial f

\partial y
(x, yu, u)\varphi u  - \partial f

\partial y
(x, \=y, \=u) \=\varphi +

\partial L

\partial y
(x, yu) - 

\partial L

\partial y
(x, \=y)

=
\partial f

\partial y
(x, \=y, \=u)(\varphi u  - \=\varphi ) +

\biggl[ 
\partial f

\partial y
(x, yu, u) - 

\partial f

\partial y
(x, \=y, \=u)

\biggr] 
\varphi u +

\biggl[ 
\partial L

\partial y
(x, yu) - 

\partial L

\partial y
(x, \=y)

\biggr] 
.

Using again the classical L\infty (\Omega )-estimates, (2.2), (2.5), and (2.17), we deduce with
(6.8)

\| \varphi u  - \=\varphi \| L\infty (\Omega )

\leq C \prime (p)
\Bigl[ 
Cf,MM

\ast \bigl( \| yu  - \=y\| Lp(\Omega ) + \| u - \=u\| Lp(\Omega )

\bigr) 
+ CL,M\| yu  - \=y\| Lp(\Omega )

\Bigr] 
\leq C \prime \prime (p)\| u - \=u\| Lp(\Omega ).

Finally, (6.10) is an immediate consequence of (2.12) and (2.2).

Proof of Theorem 6.1. The proof is split into two parts.
Proof under assumption (6.2). Let u \in \scrU ad \cap \=B\varepsilon (\=u), where \=B\varepsilon (\=u) is an L2(\Omega )-

closed ball around \=u with \varepsilon > 0 to be fixed later. By a Taylor expansion, we get with
(5.2)
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J(u) = J(\=u) + J \prime (\=u)(u - \=u) +
1

2
J \prime \prime (\=u+ \theta (u - \=u))(u - \=u)2

\geq J(\=u) + \kappa \| u - \=u\| 1+
1
\gamma 

L1(\Omega ) +
1

2

\int 
\Omega 

\biggl\{ 
\partial 2H

\partial y2
(x, y\theta , \varphi \theta , u\theta )z

2
\theta ,u - \=u

+2
\partial 2H

\partial y\partial u
(x, y\theta , \varphi \theta , u\theta )z\theta ,u - \=u(u - \=u) +

\partial 2H

\partial u2
(x, y\theta , \varphi \theta , u\theta )(u - \=u)2

\biggr\} 
dx,

where u\theta = \=u+ \theta (u - \=u) and y\theta and \varphi \theta denote the state and adjoint state associated
with u\theta . Moreover, z\theta ,u - \=u stands for G\prime (u\theta )(u  - \=u). Now, with (6.10), (6.11), (2.2),
(2.5), and Young's inequality we infer

J(u) \geq J(\=u) + \kappa \| u - \=u\| 1+
1
\gamma 

L1(\Omega )  - C\| u - \=u\| 2L1(\Omega )  - 
\nu 

8
\| u - \=u\| 2L2(\Omega )

+
1

2

\int 
\Omega 

\varphi \theta 
\partial 2f

\partial u2
(x, y\theta , u\theta )(u - \=u)2 dx.(6.12)

Let us estimate the last integral in (6.12). First we write\int 
\Omega 

\varphi \theta 
\partial 2f

\partial u2
(x, y\theta , u\theta )(u - \=u)2 dx =

\int 
\Omega 

(\varphi \theta  - \=\varphi )
\partial 2f

\partial u2
(x, y\theta , u\theta )(u - \=u)2 dx

+

\int 
\Omega 

\=\varphi 

\biggl[ 
\partial 2f

\partial u2
(x, y\theta , u\theta ) - 

\partial 2f

\partial u2
(x, \=y, u\theta )

\biggr] 
(u - \=u)2 dx+

\int 
\Omega 

\=\varphi 
\partial 2f

\partial u2
(x, \=y, u\theta )(u - \=u)2 dx

\geq  - \| \varphi \theta  - \=\varphi \| L\infty (\Omega )Cf,M\| u - \=u\| 2L2(\Omega )

 - M\ast 
\bigm\| \bigm\| \bigm\| \partial 2f

\partial u2
(x, y\theta , u\theta ) - 

\partial 2f

\partial u2
(x, \=y, u\theta )

\bigm\| \bigm\| \bigm\| 
L\infty (\Omega )

\| u - \=u\| 2L2(\Omega ) + \nu \| u - \=u\| 2L2(\Omega ),

where we have used (6.11), (2.2), (2.17), and (6.1). Now, applying (6.8)--(6.9) with
p = 2, and (2.3) we get for sufficiently small \varepsilon > 0 and \| u - \=u\| L2(\Omega ) < \varepsilon the inequality\int 

\Omega 

\varphi \theta 
\partial 2f

\partial u2
(x, y\theta , u\theta )(u - \=u)2 dx \geq \nu 

2
\| u - \=u\| 2L2(\Omega ).(6.13)

Now, we come back to (6.12) and observe that for \gamma > 1

\kappa \| u - \=u\| 1+
1
\gamma 

L1(\Omega )  - C\| u - \=u\| 2L1(\Omega ) = \| u - \=u\| 1+
1
\gamma 

L1(\Omega )

\biggl[ 
\kappa  - C\| u - \=u\| 1 - 

1
\gamma 

L1(\Omega )

\biggr] 
\geq \kappa 

2
\| u - \=u\| 1+

1
\gamma 

L1(\Omega )

if \varepsilon is chosen such that

C\| u - \=u\| 1 - 
1
\gamma 

L1(\Omega ) \leq C| \Omega | 
1
2 - 

1
2\gamma \| u - \=u\| 1 - 

1
\gamma 

L2(\Omega ) \leq C| \Omega | 
1
2 - 

1
2\gamma \varepsilon 1 - 

1
\gamma \leq \kappa 

2
.

Now (6.12) and (6.13) lead to (6.6).
Proof under assumption (6.4). Here we proceed by contradiction and assume the

existence of a sequence \{ uk\} \infty k=1 \subset \scrU ad such that

\| uk  - \=u\| L2(\Omega ) <
1

k
and J(uk) < J(\=u) +

1

2k
\| uk  - \=u\| 2L2(\Omega ) \forall k \geq 1.(6.14)

Let us define

\rho k = \| uk  - \=u\| L2(\Omega ) and vk =
1

\rho k
(uk  - \=u) for k \geq 1.
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Since \| vk\| L2(\Omega ) = 1, we can take a subsequence, denoted in the same way, such that
vk \rightharpoonup v in L2(\Omega ). Let us prove that v \in C\=u. Since the set of functions of L2(\Omega )
satisfying (4.9) is convex and closed, and since every vk obviously satisfies (4.9), then
v also satisfies it. It remains to prove that J \prime (\=u)v = 0. From the optimality conditions
(4.1) we deduce

J \prime (\=u)v = lim
k\rightarrow \infty 

J \prime (\=u)vk = lim
k\rightarrow \infty 

1

\rho k

\int 
\Omega 

\partial H

\partial u
(x, \=y, \=\varphi , \=u)(uk  - \=u) \geq 0.

To derive the converse inequality, we use (6.14)

\rho 2k
2k

=
1

2k
\| uk  - \=u\| 2L2(\Omega ) > J(uk) - J(\=u)

= J \prime (\=u+ \theta k(uk  - \=u))(uk  - \=u) = \rho kJ
\prime (\=u+ \theta k(uk  - \=u))vk.

Hence, we have\int 
\Omega 

\varphi \theta k

\partial f

\partial u
(x, y\theta k , u\theta k)vk dx = J \prime (u\theta k)vk \leq \rho k

2k
\forall k \geq 1,(6.15)

where u\theta k = \=u+\theta k(uk - \=u) and y\theta k and \varphi \theta k are the associated state and adjoint state,
respectively. Since \| u\theta k  - \=u\| L2(\Omega ) \leq \| uk  - \=u\| L2(\Omega ) <

1
k \rightarrow 0, it is easy to confirm

with the aid of Theorem 2.1 that

\varphi \theta k

\partial f

\partial u
(x, y\theta k , u\theta k)  - \rightarrow \=\varphi 

\partial f

\partial u
(x, \=y, \=u) in L2(\Omega ).

Then, we can pass to the limit in (6.15) and deduce the desired converse inequality
J \prime (\=u)v \leq 0, thus J \prime (\=u)v = 0 and hence v \in C\=u.

Using again (6.14) and (4.1), and performing a second-order expansion, we obtain

\rho 2k
2k

> J(uk) - J(\=u) = J \prime (\=u)(uk  - \=u) +
1

2
J \prime \prime (\=u+ \vargamma k(uk  - \=u))(uk  - \=u)2

\geq 1

2
J \prime \prime (\=u+ \vargamma k(uk  - \=u))(uk  - \=u)2 =

\rho 2k
2
J \prime \prime (\=u+ \vargamma k(uk  - \=u))v2k.

Dividing the above expression by
\rho 2
k

2 we infer

J \prime \prime (\=u+ \vargamma k(uk  - \=u))v2k <
1

k
\forall k \geq 1.(6.16)

Our next goal is to pass to the limit in (6.16) and to deduce that J \prime \prime (\=u)v2 \leq 0. Let
us recall that according to (2.15) and the definition of the Hamiltonian we have

J \prime \prime (u)v2

=

\int 
\Omega 

\biggl\{ 
\partial 2H

\partial y2
(x, yu, \varphi u, u)z

2
u,v + 2

\partial 2H

\partial y\partial u
(x, yu, \varphi u, u)zu,vv +

\partial 2H

\partial u2
(x, yu, \varphi u, u)v

2

\biggr\} 
dx,

where zu,v = G\prime (u)v. Let us set u\vargamma k
= \=u+ \vargamma k(uk  - \=u) and denote by y\vargamma k

and \varphi \vargamma k
its

associated state and adjoint state, respectively.
From the convergence u\vargamma k

\rightarrow \=u in L2(\Omega ) and Theorem 2.1, we obtain that
y\vargamma k

\rightarrow \=y and \varphi \vargamma k
\rightarrow \=\varphi in H1(\Omega ) \cap C0,\mu (\=\Omega ). Moreover, the weak convergence

vk \rightharpoonup v in L2(\Omega ) yields the strong convergence z\vargamma k,vk = G\prime (u\vargamma k
)vk \rightarrow zv = G\prime (\=u)v

in L2(\Omega ). Additionally, we have that the sequences \{ \partial 2H
\partial y2 (x, y\vargamma k

, \varphi \vargamma k
, u\vargamma k

)\} \infty k=1 and
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\{ \partial 2H
\partial y\partial u (x, y\vargamma k

, \varphi \vargamma k
, u\vargamma k

)\} \infty k=1 are bounded in L\infty (\Omega ) and converge to \partial 2H
\partial y2 (x, \=y, \=\varphi , \=u)

and \partial 2H
\partial y\partial u (x, \=y, \=\varphi , \=u), respectively, in L

p(\Omega ) for every p <\infty . Then, we have

lim
k\rightarrow \infty 

\int 
\Omega 

\biggl\{ 
\partial 2H

\partial y2
(x, y\vargamma k

, \varphi \vargamma k
, u\vargamma k

)z2\vargamma k,vk
+ 2

\partial 2H

\partial y\partial u
(x, y\vargamma k

, \varphi \vargamma k
, u\vargamma k

)z\vargamma k,vkvk

\biggr\} 
dx

(6.17)

=

\int 
\Omega 

\biggl\{ 
\partial 2H

\partial y2
(x, \=y, \=\varphi , \=u)z2v + 2

\partial 2H

\partial y\partial u
(x, \=y, \=\varphi , \=u)zvv

\biggr\} 
dx.

Indeed, the first limit follows by applying Lebesgue's dominated convergence theo-

rem. For the second limit it is enough to observe that \partial 2H
\partial y\partial u (x, y\vargamma k

, \varphi \vargamma k
, u\vargamma k

)z\vargamma k,vk
\rightarrow 

\partial 2H
\partial y\partial u (x, \=y, \=\varphi , \=u)zv in L2(\Omega ) and vk \rightharpoonup v in L2(\Omega ).

Due to this convergence, to pass to the limit in (6.16) it remains to analyze the

sequence \{ \partial 2H
\partial u2 (x, y\vargamma k

, \varphi \vargamma k
, u\vargamma k

)v2k\} \infty k=1. We proceed as follows. First, we write

\partial 2H

\partial u2
(x, y\vargamma k

, \varphi \vargamma k
, u\vargamma k

) = (\varphi \vargamma k
 - \=\varphi )

\partial 2f

\partial u2
(x, y\vargamma k

, u\vargamma k
)

+ \=\varphi 
\Bigl[ \partial 2f
\partial u2

(x, y\vargamma k
, u\vargamma k

) - \partial 2f

\partial u2
(x, \=y, u\vargamma k

)
\Bigr] 
+ \=\varphi 

\partial 2f

\partial u2
(x, \=y, u\vargamma k

) = Ik,1 + Ik,2 + Ik,3.

Using (6.11), (2.2), and (6.9) we get

lim
k\rightarrow \infty 

| Ik,1| \leq lim
k\rightarrow \infty 

\| \varphi \vargamma k
 - \=\varphi \| L\infty (\Omega )Cf,M = 0.

Now, given \varepsilon > 0 arbitrary, from (2.3) and (6.8) we deduce the existence of k\varepsilon such
that | Ik,2| \leq \| \=\varphi \| L\infty (\Omega )\varepsilon \forall k \geq k\varepsilon . This yields

lim
k\rightarrow \infty 

| Ik,2| = 0.

Finally, from Lemma 6.2 we infer with (6.1)\int 
\Omega 

\=\varphi 
\partial 2f

\partial u2
(x, \=y, \=u)v2 dx \leq lim inf

k\rightarrow \infty 

\int 
\Omega 

\=\varphi 
\partial 2f

\partial u2
(x, \=y, u\vargamma k

)v2k dx.

Collecting the last three results we obtain\int 
\Omega 

\partial 2H

\partial u2
(x, \=y, \=\varphi , \=u)v2 dx \leq lim inf

k\rightarrow \infty 

\int 
\Omega 

\partial 2H

\partial u2
(x, y\vargamma k

, \varphi \vargamma k
, u\vargamma k

)v2k dx.

This inequality, along with (6.16) and (6.17), implies the next desired inequality

J \prime \prime (\=u)v2 \leq lim inf
k\rightarrow \infty 

J \prime \prime (u\vargamma k
)v2k \leq 0.

But, according to (6.4), this is possible only if v = 0. Therefore, vk \rightharpoonup 0 in L2(\Omega ) and
zvk \rightarrow 0 in L2(\Omega ). Therefore,

lim
k\rightarrow \infty 

\int 
\Omega 

\biggl\{ 
\partial 2H

\partial y2
(x, y\vargamma k

, \varphi \vargamma k
, u\vargamma k

)z2vk + 2
\partial 2H

\partial y\partial u
(x, y\vargamma k

, \varphi \vargamma k
, u\vargamma k

)zvk
vk

\biggr\} 
dx = 0

holds. In addition, from the properties stated for Ik,i, i = 1, 2, 3, using (6.1) and the
fact that \| vk\| L2(\Omega ) = 1 for every k, we conclude
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\nu = lim inf
k\rightarrow \infty 

\nu \| vk\| 2L2(\Omega ) \leq lim inf
k\rightarrow \infty 

\int 
\Omega 

\=\varphi 
\partial 2f

\partial u2
(x, \=y, u\vargamma k

)v2k dx

\leq lim inf
k\rightarrow \infty 

\int 
\Omega 

\varphi \vargamma k

\partial 2f

\partial u2
(x, y\vargamma k

, u\vargamma k
)v2k dx.

In this way, we have proved that \nu \leq lim infk\rightarrow \infty J \prime \prime (u\vargamma k
)v2k \leq 0. This is a contradic-

tion to \nu > 0.
Next we present the example of a control problem, where Theorem 6.1 is

applicable.

Example 6.4 (a local solution in the sense of L2(\Omega )). We consider the optimal
control problem

min
1

2

\int 
\Omega 

(yu  - yd)
2 dx,

\biggl\{ 
 - \Delta y(x) + y(x) = e - y(x)u(x)2 + e2u(x) + e\Omega (x) in \Omega ,

\partial ny = 0 on \Gamma ,

 - 1 \leq u(x) \leq 1 a.e. in \Omega .

Here, yd and e\Omega \in L2(\Omega ) will be fixed below. Thanks to Theorem 3.3, an optimal
control \=u with associated state \=y exists. The adjoint equation is\biggl\{ 

 - \Delta \=\varphi + \=\varphi =  - e - \=y\=u2 \=\varphi + \=y  - yd in \Omega ,
\partial n\varphi = 0 on \Gamma .

We select
yd = \=y  - 1 - e - \=y\=u2,

then \=\varphi \equiv 1 is the adjoint state associated with \=u. The variational inequality (4.1) for
\=u is \int 

\Omega 

\=\varphi 
\partial f

\partial u
(\cdot , \=y, \=u)(u - \=u) dx \geq 0 if  - 1 \leq u(x) \leq +1 for a.a. x \in \Omega .

Thanks to \=\varphi \equiv 1, we have with f = e - yu2 + e2u + e\Omega 

\=\varphi 
\partial f

\partial u
(\cdot , \=y, \=u) = 2 e - \=y\=u+ 2e2 \=u,

hence \=u has to solve the equation

\=u(x) = Proj[ - 1,1]

\Bigl( 
 - e\=y(x)+2\=u(x)

\Bigr) 
.

Let us fix \=u(x) \equiv  - 1 and \=y \equiv +2. Inserting \=y in the state equation, e\Omega can be fixed
accordingly: e\Omega = 2(1 - e - 2).

We confirm now that \=u =  - 1 is locally optimal in the sense of L2(\Omega ). The second
derivative of the reduced objective functional J is

J \prime \prime (\=u)v2 =

\int 
\Omega 

\bigl\{ 
z2v + \=\varphi 

\bigl( 
e - \=y\=u2z2v  - 4 \=ue - \=yvzv + (2e - \=y + 4 e2 \=u)v2

\bigr) \bigr\} 
dx

=

\int 
\Omega 

\biggl\{ 
z2v + 2 e - 2

\biggl[ 
1

2
z2v + 2 vzv + 3 v2

\biggr] \biggr\} 
dx

=

\int 
\Omega 

\biggl\{ 
z2v + 2 e - 2

\biggl[ 
 - 1

2
z2v + (zv + v)2 + 2v2

\biggr] \biggr\} 
dx \geq 4 e - 2\| v\| 2L2(\Omega ).
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Moreover, \partial 2H
\partial u2 (\cdot , \=y, \=\varphi , \=u) = 6e - 2 > 0. Then, thanks to Theorem 6.1, the control \=u is

locally optimal in the L2(\Omega )-sense.

7. Convergence of numerical approximations. In this section, we assume
that \Omega is a convex domain in \BbbR n with n = 2 or 3. We also suppose that \Omega is polygonal
if n = 2 or polyhedral if n = 3. In addition to Assumptions 1--3, we also assume that
aij \in C0,1(\=\Omega ) for 1 \leq i, j \leq n and f(\cdot , 0, 0) \in L2(\Omega ). Under these hypotheses it
is well known that the solution of (1.1) belongs to H2(\Omega ) and that, with (2.8) and
Assumption 2, we have

\exists M\alpha ,\beta > 0 such that \| yu\| H2(\Omega ) \leq M\alpha ,\beta \forall u \in \scrU ad.(7.1)

The reader is referred to [17, section 3.2] for this regularity result.
Now, to perform the discretization of the control problem (P), we consider a

quasi-uniform family of triangulations \{ \scrT h\} h>0 of \=\Omega ; cf. [2, Definition (4.4.13)]. We
denote by Nh the number of nodes of \scrT h. Associated with these triangulations, we
consider the finite dimensional spaces

Yh = \{ yh \in C(\=\Omega ) : yh| T \in P1(T ) \forall T \in \scrT h\} 

and
\scrU h = \{ uh \in L\infty (\Omega ) : uh| T \in P0(T ) \forall T \in \scrT h\} ,

where Pi(T ) denotes the space of polynomials in T of degree i. We set Uad,h = \scrU h\cap \scrU ad.
Now, we introduce the discrete version of (1.1) as follows: for u \in L\infty (\Omega ), yh(u)

is the solution of the nonlinear system\biggl\{ 
Find yh \in Yh such that
a(yh, zh) =

\int 
\Omega 
f(x, yh(x), u)zh(x) dx \forall zh \in Yh.

(7.2)

Above, a : H1(\Omega )\times H1(\Omega )  - \rightarrow \BbbR denotes the following bilinear form associated with
the operator A:

a(y1, y2) =

\int 
\Omega 

\left(  n\sum 
i,j=1

aij(x)\partial xiy1\partial xjy2 + a0(x)y1y2

\right)  dx.

The existence of a solution of (7.2) is proved by an easy application of Browder's fixed
point theorem. The uniqueness follows from the monotonicity of f and the coercivity
of the bilinear form a.

We approximate problem (P) by the discretized optimal control problem

(\scrP h) min
uh\in Uad,h

Jh(uh) :=

\int 
\Omega 

L(x, yh(uh)(x)) dx,

where yh(uh) is the solution of (7.2) for u = uh. For (\scrP h), we obtain the following
convergence theorem.

Theorem 7.1. For every h > 0, the discrete control problem (\scrP h) has at least
one solution \=uh. Let \{ \=yh\} h>0 be a family of discrete optimal states associated with
optimal controls \{ \=uh\} h>0. Then, \{ \=yh\} h>0 is bounded in H1(\Omega ) \cap C(\=\Omega ). Moreover, if
hk \searrow 0 when k \rightarrow \infty and \{ \=yhk

\} \infty k=1 converges weakly to \=y in H1(\Omega ), then there exists
\=u \in \scrU ad, an optimal solution of (P), such that \=y is its associated state. Moreover, the
sequence \{ \=yhk

\} \infty k=1 converges strongly to \=y in H1(\Omega ).
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Proof. The existence of an optimal control for the discretized problem follows
from the compactness of Uad,h in \scrU h and the continuity of Jh. Let us prove the
boundedness of the discrete optimal states \{ \=yh\} h>0 in H1(\Omega ) \cap C(\=\Omega ). We define
M = max\{ | \alpha | , | \beta | \} . Then, with Assumption 2 and the mean value theorem, we get
the existence of a constant Cf,M such that

| f(x, 0, u(x))| \leq | f(x, 0, 0)| + Cf,MM \forall u \in \scrU ad.(7.3)

This leads to the inequality

\| f(\cdot , 0, u(\cdot )\| L2(\Omega ) \leq \| f(\cdot , 0, 0)\| L2(\Omega ) + Cf,MM | \Omega | 1/2 \forall u \in \scrU ad.(7.4)

Then, from [7, Theorem 2], (7.1), and (7.4) we infer the existence of constants Ci,
i = 1, 2, such that

\| yu  - yh(u)\| H1(\Omega ) \leq C1h \forall u \in \scrU ad,(7.5)

\| yu  - yh(u)\| C(\=\Omega ) \leq C2h
2 - n

2 \forall u \in \scrU ad,(7.6)

where yu \in H1(\Omega ) \cap C0,\mu (\=\Omega ) and yh(u) \in Yh are the solutions of (1.1) and (7.2),
respectively. In [7, Theorem 2] this is done for the Dirichlet problem, but the same
proof is valid for our state equation with homogeneous Neumann condition.

Combining (2.8) with (7.5)--(7.6) we infer

\| \=yh\| H1(\Omega ) + \| \=yh\| C(\=\Omega ) \leq \| \=yh  - y\=uh
\| H1(\Omega ) + \| \=yh  - y\=uh

\| C(\=\Omega )

+ \| y\=uh
\| H1(\Omega ) + \| y\=uh

\| C(\=\Omega ) \leq C1h+ C2h
2 - n

2 + C\alpha ,\beta (\| f(\cdot , 0, 0)\| L2(\Omega ) + 1).

Hence, \{ \=yh\} h>0 is bounded in H1(\Omega ) \cap C(\=\Omega ) and we can select a sequence \{ \=yhk
\} \infty k=1

with hk \searrow 0 such that \=yhk
\rightharpoonup \=y in H1(\Omega ). Let us prove that \=y is an optimal state for

(P). From the compactness of the embedding H1(\Omega ) \subset L2(\Omega ) we know that \=yhk
\rightarrow \=y

strongly in L2(\Omega ) when k \rightarrow \infty . Now, we argue similarly to the proof of Theorem
3.3. To this end, we introduce the multifunction

F : \Omega  - \rightarrow \scrP (\BbbR ), F (x) = \{ f(x, \=y(x), s) : s \in [\alpha , \beta ]\} .

Since f is continuous with respect to the last variable, we know that F (x) is a closed
and bounded interval of \BbbR for almost all x \in \Omega . Now, we define

S = \{ g \in L2(\Omega ) : g(x) \in F (x) for a.a. x \in \Omega \} .

S is a convex and closed subset of L2(\Omega ). Setting gk(x) = f(x, \=y(x), uhk
(x)) \forall k \geq 1,

all functions gk belong to S. Moreover, taking

M = max
h>0

\| \=yh\| C(\=\Omega ) +max\{ | \alpha | , | \beta | \} <\infty ,

from (2.2) and the mean value theorem we infer that | gk(x)| \leq | f(x, 0, 0)| +Cf,M2M ,
hence the sequence \{ gk\} \infty k=1 is bounded in L2(\Omega ). By taking a subsequence, denoted
in the same way, we can assume that gk \rightharpoonup \=g in L2(\Omega ). Since S is weakly closed in
L2(\Omega ), we infer that \=g \in S. Using again the classical Filippov theorem (see [16] or
[19]), we deduce the existence of a measurable function \=u : \Omega  - \rightarrow [\alpha , \beta ], i.e., \=u \in \scrU ad,
such that \=g(x) = f(x, \=y(x), \=u(x)) for almost all x \in \Omega . Let us prove that \=y is the state
associated with the control \=u. We take z \in H1(\Omega ) arbitrarily and select zhk

\in Yhk
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such that zhk
\rightarrow z strongly in H1(\Omega ) when k \rightarrow \infty . For instance, we can take zhk

as
the H1(\Omega )-projection of z on Yhk

. Now, from (7.2) we get

a(\=yhk
, zhk

) =

\int 
\Omega 

ghk
zhk

dx+

\int 
\Omega 

[f(x, \=yhk
, \=uhk

) - f(x, \=y, \=uhk
)]zhk

dx.(7.7)

Using again (2.2) we obtain

\| f(x, \=yhk
, \=uhk

) - f(x, \=y, \=uhk
)\| L2(\Omega ) \leq Cf,M\| \=yhk

 - \=y\| L2(\Omega ) \rightarrow 0, when k \rightarrow \infty .

Hence, passing to the limit in (7.7), we deduce

a(\=y, z) =

\int 
\Omega 

f(x, \=y(x), \=u(x))z(x) dx.

Since z is arbitrary in H1(\Omega ), we conclude that A\=y = f(x, \=y(x), \=u(x)) and, hence, \=y
is the state associated with \=u.

Moreover, we are able to prove the strong convergence of \=yhk
in H1(\Omega ): taking

zhk
= \=yhk

in (7.7) and using the convergences ghk
\rightharpoonup f(x, \=y, \=u) and \=yhk

\rightarrow \=y weakly
and strongly, respectively, in L2(\Omega ) and the identity A\=y = f(x, \=y, \=u), it follows that

lim
k\rightarrow \infty 

a(\=yhk
, \=yhk

) = lim
k\rightarrow \infty 

\int 
\Omega 

ghk
\=yhk

dx =

\int 
\Omega 

f(x, \=y, \=u)\=y dx = a(\=y, \=y).

The convergence a(\=yhk
, \=yhk

) \rightarrow a(\=y, \=y) along with the weak convergence \=yhk
\rightharpoonup \=y in

H1(\Omega ) implies that \=yhk
\rightarrow \=y strongly in H1(\Omega ).

It remains to prove that \=u is a solution of (P). To this aim, we take an arbitrary
u \in \scrU ad with associated state yu (solution of (1.1)). Define uh as the L2-projection
of u on \scrU h. Since \scrU h is a space of piecewise constant functions, it is well known that
uh \in Uad,h and uh \rightarrow u strongly in L2(\Omega ). Let us denote by yuh

and yh the solutions
of (1.1) and (7.2), respectively, corresponding to the control uh. Then, with (2.9) and
(7.5)--(7.6) we infer

\| yu  - yh\| H1(\Omega ) + \| yu  - yh\| C(\=\Omega ) \leq \| yu  - yuh
\| H1(\Omega ) + \| yu  - yuh

\| C(\=\Omega )

+ \| yuh
 - yh\| H1(\Omega ) + \| yuh

 - yh\| C(\=\Omega ) \rightarrow 0 when h\rightarrow 0.

Now, setting \~M = maxh>0 \| \=yh\| C(\=\Omega ), we deduce with Assumption 3 that

| L(x, \=yhk
(x))| \leq | L(x, 0)| + \psi \~M (x) \~M a.e. in \Omega .

Then, the Lebesgue's dominated convergence theorem implies that Jhk
(\=uhk

) \rightarrow J(\=u)
when k \rightarrow \infty . A similar argument shows that Jhk

(uhk
) \rightarrow J(u). Finally, recalling

that \=uhk
is a solution of (\scrP hk

), we get

J(\=u) = lim
k\rightarrow \infty 

Jhk
(\=uhk

) \leq lim
k\rightarrow \infty 

Jhk
(uhk

) = J(u).

Since u was taken arbitrarily in \scrU ad, we conclude that \=u is solution of (P).
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