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ANALYSIS OF CROSS-DIFFUSION SYSTEMS FOR FLUID MIXTURES

DRIVEN BY A PRESSURE GRADIENT

PIERRE-ETIENNE DRUET AND ANSGAR JÜNGEL

Abstract. The convective transport in a multicomponent isothermal compressible fluid
subject to the mass continuity equations is considered. The velocity is proportional to the
negative pressure gradient, according to Darcy’s law, and the pressure is defined by a state
equation imposed by the volume extension of the mixture. These model assumptions lead
to a parabolic-hyperbolic system for the mass densities. The global-in-time existence of
classical and weak solutions is proved in a bounded domain with no-penetration boundary
conditions. The idea is to decompose the system into a porous-medium-type equation for
the volume extension and transport equations for the modified number fractions. The ex-
istence proof is based on parabolic regularity theory, the theory of renormalized solutions,
and an approximation of the velocity field.

1. Introduction

Multicomponent fluids are found in nature and many engineering applications, for in-
stance, in combustion, chemical reactors, tumor growth, and gas mixtures. For efficient
modeling and simulations of these applications, we need to understand the mathematical
structure of the governing partial differential equations and to determine the properties
of their solutions. In this paper, we analyze the mass continuity equations for the partial
mass densities, subject to Darcy’s law for the fluid velocity and a pressure related to the
volume extension of the mixture, and we prove the global-in-time existence of smooth and
weak solutions. The main novelty is the general framework of our pressure model.

1.1. Model equations. We consider the evolution of a fluid mixture of N substances in
a bounded container Ω ⊂ R

3. We assume that the system is in the isothermal state. The
mass densities ρ1, . . . , ρN of the species are given by the conservation equations

(1) ∂tρi + div(ρiv) = 0 in Ω× (0, T ), i = 1, . . . , N.
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We suppose that the fluid is driven only by the thermodynamic pressure. Then the barycen-
tric velocity v is determined by Darcy’s law

(2) v = −κ∇p in Ω× (0, T ),

where the porosity coefficient κ generally depends on the medium Ω and the fluid. The
pressure is related to the volume extension Λ of the mixture via

(3) p = G(Λ(ρ)), ρ = (ρ1, . . . , ρN ),

where G is an increasing scalar function and Λ is positively homogeneous (of degree one).

Typical choices are G(s) = c0s
α with α > 1 and Λ(ρ) =

∑N
i=1 ciρi, where c0, . . . , cN > 0.

We refer to Section 2 for the modeling details.
Equations (1)–(3) can be formulated as a cross-diffusion system with entropy structure.

Indeed, we show in Section 2 that there exists a free energy (or entropy) h(ρ) such that

∇p =
∑N

j=1 ρj∇µj , where µj = ∂h/∂ρj are the chemical potentials (or entropy variables).

Then system (1)–(3) is equivalent to the cross-diffusion system

(4) ∂tρi − div
N∑

j=1

Mij(ρ)∇µj = 0, i = 1, . . . , N,

where the kinetic (or mobility) matrix Mij(ρ) = κρiρj has rank one only. Thus, we ex-
pect that there is only one “parabolic direction” and N − 1 “hyperbolic directions”. The
challenge is to deal with such cross-diffusion systems possessing incomplete diffusion. It is
sufficient to impose one boundary condition, and we choose in this paper the no-penetration
(and initial) conditions

(5) v · ν = 0 on ∂Ω× (0, T ), ρi(0) = ρ0i in Ω, i = 1, . . . , N,

where ν is the exterior unit normal vector to ∂Ω. Alternatively, in the case that there are
free inflows and outflows, we may use the pressure boundary condition

p = p0 on ∂Ω× (0, T ).

In practical situations, a mix of free flow and impermeable portions of the boundary is
often realistic. This leads to more technical problems in the mathematical analysis, so we
consider mainly the boundary conditions in (5). Some remarks to treat pressure boundary
conditions are given in Section 5.3.

1.2. State of the art. Our study is motivated by some related problems. First, in [23],
we have analyzed the cross-diffusion system

(6) ∂tρi − div

N∑

j=1

(
ρiρj + εDij(ρ)

)
∇µj = 0, i = 1, . . . , N,

where the pressure models a Van der Waals gas mixture (this determines µj) and the matrix
(Dij(ρ)) is positive definite on the orthogonal complement of a one-dimensional subspace

of RN . Because of the lack of parabolicity, the diffusion fluxes Ji = −ε
∑N

j=1Dij(ρ)∇µj

with ε > 0 were needed to apply the boundedness-by-entropy method [21]. Unfortunately,
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the authors of [23] were not able to perform the limit ε → 0. In this paper, we show that
(6) admits solutions also in the case ε = 0 (for suitable pressure functions).

Second, consider N interacting biological species with densities ρi and velocities vi gov-
erned by the continuity equations

∂tρi + div(ρivi) = 0, i = 1, . . . , N.

When dispersal is a response to population pressure, we may assume that the dispersal of
each of the species is driven by the gradient of the total population [2, 19],

vi = −ki∇

N∑

j=1

ρj , i = 1, . . . , N.

This leads to system (4) with Mij = ρiρj and µj = kj log ρj . The model describes the
evolution of the cell populations ρi in tissues and tumors. It was analyzed for two species
N = 2 in [2] in one space dimension and in [3] in several space dimensions. The existence
of global weak and classical solutions was proved. They possess the particular feature that
they are segregated if they do so initially, i.e., their support is disjoint for all time. For
related models, we refer to [15, 16].

A nonlinear pressure function p = (ρ1 + ρ2)
α with α > 1 was considered in [20], giving

(4) with N = 2, Mij = ρiρj(ρ1 + ρ2)
α−1, and µj = log ρj . The existence of weak solutions

in the whole space was proved in the presence of reaction terms. The two-species system
of Bertsch et a. [3] with nonlocal interaction terms models aggregation and repulsion of
the species in the context of chemotaxis, opinion formation, and pedestrian dynamics (see
the references in [6]).

If the pressure is the variational derivative of a certain energy functional F (ρ), we may
write (1) for N = 2 as the (formal) gradient flow

∂tρ1 = div

(
ρ1∇

δF

δρ1

)
, ∂tρ2 = div

(
ρ2∇

δF

δρ2

)
.

This relation has been exploited in [5, 10], proving the convergence of the minimizing
movement scheme for quadratic functionals F [5] or general convex functionals [10], even
including nonlocal terms; also see [7].

Related systems that consist of the mass continuity equation (1) and the Darcy law
(2) are analyzed in the literature also in the context of fluid flows in porous media [25],
often extended by the Darcy–Brinkman law for fractures in porous media [29] or for tumor
growth models [17].

Surprisingly, there are almost no results for general N -species models. The work [9]

studies (4) with Mij = ρiρj/ρtot, where ρtot =
∑N

i=1 ρi, and µj = log ρj . Furthermore,
system (4) withMij = aijρiρj and aij > 0 is the mean-field limit of an interacting stochastic
particle system [8]. Up to our knowledge, there exists no general global existence result
for (4).

In this paper, we analyze the N -species system with a rather general pressure-density
relation, extending all previous existence results. In [3, 19], the problem is decomposed
into a porous-medium-type equation for the total density ρtot (in our situation: Λ(ρ)) and
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transport equations for the mass fractions ρi/ρtot, i = 1, . . . , N (in our situation: ρi/Λ(ρ)).
Compared to previous work, the relationship (3) between the pressure and the densities is
more general, we allow for an arbitrary number of species, and we prove the uniqueness
of weak and classical solutions. Special effort is necessary to allow for partially vanishing
initial total densities [7, 20]; in the context of fluid dynamics, however, initial vacuum
would not be meaningful.

1.3. Key ideas. As mentioned above, the idea is to decompose the equations in one
parabolic equation for the function Λ(ρ) and N transport equations for the variables ui =
ρi/Λ(ρ).

First, we derive the parabolic equation. Let (ρ, v) be a differentiable solution to (1)–(3).
Multiplying (1) by ∂Λ/∂ρi and summing over i = 1, . . . , N leads to

∂tΛ(ρ) + v · ∇Λ(ρ) + Λ′(ρ) · ρ div v = 0.

The positive homogeneity of Λ implies that Λ′(ρ) · ρ = Λ(ρ), so Λ solves the conservation
law ∂tΛ(ρ)+div(Λ(ρ)v) = 0. Then we infer from v = −κ∇p = −κG′(Λ(ρ))∇Λ(ρ) that the
variable w := Λ(ρ) solves the nonlinear diffusion equation

(7) ∂tw − div(κwG′(w)∇w) = 0 in Ω× (0, T ),

together with the initial and boundary conditions

(8) w(0) = w0 := Λ(ρ0) in Ω, ∇w · ν = 0 on ∂Ω× (0, T ).

We claim that the variable ui = ρi/Λ(ρ) (i = 1, . . . , N), which can be interpreted as a
kind of volume fraction, solves a transport equation. Indeed, with the material derivative
u̇ = (∂t + v · ∇)u, it follows that ρi solves ρ̇i = −ρi div v. We use the continuity equation
(1) and the identity Λ′(ρ) · ρ = Λ(ρ) to compute

u̇i =
ρ̇i

Λ(ρ)
−

ρi
Λ(ρ)2

Λ′(ρ) · ρ̇ =
ρ̇i

Λ(ρ)
+

ρi
Λ(ρ)2

Λ′(ρ) · ρ div v = 0.

Thus, the volume fractions ui are just transported:

(9) u̇i = 0 in Ω× (0, T ), ui(0) = u0i :=
ρ0i

Λ(ρ0)
in Ω, i = 1, . . . , N.

The nonlinear diffusion equation (7) is solved by standard techniques: The weak max-
imum principle yields positive lower and upper bounds for the solution w, and para-
bolic regularity theory provides further a priori estimates. The velocity is then given
by v = −κG′(w)∇w. Because of its low regularity, we approximate the velocity field by
smooth functions vε, such that we can solve the transport equation (9) with v replaced by
vε. This yields the solutions uεi and the approximate densities ρεi := wuεi for i = 1, . . . , N .
The properties of the approximate velocity fields allow us to prove that ρεi converges to
a weak solution ρi to the mass continuity equation as ε → 0. For weak solutions and in
particular for the proof of Λ(ρ) = w, the use of renormalization techniques is necessary,
since we want to solve the continuity equations with a velocity field that possesses only
local Sobolev regularity.
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1.4. Notation. We set R+ = (0,∞) and R+,0 = [0,∞). The space Ck+α(Ω) for k ∈ N,
α ∈ (0, 1] consists of all functions u ∈ Ck(Ω) whose kth partial derivatives are Hölder
continuous of order α up to the boundary of Ω. Set QT := Ω× (0, T ) and QT := Ω× [0, T ].
The space Ck+α,ℓ+β(QT ) consists of all functions which are Ck+α with respect to the spatial
variable and Cℓ+β with respect to the time variable, where k, ℓ ∈ N and α, β ∈ (0, 1].

1.5. Main results. We make the following assumptions.

(A1) Domain: Ω ⊂ R
3 is a bounded domain with Lipschitz boundary.

(A2) Initial datum: ρ0 = (ρ01, . . . , ρ
0
N) ∈ L∞(Ω;RN ) satisfies p(ρ0) := G(Λ(ρ0)) ∈ H1(Ω),

ρ0i ≥ 0 in Ω for i = 1, . . . , N , and
∑N

i=1 ρ
0
i ≥ c0 > 0 in Ω for some c0 > 0.

(A3) Function G: G ∈ C1(R+) is strictly increasing, i.e. G′(s) > 0 for all s > 0, and
s 7→ sG′(s) is of class C2(R+).

(A4) Function Λ: Λ ∈ C2(RN
+ ) ∩ C

0(RN
+,0) is nonnegative, convex, and positively homo-

geneous (of degree one) and there exist constants 0 < r0 < r1 <∞ such that

r0|ρ| ≤ Λ(ρ) ≤ r1|ρ| for all ρ ∈ R
N
+ .

Assumptions (A1) and (A2) are rather natural. We already mentioned before that
partially vanishing total densities are not meaningful in fluid dynamics, and we require
in Assumption (A2) that

∑N
i=1 ρ

0
i is strictly positive. The variable w = Λ(ρ) satisfies the

porous-medium-type equation (7), and the condition that s 7→ sG′(s) is of class C2(R+)
in Assumption (A3) is needed to deduce classical solutions; see Section 3. The hypotheses
on the volume extension Λ in Assumption (A4) guarantee that the variable ui = ρi/Λ(ρ)
satisfies the transport equation (9). Moreover, the linear growth condition simplifies some
estimates in Section 4.

A possible obvious extension would be to consider porosity coefficients depending on
the density or pressure, κ = κ(Λ(ρ)) or κ = κ(p). We comment briefly in Section 5 how
Assumption (A3) can be suitably modified to treat this case.

We next formulate our main theorems on the well-posedness analysis.

Theorem 1 (Classical solutions). Let Assumptions (A1)–(A4) hold, let T > 0, and κ > 0.
Furthermore, let ∂Ω ∈ C2+α for some α > 0, G ∈ C2(R+), and ρ

0 ∈ C1+α(Ω;RN) such
that p(ρ0) ∈ C2+α(Ω) and ∇p(ρ0) · ν = 0 on ∂Ω. Then there exists a unique classical
solution ρ ∈ C1+α,1(QT ;R

N
+,0) with p(ρ) ∈ C2+α,1+α/2(QT ) to the equations

∂tρi − div(κρi∇p(ρ)) = 0 in Ω× (0, T ), i = 1, . . . , N,

and the initial and boundary conditions (5) are satisfied.

Theorem 2 (Weak solutions). Let Assumptions (A1)–(A4) hold, let T > 0, and κ >
0. Furthermore, let ∂Ω be piecewise of class C2 (i.e., Ω is a curvilinear polyhedron).
Then there exists a weak solution (ρ, v) to (1)–(3) and (5) such that ρ ≥ 0 in QT , ρ ∈
L∞(QT ;R

N), v = −κ∇p(ρ) ∈ L2(QT ), and div v ∈ Lσ(QT ) for some σ > 4/3, and ρ is the
unique weak solution to (1) and (5).

The paper is organized as follows. The pressure relation (3) and the cross-diffusion
formulation (4) is motivated in Section 2. Then the proofs of Theorems 1 and 2 are



6 P.-E. DRUET AND A. JÜNGEL

presented in Sections 3 and 4, respectively. Finally, we collect in Section 5 some possible
extensions of our results and open problems.

2. Modeling

In this section, we motivate system (1)–(3). We consider N chemical substances with
mass densities ρi whose isothermal evolution is governed by the continuity equations (1),
subject to Darcy’s law (2). We introduce the partial number densities ni = ρi/mi, where

the molecular masses m1, . . . , mN are positive constants. Then ntot :=
∑N

i=1 ni is the total
number density, and Xi := ni/ntot are the number fractions.

In order to model the thermodynamic pressure p, we follow some ideas exposed in [4,
Section 15] to describe the free energy of elastic mixtures. We also refer to [12, 13] for
further particular models in the case of mixtures with charged carriers. The pressure is
related to the volume extension of the mixture via a state equation of the following kind:

(10) p = G
(
ntotH(X1, . . . , XN)

)
,

where G and H are suitable functions. The choice G(s) = s, H = 1 gives the pressure
law of (isothermal) ideal gases, namely p = ntot. Other special choices are G(s) = sα with

α > 1 and H = 1, giving p = nα
tot, while for G(s) = sα, H(X) = (

∑N
i=1X

α
i )

1/α, we obtain

p =
∑N

i=1 n
α
i . We refer to [26] for more examples of nonlinear state equations, often refered

to as Tait equations. We notice that in the last example p =
∑N

i=1 n
α
i , there is possibly a

relationship to the Dalton law with partial pressures of the constituents obeying pi = nα
i

with uniform exponent α. This seems to be a by-product of the positive homogenity
assumption for H , for suitably chosen functions G. In general, the state equation (10)
yields models that are not equivalent to the Dalton law. The factor H which represents an
average volume can be used to model finite-volume effects of the molecules, for instance
with the linear ansatz H =

∑N
i=1 ViXi (Vi are the reference partial volumes, like in [11]).

To simplify our notation, we express the pressure law for the mass densities. Indeed,
noting that we can identify each function of n1, . . . , nN with a function of ρ1, . . . , ρN via
ρi = mini, we express (10) in the equivalent form p = G(Λ(ρ1, . . . , ρN )), where

Λ(ρ1, . . . , ρN) := ntotH

(
n1

ntot
, . . . ,

nN

ntot

)

describes the volume extension of the mixture. It is essential for our analysis that the
mapping ρ 7→ Λ(ρ) is positively homogeneous of degree one. This condition is always
satisfied in applications, since the function H depends only on the fractions ni/ntot which
are homogeneous of degree zero in ρ.

We claim that system (1)–(3) can be formulated as the cross-diffusion system (4). To
this end, we introduce the scalar function

hM(s) = s

∫ s

s0

G(τ)

τ 2
dτ + const., s > 0,
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and the free energy h(ρ) = hM(Λ(ρ)) for ρ ∈ [0,∞)N . The Hessian of h,

D2h = h′′M(DΛ⊗DΛ) + h′MD
2Λ,

is positive definite if hM is increasing and convex and Λ is convex. For instance, we may
assume that G is increasing, which leads to h′′M(s) = G′(s)/s > 0. The pressure is given
by the Gibbs–Duhem relation

p = −h +

N∑

i=1

ρiµi,

where µi := ∂h/∂ρi are the chemical potentials. Since sh′M(s) − hM (s) = G(s) and Λ is
supposed to be positively homogeneous (implying that Λ′(ρ) · ρ = Λ(ρ)), we find that

p = −hM(Λ(ρ)) +

N∑

i=1

ρi
∂Λ

∂ρi
(ρ)h′M(Λ(ρ)) = −hM (Λ(ρ)) + h′M(Λ(ρ))Λ(ρ) = G(Λ(ρ)),

which equals (3). Furthermore, the Gibbs–Duhem relation implies that ∇p =
∑N

j=1 ρj∇µj,

and inserting this expression into (1)–(2) leads to the cross-diffusion system (4).

3. Proof of Theorem 1

Problem (7)–(8) is a quasilinear parabolic equation with Neumann boundary conditions.
Its unique solvability in C2+α,1+α/2(QT ) follows from Theorem 7.4 in [24, Chapter V.7] (also
see [14, Theorem 10.24]) if the following conditions are satisfied:

• Every classical solution to (7)–(8) is bounded from above and below;
• the coefficient κwG′(w) is of class C2(R+);
• the initial datum satisfies w0 := Λ(ρ0) ∈ C2+α(Ω).

These conditions are satisfied. Indeed, the weak maximum principle for parabolic equations
shows that

(11) 0 < Λ∗ := inf
x∈Ω

Λ(ρ0(x)) ≤ w(x, t) ≤ Λ∗ := sup
x∈Ω

Λ(ρ0(x)) for all (x, t) ∈ QT ,

where Λ∗ = r0c0 > 0, according to Assumptions (A2) and (A4). The second condition
follows from Assumption (A3) and the third condition is a consequence of the assumptions
of the theorem. Thus, there exists a unique solution w ∈ C2+α,1+α/2(QT ) to (7)–(8).

Next, we solve (9). The transport velocity v = −κG′(w)∇w = −κ∇G(w) is bounded in
L∞(QT ) and div v is bounded in Cα(QT ). This allows us to find for x ∈ Ω, t ∈ [0, T ] the
characteristic curves of

Φ′(s; t, x) = v(Φ(s; t, x), s), s ∈ (0, T ), Φ(t; t, x) = x.

For all s ∈ [0, T ], the map (x, t) 7→ Φ(s; x, t) belongs to C1+α,1+α/2(QT ). Thus, problem
(9) admits the unique solutions

ui(x, t) = u0i (Φ(0; t, x)), i = 1, . . . , N.

Since u0 = ρ0/Λ(ρ0) ∈ C1(Ω;RN), we have u ∈ C1(QT ;R
N).
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We claim that ρ = wu is a classical solution to (1), (5). The positive homogeneity of
Λ shows that Λ(ρ) = wΛ(u). Moreover, (Λ(u))· = Λ′(u)u̇ = 0 and Λ(u(0)) = Λ(u0) = 1,
by definition of u0. We conclude that Λ(u) = 1. A more direct proof of this property
is as follows: We multiply the equation 0 = u̇ = ∂tu + v · ∇u by Λ′(u), which yields
∂tΛ(u) + v · Λ(u) = 0. Then we compute

d

dt

∫

Ω

(Λ(u)− 1)2dx = −2

∫

Ω

(Λ(u)− 1)v · ∇Λ(u)dx = −

∫

Ω

v · ∇(Λ(u)− 1)2dx

=

∫

Ω

div(v)(Λ(u)− 1)2dx,

and the regularity div v ∈ L1(0, T ;L∞(Ω)) is sufficient to conclude fron Gronwall’s lemma
that Λ(u) = 1. We infer that Λ(ρ) = wΛ(u) = w. We know that w solves 0 = ∂tw −
div(κw∇G(w)) = ∂tw + div(wv) = ẇ + w div v. Then we deduce from

ρ̇i = ẇui + wu̇i = ẇui, i = 1, . . . , N,

and ẇ = −w div v that

ρ̇i = ẇui = −wui div v = −ρi div v,

which is (1) with v = −κ∇G(w) = −κ∇G(Λ(ρ)). The initial condition in (5) is satisfied
since

ρi(0) = w(0)ui(0) = w0u0i = Λ(ρ0)
ρ0i

Λ(ρ0)
= ρ0i in Ω.

This finishes the proof of Theorem 1.

4. Proof of Theorem 2

We show first the following technical approximation property. It is needed to construct
smooth approximations of the velocity field and to identify the weak limit of the density
vector.

Lemma 3. Let the assumptions of Theorem 2 hold. Then there exists a family of functions
(φm)m>0 ⊂ C2(Ω) such that 0 ≤ φm ≤ 1 in Ω, φm(x) = 0 for all x ∈ Ω with dist(x, ∂Ω) <
1/m, φm → 1 locally uniformly in Ω as m → ∞, and satisfying the following property:
For all 0 < δ < 1/2, there exists C(δ) > 0 such that for all g ∈ H1/2+δ(Ω;R3) satisfying
g · ν = 0 on ∂Ω and for any 1 ≤ p < 1/(1− δ),

‖g · ∇φm‖Lp(Ω) ≤ C(δ)‖g‖H1/2+δ(Ω).

Proof. Since ∂Ω consists of surfaces S1, . . . , Sℓ of class C
2, we may assume that the distance

function di(x) := dist(x, Si) for x ∈ Ω, i = 1, . . . , ℓ is also of class C2, i.e. di ∈ C2(Ω). Let
m > 0 and introduce a function h ∈ C2(R+) such that 0 ≤ h ≤ 1 in R+, hm(s) = 1 if s >
2/m, hm(s) = 0 for 0 ≤ s < 1/m, and h′m(s) ≤ 3m for s ∈ R+. Then h′m(s) ≤ 3m ≤ 6/s
for 1/m ≤ s ≤ 2/m and, in fact, for all s ∈ R+ (since h′m = 0 otherwise).
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We define φm(x) :=
∏ℓ

i=1 hm(di(x)). By definition of hm, we have φm(x) = 0 for x ∈
dist(x, ∂Ω) < 1/m. The gradient of φm is given by

∇φm =
ℓ∑

k=1

h′m(dk)∇dk
∏

i 6=k

hm(di).

Using h′m(dk) ≤ 6d−1
k and hm ≤ 1, we find that

(12) |g · ∇φm| ≤ 6
ℓ∑

k=1

d−1
k |g · ∇dk|.

We now estimate the right-hand side. The properties of the distance function imply that
ν(x) = ∇di(x) for x ∈ Si. Moreover, as di ∈ C2(Ω),

‖g · ∇di‖H1/2+δ(Ω) ≤ ‖∇di‖L∞(Ω)‖g‖H1/2+δ(Ω) + ‖D2di‖L∞(Ω)‖g‖L2(Ω)

≤ C‖g‖H1/2+δ(Ω).(13)

The interior trace operator tri : H
1/2+δ(Ω) → Hδ(Si), tri(v) = v|Si

, is bounded, so the
boundary condition g · ν = 0 on Si is valid almost everywhere. This shows that

g · ∇di ∈ H
1/2+δ
Si

(Ω) :=
{
f ∈ H1/2+δ(Ω) : tri f = 0 in Hδ(Si)

}
, i = 1, . . . , ℓ.

Theorem 11.3 in [28, Chapter 1, §11] states that the linear mapping Hs
Si
(Ω) → L2(Ω),

u 7→ d−s
i u, with s = 1/2 + δ is continuous. This property and estimate (13) imply that

(14) ‖d−s
i g · ∇di‖L2(Ω) ≤ C‖g · ∇di‖Hs(Ω) ≤ C‖g‖H1/2+δ(Ω).

Consequently, using (12) and the Hölder inequality, we obtain for 1 ≤ p < 2/(3 − 2s) =
1/(1− δ),

∫

Ω

|g · ∇φm|
pdx ≤ C

ℓ∑

k=1

∫

Ω

d−ps
k |g · ∇dk|

pd
−p(1−s)
k dx

≤ C

ℓ∑

k=1

(∫

Ω

d−2s
k |g · ∇dk|

2dx

)p/2(∫

Ω

d
−2p(1−s)/(2−p)
k dx

)1−p/2

.

It holds that −2p(1−s)/(2−p) > −1 if and only if p < 1/(1−δ), and under this condition,
the last integral is finite. Thus, we infer from (14) that

∫

Ω

|g · ∇φm|
pdx ≤ C(δ)

ℓ∑

k=1

‖d−s
k g · ∇dk‖

p
L2(Ω) ≤ C(δ)‖g‖p

H1/2+δ(Ω)
,

which finishes the proof. �

We formulate (7) as

(15) ∂tw − div(a(w)∇w) = 0 in Ω× (0, T ),

where a(w) := κwG′(w) for w ≥ 0, and we set

(16) W 1
2 (QT ) :=

{
f ∈ L2(0, T ;H1(Ω)) : ∂tf ∈ L2(0, T ;H1(Ω)′)

}
.
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Observe that we may allow for suitable porosity coefficients κ = κ(w) at this point. The
following result shows that problem (7)–(8) is uniquely solvable and that the vector field
v = −κG′(w)∇w has some regularity properties.

Proposition 4 (Existence and regularity for (7)). Under the assumptions of Theorem 2,
problem (7)–(8) has a unique solution w ∈ W 1

2 (QT ) ∩ L∞(0, T ;L∞(Ω)) satisfying (11).
Moreover, v = −κG(w)∇w satisfies the following properties:

• v ∈ L4/3(0, T ;H1(Ω′)) for any domain Ω′ compactly included in Ω;
• v ∈ L2(0, T ;Lq(Ω)) and div v ∈ L2−2/q(QT ) for some 3 < q ≤ 6;
• v · ∇φm → 0 strongly in L1(QT ) as m→ ∞ for (φm) constructed in Lemma 3.

Proof. Step 1: Existence for (7). The existence of weak solutions to (7)–(8) can be shown
by a standard approximation procedure, but since a(w) does not need to be monotone, we
need to be careful and therefore present a sketch of the proof. We introduce the truncated
functions

ak(s) :=





a(k) if s ≥ k,
a(s) if 1/k < s < k,
a(1/k) if 0 ≤ s ≤ 1/k,

where k ∈ N. The functions Bk : R+ → R+, Bk(s) :=
∫ s

0
ak(z)dz, are bi-Lipschitz

transformations. We consider the approximated problem

(17)
1

ak(B
−1
k (u))

∂tu = ∆u, ∇u · ν = 0 on ∂Ω, u(0) = Bk(w
0) in Ω.

If a solution to this problem is given, then wk := B−1
k (u) is a solution to (15) with a

replaced by ak.
Problem (17) can be solved by the Galerkin method. Indeed, let (vi) ⊂ W 1,∞(Ω) be an

orthonormal basis of H1(Ω) and Xn = span{v1, . . . , vn} for n ∈ N. The coefficients αj of
un(x, t) =

∑n
j=1 αj(t)vj(x) solve the system of ordinary differential equations

(18)

n∑

j=1

Aij(α)α
′
j +

n∑

j=1

Mijαj = 0 in (0, T ], αj(0) = α0
n,j,

where we assumed that u0n :=
∑n

j=1 α
0
n,jvj(x) converges to Bk(w

0) in H1(Ω) as n → ∞,

and the matrices (Aij(α)) and (Mij) are given by

Aij(α) =

∫

Ω

vivj

ak(B
−1
k (un))

dx, Mij =

∫

Ω

∇vi · ∇vjdx.

Since the coefficients ak ◦ B
−1
k are bounded from below and above, the properties of (vi)

imply that (Aij(α)) is strictly positive definite. Thus, (18) possesses a global solution
α ∈ C1([0, T ];Rn) for any T > 0.

For the limit n→ ∞, we need some uniform estimates. We multiply (18) by α′
i and sum

over i = 1, . . . , n leading to
∫

Ω

(∂tun)
2

ak(B
−1
k (un))

dx+
1

2

d

dt

∫

Ω

|∇un|
2dx = 0.
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Integration over (0, t) for t ≤ T yields the uniform bounds

‖∂tun‖L2(QT ) ≤ C(k)‖u0n‖H1(Ω), sup
0<t<T

‖∇un(t)‖L2(Ω) ≤ ‖u0n‖H1(Ω).

The first estimate implies a uniform bound for un in L
2(QT ) since un(t) = un(0)+

∫ t

0
∂tunds.

By the Aubin–Lions lemma, there exists a subsequence which is not relabeled such that
un → u strongly in L2(QT ), ∂tun ⇀ ∂tu, ∇un ⇀ ∇u weakly in L2(QT ) as n→ ∞, and the
limit u satisfies

(19)

∫ T

0

∫

Ω

∂tuφ

ak(B
−1
k (u))

dxdt +

∫ T

0

∫

Ω

∇u · ∇φdxdt = 0

for all φ ∈ L2(0, T ;H1(Ω)). Moreover, the initial condition u(0) = Bk(w
0) is fulfilled in

H1(Ω) and the bounds

(20) ‖∂tu‖L2(QT ) ≤ C(k)‖Bk(w
0)‖H1(Ω), sup

0<t<T
‖∇u(t)‖L2(Ω) ≤ ‖Bk(w

0)‖H1(Ω)

hold. The function w := B−1
k (u) ∈ H1(Ω) satisfies the equation

∫ T

0

∫

Ω

∂twφdxdt+

∫ T

0

∫

Ω

ak(w)∇w · ∇φdxdt = 0

for all φ ∈ L2(0, T ;H1(Ω)) and the initial condition w(0) = w0 in H1(Ω). Thus, by the
weak maximum principle, Λ∗ ≤ w ≤ Λ∗ in QT (see (11) for the definition of Λ∗ and Λ∗).
Therefore, there exists k0 ∈ N, depending only on Λ∗ and Λ∗ such that ak0(w) = a(w)
in QT . The function B(s) =

∫ s

0
a(z)dz is identical to Bk0 on the range of w, since ak0 is

identical to a on the range of w. We conclude that u∗ ≤ u ≤ u∗ in QT , where u∗ := B(Λ∗)
and u∗ := B(Λ∗).

Step 2: Regularity. We deduce from the bounds (20) with k = k0 and the lower and upper
bounds for u and w that ∂tw is bounded in L2(QT ) and ∇w is bounded in L∞(0, T ;L2(Ω)).
Furthermore, by choosing k = k0 and the test function φ(x, t) = ζ(t)η(x) in (19), where
ζ(t) approximates the delta distribution at t, we see that u solves

(21)

∫

Ω

∂tuη

a(B−1(u))
dx+

∫

Ω

∇u(t) · ∇ηdx = 0.

Local regularity for elliptic equations [18, Section 8.3, Theorem 8.9] implies that for any
domain Ω′ compactly embedded in Ω, there exists C(Ω′, u∗, u

∗) > 0 such that

(22) ‖D2u(t)‖L2(Ω′) ≤ C(Ω′, u∗, u
∗)‖∂tu(t)‖L2(Ω),

which shows, using (20), that u ∈ L2(0, T ;H2(Ω′)). Applying case (c) of Theorem 1.6 in
[30] with α = 1 therein, there exists ε > 0 depending only on the Lipschitz constant of ∂Ω
such that for all 2/(1− ε) ≤ q < 3/(1− ε), the gradient satisfies the global bound

(23) ‖∇u(t)‖Lq(Ω) ≤ C‖∂tu(t)‖L3q/(3+q)(Ω).

Since 3q/(3 + q) ≤ 2 for q ≤ 6, we deduce that u ∈ L2(0, T ;W 1,q(Ω)).
We know from (20) that |∇u|2 is bounded in L∞(0, T ;L1(Ω)). Moreover, since |∇u| ∈

L2(0, T ;H1
loc(Ω)), the Sobolev embedding theorem yields |∇u| ∈ L2(0, T ;L6

loc(Ω)) (recall
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that the space dimension is three). Interpolation with θ = 3/4 then shows for z = |∇u|2

and any Ω′ compactly embedded in Ω that

(24) ‖z‖
4/3

L4/3(0,T ;L2(Ω′))
≤

∫ T

0

‖v‖
4θ/3

L3(Ω′)‖z‖
4(1−θ)/3

L1(Ω′) dt ≤ ‖z‖
1/3

L∞(0,T ;L1(Ω′))

∫ T

0

‖z‖L3(Ω′)dt

and consequently z = |∇u|2 ∈ L4/3(0, T ;L2
loc(Ω)). In order to show a global bound, we

combine the regularity properties |∇u|2 ∈ L∞(0, T ;L1(Ω)), |∇u|2 ∈ L1(0, T ;Lq/2(Ω)) and
interpolate with r = 2− 2/q and θ = 1/r such that 1/r = (1− θ)/1 + 2θ/q:

‖z‖rLr(QT ) ≤

∫ T

0

‖z‖
r(1−θ)
L1(Ω) ‖z‖

rθ
Lq/2(Ω)dt ≤ ‖z‖

r(1−θ)
L∞(0,T ;L1(Ω))

∫ T

0

‖z‖Lq/2(Ω)dt

and hence, z = |∇u|2 ∈ L2−2/q(QT ).
Finally, we consider v = −κG′(w)∇w. Introducing f(u) := −κG′(B−1(u))(B−1)′(u) and

recalling that w = B−1(u), this means that v = f(u)∇u. The positive lower bound for u
and estimate (23) then show that v ∈ L2(0, T ;Lq(Ω)). It holds that

∇v = f(u)D2u+ f ′(u)∇u⊗∇u, div v = f(u)∆u+ f ′(u)|∇v|2.

Using estimates (22) and (24) and the positive lower bound for u, it follows that |∇v| ∈
L4/3(0, T ;L2

loc(Ω)). Furthermore, ∆u = ∂tu/(a(B
−1(u))) ∈ L2(QT ) and |∇u|2 ∈ L2−2/q(QT )

gives div v ∈ L2−2/q(QT ).
Step 3: Proof of v · ∇φm → 0 strongly in L1(QT ). Proposition 3.7 in [1] shows that for

some δ > 0, it holds that

(25) ‖∇u(t)‖H1/2+δ(Ω) ≤ C(Ω, u∗, u
∗)‖∂tu(t)‖L2(Ω).

It follows that ∇u(t) is defined in L2(∂Ω). Then the weak formulation (21) implies that
u satisfies the Neumann boundary conditions ∇u(t) · ν = 0 in L2(Si) for i = 1, . . . , ℓ.
Recalling that v = f(u)∇u and f(u) is globally bounded in QT , we infer that |v · ∇φm| ≤
‖f(u)‖L∞(QT )|∇u · ∇φm|. Thus, by Lemma 3 and estimate (25), for 1 ≤ p < 1/(1− δ),

‖v · ∇φm‖L2(0,T ;Lp(Ω)) ≤ C(δ)‖f(u)‖L∞(QT )‖∇u‖L2(0,T ;H1/2+δ(Ω))

≤ C(δ)‖f(u)‖L∞(QT )‖∂tu‖L2(QT ) ≤ C.

Again by Lemma 3, we have ∇φm → 0 a.e. in Ω and in view of the previous estimate,
v ·∇φm → 0 a.e. in QT . By dominated convergence, this convergence also holds in L1(QT ).
This finishes the proof. �

The next step is to approximate the velocity v = −κG′(w)∇w by smooth vector fields.

Lemma 5 (Approximation of v). There exists a family of smooth vector fields vε for ε > 0
satisfying vε · ν = 0 on ∂Ω × (0, T ) such that, as ε → 0,

vε → v strongly in L2(QT ), div vε → div v strongly in L1(QT ).

Proof. Let (φm) be the family constructed in Lemma 3 and define ψε := φ2/ε for ε > 0.
Then φε takes values in [0, 1] and ψε(x) = 0 for all x ∈ Ω such that dist(x, ∂Ω) < ε/2.
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Furthermore, let Φ ∈ C∞(B1(0)) satisfy
∫
B1(0)

Φ(z)dz = 1, where B1(0) is the unit ball in

R
3. Then we define

vε(x, t) =

∫

B1(0)

Φ(z)v(x+ εz, t)ψε(x+ εz)dz.

Since ψε → 1 uniformly on every compact subset of Ω as ε → 0, by Lemma 3, we have
vε → v strongly in L2(QT ). Moreover,

div vε(x, t) =

∫

B1(0)

Φ(z) div v(x+ εz, t)ψε(x+ εz)dz

+

∫

B1(0)

Φ(z)v(x+ εz) · ∇ψε(x+ εz)dz.

The first integral converges to div v strongly in L2−2/q(QT ) since ψε ր 1 in Ω, and the
second integral converges to zero strongly in L1(QT ), due to the fact that v · ∇φ2/ε → 0
strongly in L1(QT ) by Lemma 4. �

We also approximate the initial densities: Let ρ0,ε ∈ C1(Ω;RN) for 0 < ε < 1 be
approximations of ρ0 such that

(1− ε) inf
y∈Ω

ρ0i (y) ≤ ρ0,εi (x) ≤ (1 + ε) sup
y∈Ω

ρ0i (y), x ∈ Ω,

ρ0,ε → ρ0 strongly in L2(Ω;RN) as ε → 0.

Furthermore, we use the characteristic curves Φε(s; x, t) associated to vε,

Φ′
ε(s; t, x) = vε(Φ(s; t, x), s) for s ∈ (0, T ), Φ(t; t, x) = x

(see Section 3), to solve

∂tu
ε
i + vε · ∇u

ε
i = 0 in QT , uεi (0) = u0,εi :=

ρ0,εi

Λ(ρ0,ε)
, i = 1, . . . , N.

These equations correspond to (9) but with the velocity v replaced by vε. They can be
solved explicitly in terms of the characteristic curves,

(26) uε(x, t) = u0,ε(Φε(0; t, x)) =
ρ0,ε(Φε(0; t, x))

Λ(ρ0,ε(Φε(0; t, x)))
, (x, t) ∈ QT ,

which shows that uε belongs to C
1(QT ;R

N) and Λ(uε) = 1 in QT . Furthermore, we deduce
from the growth condition in Assumption (A4) that

r0(1− ε)
N∑

i=1

inf
y∈Ω

ρ0i (y) ≤ Λ(ρ0,ε(x)) ≤ r1(1 + ε)
N∑

i=1

sup
y∈Ω

ρ0i (y)

for x ∈ Ω and consequently

(27)
1− ε

r1(1 + ε)

infy∈Ω ρ
0
i (y)∑N

i=1 supy∈Ω ρ
0
i (y)

≤ uεi (x, t) ≤
1 + ε

r0(1− ε)

supy∈Ω ρ
0
i (y)∑N

i=1 infy∈Ω ρ
0
i (y)

for (x, t) ∈ QT .
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Next, we define the approximate densities ρεi := wuεi , where i = 1, . . . , N and w is the
solution to the porous-medium-type equation (7) from Proposition 4. We prove that a
subsequence of ρεi converges to a renormalized solution to the mass continuity equation
(1). For the following result, we recall definition (16) of the space W 1

2 (QT ).

Proposition 6 (Convergence of ρεi ). The family (ρε) ⊂ W 1
2 (QT ;R

N) ∩ L∞(QT ;R
N) is

bounded in L∞(QT ;R
N) and there exists c1 > 0 such that for all 0 < ε < ε0,

inf
(x,t)∈QT

ρεi (x, t) ≥ c1, i = 1, . . . , N.

There exists a subsequence of (ρε) (not relabeled) such that ρε → ρ strongly in L2(QT ;R
N).

The limit ρ = (ρ1, . . . , ρn) satisfies ρ ∈ L∞(QT ;R
N) with ρi ≥ c1 in QT , and ρ is a

renormalized solution to (1), i.e.,

−

∫ T

0

∫

Ω

b(ρ)∂tζdxdt−

∫ T

0

∫

Ω

b(ρ)∇ζ · vdxdt

=

∫

Ω

b(ρ0)ζ(0)dx−

∫ T

0

∫

Ω

(
b′(ρ) · ρ− b(ρ)

)
ζ div vdxdt

is satisfied for all ζ ∈ C1
0 (QT ) and b ∈ C1(RN), where v = −κG′(w)∇w and w is the weak

solution to (7)–(8).

Proof. We know from Proposition 4 that w ∈ W 1
2 (QT ) and from (26) that uε ∈ C1(Ω;RN),

which shows that ρε = wuε ∈ H1(Ω;RN). Moreover, since w satisfies the uniform lower and
upper bounds (11) and uε satisfies the uniform bounds (27), also ρεi is uniformly bounded
from below and above. At time t = 0, we have

(28) ρεi (0) = w0u0,εi = Λ(ρ0)
ρ0,εi

Λ(ρ0,ε)
=: ρ̃0,εi ,

and the strong convergence ρ0,ε → ρ0 in L1(Ω;RN) implies that ρεi (0) → ρ0 strongly in
L1(Ω;RN). As uε solves (26) and w solves ∂tw + div(vw) = 0, it follows that ρεi = wuεi
solves

∂tρ
ε
i + vε · ∇ρεi = w

(
∂tu

ε
i + vε · ∇uεi

)
+ uεi

(
∂tw + vε · ∇w

)

= uεi
(
∂tw + (vε − v) · ∇w + div(vw)− w div v

)

= uεi (v
ε − v) · ∇w − uεiw div v = uεi div((v

ε − v)w)− uεiw div vε

= uεi div((v
ε − v)w)− ρεi div v

ε.

In view of the regularity w ∈ W 1
2 (QT ), u

ε ∈ C1(QT ;R
N), and v ∈ L4/3(0, T ;H1

loc(Ω)) (see
Proposition 4), these calculations make sense a.e. in Ω′ × (0, T ) for domains Ω′ compactly
embedded in Ω. We infer that

∂tρ
ε
i + div(ρεiv

ε) = rεi := uεi div((v
ε − v)w).
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Using ψ ∈ C1
0(Ω× [0, T );RN) as a test function and integrating by parts, we see that

−

∫ T

0

∫

Ω

ρε · ∂tψdxdt−

∫ T

0

∫

Ω

(ρε)⊤∇ψvεdxdt

=

∫

Ω

ρ̃0,ε(x) · ψ(x, 0)dx+

∫ T

0

∫

Ω

rε · ψdxdt,(29)

where ρ̃0,εi is defined in (28). We wish to pass to the limit ε → 0. We deduce from Hölder’s
inequality and Lemma 5 that

‖rε‖L1(QT ) = ‖ρε div(vε − v) + uε(vε − v) · ∇w‖L1(QT )

≤ ‖ρε‖L∞(QT )‖ div(v
ε − v)‖L1(QT ) + ‖uε‖L∞(QT )‖v

ε − v‖L2(QT )‖∇w‖L2(QT )

→ 0 as ε→ 0.

Since (ρε) is uniformly bounded in L∞(QT ), there exists a subsequence of (ρε) which is not
relabeled such that ρε ⇀∗ ρ weakly* in L∞(0, T ;L∞(Ω)) and ρ ∈ L∞(QT ) satisfies ρi ≥ c1
in QT , i = 1, . . . , N . Thus, taking into account the convergence in Lemma 5, ρεiv

ε
j ⇀ ρivj

weakly in L2(QT ). In view of ρεi (0) → ρ0 strongly in L2(Ω;RN), the limit ε → 0 in (29)
leads to

(30) −

∫ T

0

∫

Ω

ρ · ∂tψdxdt−

∫ T

0

∫

Ω

ρ⊤∇ψvdxdt =

∫

Ω

ρ0(x) · ψ(x, 0)dx

for all ψ ∈ C1
0 (Ω× [0, T );RN), recalling that v = −κG′(w)∇w.

It remains to show that Λ(ρ) = w. To this end, we rely on techniques of renormalization
for the continuity equation. Let Ω′ be compactly embedded in Ω and let φm be the function
constructed in Lemma 3 satisfying φm = 1 in Ω′. (This is possible since φm → 1 locally
uniformly in Ω asm→ 0.) The function ρ̃ := ρφm is nonnegative and compactly supported
in Ω× [0, T ]. Replacing ψ by ψφm in (30) yields

−

∫ T

0

∫

Ω

ρ̃ · ∂tψdxdt−

∫ T

0

∫

Ω

ρ̃⊤∇ψvdxdt

=

∫

Ω

ρ0(x)φm(x) · ψ(x, 0)dx+

∫ T

0

∫

Ω

(ρ · ψ)(v · ∇φm)dxdt.

This is the weak formulation of

∂tρ̃+ div(ρ̃v) = ρ(v · ∇φm) in D′(QT ).

In view of the regularity ρ̃ ∈ L∞(QT ), v ∈ L4/3(0, T ;H1
loc(Ω)), and ρ(v · ∇φm) ∈ L4/3(0, T ;

L2
loc(Ω)), we can apply the theory of renormalized solutions to the continuity equation (see,

e.g., [14, Theorem 10.29]) to conclude that

∂tb(ρ̃) + div(b(ρ̃)v) +
(
b′(ρ̃) · ρ̃− b(ρ̃)

)
div v = (ρ · b′(ρ̃))(v · ∇φm) in D′(QT )
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for any b ∈ C1(RN
+,0) ∩W

1,∞(RN
+ ). Using the regularity div v ∈ L2−2/q(QT ) for 3 < q ≤ 6

proved in Proposition 4, we can formulate this identity in the weak form

−

∫ T

0

∫

Ω

b(ρφm)∂tζdxdt−

∫ T

0

∫

Ω

b(ρφm)v · ∇ζdxdt

=

∫

Ω

b(ρ0(x)φm(x))ζ(x, 0)dx−

∫ T

0

∫

Ω

(
b′(ρφm) · ρφm − b(ρφm)

)
(div v)ζdxdt

+

∫ T

0

∫

Ω

ρ · b′(ρ̃)(v · ∇φm)ζdxdt(31)

for all ζ ∈ C1(QT ) such that ζ(T ) = 0. We know that φm → 1 locally uniformly in Ω
as m → ∞, by Lemma 3, and v · ∇φm → 0 strongly in L1(QT ), by Proposition 4. Thus,
passing to the limit m→ ∞ in (31), we obtain

−

∫ T

0

∫

Ω

b(ρ)∂tζdxdt−

∫ T

0

∫

Ω

b(ρ)v · ∇ζdxdt

=

∫

Ω

b(ρ0(x))ζ(x, 0)dx−

∫ T

0

∫

Ω

(
b′(ρ) · ρ− b(ρ)

)
(div v)ζdxdt.(32)

Finally, we verify that ρ is in fact a weak solution. For this, we need to prove that
w = Λ(ρ). Since Λ is continuously differentiable and the range of ρ is contained in a
compact subset of RN

+ , we can choose a C1 function b which is equal to Λ on this range.
Thus, b = Λ is admissible in (32). Then we deduce from the positive homogeneity of Λ,
i.e. Λ′(ρ) · ρ− Λ(ρ) = 0, that

−

∫ T

0

∫

Ω

Λ(ρ)∂tζdxdt−

∫ T

0

∫

Ω

Λ(ρ)v · ∇ζdxdt =

∫

Ω

Λ(ρ0(x))ζ(x, 0)dx

for all ζ ∈ C1(QT ) such that ζ(T ) = 0. The function w is a solution to (7), so z := w−Λ(ρ)
satisfies

−

∫ T

0

∫

Ω

z∂tζdxdt−

∫ T

0

∫

Ω

zv · ∇ζdxdt =

∫ T

0

∫

Ω

z(x, 0)ζ(x, 0)dx = 0.

This means that ∂tz + div(zv) = 0 in D′(QT ), z(0) = 0 in Ω. Applying renormalization
theory again, we see that z = 0 in QT . Hence, w = Λ(ρ), and ρ is a weak solution to
(1). �

5. Extensions and open problems

In this paper, we have deliberately kept the technicality rather low to highlight the key
ideas. In this section, we briefly point out some direct extensions of our results as well as
some open problems.
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5.1. Reaction terms. Let us consider the mass balance equation (1) with nonvanishing
right-hand sides ri = ri(ρ) for i = 1, . . . , N , modelling some bulk source of mass, possibly
from chemical reactions. Under suitable technical restrictions on the data, we expect the
existence and uniqueness of a classical solution as in Theorem 1. We briefly sketch the
arguments.

For the variables w := Λ(ρ) and u := ρ/Λ(ρ) introduced in Section 1.3, we define

(33) f(w, u) := r(wu) · Λ′(u), gi(w, u) :=
1

w
(ri(wu)− uif(w, u)), i = 1, . . . , N.

Equations (7) for w and (9) for u change to

∂tw − div(κ(w)wG′(w)∇w) = f(w, u) in QT ,(34)

u̇i = gi(w, u) in QT , i = 1, . . . , N,(35)

where u̇ = ∂tu+ v · ∇u denotes the material derivative with velocity v = −κ(w)∇G(w).
As exposed in our key ideas, the main ingredient to prove the well-posedness of such

systems is the maximum principle for (34). We will not discuss all possible growth con-
ditions needed for Λ, κ, G and r such that the weak maximum principle in (34) is valid.
Instead, we only discuss the example of a sufficiently smooth field r ∈ C1(RN

+,0) under the
following assumptions:

(A5) There exist 0 < w∗ < w∗ < +∞ such for all u ∈ R
N
+ satisfying Λ(u) ≤ 1, we have

f(w, u) ≥ 0 for all w ≤ w∗ and f(w, u) ≤ 0 for all w ≥ w∗;
(A6) The modified functions g̃i(w, u) := (1/w)(ri(wu)−uif(wu)/Λ(u)) are quasi-positive

for i = 1, . . . , N , i.e., for all w ∈ R
N
+ , we have g̃i(w, u) ≥ 0 whenever ui = 0.

We claim that under Assumptions (A1)–(A6), there exist classical solutions to (34), (35)
with initial and boundary conditions (8) and (9). We use a fixed-point argument. For this,
let ū ∈ L∞(QT ;R

N
+,0) be given such that Λ(ū) ≤ 1. Then there exists a weak solution w to

∂tw − div(κ(w)wG′(w)∇w) = f(w, ū) in QT ,

∇w · ν = 0 on ∂Ω, t > 0, w(0) = w0 in Ω.

Using the test functions (w − w∗)+ = max{0, w − w∗} and (w − w∗)
− = min{0, w − w∗},

Assumption (A5) yields lower and upper bounds for w. The Lipschitz continuity of f
allows us to conclude the uniqueness of the solution.

Next, we use parabolic regularity for quasilinear equations to derive an intermediate
bound for ∇w. For Neumann problems, the global gradient bound for ∇w in L∞(QT ) is
proved, for instance, in [27, Chapter XIII, Section 2.2]. This bound only requires an L∞

bound on the source term f(w, ū) in QT . Using Assumption (A4) on Λ and the bounds
r0|ū| ≤ Λ(ū) ≤ 1, the source term can be estimated in L∞ independently on ū (and, of
course, independently of w).

Arguing like in [3], we invoke linear parabolic theory: We obtain the Hölder continuity
of w [24, Chapter V, Theorem 7.1] and, for every 1 ≤ p <∞, the estimates

‖w‖W 2,1
p (QT

≤ C
(
‖w0‖W 2−2/p,p(Ω) + ‖f(w, ū)‖Lp(QT )

)
,
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whereW 2,1
p (QT ) = Lp(0, T ;W 2,p(Ω))∩W 1,p(0, T ;Lp(Ω)) [24, Chapter 5, §9]. In three space

dimensions, the embedding properties of W 2,1
p (QT ) yield a bound for ∇w in Cβ,β/2(QT )

with β = 1− 5/p > 0 for p > 5.
Now, we can introduce the fractions. It is possible to solve globally the characteristic

differential equations

Φ′(s; t, x) = v(Φ(s; t, x), s), s ∈ (0, T ), Φ(t; t, x) = x.

For all s ∈ [0, T ], the map (x, t) 7→ Φ(s; x, t) belongs to C1+β,1+β/2(QT ). Since the map
u 7→ g̃i(w, u) is Lipschitz continuous, we can solve the ODEs

(36) u̇i = g̃i(w, u), t > 0, i = 1, . . . , N.

Thanks to Assumption (A6), the solutions ui remain globally positive. The definition of g̃
in Assumption (A6) implies that

N∑

i=1

g̃i(w, u)
∂Λ

∂ρi
(u) =

1

w

( N∑

i=1

ri(wu)
∂Λ

∂ρi
(u)−

Λ(u)

Λ(u)
f(w, u)

)
= 0.

Thus, the solutions to (36) satisfy Λ̇(u) =
∑N

i=1 u̇i∂Λ/∂ρi = 0, and Λ(u) = 1 is conserved.
It is readily seen that ū 7→ u maps the set M := {u ∈ L∞(QT ;R

N) : 0 ≤ u, Λ(u) ≤ 1}
into itself. Moreover, the solution formula for (36),

u(x, t) = u0(Φ(0; x, t)) +

∫ t

0

g̃
(
w(Φ(s; x, t), s), u(Φ(s; x, t), s)

)
ds,

can be used to prove a bound for u in C1(QT ). Thus, ū 7→ u is compact in L∞(QT ), and
the Schauder fixed-point theorem gives the existence of a fixed point.

This argument can be extended to weak solutions and to more general assumptions than
(A5)–(A6), but we leave the details to the reader.

5.2. External forces. A second problem is the presence of external forces in (2). In the
simplest case, the flow is subject to gravity, yielding

(37) v = κ(−∇p+ ρtot~g), ρtot =

N∑

i=1

ρi,

where ρtot is the total mass density and ~g is the constant vector of earth gravitational
acceleration. In terms of the variables w and u, we find that ρtot = w

∑N
i=1 ui. After the

change of variables, equation (7) for w := Λ(ρ) becomes

(38) ∂tw − div

(
κw

(
G′(w)∇w −

N∑

i=1

uiw~g

))
= 0 in QT .

The presence of the contribution
∑N

i=1 ui in the flux prevents the higher regularity of w. We
therefore expect that the extension to the case of nontrivial external forces is a challenging
open problem.



FLUID MIXTURES DRIVEN BY A PRESSURE GRADIENT 19

However, if the sum of initial fractions is constant,
∑N

i=1 ρ
0
i /Λ(ρ

0) = C0 in Ω for some
C0 > 0, and if the fractions are simply transported, we may replace (38) by ∂tw −
div(κw(G′(w)∇w − C0w~g)) = 0, yielding a problem which can be treated by the previous
arguments.

5.3. Other boundary conditions. The last problem that we would like to discuss is the
choice of boundary conditions. Instead of (5), we might impose the Dirichlet condition
p = p0 on ∂Ω × (0, T ), where p0 is a given function. This type of pressure boundary
condition corresponds to a free in-outflow problem. For instance, we can think of the
domain Ω as a fixed control region in a larger environment occupied by the fluid.

In formulating this problem, we realize that equations (1) are not well posed on Ω. In
the absence of the impermeability condition (5), the trajectories of the characteristics are
clearly not confined to Ω. In order to solve this kind of boundary-value problems, we need
a representation of the flow outside of Ω. Mathematically, we need an extension operator
E which, for each velocity field given on ∂Ω, provides its extension E(v) to a larger region

Ω̃. Moreover, as the trajectories are not confined to Ω, the initial state needs to be known

in the larger region Ω̃.
The strategy to solve the free flow problem is again to solve the equations

(39) ∂tw − div(κwG′(w)∇w) = 0 in QT , w = G−1(p0) on ∂Ω, t > 0,

with initial conditions w(0) = w0 in Ω. We solve the differential equations for the character-

istics in the larger domain Ω̃× (0, T ) with the extended velocity field v = E(−κG′(w)∇w).
Since the flow is confined to a bounded region, it is natural to assume that E(v) possesses

compact support, i.e., it vanishes uniformly outside of the domain Ω̃.
Then, we transport the fractions via u(x, t) = u0(Φ(0; x, t)) for x ∈ Ω̃ and t > 0.

It is readily verified that ρi(x, t) := (wui)(x, t) solves ∂tρi + div(ρiv) = 0 in QT and
ρi(0, x) = ρ0i (x) for x ∈ Ω.

We will discuss these ideas in more detail in an upcoming publication devoted to the
optimal control of this type of flow problems.
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[7] J. A. Carrillo, F. Santambrogio, and M. Schmidtchen. Splitting schemes and segregation in reaction
cross-diffusion systems. SIAM J. Math. Anal. 50 (2018), 5695–5718.
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