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Abstract. Maximum bound principle (MBP) is an important property for a large class of
semilinear parabolic equations, in the sense that the time-dependent solution of the equation with
appropriate initial and boundary conditions and nonlinear operator preserves for all time a uniform
pointwise bound in absolute value. It has been a challenging problem on how to design uncondition-
ally MBP-preserving high-order accurate time-stepping schemes for these equations. In this paper,
we combine the integrating factor Runge-Kutta (IFRK) method with the linear stabilization tech-
nique to develop a stabilized IFRK (sIFRK) method, and successfully derive sufficient conditions for
the proposed method to preserve MBP unconditionally in the discrete setting. We then elaborate
some sIFRK schemes with up to the third-order accuracy, which are proven to be unconditionally
MBP-preserving by verifying these conditions. In addition, it is shown that many classic strong
stability-preserving sIFRK schemes do not satisfy these conditions except the first-order one. Ex-
tensive numerical experiments are also carried out to demonstrate the performance of the proposed
method.

Key words. Semilinear parabolic equation, maximum bound principle, integrating factor
Runge-Kutta method, stabilization, high-order method

AMS subject classifications. 35B50, 35K55, 65M12, 65R20

1. Introduction. Let us consider a class of semilinear parabolic equations of
the form

ut = Lu+ f [u], t > 0, x ∈ Ω,(1.1)

where u = u(t,x) is the time-dependent quantity of interest defined on an open,
connected and bounded region Ω ⊂ Rd with Lipschitz boundary ∂Ω, L is a linear,
local (classic) or nonlocal, elliptic operator, and f represents a nonlinear operator. For
some specific L and f , the solution to (1.1) under appropriate initial and boundary
conditions satisfies some important properties, such as existence of invariant sets and
energy dissipation. The existence of invariant sets also means that the solution satisfies
the maximum bound principle (MBP) [10] in the sense that if the initial data and/or
the boundary value are pointwisely bounded by some specific constant in absolute
value, then the absolute value of the solution is also bounded by the same constant
everywhere for all time. A well-known case is the classic Allen-Cahn equation [1, 14]
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with L given by the Laplace operator and f [u] = u− u3 in (1.1), where the constant
bounding the solution is 1. In addition to the MBP, the Allen-Cahn equation also
satisfies the energy dissipation, namely, the solution decreases some free energy in
time. The energy dissipation is a common property shared by phase-field models,
which are typical cases of the semilinear parabolic equations (1.1) derived as the
gradient flows with respect to some specific free energy functional. When designing
numerical schemes for phase-field models, the MBP and the energy dissipation are
desired to be preserved in the discrete setting for the equations possessing these two
properties.

The MBP becomes an indispensable tool to study physical features of semilin-
ear parabolic equations, including the aspects of mathematical analysis and numerical
simulation. During the past several decades, there have been many researches devoted
to MBP-preserving numerical methods for equations like (1.1). For the spatial dis-
cretizations, a partial list includes the works for finite element method [3, 6, 43, 44, 46],
finite difference method [4, 5, 42], and finite volume method [33, 34]. For the tempo-
ral discretizations, the stabilized linear semi-implicit methods were shown to preserve
the MBP unconditionally for the first-order schemes [37, 41] but only conditionally
for the second-order methods [21]. Some nonlinear second-order schemes were also
presented to preserve conditionally the MBP for the Allen-Cahn type equations in
[22, 23]. The exponential time differencing (ETD) method [2, 7, 20] was applied to
the nonlocal Allen-Cahn equation together with a linear stabilization technique and
the corresponding first- and second-order ETD schemes were proved to be uncondi-
tionally MBP-preserving in [9]. Later, an abstract framework on the MBP-preserving
ETD schemes with linear stabilization was established in [10] for a wide range of semi-
linear parabolic equations. The ETD method comes from the variation-of-constants
formula with the nonlinear terms approximated by polynomial interpolations, followed
by exact integration of the resulting integrals involving matrix exponentials. The sta-
bilized ETD method is efficient and accurate for semilinear parabolic equations with
stiff linear and nonlinear terms, and thus has been successfully applied to various
phase-field models recently (see e.g., [27, 28, 29, 47]). However, as shown in [10], the
existing MBP-preserving ETD schemes are only up to second order in time, while
higher-order ETD schemes with stabilization fail to preserve the MBP. Therefore, it
is highly desirable to find an alternative choice to develop higher-order time-stepping
schemes which preserve the MBP unconditionally.

The integrating factor (IF) method is another widely-used temporal integration
method based on the exponential integrators and proposed to solve the ordinary
differential equations with large Lipschitz constants [30]. Different from the ETD
method, the IF method is derived by directly applying numerical quadratures to the
integrals in the variation-of-constants formula, and has been also successfully used for
many scientific applications [20, 31, 32]. In [25], the strong stability-preserving (SSP)
integrating factor Runge-Kutta (IFRK) method is proposed for solving (1.1), where
the concept of SSP [18] means that

‖un+1‖ ≤ ‖un‖,

if the nonlinear operator f satisfies

(1.2) ‖un + τf [un]‖ ≤ ‖un‖, ∀ τ ∈ [0, τFE ],

for some τFE > 0 and the linear operator L satisfies

(1.3) ‖eτL‖ ≤ 1, ∀ τ ≥ 0.
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It is observed that the restriction on the time-step size of IFRK methods to be SSP
only comes from the nonlinear term while the restrictions from both linear and non-
linear parts must be enforced for the standard RK method. This implies that the
IFRK method can be more efficient than the standard RK method, especially in the
case that the linear part of the equation (1.1) is highly stiff.

An initial exploration of high-order MBP-preserving schemes based on the IFRK
method was recently made in [26]. Resorting to the SSP property or similarly the total
variation bounded (TVB) property [17, 24], several MBP-preserving IFRK schemes
up to the fourth-order accuracy were presented under the appropriate variants of (1.2)
and (1.3). However, all these schemes still need certain constraints on the time-step
size, which comes from (1.2). In this paper, we would like to completely remove the
constraints on the time-step size and develop unconditionally MBP-preserving IFRK
schemes. To this end, one of the key ingredient is the application of the linear stabi-
lization technique. The stabilization was first introduced in [45] in order to improve
the energy stability of the linear semi-implicit Euler scheme for the phase-field model.
The main idea is to add and subtract a linear term κu in the original equation, where
κ ≥ 0 is a stabilizing constant, and to make the linear part, combined with the term
κu, dominates the nonlinear part by choosing the value of κ appropriately. As a result,
the stability is improved without sacrificing the linearity of the original semi-implicit
scheme. Apart from the applications of the stabilization technique mentioned in the
previous paragraphs, there has been a large amount of literature on the stabilized
numerical schemes for phase-field models, see [15, 38] and the references therein.

The main contribution of our work in this paper is to develop a family of stabilized
IFRK (sIFRK) time-stepping schemes for the semilinear parabolic equation (1.1) with
unconditional preservation of the MBP. In particular, we derive sufficient conditions
for the sIFRK method to preserve the MBP without any constraint on the time-
step size, and present some examples of such sIFRK method with up to third-order
accuracy in time. In addition, we also show that the stabilized versions of many
classic SSP-IFRK schemes developed in [25] do not satisfy these conditions except
the first-order one.

The rest of the paper is organized as follows. In Section 2, we briefly review
the abstract framework developed in [10] for semilinear parabolic equations, includ-
ing the formulation of an equivalent form of (1.1) with linear stabilization and the
conditions on the linear and nonlinear operators in order to possess the MBP. In
Section 3, we propose the sIFRK method in the general Butcher form and derive
the sufficient conditions such that the method can preserve the MBP unconditionally.
Convergence analysis of the sIFRK method is then provided, as well as energy bound-
edness. In addition, we also investigate the SSP-sIFRK method and the corresponding
sufficient condition for unconditional MBP preservation. Some unconditionally MBP-
preserving sIFRK schemes with respectively first-, second-, and third-order temporal
accuracies are then presented and discussed in detail in Section 4. In Section 5, var-
ious numerical experiments, including 2D and 3D cases, are performed to verify the
convergence and the unconditional MBP preservation of the proposed method. Some
concluding remarks are finally given in Section 6.

2. Overview on maximum bound principle. In this section, we give a brief
review of the abstract framework established in [10] for analysis of the maximum
bound principle (MBP) of semilinear parabolic equations with the form of (1.1). The
basic assumptions for the operators will be given along with the main results while
all details will be omitted.
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For simplicity, let us consider the semilinear parabolic equation (1.1) with L :
C2(Ω) → C(Ω) being the Laplace operator (or a second-order elliptic differential
operator [13]), subject to the initial condition

(2.1) u(0,x) = u0(x), x ∈ Ω

and the homogeneous Neumann or the periodic boundary condition (only for a rect-

angular domain Ω =
∏d
i=1(ai, bi)) on ∂Ω. It is well-known from classic analysis [12]

that the operator L generates a contraction semigroup {SL(t)}t≥0 with respect to
the supremum norm on the subspace of C(Ω) that satisfies such boundary condition.
Next we make the following assumption on the operator f .

Assumption 1. The nonlinear operator f acts as a composite function induced
by a given one-variable continuously differentiable function f0 : R→ R, i.e.,

f [w](x) = f0(w(x)), ∀w ∈ C(Ω), ∀x ∈ Ω,(2.2)

and there exists a constant γ > 0 such that f0(γ) ≤ 0 ≤ f0(−γ).
Then we have the following result on the MBP for the semilinear parabolic equa-

tion (1.1).
Theorem 2.1. [10] Let T > 0 be a constant. Under Assumptions 1, if ‖u0‖C(Ω) ≤

γ, then the equation (1.1) subject to the homogeneous Neumann or periodic boundary
condition has a unique solution u ∈ C([0, T ] × Ω) and it satisfies ‖u(t)‖C(Ω) ≤ γ for

all t ∈ [0, T ].
The continuity of a function defined on a set D ⊂ Rd is defined as follows [36]:

w is continuous at x∗ ∈ D ⇐⇒ ∀xk → x∗ in D implies w(xk)→ w(x∗).

Then under the same analysis framework, the MBP of Theorem 2.1 can be further
extended to the case of finite dimensional operators in space [10], such as discrete
approximations of L, denoted by Lh, in which the domain of a function is the set of all
spatial grid points (boundary and interior points), denoted by X. The corresponding
space-discrete equation of (1.1) with Lh becomes an ordinary differential equation
(ODE) system taking the same form:

ut = Lhu+ f [u], t > 0, x ∈ X∗(2.3)

with u(0,x) = u0(x) for any x ∈ X, where X∗ = X for the homogeneous Neumann

boundary condition and X∗ = X ∩ Ω+ with Ω+ =
∏d
i=1(ai, bi] for the periodic one.

We further assume that the discrete operator Lh satisfies the following assumption.
Assumption 2. For any w ∈ C(X) and x0 ∈ X∗, if

w(x0) = max
x∈X

w(x),

then Lhw(x0) ≤ 0.
The continuous analogue of Assumption 2 is obviously satisfied by the second-

order elliptic differential operator L. Assumption 2 guarantees that Lh generates
a contraction semigroup {SLh(t)}t≥0 on the subspace of C(X) satisfying the homo-
geneous Neumann (or periodic) boundary condition. It is easy to verify that such
assumption holds for the discrete approximation of L by the classic central difference
or mass-lumping finite element method. Note that in these cases, Lh can be simply
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regarded as a square matrix and SLh(t) = etL
h

as a matrix exponential. If both As-
sumptions 1 and 2 hold, then the space-discrete problem of (2.3) has a unique solution
u ∈ C([0, T ];C(X)) satisfying the MBP [10].

Remark 1. As studied in [10], the linear operator L in (1.1) could be similarly
generalized to the nonlocal diffusion operator [8] and the fractional Laplace operator
[16], and the results of Theorem 2.1 still hold. Due to the nonlocality of these two
operators, the corresponding boundary conditions are now volume constraints. For the
nonlocal diffusion operator, the boundary condition is usually imposed on Ωc, a closed
and bounded set surrounding Ω with ∂Ω ⊂ Ωc; for the fractional Laplace operator, the
boundary condition is imposed on Rd \ Ω.

Let us introduce an artificial stabilizing constant κ > 0. The space-discrete
equation (2.3) can be rewritten in the equivalent form

(2.4) ut = Lhκu+N [u],

where Lhκ = Lh − κI and N = κI + f . According to (2.2) in Assumption 1, we know

N [w](x) = N0(w(x)), ∀w ∈ C(Ω), ∀x ∈ Ω,

where N0(ξ) = κξ + f0(ξ) for ξ ∈ R. The stabilizing constant κ is required to satisfy

κ ≥ max
|ξ|≤γ

|f ′0(ξ)|,(2.5)

which always can be reached since f0 is continuously differentiable. Then, the follow-
ing lemma can be proved.

Lemma 2.2. [10] Under Assumption 1 and the requirement (2.5), it holds that
(i) |N0(ξ)| ≤ κγ for any ξ ∈ [−γ, γ];

(ii) |N0(ξ1)−N0(ξ2)| ≤ 2κ|ξ1 − ξ2| for any ξ1, ξ2 ∈ [−γ, γ].
This lemma plays an important role on the MBP analysis of time integrations of

the equation (1.1) and its space-discrete system (2.3). It was shown in [9, 10] that,
when applied to the equivalent equation (2.4) instead of the original one (2.3), the first-
and second-order exponential time differencing (ETD) schemes, ETD1 and ETDRK2
[7, 47], satisfy the discrete MBP without any restriction on the time-step size. The
resulting schemes are called stabilized ETD schemes for solving the equation (1.1).
However, such a result cannot be generalized to higher-order (order greater than two)
ETD schemes [10].

3. Unconditionally MBP-preserving stabilized IFRK methods. From
now on, we suppose all assumptions stated in the previous section hold, and focus our
discussions on time-stepping schemes of the space-discrete system (2.3).

3.1. Stabilized IFRK schemes and unconditional MBP preservation.

Multiplying both sides of (2.4) by e−tL
h
κ (as exponential integrating factor), we have

e−tL
h
κ(ut − Lhκu) = e−tL

h
κN [u],

and thus

(e−tL
h
κu)t = e−tL

h
κN [u].

A transformation of variable w = e−tL
h
κu gives us the system

wt = e−tL
h
κN [etL

h
κw] =: G(t, w),
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which is then evolved forward in time from tn to tn+1 using the standard explicit
s-stage Runge-Kutta (RK) method [19] (s is a positive integer), that is,

w(0) = wn,(3.1a)

w(i) = wn + τ

i−1∑
j=0

aijG(tn + cjτ, w
(j)), 1 ≤ i ≤ s,(3.1b)

wn+1 = w(s),(3.1c)

where τ = tn+1 − tn is the uniform time-step size,

(3.2) aij ≥ 0, 1 ≤ i ≤ s, 0 ≤ j ≤ i− 1,

and

(3.3) c0 = 0, ci =

i−1∑
j=0

aij , 1 ≤ i ≤ s.

For the sake of consistency, we also require that cs = 1 [19]. Then, transforming the
variable w back to u yields

u(0) = un,(3.4a)

u(i) = eciτL
h
κun + τ

i−1∑
j=0

aije
(ci−cj)τLhκN [u(j)], 1 ≤ i ≤ s,(3.4b)

un+1 = u(s).(3.4c)

The scheme (3.4) with the constraints (3.2) and (3.3) is called the stabilized integrating
factor Runge-Kutta (sIFRK) method for solving the space-discrete system (2.3) of the
equation (1.1), in response to the standard IFRK method (i.e., (3.4) with Lhκ = Lh).

Remark 2. Note that the coefficients {aij} and {ci} in (3.4) have slightly dif-
ferent meanings from the usual Butcher table (see, e.g., [19]). The formula (3.1)
expresses the RK method in a unified form for each stage, including the last one for
wn+1, and the classic Butcher table corresponding to (3.1) takes the following repre-
sentation:

(3.5)

c0 0 0 0 · · · 0 0
c1 a10 0 0 · · · 0 0
c2 a20 a21 0 · · · 0 0
...

...
...

...
. . .

...
...

cs−2 as−2,0 as−2,1 as−2,2 · · · 0 0
cs−1 as−1,0 as−1,1 as−1,2 · · · as−1,s−2 0
cs as0 as1 as2 · · · as,s−2 as,s−1

We still call (3.4) the Butcher form of the sIFRK method.
Now, we investigate the MBP preservation of the sIFRK method (3.4). To this

end, we use the notation ‖ · ‖ to represent the vector ∞-norm, and then define the

induced matrix∞-norm as ‖eτLh‖ = sup
‖w‖=1

‖eτLhw‖. Since {eτLh}τ≥0 is a contraction

semigroup, which means ‖eτLh‖ ≤ 1 for any τ ≥ 0, and thus,

(3.6) ‖eτL
h
κ‖ ≤ e−κτ , ∀ τ ≥ 0.
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In the following, we present our main result on sufficient conditions for the sIFRK
method (3.4) in the Butcher form to be unconditionally MBP-preserving.

Theorem 3.1. Suppose that the Butcher table (3.5) of the sIFRK method satisfies
(i) the property of nondecreasing abscissas, i.e., 0 = c0 ≤ c1 ≤ c2 ≤ · · · ≤ cs = 1;

(ii) for i = 1, 2, . . . , s, the function gi(x) := e−cix + x
∑i−1
j=0 aije

−(ci−cj)x is non-
increasing on [0,∞).

Then, if ‖un‖ ≤ γ, the solution un+1 obtained from (3.4) always satisfies ‖un+1‖ ≤ γ
for any τ > 0.

Proof. By using the condition (i) and the inequality (3.6), it is easy to show that,
for each i in (3.4b), we have

‖u(i)‖ ≤ ‖eciτL
h
κ‖‖un‖+ τ

i−1∑
j=0

aij‖e(ci−cj)τLhκ‖‖N [u(j)]‖

≤ e−ciκτ‖un‖+ τ

i−1∑
j=0

aije
−(ci−cj)κτ‖N [u(j)]‖.(3.7)

Let us assume ‖u(j)‖ ≤ γ for all j ≤ i− 1. Then, we can derive from Lemma 2.2 and
(3.7) that

‖u(i)‖ ≤ e−ciκτγ + τ

i−1∑
j=0

aije
−(ci−cj)κτκγ = gi(κτ)γ.(3.8)

Based on the condition (ii), we have gi(κτ) ≤ gi(0) = 1, and consequently we have
‖u(i)‖ ≤ γ from (3.8). By induction, we obtain ‖u(i)‖ ≤ γ for i = 1, 2, . . . , s, and thus,
‖un+1‖ ≤ γ.

Remark 3. It is observed from the proof that, under the conditions of Theorem
3.1, if ‖un‖ ≤ γ, then all internal stages of the sIFRK method are also bounded in the
norm by γ, that is, ‖u(i)‖ ≤ γ for 1 ≤ i ≤ s. Actually, this bound could be sharper,
for example, ‖un+1‖ is actually bounded by gs(κτ)γ instead of γ.

Later in Section 4, we will present some examples of unconditionally MBP-
preserving sIFRK schemes up to the third-order temporal accuracy by verifying the
conditions (i) and (ii) in Theorem 3.1.

3.2. Convergence analysis and energy stability. In the theory of numerical
ODEs, the RK method (3.1) is often called an s-stage, pth-order method if the Butcher
table (3.5) satisfies some appropriate order conditions in the truncation error, see, e.g.,
[19]. For simplicity, instead of introducing these order conditions, we assume that the
RK method (3.1) with coefficients (3.5) possesses the accuracy of order p. Based on
this assumption, we now present the error estimates of the sIFRK method (3.4).

Theorem 3.2. For a fixed T > 0, assume that the function f0 in (2.2) is p-times
continuously differentiable on [−γ, γ] and the exact solution u(t) of the space-discrete
equation (2.3) with the initial data u0 is sufficiently smooth in [0, T ]. Let {un} be the
sequence generated by the sIFRK method (3.4) for (2.3) with u0 = u0. Under the
conditions of Theorem 3.1, if ‖u0‖ ≤ γ, then we have, for any τ > 0,

‖u(tn)− un‖ ≤ C(e2κstn − 1)τp,

where the constant C > 0 is independent of τ .
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Proof. Following [11], we introduce the reference functions Ui for 0 ≤ i ≤ s, with
U0 = u(tn) and Us = u(tn+1), determined by

Ui = eciτL
h
κu(tn) + τ

i−1∑
j=0

aije
(ci−cj)τLhκN [Uj ] +Ri, 1 ≤ i ≤ s,(3.9)

where Ri is the truncation error satisfying

R0 = R1 = · · · = Rs−1 = 0, ‖Rs‖ ≤ Csτp+1,

where the constant Cs > 0 depends on the Cp[0, T ]-norm of u, the Cp[−γ, γ]-norm of
f0, p, and κ, but is independent of τ .

Define en = u(tn) − un and ei = Ui − u(i) for 0 ≤ i ≤ s, then e0 = en and
es = en+1. Subtracting (3.4b) from (3.9) yields

ei = eciτL
h
κen + τ

i−1∑
j=0

aije
(ci−cj)τLhκ(N [Uj ]−N [u(j)]) +Ri, 1 ≤ i ≤ s.

Since ‖u(j)‖ ≤ γ by Remark 3, using Lemma 2.2, we can obtain

‖N [Uj ]−N [u(j)]‖ ≤ 2κ‖Uj − u(j)‖ = 2κ‖ej‖.

Then for 1 ≤ i ≤ s− 1, we derive

‖ei‖ ≤ ‖eciτL
h
κ‖‖en‖+ τ

i−1∑
j=0

aij‖e(ci−cj)τLhκ‖‖N [Uj ]−N [u(j)]‖

≤ ‖en‖+ 2κτ

i−1∑
j=0

‖ej‖,

where we have used (3.6) and e−κτ ≤ 1 for any τ ≥ 0 and κ > 0. By induction, we
can obtain

‖ei‖ ≤ (1 + 2κτ)i‖en‖, 1 ≤ i ≤ s− 1.

Thus, for i = s we immediately get

‖en+1‖ ≤ ‖eτL
h
κ‖‖en‖+ τ

s−1∑
j=0

asj‖e(1−cj)τLhκ‖‖N [Uj ]−N [u(j)]‖+ ‖Rs‖

≤ ‖en‖+ 2κτ

s−1∑
j=0

‖ej‖+ Csτ
p+1

≤ (1 + 2κτ)s‖en‖+ Csτ
p+1.

By induction, we have

‖en‖ ≤ (1 + 2κτ)sn‖e0‖+ Csτ
p+1

n−1∑
i=0

(1 + 2κτ)si

≤ (1 + 2κτ)sn‖e0‖+
Cs
2κs

(e2κsnτ − 1)τp.
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By letting C = Cs
2κs , we obtain the desired result since e0 = 0 and nτ = tn.

As an application of the convergence result, we next investigate the energy sta-
bility. The semilinear parabolic equation (1.1) as a phase-field model can be regarded
as the gradient flow driven by the energy

E[u] = −1

2
(u,Lu) + (F (u), 1),

where F ′(u) = −f0(u) and (·, ·) denotes the usual L2 inner product in Ω. The solution
to the phase-field model decreases the energy in time until a steady state is reached.
Although we could not prove the energy decay property for numerical solution of (1.1)
produced by the sIFRK method, we can obtain a uniform bound of the energy at any
time step. More precisely, for small enough time-step size τ , it holds that

E[un] ≤ E[u0] + C0,

where the constant C0 > 0 is independent of τ . The proof can be done based on the
convergence result from Theorem 3.2 and the same process used in [9], so we omit the
details.

3.3. Strong stability-preserving sIFRK schemes. As done in [39], with
some given {αij} for 1 ≤ i ≤ s and 0 ≤ j ≤ i− 1 such that

(3.10) αij ≥ 0,

i−1∑
j=0

αij = 1, 1 ≤ i ≤ s,

one can transform the sIFRK method (3.4) with (3.2) and (3.3) in the Butcher form
into the following Shu-Osher form:

u(0) = un,(3.11a)

u(i) =

i−1∑
j=0

e(ci−cj)τLhκ
(
αiju

(j) + τβijN [u(j)]
)
, for 1 ≤ i ≤ s,(3.11b)

un+1 = u(s),(3.11c)

where βij = aij −
∑i−1
k=j+1 αikakj . Such formula with κ = 0 (i.e., Lhκ = Lh) has been

used in [25] to investigate the strong stability-preserving (SSP) property of numerical
schemes for the equation (1.1), and later the MBP-preserving property in [26].

If all coefficients in (3.11b) additionally satisfy that

(3.12) βij ≥ 0, and βij = 0 if the corresponding αij = 0, 0 ≤ j < i ≤ s,

then the right-hand side of (3.11b) is clearly a convex combination of a class of
integrating factor Euler substeps:

u(j) 7→ e(ci−cj)τLhκ
(
u(j) + τ

βij
αij
N [u(j)]

)
, 0 ≤ j ≤ i− 1.

Thus, we call the time-stepping formula (3.11) with constraints (3.10) and (3.12) the
SSP-sIFRK method, which is the correspondingly stabilized version of the SSP-IFRK
(i.e., with κ = 0) developed in [25]. Obviously, a sIFRK method may not be a SSP-
sIFRK method due to the extra requirement (3.12). It is also worth noting that the
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MBP only holds conditionally for the SSP-IFRK method [26] in the sense that some
restriction on the time-step size is needed.

The following result on the sufficient condition for the SSP-sIFRK method to be
unconditionally MBP-preserving can be derived directly based on the Shu-Osher form
(3.11).

Theorem 3.3. Suppose that the coefficients {αij}, {βij} satisfy (3.10) and (3.12)
respectively, and {ci} satisfies the condition (i) of Theorem 3.1. In addition, suppose
that for 0 ≤ j < i ≤ s,

(3.13)
βij
αij
≤ ci − cj ,

if αij 6= 0. Then, if ‖un‖ ≤ γ, the solution un+1 obtained from (3.11) always satisfies
‖un+1‖ ≤ γ for any τ > 0.

Proof. Assume ‖u(j)‖ ≤ γ for j ≤ i − 1. Using Lemma 2.2 and (3.6), we obtain
from (3.11b) that

‖u(i)‖ ≤
i−1∑
j=0

αij‖e(ci−cj)τLhκ‖
∥∥∥u(j) + τ

βij
αij
N [u(j)]

∥∥∥
≤

i−1∑
j=0

αije
−(ci−cj)κτ

(
γ + τ

βij
αij
· κγ

)

≤ γ
i−1∑
j=0

αij
1 + (ci − cj)κτ

(
1 +

βij
αij

κτ
)
,(3.14)

where we used the fact e−a ≤ 1
1+a for any a ≥ 0 in the last inequality. Then, the

combination of (3.13) and (3.14) gives us

‖u(i)‖ ≤ γ
i−1∑
j=0

αij = γ.

By induction, we finally obtain ‖un+1‖ = ‖u(s)‖ ≤ γ, which completes the proof.

Remark 4. The sufficient conditions for unconditional MBP preservation of the
SSP-sIFRK method given in Theorem 3.3 are easier to check than the ones stated in
Theorem 3.1 for testing the case of sIFRK method, but they are not equivalent. Note
that the SSP-sIFRK schemes (3.11) are mostly obtained by basing the IFRK method
on the optimal canonical Shu-Osher form with non-decreasing abscissas. On the other
hand, one also could follow the similar idea as in [25] to establish a system of equations
and inequalities with respect to the coefficients αij, βij, and ci based on the conditions
(3.3), (3.10), (3.12) and (3.13), and then construct unconditionally MBP-preserving
SSP-sIFRK schemes by solving the optimization problem for the coefficients.

Remark 5. As an analogue to SSP schemes, the total variation bounded (TVB)
schemes [17, 24] also could preserve the MBP under certain constraints on the time-
step size. Several conditionally MBP-preserving IFRK schemes found in our recent
work [26] are based on the combination of the TVB property and the IFRK method. In
order to remove these constraints, one potential way is still to add a linear stabilization
term in these schemes as done in this paper.
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4. Examples of unconditionally MBP-preserving sIFRK method. In
this section, we present some examples of the sIFRK method which are uncondi-
tionally MBP-preserving by checking the sufficient condition stated in Theorem 3.1
or Theorem 3.3. In addition, we also show that the SSP-sIFRK schemes, that is,
the SSP-IFRK schemes developed in [25, 26] with the proposed stabilization, fail
to hold these conditions except the first-order one. For simplicity of notations,
we denote by sIFRK(s,p) the s-stage, pth-order sIFRK method and by the vector
c = [c0, c1, c2, . . . , cs]

T the abscissas.

4.1. First-order sIFRK scheme. The sIFRK(1,1) scheme is given by

un+1 = eτL
h
κ(un + τN [un]).

Here, c = [0, 1]T and g1(x) = e−x+xe−x satisfies the conditions (i) and (ii) in Theorem
3.1, thus sIFRK(1,1) is unconditionally MBP-preserving. Note that sIFRK(1,1) is also
an SSP-sIFRK method at the same time since both (3.10) and (3.12) hold. Moreover,
one can find that g1(x) < 1 for x > 0 and |g1(x)− 1| = O(x2).

4.2. Second-order sIFRK schemes. The family of sIFRK(s,2) schemes [40]
with c = [0, 1

s ,
2
s , . . . , 1]T (thus the condition (i) in Theorem 3.1 holds) are defined by:

u(0) = un,

u(i) = e
τ
sL

h
κ

(
u(i−1) +

τ

s
N [u(i−1)]

)
(4.1a)

= e
iτ
s L

h
κun +

τ

s

i−1∑
j=0

e
(i−j)τ
s LhκN [u(j)], 1 ≤ i ≤ s− 1,

un+1 = eτL
h
κun +

τ

s− 1

s−1∑
j=1

e
(s−j)τ
s LhκN [u(j)].(4.1b)

Here, we have

gi(x) = e−
i
sx +

x

s

i−1∑
j=0

e−
i−j
s x, 1 ≤ i ≤ s− 1,

gs(x) = e−x +
x

s− 1

s−1∑
j=1

e−
s−j
s x,

which can be shown to be nonincreasing on [0,∞) by checking their derivatives (i.e.,
the conditions (ii) in Theorem 3.1 holds). Thus, all sIFRK(s,2) schemes defined by
(4.1) are unconditionally MBP-preserving.

For convenience of use, we list some of sIFRK(s,2) methods as follows:
• sIFRK(2,2) with c = [0, 1

2 , 1]T :

u(1) = e
τ
2L

h
κ

(
un +

τ

2
N [un]

)
,

un+1 = eτL
h
κun + τe

τ
2L

h
κN [u(1)].

• sIFRK(3,2) with c = [0, 1
3 ,

2
3 , 1]T :

u(1) = e
τ
3L

h
κ

(
un +

τ

3
N [un]

)
,
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u(2) = e
τ
3L

h
κ

(
u(1) +

τ

3
N [u(1)]

)
,

un+1 = eτL
h
κun +

τ

2
e

2τ
3 L

h
κN [u(1)] +

τ

2
e
τ
3L

h
κN [u(2)].

• sIFRK(4,2) with c = [0, 1
4 ,

2
4 ,

3
4 , 1]T :

u(1) = e
τ
4L

h
κ

(
un +

τ

4
N [un]

)
,

u(2) = e
τ
4L

h
κ

(
u(1) +

τ

4
N [u(1)]

)
,

u(3) = e
τ
4L

h
κ

(
u(2) +

τ

4
N [u(2)]

)
,

un+1 = eτL
h
κun +

τ

3
e

3τ
4 L

h
κN [u(1)] +

τ

3
e
τ
2L

h
κN [u(2)] +

τ

3
e
τ
4L

h
κN [u(3)].

As pointed out in [25], more stages in the methods lead to more accurate numerical
results. We will verify it in the next section by using the second-order methods
presented above.

Remark 6. We note that all of the SSP-sIFRK(s,2) schemes proposed in [25]
do not satisfy the conditions in Theorems 3.1 and 3.3. The SSP-sIFRK(s,2) schemes
take the following unified form: u(0) = un,

u(i) = e
τ
s−1L

h
κ

(
u(i−1) +

τ

s− 1
N [u(i−1)]

)
(4.2a)

= e
iτ
s−1L

h
κun +

τ

s− 1

i−1∑
j=0

e
(i−j)τ
s−1 L

h
κN [u(j)], 1 ≤ i ≤ s− 1,

un+1 =
1

s
eτL

h
κun +

s− 1

s

(
u(s−1) +

τ

s− 1
N [u(s−1)]

)
(4.2b)

= eτL
h
κun +

τ

s

s−2∑
j=0

e
(s−1−j)τ
s−1 LhκN [u(j)] +

τ

s
N [u(s−1)].

Here, c = [0, 1
s−1 ,

2
s−1 , . . . ,

s−2
s−1 , 1, 1]T . One can easily see that

βs,s−1

αs,s−1
=

1

s− 1
> 0 = cs − cs−1,

which violates (3.13) in Theorem 3.3. Moreover, it also does not satisfy the condition
(ii) in Theorem 3.1 with

gs(x) = e−x +
x

s

s−2∑
j=0

e−
s−1−j
s−1 x +

x

s
.

4.3. Third-order sIFRK schemes. Unlike the second-order schemes, we do
not have a general form for third-order or higher-order schemes. Below, we present
one third-order sIFRK scheme, which satisfies the conditions (i) and (ii) in Theorem
3.1 (we simply omit the details of verification), and thus is unconditionally MBP-
preserving.

The scheme is given by Heun-sIFRK(3,3) with c = [0, 1
3 ,

2
3 , 1]T [40]:

u(1) = e
τ
3L

h
κun +

τ

3
e
τ
3L

h
κN [un],
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u(2) = e
2τ
3 L

h
κun +

2τ

3
e
τ
3L

h
κN [u(1)],

un+1 = eτL
h
κun +

τ

4
eτL

h
κN [un] +

3τ

4
e
τ
3L

h
κN [u(2)].

Remark 7. The SSP-sIFRK(3,3) scheme proposed in [25] takes the following
form:

u(1) = e
2τ
3 L

h
κ

(
un +

2

3
τN [un]

)
,

u(2) =
2

3
e

2τ
3 L

h
κun +

1

3

(
u(1) +

4

3
τN [u(1)]

)
,

un+1 =
59

128
eτL

h
κun +

15

128
eτL

h
κ

(
un +

4

3
τN [un]

)
+

27

64
e
τ
3L

h
κ

(
u(2) +

4

3
τN [u(2)]

)
.

Here, c = [0, 2
3 ,

2
3 , 1]T . One can easily see

β2,1

α2,1
=

4

3
> 0 = c2 − c1,

which violates with (3.13) in Theorem 3.3. Moreover, it also does not satisfy the
condition (ii) in Theorem 3.1 with

g2(x) = e−
2
3x +

2x

9
e−

2
3x +

4x

9
.

Remark 8. We have not found so far in the literature any fourth-order or
higher-order sIFRK scheme in the explicit form satisfying the conditions in Theorem
3.1. Alternatively, one may further consider the fully implicit IFRK approach, as
done in [25] for the SSP method, to develop MBP-preserving schemes.

5. Numerical experiments. In this section, we carry out some numerical ex-
periments to demonstrate the performance of the sIFRK schemes presented in Sec-
tion 4. The spatial discretization is performed by the central difference method for
all examples and the matrix exponentials are implemented by using the fast Fourier
transform (FFT) [28, 29]. First, the convergence rates in time and space are verified
by testing a benchmark Allen-Cahn traveling wave problem. Second, we verify the
unconditional MBP preservation of the schemes by various evolution examples. In
the end, we present a 3D simulation example to show effectiveness of the proposed
method.

5.1. Convergence tests. It is well-known that the 2D Allen-Cahn equation in
the whole space has a traveling wave solution. Let us take the domain Ω = (−0.5, 0.5)2

and consider the equation

(5.1) ut = ∆u+
1

ε2
(u− u3), t > 0, (x, y) ∈ Ω

with the initial data

u0(x, y) =
1

2

(
1− tanh

( x

2
√

2ε

))
.
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The periodic boundary condition is imposed to allow for an approximate traveling
wave solution (for ε� 1) of the form

u(t, x, y) =
1

2

(
1− tanh

(x− st
2
√

2ε

))
,

where s = 3√
2ε

. We set ε = 0.015 and the ending time T =
√

2ε
4 . In this setting, the

stabilizing constant is chosen as κ = 2
ε2 .

Setting h = 1/2048, we then compute the numerical solutions with various time-
step sizes by the proposed schemes. The numerical errors of the solutions at t = T
and corresponding convergence rates are given in Tables 5.1–5.3, where the desired
temporal convergence rates (1 for sIFRK(1,1), 2 for sIFRK(s,2), and 3 for sIFRK(s,3))
are obviously observed. As expected, the error constants are smaller for the schemes
with more stages for a fixed order of accuracy.

Table 5.1
Errors and convergence rates in time of the traveling wave problem (5.1) using the first-order

sIFRK scheme with h = 1/2048 (δ = T/128).

τ L2 Error Rate L∞ Error Rate

sIFRK(1,1)

δ 8.4586e-01 – 9.9870e-01 –
δ/2 5.6129e-01 0.59 9.7073e-01 0.04
δ/4 3.5269e-01 0.67 8.1648e-01 0.24
δ/8 2.0037e-01 0.81 5.3899e-01 0.59
δ/16 1.0573e-01 0.92 3.0023e-01 0.84
δ/32 5.3960e-02 0.97 1.5577e-01 0.95

Next, we test the convergence with respect to the spatial mesh size h using the
sIFRK(2,2) scheme with τ = T/2048. The numerical errors of the solutions at t = T
and corresponding convergence rates are presented in Table 5.4, and it is observed that
the spatial convergence is of second order, which is consistent with the expectation
for the central difference method.

5.2. MBP preservation. Some examples will be tested to demonstrate the
MBP preservation of the proposed sIFRK schemes. The first one focuses on the
Allen-Cahn equation with the Flory-Huggins potential consisting of a logarithmic
term. The second one takes simulation of the classic shrinking bubble example for
illustration. The third one is used to numerically show that the SSP-sIFRK(2,2) [25]
could not hold the MBP unconditionally as discussed in Remark 6. We still take the
domain Ω = (−0.5, 0.5)2 for all experiments in this subsection.

We consider the Allen-Cahn equation

ut = ε2∆u+ f(u)(5.2)

subject to periodic boundary condition, where ε = 0.01 and f(u) is the negative of
the derivative of the Flory-Huggins potential, that is,

f(u) =
θ

2
ln

1− u
1 + u

+ θcu,

where θ = 0.8 and θc = 1.6. In this setting, the positive root of the equation f(ρ) = 0
is ρ ≈ 0.9575, which is the uniform bound of the exact solution in absolute value, and
the stabilizing constant is chosen as κ = 8.02.
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Table 5.2
Errors and convergence rates in time of the traveling wave problem (5.1) using the second-order

sIFRK schemes with h = 1/2048 (δ = T/32).

τ L2 Error Rate L∞ Error Rate

sIFRK(2,2)

δ 8.4566e-01 – 9.9917e-01 –
δ/2 4.7032e-01 0.84 9.3871e-01 0.09
δ/4 2.0091e-01 1.22 5.5135e-01 0.76
δ/8 6.3380e-02 1.66 1.8665e-01 1.56
δ/16 1.7488e-02 1.85 5.1933e-02 1.84
δ/32 4.5077e-03 1.95 1.3401e-02 1.95

sIFRK(3,2)

δ 7.3155e-01 – 9.9722e-01 –
δ/2 4.0349e-01 0.85 8.8763e-01 0.16
δ/4 1.6074e-01 1.32 4.5403e-01 0.96
δ/8 4.8871e-02 1.71 1.4456e-01 1.65
δ/16 1.3275e-02 1.88 3.9471e-02 1.87
δ/32 3.3790e-03 1.97 1.0052e-02 1.97

sIFRK(4,2)

δ 6.7288e-01 – 9.9437e-01 –
δ/2 3.6256e-01 0.89 8.4291e-01 0.23
δ/4 1.3836e-01 1.38 3.9619e-01 1.08
δ/8 4.1285e-02 1.74 1.2239e-01 1.69
δ/16 1.1122e-02 1.89 3.3097e-02 1.88
δ/32 2.8059e-03 1.98 8.3543e-03 1.98

Table 5.3
Errors and convergence rates in time of the traveling wave problem (5.1) using the third-order

sIFRK scheme with h = 1/2048 (δ = T/16).

τ L2 Error Rate L∞ Error Rate

Heun-
sIFRK(3,3)

δ 8.8453e-01 – 9.9956e-01 –
δ/2 4.5029e-01 0.97 9.2778e-01 0.10
δ/4 1.4266e-01 1.65 4.0876e-01 1.18
δ/8 2.7399e-02 2.38 8.1593e-02 2.32
δ/16 4.1342e-03 2.72 1.2337e-02 2.72
δ/32 4.6608e-04 3.14 1.3954e-03 3.14

Table 5.4
Errors and convergence rates in space of the traveling wave problem (5.1) using the sIFRK(2,2)

scheme with τ = T/2048.

h L2 Error Rate L∞ Error Rate

1/32 3.6280e-01 – 8.2219e-01 –
1/64 1.2410e-01 1.54 3.3584e-01 1.29
1/128 3.3108e-02 1.90 9.6036e-02 1.80
1/256 8.3700e-03 1.98 2.4480e-02 1.97
1/512 2.0878e-03 2.00 6.1317e-03 1.99
1/1024 5.2727e-04 1.98 1.5341e-03 1.99

We partition the spatial domain by a uniform mesh with the size h = 1/1024,
and a random data ranging from −0.9 to 0.9 is generated on the mesh as the initial
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Fig. 5.1. Evolutions of energies (left) and supremum norms (right) calculated by using
sIFRK(1,1) (top), sIFRK(s,2) (middle) and Heun-sIFRK(3,3) (bottom) schemes with τ = 0.01.

configuration. We conduct the simulations by using the proposed sIFRK schemes
with the time-step size τ = 0.01. Fig. 5.1 shows the evolutions of the energies and the
supremum norms of the approximate solutions. We observe that the energy decreases
monotonically and the MBP is preserved perfectly for all of them. However, there is
an obvious large gap between the theoretical bound 0.9575 and the supremum norm
of the steady state obtained by sIFRK(1,1). The reason is what we have mentioned
in Remark 3, that is, g1(κτ) < 1 and the difference is of order O((κτ)2) as discussed
in Section 4.1. This implies that the first-order sIFRK method is practically not
accurate although stable when the time-step size τ is not small enough.

Now, we consider a classic example for simulating a shrinking bubble driven by
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the Allen-Cahn equation (5.2) with ε = 0.01 and

(5.3) f(u) = u− u3

subject to the homogeneous Neumann boundary condition. The initial bubble is given
by

u0(x, y) =

{
1, if x2 + y2 ≤ 0.252,
−1, otherwise,

and illustrated in Fig. 5.2.

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

x

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

u(
0,

x,
0)

Fig. 5.2. Initial configuration of the bubble. Left: the surface-project view; right: the cross-
section view at y = 0.

The sIFRK(2,2) scheme is adopted and the parameters of the space-time mesh
are set to be h = 1/1024 and τ = 0.01. Fig. 5.3 presents the evolutions of the bubble
at times t = 50, 100, 150, 200, 250 and 300, respectively, and the left graph in Fig. 5.4
gives the corresponding cross-section views with y = 0. The right graph in Fig. 5.4
presents the evolution of the energy, which is monotonically decreasing. The bubble
shrinks smaller and smaller during the evolution and finally vanishes at about t = 310.

Next, we numerically show that the SSP-sIFRK(2,2) scheme (4.2) is not uncondi-
tionally MBP-preserving in response to the discussion in Remark 6. To this end, we
consider the Allen-Cahn equation (5.2) with ε = 0.01 and (5.3) subject to the periodic
boundary condition. The initial data is generated by a set of random numbers ranging
from −0.9 to 0.9 uniformly on the spatial mesh with h = 1/256. The time-step size
is set to be τ = 0.1, which is 10 times larger than that in the previous experiments.
We first run the simulation using SSP-sIFRK(2,2) taking the following form

u(1) = eτL
h
κ(un + τN [un]),

un+1 =
1

2
eτL

h
κun +

1

2
(u(1) + τN [u(1)]).

Then we re-run the simulation using sIFRK(2,2) with the same initial data. Figs. 5.5
and 5.7 present the evolutions of the phase structures at t = 1, 5, 10, 50, 240 and
440 produced by SSP-sIFRK(2,2) and sIFRK(2,2), respectively, which show that the
simulation results start to differ very soon although we use the same initial data and
space-time parameters. Figs. 5.6 and 5.8 present the evolutions of the corresponding
supremum norms and the energies for SSP-sIFRK(2,2) and sIFRK(2,2), respectively.
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Fig. 5.3. Evolution of the shrinking bubble obtained by using sIFRK(2,2) with τ = 0.01. From
left to right and from top to bottom: t = 50, 100, 150, 200, 250 and 300.

Fig. 5.4. The cross-section view with y = 0 (left) corresponding to Fig. 5.3 and the evolution
of the energy (right).

It is observed that the MBP is preserved perfectly by sIFRK(2,2) for all time. How-
ever, the solution by SSP-sIFRK(2,2) has the supremum norm beyond 1 after t = 5.5,
which implies SSP-sIFRK(2,2) does not preserve the MBP in this case.

In addition, we carry out the same experiment using sIFRK(2,2), but with differ-
ent time-step sizes, τ = 0.05 and 0.01. We found that both simulated processes of the
phase transition are almost identical to that illustrated in Fig. 5.7. The correspond-
ing evolutions of the supremum norms and the energies are also given and compared
with those produced with τ = 0.1 in Fig. 5.8, which shows very small differences
between them. These observations partly imply that the error constant in Theorem
3.2 does not change much when those different time-step sizes are adopted, and the
performance of sIFRK(2,2) is still satisfactory, in terms of accuracy and efficiency, for



sIFRK Method and Unconditional Preservation of MBP 19

practical simulations with moderately large time-step sizes.

Fig. 5.5. Evolution of the phase structure obtained by using SSP-sIFRK(2,2) with τ = 0.1.
From left to right and from top to bottom: t = 1, 5, 10, 50, 240 and 440.

Fig. 5.6. Evolutions of the supremum norm (left) and the energy (right) obtained by using
SSP-sIFRK(2,2) with τ = 0.1.

5.3. Three-dimensional simulations. The last experiment is devoted to nu-
merical simulation for the 3D Allen-Cahn equation (5.2) with ε = 0.01 and (5.3). We
take the domain Ω = (−0.5, 0.5)3 with a uniform spatial mesh of size h = 1/256,
and generate the initial data by the random numbers ranging from −0.9 to 0.9 on
the mesh. The sIFRK(2,2) scheme is used for the simulation. Fig. 5.9 presents the
evolutions of the 3D phase structures at t = 1, 5, 10, 50, 240 and 350 with the time-
step size τ = 0.01, respectively. Fig. 5.10 plots the evolutions of the supremum norm
and the energy of the numerical solutions with different time-step sizes τ = 0.1, 0.05
and 0.01. The MBP is well-preserved and the energy decreases monotonically along
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Fig. 5.7. Evolution of the phase structure obtained by using sIFRK(2,2) with τ = 0.1. From
left to right and from top to bottom: t = 1, 5, 10, 50, 240 and 440.

Fig. 5.8. Evolutions of the supremum norm (left) and the energy (right) obtained by using
sIFRK(2,2) with τ = 0.1, 0.05 and 0.01.

the time as shown in Fig. 5.10. In addition, we again observe that there are only
very small differences between the curves corresponding to different time-step sizes,
which implies that sIFRK(2,2) still perform very well for 3D simulations even with
moderately large time-step sizes.

6. Conclusion. In this work, we first combine the linear stabilization technique
with the IFRK method to develop a family of sIFRK schemes. We derive sufficient
conditions to guarantee unconditional preservation of the MBP for the sIFRK method
written in different forms. Based on these conditions, we then check various exist-
ing IFRK and SSP-IFRK schemes and identify the unconditionally MBP preserving
schemes among them, as well as various numerical demonstrations. In addition, we
also find that many existing SSP-sIFRK schemes violate these conditions except the
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Fig. 5.9. Evolution of the 3D phase structure obtained by using sIFRK(2,2) with τ = 0.01.
From left to right and from top to bottom: t = 1, 5, 10, 50, 240 and 350.

Fig. 5.10. Evolutions of the supremum norm (left) and the energy (right) of the 3D simulations
obtained by using sIFRK(2,2) with τ = 0.1, 0.05 and 0.01.

first-order one, and thus may not be unconditionally MBP-preserving as verified in
numerical experiments.

One important question remains whether the conditions in Theorem 3.1 or The-
orem 3.3 are also necessary for unconditional MBP preservation, which would be a
natural topic for our future research. It is also worth mentioning that Assumption 2
implies that the operator Lh is dissipative. Discretizing L with the central difference
method or the finite element method with mass-lumping satisfies Assumption 2 since
the resulting discrete matrix is an M -matrix. As we know, the matrix corresponding
to the spectral collocation method is usually not an M -matrix. Thus another question
is whether such assumption is necessary for the space-discrete system to possess the
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MBP and subsequently for the fully-discrete system.
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