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Characterizations of complete stabilizability∗

Hanbing Liu† Gengsheng Wang‡ Yashan Xu§ Huaiqiang Yu¶

Abstract

We present several characterizations, via some weak observability inequalities, of the complete
stabilizability for a control system [A,B], i.e., y′(t) = Ay(t) + Bu(t), t ≥ 0, where A generates a
C0-semigroup on a Hilbert space X and B is a linear and bounded operator from another Hilbert
space U to X. We then extend these characterizations in two directions: first, the control operator
B is unbounded; second, the control system is time-periodic. We also give some sufficient conditions,
from the perspective of the spectral projections, to ensure the weak observability inequalities. As
applications, we provide several examples, which are not null controllable, but can be verified, via
the weak observability inequalities, to be completely stabilizable.
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1 Introduction

1.1 Control system and notation

In the literature on infinite-dimensional linear systems, several concepts of stabilization appear, such
as complete stabilization, exponential stabilization, strong stabilization, polynomial stabilization, and
logarithmic stabilization. This paper mainly studies the complete stabilization for the control system
[A,B], i.e.,

y′(t) = Ay(t) +Bu(t), t ≥ 0, (1.1)

under the assumptions:

(H1) The operator A, with its domain D(A) ⊂ X , generates a C0-semigroup S(t) (t ≥ 0) on a Hilbert
space X .

(H2) The operator B is a linear and bounded operator from another Hilbert space U to X . The Hilbert
spaces X and U are identified with their dual spaces respectively.

We further study the complete stabilization for both a system [A,B] (where B is unbounded) and a
periodic system [A(·), B(·)]. To avoid complex definitions in the introduction, we treat them as extensions
in Section 3 of this paper.

Throughout the paper, the following notations will be used: Given u ∈ L2(R+;U) and y0 ∈ X , we
write y(·;u, y0) for the solution to the system (1.1) with the initial condition y(0) = y0; R

+ := [0,+∞),
N := {1, 2, . . .} and N := N∪{0}; Given a Hilbert space X1, we write ‖ ·‖X1

and 〈·, ·〉X1
for the norm and
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the inner product of X1 respectively; Given Banach spaces X1 and X2, we write L(X1;X2) for the space
of all linear and bounded operators from X1 to X2 and L(X1) := L(X1;X1); Given a linear operator F ,
we use F ∗ to denote its adjoint operator; We denote by I the identity operator on any space; Write ρ(A)
for the resolvent set of the operator A.

1.2 Aim and motivation

Let us first review several concepts related to the control system (1.1):

(a1) The system (1.1) is said to be exponentially stabilizable, if there exists K ∈ L(X ;U), µ > 0 and
C > 0 such that ‖SK(t)‖L(X) ≤ Ce−µt for all t ∈ R+. Here, SK(t) (t ≥ 0) denotes the semigroup
generated by A+BK.

(a2) The system (1.1) is said to be completely (or rapidly) stabilizable, if for any µ > 0, there exists
K := K(µ) ∈ L(X ;U) and C := C(µ) > 0 such that ‖SK(t)‖L(X) ≤ Ce−µt for all t ∈ R+.

(a3) The system (1.1) is said to be null controllable over [0, T ] for some T > 0, if for any y0 ∈ X , there
exists u ∈ L2(0, T ;U) such that y(T ;u, y0) = 0.

For these concepts, we have the following known facts:

(b1) In finite-dimensional settings whereA, B are matrices, (a2) ⇔ (a3). However, in infinite-dimensional
settings, (a3) ⇒ (a2) ⇒ (a1) (see [39, Proposition 21]), but the reverse may be not true.

(b2) The null controllability over [0, T ] is equivalent to the following observability inequality: there exists
C := C(T ) > 0 such that ‖S(T )∗ϕ‖X ≤ C‖B∗S(T − ·)∗ϕ‖L2(0,T ;U) for all ϕ ∈ X (This inequality
can be equivalently written as the “initial time” observability inequality for the adjoint equation
of (1.1), that is, ‖z(0)‖X ≤ C‖B∗z(·)‖L2(0,T ;U), where z(·) is the solution to the adjoint equation
z′(t) = −A∗z(t), z(T ) = ϕ ∈ X (see [27, Chapter 7, Section 2.2])).

(b3) The exponential stabilizability is equivalent to the weak observability of the dual system: there is
α ∈ (0, 1), T > 0 and C > 0 such that ‖S(T )∗ϕ‖X ≤ C‖B∗S(T − ·)∗ϕ‖L2(0,T ;U) + α‖ϕ‖X for all
ϕ ∈ X . (This was proved in [39, Theorem 1].)

According to the above facts (b1)-(b3), the following question is natural and interesting:

• How to characterize the complete stabilizability by some kind of observability inequalities?

The aim of this paper is to answer the above question.

1.3 Main results

The main theorem of this paper is as follows:

Theorem 1.1. The following statements are equivalent:

(i) The control system (1.1) is completely stabilizable.

(ii) For any α > 0, there are positive constants C(α) and D(α) such that

‖S(T )∗ϕ‖X ≤ D(α)‖B∗S(T − ·)∗ϕ‖L2(0,T ;U) + C(α)e−αT ‖ϕ‖X , when ϕ ∈ X and T > 0. (1.2)

(iii) There exists T0 ≥ 0 such that for any T > T0 and α > 0, there are positive constants C(α) (which
is independent of T ) and D(α, T ) such that

‖S(T )∗ϕ‖X ≤ D(α, T )‖B∗S(T − ·)∗ϕ‖L2(0,T ;U) + C(α)e−αT ‖ϕ‖X , when ϕ ∈ X. (1.3)
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(iv) For each k ∈ N, there are positive constants Tk and D(k) such that

‖S(Tk)∗ϕ‖X ≤ D(k)‖B∗S(Tk − ·)∗ϕ‖L2(0,Tk;U) + e−kTk‖ϕ‖X , when ϕ ∈ X. (1.4)

Some comments on Theorem 1.1 are given.

(c1) For each α > 0, inequality (1.2) is a weak observability inequality. Hence, the complete stabiliz-
ability is characterized by a family of weak observability inequalities. This essentially differs from
the exponential stabilizability which corresponds to only one weak observability inequality (see the
note (b3)). The reason that an exponential function appears in (1.2) (as well as (1.3) and (1.4)) is
that the system [A,B] is completely stabilizable if and only if for each µ > 0, the system [A+µI,B]
is exponentially stabilizable. This can be seen from the proof of Theorem 1.1.

(c2) The statement (iv) can be understood as a kind of discretization of the statement (ii).

(c3) In this paper, we will further extend Theorem 1.1 in two directions: First, the control operator B
is unbounded; Second, the control system is time-periodic. We give these extensions in Section 3.

(c4) As applications of Theorem 1.1, as well as its extensions, some examples will be given in Subsection
4.2. These examples present several concrete control systems, which are not null controllable, but
can be proved to be completely stabilizable, via the weak observability inequalities in Theorem 1.1,
as well as its extensions.

(c5) We provide some sufficient conditions, from the perspective of the spectral projections, to ensure
the weak observability inequalities in Theorem 1.1 (see Subsection 4.1).

1.4 Related works and the novelty of this paper

There is a lot of literature on the stabilization of infinite-dimensional systems. We mention [13, 25, 30,
35, 40] for time-invariant linear systems with bounded control operators; [1, 4, 12, 15, 17, 21, 22, 23,
26, 28, 37, 42, 43, 46] for time-invariant linear systems with unbounded control operators; [2, 19, 24] for
time-varying linear systems with bounded or unbounded control operators; [3, 31, 45] for time-periodic
systems; [6, 7, 8, 10, 11] for nonlinear systems.

About the characterizations of the exponential stabilization for infinite-dimensional linear time-invariant
systems, we would like to mention works [4, 30, 39]: A frequency domain criterion on the stabilizability
is built up for conservative systems with distributed control in [30]; A unique continuation type criterion
on the stabilizability (which is also called Fattorini’s criterion) is established in [4] for parabolic systems;
A characterization, via a weak observability inequality, of the stabilizability is given for some infinite
dimensional systems in [39]. About the characterizations of the periodically exponential stabilization
for infinite-dimensional linear time-periodic systems, we mention works [3, 5, 44, 45, 47]: Some unique
continuation type criterions on the periodic stabilizability, as well as a characterization, via a weak ob-
servability inequality, are presented for some parabolic-like time periodic evolution equations in [3, 5]; A
characterization, via a detectability inequality, is given for some linear time-periodic evolution systems
in [47]. Certain geometric and analytic characterizations of the periodic stabilizability are provided for
some linear time-periodic evolution systems in [44, 45].

We emphasize here the works [3], [4] and [5], where some characterizations of the stabilizability/
the periodic stabilizability, with an arbitrarily given decay rate, were obtained for some parabolic-like
evolution equations. It seems for us that some characterizations of the complete stabilizability/the
periodically complete stabilizability for those equations can be derived from these works. Compared
these works with ours, we would like to emphasize what follows: First, the results obtained there need
the assumption that the generator of the control system has compact resolvent, while such assumption
is not necessary in our work. (This assumption allows one to decompose the control system into two
sub-systems, one is unstable and of finite-dimension and another is stable and of infinite-dimension.)
Second, the works [3], [4] and [5] concern stabilizability, while ours deals with complete stabilizability.

We now explain the novelty of this work:
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• We have not found any characterization via observability inequalities on the complete/periodic com-
plete stabilizability for time-invariant/time-periodic evolution equations in the literature. Hence,
Theorem 1.1, as well as its extensions obtained in this work, seem to be new results. These results
may help us to understand the connections and the differences between stabilizability, complete
stabilizability and null controllability, from the perspective of observability inequalities.

• We are working in a general framework where the generator of the system does not need to have
compact resolvents. Our Example 1 in Subsection 4.2 is under such framework. Indeed, the gener-
ator of the system in that example has only continuous spectrum, and consequently does not have
compact resolvents.

• Though the generators of the systems studied in [39, 47] also do not need to have compact resolvents,
the authors there did not obtain the characterizations on the stabilizability/the periodic stabiliz-
ability for an arbitrarily given decay rate, like [3, 4, 5]. So the approach to the characterizations on
the complete stabilizability obtained in this work does not follow from [39, 47].

1.5 The plan of this paper

The rest of the paper is organized as follows: Section 2 gives the proof of Theorem 1.1; Section 3 presents
two extensions of Theorem 1.1; Section 4 provides several examples and shows some sufficient conditions
ensuring the weak observability inequalities.

2 The proof of Theorem 1.1

The next lemma is quoted from [39] and will play an important role in the proof of Theorem 1.1.

Lemma 2.1. ([39, Theorem 1]) Let µ ≥ 0. Let Sµ(t) (t ≥ 0) be the semigroup generated by A + µI.
Then the following statements are equivalent:

(i) The following system is exponentially stabilizable:

z′(t) = (A+ µI)z(t) +Bu(t), t ∈ R+. (2.1)

(ii) There exists α ∈ (0, 1), T > 0 and C ≥ 0 such that

‖Sµ(T )
∗ϕ‖X ≤ C‖B∗Sµ(T − ·)∗ϕ‖L2(0,T ;U) + α‖ϕ‖X for any ϕ ∈ X. (2.2)

Now, we are in position to prove Theorem 1.1.

The proof of Theorem 1.1. We organize the proof in several steps.

Step 1. We show (i) ⇒ (ii).

Arbitrarily fix α > 0. By (i), there exists K := K(α) ∈ L(X ;U) and C := C(α) ≥ 1 such that

‖SK(t)‖L(X) ≤ Ce−αt for all t ∈ R+. (2.3)

Meanwhile, we arbitrarily fix y0 ∈ X and set

uy0
(t) := KSK(t)y0, t ∈ R+. (2.4)

Then by (2.3) and (2.4), we have

‖uy0
‖L2(0,T ;U) ≤ C(2α)−

1
2 ‖K‖L(X;U)‖y0‖X for any T > 0. (2.5)
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Next, we arbitrarily fix T > 0. By the definitions of SK(·) and S(·) and by (2.4), we see

SK(T )y0 = S(T )y0 +

∫ T

0

S(T − t)Buy0
(t)dt,

which implies

−〈y0, S(T )∗ϕ〉X = −〈SK(T )y0, ϕ〉X +

∫ T

0

〈uy0
(t), B∗S(T − t)∗ϕ〉Xdt for any ϕ ∈ X.

The above, along with (2.3) and (2.5), yields that for any ϕ ∈ X ,

|〈y0, S(T )∗ϕ〉X | ≤ C
(
e−αT ‖ϕ‖X + ‖K‖L(X;U)(2α)

− 1
2 ‖B∗S(T − ·)∗ϕ‖L2(0,T ;U)

)
‖y0‖X .

Since y0 ∈ X and T > 0 were arbitrarily taken, the above implies that for any ϕ ∈ X and T > 0,

‖S(T )∗ϕ‖X ≤ C
(
e−αT ‖ϕ‖X + ‖K‖L(X;U)(2α)

− 1
2 ‖B∗S(T − ·)∗ϕ‖L2(0,T ;U)

)
. (2.6)

Now, (1.2), with D(α) := C‖K‖L(X;U)(2α)
− 1

2 , follows from (2.6) at once. Since α > 0 was arbitrarily
taken, we obtain (ii).

Step 2. It is trivial that (ii) ⇒ (iii).

Step 3. We show (iii) ⇒ (iv).

Let T0, C(α) and D(α, T ) be given by (iii). Arbitrarily fix k ∈ N. Let Tk be such that Tk > T0 and
C(k + 1) < eTk . Write D(k) := D(k + 1, Tk). Then, by (1.3) (where α = k + 1 and T = Tk), after some
direct computations, we get (1.4) with the above Tk and D(k). Since k was arbitrarily taken from N, we
get (iv).

Step 4. We show (iv) ⇒ (i).

Arbitrarily fix µ > 0. We first show that the system (2.1) is exponentially stabilizable. To this end,
we take kµ ∈ N so that kµ − 1 ≤ µ < kµ. Then by (iv), we can find D(kµ) > 0 and Tkµ

> 0 such that

‖S(Tkµ
)∗ϕ‖X ≤ D(kµ)‖B∗S(Tkµ

− ·)∗ϕ‖L2(0,Tkµ ;U) + e−kµTkµ ‖ϕ‖X for all ϕ ∈ X. (2.7)

Meanwhile, we write Sµ(t) (t ≥ 0) for the C0-semigroup generated by A+ µI. Then it is clear that

Sµ(t)
∗ = eµtS(t)∗ for all t ≥ 0. (2.8)

Now, multiplying (2.7) by eµTkµ , using (2.8), we have

‖Sµ(Tkµ
)∗ϕ‖X ≤ D(kµ)e

µTkµ ‖B∗S(Tkµ
− ·)∗ϕ‖L2(0,Tkµ ;U) + e−(kµ−µ)Tkµ ‖ϕ‖X .

Since the first term in the righthand side of above inequality can be written as

D(kµ)e
µTkµ ‖B∗S(Tkµ

− ·)∗ϕ‖L2(0,Tkµ ;U) = D(kµ)e
µTkµ ‖e−µ(Tkµ−·)B∗Sµ(Tkµ

− ·)∗ϕ‖L2(0,Tkµ ;U)

= D(kµ)‖eµ·B∗Sµ(Tkµ
− ·)∗ϕ‖L2(0,Tkµ ;U),

and the function eµt, t ∈ [0, Tkµ
] can be dominated by eµTkµ , we get

‖Sµ(Tkµ
)∗ϕ‖X ≤ D(kµ)e

µTkµ ‖B∗Sµ(Tkµ
− ·)∗ϕ‖L2(0,Tkµ ;U) + e−(kµ−µ)Tkµ ‖ϕ‖X for all ϕ ∈ X. (2.9)

Since e−(kµ−µ)Tkµ < 1, the above (2.9) leads to (2.2) with

T = Tkµ
> 0, α = e−(kµ−µ)Tkµ ∈ (0, 1), C = D(kµ)e

µTkµ > 0.
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Then according to Lemma 2.1, the system (2.1) is exponentially stabilizable.
We next claim that the system (1.1) is completely stabilizable. Indeed, since the system (2.1) is

exponentially stabilizable, there exists K := K(µ) ∈ L(X ;U) and C(µ) > 0 such that

‖Sµ,K(t)‖L(X) ≤ C(µ) for all t ∈ R+,

where Sµ,K(t) (t ≥ 0) is the semigroup generated by A+ µI +BK. This, together with the fact:

Sµ,K(t) = eµtSK(t) for all t ∈ R+,

yields that
‖SK(t)‖L(X) ≤ C(µ)e−µt for all t ∈ R+.

Since µ > 0 was arbitrarily taken, the above leads to the complete stabilizability for the system (1.1),
i.e., (i) is true.

3 Extensions

In this section we will extend Theorem 1.1 in two directions: The first one is the case that the control
operator B is unbounded, while the second one is the case that the control system is time-periodic.

3.1 The case that the control operator is unbounded

This subsection aims to extend Theorem 1.1 to the control system [A,B], i.e.,

y′(t) = Ay(t) +Bu(t), t ≥ 0, (3.1)

under the following assumptions:

(H̃1) The operator A, with its domain1 D(A) ⊂ X , is the generator of a C0-semigroup S(t) (t ≥ 0) on
X .

(H̃2) The operator B belongs to L(U ;X−1), where X−1 is the completion of X with respect to the norm
‖z‖−1 := ‖(ρ0I −A)−1z‖X , z ∈ X (where ρ0 ∈ ρ(A) is arbitrarily fixed).

(H̃3) There exists a time T > 0 and a constant C(T ) > 0 such that

∫ T

0

‖B∗S(t)∗x‖2Udt ≤ C(T )‖x‖2X for all x ∈ D(A∗). (3.2)

(This condition is called the regularity property or the admissibility condition (see, for example,

[10, Chapter 2, Section 2.3] or [26]). Here, we notice that B∗ ∈ L(D(A∗);U) by (H̃2) and (d3) in
Remark 3.1 below.)

Given y0 ∈ X and u ∈ L2(R+;U), we write y(·;u, y0) for the solution to (3.1) with the initial condition
y(0) = y0.

Remark 3.1. Several comments on the above assumptions are given.

(d1) The operator A (which belongs to L(D(A);X)) has a unique extension, denoted by Ã, in the space

L(X ;X−1), moreover (ρ0I − Ã)−1 ∈ L(X−1, X) (see [41, Chapter 2, Proposition 2.10.3]). Hence,

(H̃2) can be replaced by the assumption: (ρ0I − Ã)−1B ∈ L(U ;X) (see [15, 26]).

1We define a norm on D(A) by: ‖x‖D(A) := ‖(ρ0I − A)x‖X , x ∈ D(A), where ρ0 ∈ ρ(A) is arbitrarily fixed. Then
D(A) with this norm is a Hilbert space since A as the generator of a C0-semigroup is closed. It is well known that this

norm is equivalent to the classical graph norm ‖x‖′
D(A)

:= (‖x‖2
X

+ ‖Ax‖2
X
)
1
2 , x ∈ D(A). The same can be said about any

generator of a C0-semigroup on X.
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(d2) Let S̃(t) := (ρ0I − Ã)S(t)(ρ0I − Ã)−1 on X−1 for any t ≥ 0. Then S̃(t) (t ≥ 0) is a C0-semigroup

on X−1 and Ã is the generator of this semigroup (see [41, Chapter 2, Proposition 2.10.4]). We call

S̃(t) (t ≥ 0) as the extension of S(t) (t ≥ 0).

(d3) The space D(A∗), with the norm ‖z‖D(A∗) := ‖(ρ0I − A∗)z‖X, z ∈ D(A∗), is a Hilbert space
and X−1 is isomorphic to the dual space of D(A∗) (see [41, Chapter 2, Proposition 2.10.1 and
Proposition 2.10.2]). For convenience, we identify the dual space of D(A∗) with X−1. Thus, X−1

is the dual space of D(A∗) with respect to the pivot space X (see [41, Chapter 2, Section 2.9]).

(d4) Assumption (H̃3) is equivalent to that for any T > 0, there exists a constant C(T ) > 0 such that
(3.2) holds. (See [41, Chapter 4, Proposition 4.3.2].)

(d5) We can easily check that when (H̃1)-(H̃3) hold, B∗ is an admissible observation operator and con-
sequently B is an admissible control operator. (See [41, Chapter 4, Definition 4.3.1], [41, Chapter

4, Definition 4.2.1] and [41, Chapter 4, Theorem 4.4.3].) Hence, if (H̃1)-(H̃3) are true, then,
it follows by [41, Chapter 4, Proposition 4.2.5]) that when y0 ∈ X and u ∈ L2(R+;U), the
equation (3.1) has a unique solution y(·;u, y0) (in C([0,+∞);X)) which is given by y(t;u, y0) =

S̃(t)y0 +
∫ t

0
S̃(t− s)Bu(s)ds. Moreover, for each T > 0, there exists C := C(T ) > 0 such that

‖y(t;u, y0)‖X ≤ C(‖y0‖X + ‖u‖L2(0,T ;U)), t ∈ [0, T ].

(d6) When u ∈ L2(R+;U) and t ≥ 0, we only have
∫ t

0
S̃(t − s)Bu(s)ds ∈ X−1 under the assumptions

(H̃1)-(H̃2); but it holds that
∫ t

0
S̃(t− s)Bu(s)ds ∈ X, if we further assume (H̃3) (see [41, Chapter

4, Proposition 4.2.2]).

(d7) Some examples satisfying (H̃1)-(H̃3) are given in [15, 26, 41].

Throughout this subsection, Ã and S̃(t) (t ≥ 0) denote respectively the extensions of A and S(t)
(t ≥ 0), which are given in (d1) and (d2) of Remark 3.1.

To state the main results of this subsection, we need the following definitions on the stabilization for
the system (3.1):

Definition 3.2. (i) The system (3.1) is said to be exponentially stabilizable, if there exists a C0-
semigroup Φ(t) (t ≥ 0) on X, with its generator Λ : D(Λ) ⊂ X → X, and K ∈ L(D(Λ);U) such
that

(a) Λx = (Ã+BK)x for all x ∈ D(Λ);

(b) there exists α > 0 and C > 0 such that ‖Φ(t)‖L(X) ≤ Ce−αt for any t ∈ R+;

(c) there exists D > 0 such that ‖KΦ(·)x‖L2(R+;U) ≤ D‖x‖X for all x ∈ D(Λ).

(ii) The system (3.1) is said to be completely stabilizable, if for any α > 0, there exists a C0-semigroup
Φα(t) (t ≥ 0) on X, with its generator Λα : D(Λα) ⊂ X → X, and Kα ∈ L(D(Λα);U) such that

(a′) Λαx = (Ã+BKα)x for all x ∈ D(Λα);

(b′) there exists C(α) > 0 such that ‖Φα(t)‖L(X) ≤ C(α)e−αt for any t ∈ R+;

(c′) there exists D(α) > 0 such that ‖KαΦα(·)x‖L2(R+;U) ≤ D(α)‖x‖X for all x ∈ D(Λα).

Remark 3.3. Definition 3.2 is inspired by [15, 26], where the authors proved that the solvability of the
LQ problem V (y0) = infu∈L2(R+;U)

∫∞

0
[‖y(t;u, y0)‖2X + ‖u(t)‖2U ]dt (i.e., V (y0) < +∞ for all y0 ∈ X)

implies the exponential stabilizability of the system (3.1) in the sense of (i) in Definition 3.2. On the
other hand, with the aid of Lemma 3.8 below, we obtain the reverse. Hence, the solvability of the above LQ
problem is equivalent to the exponential stabilizability of the system (3.1) in the sense of (i) in Definition
3.2 (see Proposition 3.9 below).

Besides, it deserves mentioning that Definition 3.2 can be viewed as the dual of the concept of esti-
matability (see [36, Definition 2.1]).
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The main result in this subsection is as follows:

Theorem 3.4. Suppose that (H̃1)-(H̃3) are true. Then the following statements are equivalent:

(i) The system (3.1) is completely stabilizable.

(ii) For any α > 0, there are positive constants C(α) and D(α) such that

‖S(T )∗ϕ‖X ≤ D(α)‖B∗S(T − ·)∗ϕ‖L2(0,T ;U) + C(α)e−αT ‖ϕ‖X , when ϕ ∈ D(A∗), T > 0. (3.3)

(iii) There exists T0 ≥ 0 such that for any T > T0 and α > 0, there are positive constants C(α) (which
is independent of T ) and D(α, T ) such that

‖S(T )∗ϕ‖X ≤ D(α, T )‖B∗S(T − ·)∗ϕ‖L2(0,T ;U) + C(α)e−αT ‖ϕ‖X , when ϕ ∈ D(A∗). (3.4)

(iv) For each k ∈ N, there are positive constants Tk and D(k) such that

‖S(Tk)∗ϕ‖X ≤ D(k)‖B∗S(Tk − ·)∗ϕ‖L2(0,Tk;U) + e−kTk‖ϕ‖X , when ϕ ∈ D(A∗). (3.5)

Remark 3.5. It follows from (3.2) that the operators

{
(x ∈ D(A∗)) → ((t→ B∗S(t)∗x) ∈ L2(0, T ;U)),

(x ∈ D(A∗)) → ((t→ B∗S(T − t)∗x) ∈ L2(0, T ;U)),

can be extended in a unique way as linear and bounded operators from X into L2(0, T ;U). If we denote
these extensions in the same manners, then (3.3) is equivalent to

‖S(T )∗ϕ‖X ≤ D(α)‖B∗S(T − ·)∗ϕ‖L2(0,T ;U) + C(α)e−αT ‖ϕ‖X , when ϕ ∈ X, T > 0.

The same can be said about (3.4) and (3.5).

Before proving Theorem 3.4, we give some preliminaries. The first one is about the LQ problem

(LQ)y0
: inf

u∈L2(R+;U)
J(u; y0), y0 ∈ X, (3.6)

where

J(u; y0) :=

∫ ∞

0

[‖y(t;u, y0)‖2X + ‖u(t)‖2U ]dt, u ∈ L2(R+;U). (3.7)

Let
Uad(y0) := {u ∈ L2(R+;U) : y(·;u, y0) ∈ L2(R+;X)}. (3.8)

The following Lemma 3.6 can be found in [26, Theorem 5.2, Page 40] (see also [15, Theorem 2.2] and
[46, Propositions 3.2-3.4]):

Lemma 3.6. Assume that (H̃1)-(H̃3) hold. Suppose that Uad(y0) 6= ∅ for any y0 ∈ X. Then for each y0 ∈
X, the problem (LQ)y0

has a unique solution u∗y0
. Moreover, there exists a self-adjoint and non-negative

operator P ∈ L(X) and a C0-semigroup SP (t) (t ≥ 0) on X, with its generator AP : D(AP ) ⊂ X → X,
such that the following conclusions are true:

(i) It holds that P ∈ L(D(AP );D(A∗)) and B∗P ∈ L(D(AP );U).

(ii) For each x ∈ D(AP ), APx = (Ã−BB∗P )x.

(iii) If y0 ∈ D(AP ), then u
∗
y0
(t) = −B∗PSP (t)y0 for a.e. t ∈ R+.

(iv) The semigroup SP (·) is exponentially stable on X, i.e., there exists C > 0 and α > 0 (depending
on P ) such that ‖SP (t)‖L(X) ≤ Ce−αt for any t ∈ R+.
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Remark 3.7. In general, to ensure the conclusion (iv) in Lemma 3.6, one needs the detectability con-
dition given in [26, (D.C), Page 41]. Fortunately, this condition holds automatically in our setting, since
the operator R (given in [26, (D.C), Page 41]) is the identity operator currently.

The next lemma is the extension of [39, Proposition 6] to the current setting. Since the proof is the
same as that of [39, Proposition 6], we omit it.

Lemma 3.8. Suppose that (H̃1)-(H̃3) hold. Let T > 0 and α > 0. Then the following statements are
equivalent:

(i) The system (3.1) is cost-uniformly α-null controllable in time T > 0, i.e., there exists C(α, T ) ≥ 0
such that for each y0 ∈ X, there exists u ∈ L2(0, T ;U) such that ‖y(T ;u, y0)‖X ≤ α‖y0‖X and
‖u‖L2(0,T ;U) ≤ C(α, T )‖y0‖X.

(ii) There exists C(α, T ) ≥ 0 such that

‖S(T )∗ϕ‖X ≤ C(α, T )‖B∗S(T − ·)∗ϕ‖L2(0,T ;U) + α‖ϕ‖X for any ϕ ∈ D(A∗).

Moreover, C(α, T ) in both (i) and (ii) can be taken as the same.

Proof of Theorem 3.4. We organize the proof in several steps.

Step 1. We show (i) ⇒ (ii).

Suppose that (i) holds, i.e., [A,B] is completely stabilizable in the sense of Definition 3.2. Arbitrarily
fix α > 0. Then by (ii) in Definition 3.2, there exists a C0-semigroup Φα(t) (t ≥ 0), with the generator
Λα : D(Λα) ⊂ X → X , and Kα ∈ L(Λα);U) such that (a′)-(c′) are true. Several observations are given
in order: First, by (a′) and (c′), we have that, for any y0 ∈ D(Λα),

Φα(t)y0 = S̃(t)y0 +

∫ t

0

S̃(t− s)BKαΦα(s)y0ds, t ∈ R+.

Here, we notice that Φα(t)y0 ∈ D(Λα) for each t ∈ R+ when y0 ∈ D(Λα). Second, by (b′), we can
find C(α) > 0 such that ‖Φα(t)‖L(X) ≤ C(α)e−αt for all t ∈ R+. Third, we let, for each y0 ∈ D(Λα),
uy0

(t) := KαΦα(t)y0, t ∈ R+. Then it follows from (c′) of Definition 3.2 that there exists D(α) > 0
(independent of y0) such that ‖uy0

(·)‖L2(R+;U) ≤ D(α)‖y0‖X , y0 ∈ D(Λα).
From these observations and by a very similar way as that used in the proof of (i) ⇒ (ii) of Theo-

rem 1.1, we can verify that, for each y0 ∈ D(Λα),

|〈y0, S(T )∗ϕ〉X | = |〈S(T )y0, ϕ〉X | = |〈S̃(T )y0, ϕ〉X | = |〈S̃(T )y0, ϕ〉X−1,D(A∗)|

=

∣∣∣∣∣∣

〈∫ T

0

S̃(T − s)Buy0
(s)ds, ϕ

〉

X−1,D(A∗)

− 〈Φα(T )y0, ϕ〉X−1,D(A∗)

∣∣∣∣∣∣

=

∣∣∣∣∣

∫ T

0

〈uy0
(s), B∗S∗(T − s)ϕ〉Uds− 〈Φα(T )y0, ϕ〉X

∣∣∣∣∣
≤

(
C(α)e−αT ‖ϕ‖X +D(α)‖B∗S(T − ·)∗ϕ‖L2(0,T ;U)

)
‖y0‖X , when ϕ ∈ D(A∗), T > 0.

The above, along with the density of D(Λα) in X , leads to (3.3). The reason why D(Λα) is dense in X
is that Λα is the generator of the semigroup Φα(t) (t ≥ 0) (see [34, Chapter 1, Theorem 1.3]).

Step 2. It is trivial that (ii) ⇒ (iii).

Step 3. The proof of (iii) ⇒ (iv) is very similar to that used in the proof of Theorem 1.1. We omit it.

Step 4. We show (iv) ⇒ (i).

Arbitrarily fix β > 0 and y0 ∈ X . Let Uβ
ad(y0) := {v ∈ L2(R+;U) : zβ(·; v, y0) ∈ L2(R+;X)},

where zβ(·; v, y0) (with v ∈ L2(R+;U)) is the unique solution to the system: z′(t) = (A+βI)z(t)+Bv(t),
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t ∈ R+; z(0) = y0. One can directly check that, for each t ≥ 0, zβ(t; v, y0) = S̃β(t)y0+
∫ t

0
S̃β(t−s)Bv(s)ds.

(Here, S̃β(t) (t ≥ 0) is the C0-semigroup on X−1, generated by Ã + βI : X → X−1. It is easy to check

that S̃β(t) = eβtS̃(t), t ≥ 0.) This, along with the note (d4) in Remark 3.1, yields that for each T > 0,
zβ(·; v, y0) ∈ C([0, T ];X). Consider the next LQ problem

(LQ)
β
y0

: inf
v∈L2(R+;U)

{
Jβ(v; y0) :=

∫ ∞

0

[‖zβ(t; v, y0)‖2X + ‖v(t)‖2U ]dt
}
.

The rest of the proof of this step is divided into two sub-steps.

Sub-step 4.1. We prove Uβ
ad(y0) 6= ∅.

Clearly, this will be done, if one can show the existence of v̂ ∈ L2(R+;U) such that

‖zβ(·; v̂, y0)‖L2(R+;X) ≤ C̃(β)‖y0‖X and ‖v̂‖L2(R+;U) ≤ D̃(β)‖y0‖X , (3.9)

for some C̃(β) > 0 and D̃(β) > 0 depending only on β.
To show (3.9), we construct a control v̂ in the following manner: With respect to the above β > 0,

there is a unique k := k(β) ∈ N satisfying k − 1 ≤ 2β < k. Then, according to (iv), there exists Tk > 0
and D(k) > 0 such that (3.5) holds. This, together with Lemma 3.8, implies that the system (3.1) is
cost-uniformly e−kTk -null controllable in time Tk. Therefore, there exists u0 ∈ L2(0, Tk;U) such that

‖y(Tk;u0, y0)‖X ≤ e−kTk‖y0‖X ≤ e−2βTk‖y0‖X and ‖u0‖L2(0,Tk;U) ≤ D(k)‖y0‖X . (3.10)

Let y1 := y(Tk;u0, y0). Then by making use of the above cost-uniformly e−kTk -null controllability again,
we can find u1 ∈ L2(0, Tk;U) such that

‖y(Tk;u1, y1)‖X ≤ e−2βTk‖y1‖X and ‖u1‖L2(0,Tk;U) ≤ D(k)‖y1‖X .

Since the system (3.1) is time-invariant, continuing the above process leads to a sequence {ui}i∈N ⊂
L2(0, Tk;U) such that

‖y(Tk;ui, yi)‖X ≤ e−2βTk‖yi‖X and ‖ui‖L2(0,Tk;U) ≤ D(k)‖yi‖X for any i ∈ N,

where yi := y(Tk;ui−1, yi−1). This, together with (3.10), shows that

‖y(Tk;ui, yi)‖X ≤ (e−2βTk)i+1‖y0‖X ≤ e−2β(i+1)Tk‖y0‖X for all i ∈ N; (3.11)

‖ui‖L2(0,Tk;U) ≤ D(k)(e−2βTk)i‖y0‖X ≤ D(k)e−2βiTk‖y0‖X for all i ∈ N. (3.12)

Let

û(t) :=
∞∑

i=0

χ[iTk,(i+1)Tk)(t)ui(t− iTk), t ∈ R+ (3.13)

and
zβ(t) := eβty(t; û, y0), v̂(t) := eβtû(t), t ∈ R+. (3.14)

Now, we show that v̂, given in (3.14), satisfies the second inequality in (3.9). Indeed, by (3.12), (3.13)
and the second equality in (3.14), we find

‖v̂‖L2(R+;U) ≤
∞∑

i=0

eβ(i+1)Tk‖ui‖L2(0,Tk;U) ≤ D(k)

∞∑

i=0

e−β(i−1)Tk‖y0‖X =
D(k)eβTk

1− e−βTk
‖y0‖X ,

which leads to the second inequality in (3.9) with D̃(β) = D(k)eβTk

1−e−βTk
. (Here, we notice that k is uniquely

determined by β, and thus the constant D(k)eβTk

1−e−βTk
depends only on β.)
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Finally, we show that v̂, given by (3.14), satisfies the first inequality in (3.9). To this end, several
observations are given in order. First, it follows from (3.14) that zβ(t) = zβ(t; v̂, y0) for any t ≥ 0. Then,
it follows by the equation satisfied by zβ(·; v̂, y0), (3.14) and (3.13) that when t ∈ [iTk, (i + 1)Tk], with
i ∈ N arbitrarily fixed,

|〈zβ(t; v̂, y0), ϕ〉X | = |〈zβ(t; v̂, y0), ϕ〉X−1,D(A∗)|

≤ |〈S̃β(t− iTk)zβ(iTk; v̂, y0), ϕ〉X−1,D(A∗)|+
∣∣∣∣∣

〈∫ t

iTk

S̃β(t− s)Bv̂(s)ds, ϕ

〉

X−1,D(A∗)

∣∣∣∣∣

=
∣∣∣〈eβ(t−iTk)S(t− iTk)zβ(iTk; v̂, y0), ϕ〉X

∣∣∣+
∣∣∣∣
∫ t

iTk

〈S̃β(t− s)Bv̂(s), ϕ〉X−1,D(A∗)ds

∣∣∣∣

≤ sup
t∈[0,Tk]

‖S(t)‖L(X)e
βTk‖zβ(iTk; v̂, y0)‖X‖ϕ‖X

+eβ(i+1)Tk

∣∣∣∣
∫ t

iTk

〈S̃(t− s)Bû(s), ϕ〉X−1,D(A∗)ds

∣∣∣∣

≤ sup
t∈[0,Tk]

‖S(t)‖L(X)e
β(i+1)Tk‖y(iTk; û, y0)‖X‖ϕ‖X

+eβ(i+1)Tk

∣∣∣∣∣

∫ t−iTk

0

〈S̃(t− iTk − s)Bui(s), ϕ〉X−1,D(A∗)ds

∣∣∣∣∣ for any ϕ ∈ D(A∗). (3.15)

Here, we used the fact S̃(t) = S(t) (t ≥ 0) on X . Second, we get from (3.13) and the construction of
{yi}i∈N that for each i ∈ N, y(iTk; û, y0) = y(Tk;ui−1, yi−1). This, along with (3.11), leads to

‖y(iTk; û, y0)‖X ≤ e−2βiTk‖y0‖X , when i ∈ N. (3.16)

Third, it follows by (3.2) and (3.12) that for each t ∈ [iTk, (i + 1)Tk] (with i ∈ N arbitrarily fixed) and
for each ϕ ∈ D(A∗),

∣∣∣∣∣

∫ t−iTk

0

〈S̃(t− iTk − s)Bui(s), ϕ〉X−1,D(A∗)ds

∣∣∣∣∣ =
∣∣∣∣∣

∫ t−iTk

0

〈ui(s), B∗S∗(t− iTk − s)ϕ〉Uds
∣∣∣∣∣

≤ C(Tk)‖ui‖L2(0,Tk;U)‖ϕ‖X ≤ C(Tk)D(k)e−2βiTk‖y0‖X‖ϕ‖X . (3.17)

Since D(A∗) is dense in X , it follows (3.15), (3.16) and (3.17) that

‖zβ(t; v̂, y0)‖L2(R+;X) ≤
∞∑

i=0

‖zβ(·; v̂, y0)‖L2(iTk,(i+1)Tk;X) ≤ Tk

∞∑

i=0

sup
t∈[iTk,(i+1)Tk]

‖zβ(t; v̂, y0)‖X

≤ Tke
βTk

(
sup

t∈[0,Tk]

‖S(t)‖L(X) + C(Tk)D(k)

)
∞∑

i=0

e−βiTk‖y0‖X ,

which leads to the first inequality in (3.9) with C̃(β) := Tke
βTk(supt∈[0,Tk]

‖S(t)‖L(X)+C(Tk)D(k))/(1−
e−βTk). The reason why D(A∗) is dense in X is that A∗ is the generator of the adjoint semigroup S(t)∗

(t ≥ 0) (see [34, Chapter 1, Corollary 10.6])).

Sub-step 4.2. We prove the desired complete stabilizability.

One can directly check that [A + βI,B] still satisfies the assumptions (H̃1)-(H̃3). Meanwhile, by

Sub-step 4.1, we have Uβ
ad(y0) 6= ∅ for each y0 ∈ X . Thus, by Lemma 3.6 (where (LQ)y0

is replaced

by (LQ)
β
y0
), there is a unique solution v∗y0

to (LQ)
β
y0
; a self-adjoint and non-negative definite operator

P := P (β) ∈ L(X); a C0-semigroup Sβ
P (t) (t ≥ 0) on X , with the generator Aβ

P : D(Aβ
P ) ⊂ X → X , such

that the following conclusions are true:
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(e1) It holds that P ∈ L(D(Aβ
P );D(A∗)) and B∗P ∈ L(D(Aβ

P );U);

(e2) For any y0 ∈ D(Aβ
P ), A

β
P y0 = (Ã+ βI −BB∗P )y0;

(e3) If y0 ∈ D(Aβ
P ), then v

∗
y0
(t) = −B∗PSβ

P (t)y0 for a.e. t > 0;

(e4) The semigroup Sβ
P (t) (t ≥ 0) is exponentially stable on X .

Let Kβ := −B∗P and Φβ(t) := e−βtSβ
P (t), t ≥ 0. Then one can directly check that Φβ(t) (t ≥ 0)

is a C0-semigroup on X generated by Λβ := Aβ
P − βI, with D(Λβ) = D(Aβ

P ). Moreover, by (e1),
Kβ ∈ L(D(Λβ);U).

Next, we will check that the above Kβ and Φβ(t) (t ≥ 0) satisfy (a′)-(c′) in Definition 3.2 one by one.

First, it follows from (e2) that Λβy0 = (Aβ
P−βI)y0 = (Ã−BB∗P )y0 for any y0 ∈ D(Λβ)(= D(Aβ

P )), which

leads to (a′) in Definition 3.2. Second, we use (e4) to find C := C(β) > 0 such that ‖Sβ
P (t)‖L(X) ≤ C for

all t > 0. Thus we have

‖Φβ(t)‖L(X) = e−βt‖Sβ
P (t)‖L(X) ≤ Ce−βt, when t > 0,

which leads to (b′) in Definition 3.2. Finally, we use (3.9) to find D̂(β) > 0 such that

‖v∗y0
‖L2(R+;U) ≤

√
Jβ(v∗y0

; y0) =
√

inf
v∈L2(R+;U)

Jβ(v; y0) ≤ D̂(β)‖y0‖X .

This, together with (e3), implies that when y0 ∈ D(Λβ)(= D(Aβ
P )),

‖KβΦβ(·)y0‖L2(R+;U) = ‖ − e−β·B∗PSβ
P (·)y0‖L2(R+;U) ≤ ‖v∗y0

‖L2(R+;U) ≤ D̂(β)‖y0‖X ,

which leads to (c′) in Definition 3.2.
Now, since β > 0 was arbitrarily taken, the above checked (a′)-(c′), along with Definition 3.2, yields

that the system (3.1) is completely stabilizable.

The following proposition may have independent interest.

Propositon 3.9. Suppose that (H̃1)-(H̃3) hold. Then the following statements are equivalent:

(i) The set Uad(y0) defined by (3.8) is nonempty for any y0 ∈ X.

(ii) The system (3.1) is exponentially stabilizable (in the sense of (i) in Definition 3.2).

(iii) For any y0 ∈ X, V (y0) := infu∈L2(R+;U) J(u; y0) < +∞, where J(u; y0) is given by (3.7).

Proof. First of all, it is well known that (i) ⇔ (iii).
We next prove (i) ⇒ (ii). Suppose (i) holds. Then it follows from Lemma 3.6 that for each y0 ∈ X , the

problem (LQ)y0
(see (3.6)) has a unique solution u∗y0

, moreover there exists a self-adjoint and non-negative
operator P ∈ L(X) and a C0-semigroup SP (t) (t ≥ 0) on X , with its generator AP : D(AP ) ⊂ X → X ,
such that (i)-(iv) in Lemma 3.6 are true. Let Φ(t) := SP (t) (t ≥ 0). (Its the generator is Λ := AP .) Let
K := −B∗P . Then by (i) in Lemma 3.6, we have K ∈ L(D(Λ);U)(= L(D(AP );U)).

Now we show that the above Φ(t) and K satisfy the conditions (a), (b) and (c) in Definition 3.2.
Indeed, (a) and (b) follow from (ii) and (iv) in Lemma 3.6, respectively. While the condition (c) can
be deduced from our assumptions and (iii) in Lemma 3.6. Indeed, by our assumptions and (ii) in [15,
Theorem 2.2], there exists a constant C > 0 such that

‖u∗x‖L2(R+;U) ≤
√

inf
u∈L2(R+;U)

J(u;x) ≤ C‖x‖X , when x ∈ X,

where J(u;x) is defined by (3.7) (with y0 = x). Thus, by (iii) in Lemma 3.6, we get (c). Hence (ii) is
true.
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Finally, we show (ii) ⇒ (i). We suppose (ii) holds, i.e., there exists a C0-semigroup Φ(t) (t ≥ 0) on
X , with its generator Λ : D(Λ) ⊂ X → X , and K ∈ L(D(Λ);U) such that the conditions (a), (b) and (c)
are true. Let α > 0 be given in (b). By a very similar way used in Step 1 in the proof of Theorem 3.4, we
can find positive constants C(α) and D(α) such that (3.3) holds for the aforementioned α. Thus, there
exists T0 > 0 and δ ∈ (0, 1) such that

‖S(T0)∗ϕ‖X ≤ D(α)‖B∗S(T0 − ·)∗ϕ‖L2(0,T0;U) + δ‖ϕ‖X , when ϕ ∈ D(A∗).

This, together with Lemma 3.8, yields that the system (3.1) is cost-uniformly δ-null controllable at time
T0 > 0. Then, by the very similar way used in Sub-step 4.1 in the proof of Theorem 3.4 (or in the proof
of Lemma 31 in [39]), we can conclude that Uad(y0) 6= ∅ for any y0 ∈ X , i.e., (i) is true.

3.2 Periodic feedback stabilization

This subsection studies the periodic complete stabilization for the periodic system [A(·), B(·)], i.e.,

y′(t) = A(t)y(t) +B(t)u(t), t ∈ R+, (3.18)

under the following hypotheses:

(Ĥ1) For a.e. t ∈ R+, A(t) := A + D(t), where the operator A generates a C0-semigroup S(t) (t ≥ 0)
on X ; the operator-valued function D(·) belongs to L1

loc(R
+;L(X)) and is T-periodic (T > 0), i.e.,

D(t+ T) = D(t) for a.e. t ∈ R+.

(Ĥ2) The operator-valued function B(·) belongs to L∞(R+;L(U ;X)) and is T-periodic, i.e., B(t+ T) =
B(t) for a.e. t ∈ R+.

By [45, Chapter 1, Proposition 1.2], we have what follows: First, A(·) generates a unique T-periodic
evolution Φ(·, ·) (i.e., Φ(t + T, s + T) = Φ(t, s) for all 0 ≤ s ≤ t) on X ; Second, for each T-periodic
feedback operatorK ∈ L∞(R+;L(X ;U)) (i.e., K(T+t) = K(t) for a.e. t ∈ R+), AK(·) := A(·)+B(·)K(·)
generates a unique T-periodic evolution ΦK(·, ·); Third, when u ∈ L2(R+;U) and y0 ∈ X ,

y(t;u, y0) = Φ(t, 0)y0 +

∫ t

0

Φ(t, s)Bu(s)ds and yK(t; y0) = ΦK(t, 0)y0 for all t ≥ 0,

where y(·;u, y0) is the solution to (3.18) with the initial condition: y(0) = y0, while yK(·; z) is the solution
to the equation: y′(t) = [A(t) +B(t)K(t)]y(t), t ≥ 0; y(0) = y0.

To present of the main result of this subsection, we need the following definitions:

Definition 3.10. (i) The system (3.18) is said to be periodically stabilizable, if there exists C > 0,
α > 0 and a T-periodic feedback operator K(·) ∈ L∞(R+;L(X ;U)) such that ‖ΦK(t, 0)‖L(X) ≤
Ce−αt for all t ≥ 0.

(ii) The system (3.18) is said to be periodically completely stabilizable, if for any α ∈ R+, there exists
C := C(α) > 0 and a T-periodic feedback operator K(·) := Kα(·) ∈ L∞(R+;L(X ;U)) such that
‖ΦK(t, 0)‖L(X) ≤ Ce−αt for all t ≥ 0.

The main result of this subsection is as follows:

Theorem 3.11. Suppose that (Ĥ1) and (Ĥ2) are true. Then the following statements are equivalent:

(i) The system (3.18) is periodically completely stabilizable.

(ii) For any k ∈ N, there exists nk ∈ N and C(k) > 0 such that

‖Φ(nkT, 0)
∗ψ‖X ≤ C(k)‖B(·)∗Φ(nkT, ·)∗ψ‖L2(0,nkT;U) + e−knkT‖ψ‖X for any ψ ∈ X.
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To prove Theorem 3.11, we need the next Lemma 3.12, which is quoted from [47, Theorem 1.1].

Lemma 3.12. Suppose that (Ĥ1) and (Ĥ2) hold. Let µ ≥ 0. Let Φµ(·, ·) be the T-periodic evolution
generated by A(·) + µI. Then the following statements are equivalent:

(i) The following system is periodically stabilizable:

y′(t) = (A(t) + µI)y(t) +B(t)u(t), t ∈ R+. (3.19)

(ii) There exists δ ∈ (0, 1), n ∈ N and C(n) > 0 such that

‖Φµ(nT, 0)∗ψ‖X ≤ C(n)‖B(·)∗Φµ(nT, ·)∗ψ‖L2(0,nT;U) + δ‖ψ‖X for any ψ ∈ X. (3.20)

Remark 3.13. Given n ∈ N and ψ ∈ X, we have that Φµ(nT, t)∗ψ = ϕn(t;ψ) for each t ∈ [0, nT], where
ϕn(·;ψ) is the solution to the equation: ϕ′

n(t) = −(A + µI)(t)∗ϕn(t) t ∈ [0, nT]; ϕn(nT) = ψ. In [47,
Theorem 1.1], (3.20) is expressed in terms of ϕn(·;ψ).

Now, we are in the position to prove Theorem 3.11.

The proof of Theorem 3.11. First of all, when µ ≥ 0 and K(·) ∈ L∞(R+;L(X,U)) is T-periodic, we have

Φµ(t, s) = eµ(t−s)Φ(t, s) and Φµ
K(t, s) = eµ(t−s)ΦK(t, s) for all 0 ≤ s ≤ t, (3.21)

where Φµ
K(·, ·) is the T-periodic evolution generated by A(·) + µI +B(·)K(·). We now organize the rest

of the proof in two steps.

Step 1. We show (i) ⇒ (ii).

Suppose (i) is true. Arbitrarily fix k ∈ N. Then according to Definition 3.10, there exists Ck > 0 and
a T-periodic feedback operatorK(·) := Kk(·) ∈ L∞(R+;L(X ;U)) such that ‖ΦK(t, 0)‖L(X) ≤ Cke

−(k+1)t

for all t ≥ 0, which, along with the second equality in (3.21), implies that ‖Φk
K(t, 0)‖L(X) ≤ Cke

−t for all
t ≥ 0. This, along with Definition 3.10, leads to the periodic stabilizability of the system (3.19) (where
µ = k). Then according to Lemma 3.12, there exists δk ∈ (0, 1), nk ∈ N and C(k) > 0 such that

‖Φk(nkT, 0)
∗ψ‖X ≤ C(k)‖B(·)∗Φk(nkT, ·)∗ψ‖L2(0,nkT;U) + δk‖ψ‖X for any ψ ∈ X.

This, together with the first equality in (3.21), implies that

‖Φ(nkT, 0)
∗ψ‖X ≤ C(k)‖e−k·B(·)∗Φ(nkT, ·)∗ψ‖L2(0,nkT;U) + δke

−knkT‖ψ‖X
≤ C(k)‖B(·)∗Φ(nkT, ·)∗ψ‖L2(0,nkT;U) + e−knkT‖ψ‖X for any ψ ∈ X,

which leads to (ii).

Step 2. We show (ii) ⇒ (i).

Suppose that (ii) is true. Arbitrarily fix µ > 0. We first show that the system (3.19) is periodically
stabilizable. To this end, we take k = [µ] + 1, where [µ] denotes the integer part of µ. Then by (ii), we
can find nk ∈ N and C(k) > 0 such that

‖Φ(nkT, 0)
∗ψ‖X ≤ C(k)‖B(·)∗Φ(nkT, ·)∗ψ‖L2(0,nkT;U) + e−knkT‖ψ‖X for any ψ ∈ X.

Hence, by the first equality in (3.21) and the same way to prove (2.9), we have

‖Φµ(nkT, 0)
∗ψ‖X ≤ C(k)‖eµ·B(·)∗Φµ(nkT; ·)∗ψ‖L2(0,nkT;U) + e−(k−µ)nkT‖ψ‖X

≤ C(k)eµnkT‖B(·)∗Φµ(nkT, ·)∗ψ‖L2(0,nkT;U) + e−(k−µ)nkT‖ψ‖X for any ψ ∈ X.

Since e−(k−µ)nkT < 1, the above, along with Lemma 3.12, yields that the system (3.19) is periodically
stabilizable.

We next show that the system (3.19) is periodically completely stabilizable. Indeed, by the periodic
stabilizability of the system (3.19) and by (3.21), one can easily check that there is C = C(µ) > 0 and
T-periodic K(·) ∈ L∞(R+;L(X ;U)) (which depends on µ) so that ‖ΦK(t, 0)‖L(X) ≤ Ce−µt for all t ≥ 0.
Then, since µ > 0 was arbitrarily taken, we get, from Definition 3.10, the periodic complete stabilizability
of the system (3.19).
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4 Applications

In this section, we present several examples of control systems, which are not null controllable, but can
be shown to be completely stabilizable, through verifying the weak observability inequalities in Theorem
1.1, as well as its extensions presented in Section 3. Besides, we give some sufficient conditions ensuring
the weak observability inequalities, from the perspective of the spectral projection. These conditions not
only are useful in the studies of our examples, but also have independent interest.

4.1 Conditions ensuring the weak observability

This subsection presents two theorems. One is about the setting in Section 1, while another is about the
setting in Subsection 3.1.

Theorem 4.1. Let A, with its domain D(A), generate a C0-semigroup S(t) (t ≥ 0) on X and B ∈
L(U ;X). Let {Pk}k∈N be a family of orthogonal projections on X. Suppose the following dissipative
inequality is satisfied:

(a) For each k ∈ N, there exists Mk > 0 and αk > 0, with αk → +∞ as k → +∞, such that

‖(I − Pk)S(t)
∗ϕ‖X ≤Mke

−αkt‖ϕ‖X for any t ∈ R+and ϕ ∈ X. (4.1)

Then the statement (iii) in Theorem 1.1 holds when one of the following two conditions (b1) and (b2) is
true:

(b1) For each k ∈ N, there exists Ck > 0 such that the following spectral inequality is true:

‖Pkϕ‖X ≤ Ck‖B∗Pkϕ‖U for any ϕ ∈ X ; (4.2)

(b2) There exists T0 > 0 such that for each k ∈ N, there exists C(k, T0) > 0 such that the following
truncated observability inequality holds:

‖PkS(T0)
∗ϕ‖2X ≤ C(k, T0)

∫ T0

0

‖B∗PkS(t)
∗ϕ‖2Udt for any ϕ ∈ X. (4.3)

Proof. Since S(t) (t ≥ 0) is a C0-semigroup, there exists M > 1 and δ0 > 0 such that

‖S(t)‖L(X) ≤Meδ0t for all t ∈ R+. (4.4)

Arbitrarily fix α > 0. Then fix k ∈ N such that αk > α. (Such k exists, since αk tends to +∞.) We shall
prove statement (iii) in Theorem 1.1 by two cases.

We first consider the case when (b1) is true. Arbitrarily fix T > 1 and ϕ ∈ X . By (4.4) and the
Cauchy-Schwarz inequality, we find

‖S(T )∗ϕ‖2X =

∥∥∥∥
∫ 1

0

S(t)∗S(T − t)∗ϕdt

∥∥∥∥
2

X

≤
(∫ 1

0

‖S(t)∗‖L(X)‖S(T − t)∗ϕ‖Xdt

)2

≤ M2e2δ0
(∫ 1

0

‖S(T − t)∗ϕ‖Xdt

)2

≤M2e2δ0
∫ 1

0

‖S(T − t)∗ϕ‖2Xdt. (4.5)

Meanwhile, since Pk is an orthogonal projection, it follows from (4.2) and (4.1) that for each t ∈ [0, T ],

‖S(T − t)∗ϕ‖2X = ‖PkS(T − t)∗ϕ‖2X + ‖(I − Pk)S(T − t)∗ϕ‖2X
≤ C2

k‖B∗PkS(T − t)∗ϕ‖2U + ‖(I − Pk)S(T − t)∗ϕ‖2X
≤ 2C2

k‖B∗S(T − t)∗ϕ‖2U + 2C2
k‖B∗(I − Pk)S(T − t)∗ϕ‖2U + ‖(I − Pk)S(T − t)∗ϕ‖2X
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≤ 2C2
k‖B∗S(T − t)∗ϕ‖2U +

[
2C2

k‖B‖2L(U ;X) + 1
]
‖(I − Pk)S(T − t)∗ϕ‖2X

≤ 2C2
k‖B∗S(T − t)∗ϕ‖2U +

[
2C2

k‖B‖2L(U ;X) + 1
]
M2

ke
−2αk(T−t)‖ϕ‖2X . (4.6)

Next, integrating both sides of (4.6) for t over (0, 1), using (4.5), and noting that αk > α, we obtain

‖S(T )∗ϕ‖2X ≤ 2M2C2
ke

2δ0

∫ 1

0

‖B∗S(T − t)∗ϕ‖2Udt+M2M2
ke

2(δ0+α)
[
2C2

k‖B‖2L(U ;X) + 1
]
e−2αT ‖ϕ‖2X ,

which, along with the fact that T > 1, leads to

‖S(T )∗ϕ‖X ≤ D(α)‖B∗S(T − ·)∗ϕ‖L2(0,T ;U) + C(α)e−αT ‖ϕ‖X , (4.7)

where

D(α) :=
√
2MCke

δ0 , C(α) :=MMke
δ0+α

√[
2C2

k‖B‖2L(U ;X) + 1
]
.

Since k depends only on α, the statement (iii) in Theorem 1.1 follows from (4.7) in the current case.
We next consider the case where (b2) holds. Arbitrarily fix T ≥ 2T0. Then, there exists a natural

number N ≥ 2 such that NT0 ≤ T < (N + 1)T0. By (4.4), (4.3) and (4.1), we see that for each ϕ ∈ X ,

‖S(T )∗ϕ‖2X = ‖S(T −NT0)
∗S(NT0)

∗ϕ‖2X ≤M2e2δ0T0‖S(NT0)∗ϕ‖2X
= M2e2δ0T0(‖PkS(T0)

∗S((N − 1)T0)
∗ϕ‖2X + ‖(I − Pk)S(NT0)

∗ϕ‖2X)

≤ M2e2δ0T0

(
C(k, T0)

∫ T0

0

‖B∗PkS((N − 1)T0 + t)∗ϕ‖2U dt+ ‖(I − Pk)S(NT0)
∗ϕ‖2X

)

≤ 2M2e2δ0T0C(k, T0)

(∫ NT0

(N−1)T0

‖B∗S(t)∗ϕ‖2U dt+
∫ NT0

(N−1)T0

‖B∗(I − Pk)S(t)
∗ϕ‖2U dt

)

+M2e2δ0T0M2
ke

−2αkNT0‖ϕ‖2X . (4.8)

Meanwhile, it follows from (4.1) that

∫ NT0

(N−1)T0

‖B∗(I − Pk)S(t)
∗ϕ‖2U dt ≤ ‖B‖2L(U ;X)M

2
k

∫ NT0

(N−1)T0

e−2αkt‖ϕ‖2Xdt

≤ ‖B‖2L(U ;X)M
2
kT0e

−2αk(N−1)T0‖ϕ‖2X . (4.9)

Using (4.8) and (4.9), noting that αk > α and NT0 ≤ T < (N + 1)T0, we get

‖S(T )∗ϕ‖2X ≤ D(α)2
∫ T

0

‖B∗S(t)∗ϕ‖2U dt+ C(α)2e−2αT ‖ϕ‖2X , (4.10)

where

D(α) :=Meδ0T0

√
2C(k, T0), C(α) :=MMke

(δ0+α)T0

√
2C(k, T0)‖B∗‖2L(X;U)T0e

2αT0 + 1.

Now, the statement (iii) in Theorem 1.1 follows from (4.10) in the current case.

Remark 4.2. (i) The Lebeau-Robbiano strategy says in plain language that the null controllability can
be implied by a spectral inequality and a dissipative inequality. In this strategy, the following compatibility
condition on the decay rate in the dissipative inequality and the growth rate in the spectral inequality
is necessary: the former is greater than the latter (see e.g. [32, Theorem 2.2]). In the studies of the
exponential stabilizability, such compatibility condition is relaxed (see [18, Lemma 2.2]). Our Theorem 4.1,
together with Theorem 1.1, improves [18, Lemma 2.2] from two perspectives: First, it serves for the
complete stabilizability; Second, there is no any compatibility condition on the constants in (4.1) and (4.2).
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(ii) When PkS(·) = S(·)Pk, the condition (b1) implies condition (b2). This can be checked directly.
(iii) We borrowed the name “truncated observability inequality” from [7], where such kind of ob-

servability inequality is applied to construct an internal feedback control stabilizing the Navier-Stokes
equations.

To show the similar result to Theorem 4.1 in the setting where B is unbounded, we need the next
lemma.

Lemma 4.3. Suppose that [A,B] satisfies the following conditions:

(a) The operator A, with its domain D(A), generates an analytic semigroup S(t) (t ≥ 0) on X.

(b) There exists γ ∈
(
0, 12
)
such that B ∈ L(U ;X−γ), where X−γ is the completion of X with respect

to the norm ‖z‖−γ := ‖(ρ0I −A)−γz‖X, z ∈ X (where ρ0 ∈ ρ(A) ∩ R is arbitrarily fixed).

Then the following conclusions are true:

(i) The assumptions (H̃1)-(H̃3) in Section 3.1 hold for [A,B].

(ii) The operator (ρ0I−A)γ has a unique extension ˜(ρ0I −A)γ ∈ L(X ;X−γ). Moreover, this extension

is invertible and ( ˜(ρ0I −A)γ)−1B ∈ L(U ;X).

Proof. We organize the proof by two steps.

Step 1. We show the conclusion (i).

First, (H̃1) is clearly true.
Second, one can directly check that X−γ is continuously embedded into X−1. Then by the condition

(b), we get B ∈ L(U ;X−1) which leads to (H̃2).

We are now going to show (H̃3). First of all, one can directly check the following two facts:

(f1) The operator (ρ0I −A)γ belongs to L(D((ρ0I − A)γ);X) (Here, the norm of D((ρ0I −A)γ) is as:

‖z‖D((ρ0I−A)γ) = ‖(ρ0I − A)γz‖X , z ∈ D((ρ0I − A)γ).) and has a unique extension ˜(ρ0I −A)γ ∈
L(X ;X−γ) which is invertible (see [41, Chapter 2, Proposition 2.10.3]);

(f2) B ∈ L(U ;X−γ) if and only if
(

˜(ρ0I −A)γ
)−1

B ∈ L(U ;X).

The above facts (f1) and (f2), together with D(A∗) ⊂ D((ρ0I −A∗)γ) and the analyticity of S(t) (t ≥ 0)
(which means that S(t)∗x ∈ D(A∗) for any x ∈ X when t > 0), yield that for each t > 0,

B∗S(t)∗x = B∗

(
˜(ρ0I −A)γ

∗
)−1

˜(ρ0I −A)γ
∗

S(t)∗x

= B∗

(
˜(ρ0I −A)γ

∗
)−1

(ρ0I −A∗)γS(t)∗x for any x ∈ X. (4.11)

Here, we notice that B∗ ∈ L(D(A∗);U) since B ∈ L(U ;X−1) is proved and X−1 is the dual space of
D(A∗) with respect to the pivot space X (see (d3) in Remark 3.1).

Meanwhile, we have the following observations: First, the analytic semigroup S(t)∗e−ρ0t (t ≥ 0)) is
generated by −ρ0I + A∗; Second, since ρ0 ∈ ρ(A) ∩ R, we have 0 ∈ ρ(ρ0I − A∗) (see [34, Chapter 1,
Lemma 10.2]). From these observations, we can use [34, Chapter 2, Theorem 6.13] to find C(γ) > 0 such
that

‖(ρ0I −A∗)γS(t)∗‖L(X) ≤ C(γ)eρ0tt−γ for all t > 0. (4.12)

Now, it follows by (4.12) and (4.11) that, when T > 0 and x ∈ X ,

∫ T

0

‖B∗S(t)∗x‖2Udt =

∫ T

0

∥∥∥B∗
(

˜(ρ0I −A)γ
∗)−1

(ρ0I −A∗)γS(t)∗x
∥∥∥
2

U
dt
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≤
∥∥∥B∗

(
˜(ρ0I −A)γ

∗)−1∥∥∥
2

L(X;U)
C(γ)2e2ρ0T

∫ T

0

1

t2γ
dt‖x‖2X ≤ C(T, γ)‖x‖2X ,

where C(T, γ) :=
∥∥∥B∗

(
˜(ρ0I −A)γ

∗)−1∥∥∥
2

L(X;U)
C(γ)2e2ρ0T T 1−2γ

1−2γ . This leads to (H̃3) obviously.

Step 2. The conclusion (ii) follows from the above (f1) and (f2) at once.

Theorem 4.4. Assume that the conditions (a) and (b) in Lemma 4.3 hold. Suppose that there is a family
of orthogonal projections {Pk}k∈N on X satisfying the commutative condition:

PkS(·) = S(·)Pk; (4.13)

the dissipative condition (a) in Theorem 4.1; and the following observability condition:

(b′2) there exists T0 > 0 such that for each k ∈ N, there is C(k, T0) > 0 such that

‖PkS(T0)
∗ϕ‖2X ≤ C(k, T0)

∫ T0

0

‖B∗PkS(t)
∗ϕ‖2Udt for any ϕ ∈ D(A∗). (4.14)

Then the statement (iii) in Theorem 3.4 is true.

Proof. Let T0 and C(k, T0) be given in (b′2). Let Mk and αk be given in (a) of Theorem 4.1. Let M and
δ0 be given by (4.4) which clearly holds in the current case. Arbitrarily fix α > 0 and T ≥ 2T0. Then,
there is a natural number N with N ≥ 2 such that NT0 ≤ T < (N + 1)T0.

By Lemma 4.3, (4.13) and (4.14), and by the same way as that used in the proof of (4.8) (in the proof
of Theorem 4.1), we can easily get

‖S(T )∗ϕ‖2X ≤ 2M2e2δ0T0C(k, T0)

(∫ NT0

(N−1)T0

‖B∗S(t)∗ϕ‖2U dt+
∫ NT0

(N−1)T0

‖B∗S(t)∗(I − Pk)ϕ‖2U dt
)

+M2e2δ0T0M2
ke

−2αkNT0‖ϕ‖2X for any ϕ ∈ D(A∗). (4.15)

(Notice that it follows by (4.13) and the property of C0-semigroup that PkA
∗ = A∗Pk in D(A∗) for each

k ∈ N, which implies that if ϕ ∈ D(A∗) then Pkϕ ∈ D(A∗).) At the same time, we clearly have (4.11)
and (4.12). These, along with (4.1) and the conclusion (ii) in Lemma 4.3, yield

∫ NT0

(N−1)T0

‖B∗S(t)∗(I − Pk)ϕ‖2U dt

=

∫ NT0

(N−1)T0

‖(( ˜(ρ0I −A)γ)−1B)∗(ρ0I − A∗)γS(T0)
∗S(t− T0)

∗(I − Pk)ϕ‖2Udt

≤ ‖( ˜(ρ0I −A)γ)−1B‖2L(U ;X)C(γ)
2e2ρ0T0T−2γ

0

∫ (N−1)T0

(N−2)T0

‖(I − Pk)S(t)
∗ϕ‖2X dt

≤ ‖( ˜(ρ0I −A)γ)−1B‖2L(U ;X)C(γ)
2e2ρ0T0T−2γ

0 M2
k

∫ (N−1)T0

(N−2)T0

e−2αktdt‖ϕ‖2X

≤ ‖( ˜(ρ0I −A)γ)−1B‖2L(U ;X)C(γ)
2e2ρ0T0T 1−2γ

0 M2
ke

−2αk(N−2)T0‖ϕ‖2X for any ϕ ∈ D(A∗).(4.16)

Now, by (4.15) and (4.16), using the facts αk > α and NT0 ≤ T < (N + 1)T0, we obtain

‖S(T )∗ϕ‖2X ≤ D(α)2
∫ T

0

‖B∗S(t)∗ϕ‖2U dt+ C(α)2e−2αT ‖ϕ‖2X for any ϕ ∈ D(A∗),

where D(α) :=Meδ0T0

√
2C(k, T0) and

C(α) :=MMke
(δ0+α)T0

√
2C(k, T0)‖( ˜(ρ0I −A)γ)−1B‖2L(U ;X)C(γ)

2e2(ρ0+2α)T0T 1−2γ
0 + 1.

This leads to the statement (iii) in Theorem 3.4.
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4.2 Examples

This subsection presents several concrete controlled equations which are not null controllable but can be
checked to be completely stabilizable, via the weak observability inequalities. The first two examples are
under the framework in Section 1, the third example is under the framework in Subsection 3.1, while the
last example is under the framework in Subsection 3.2.

Example 1. (Fractional heat equations in Rn.) Let c ≥ 0 and s ∈ (0, 1). Let E be a thick set in
Rn such that E ⊂ Bc(x̄, R) for some x̄ ∈ Rn and R > 0 (where Bc(x̄, R) denotes the complementary set
of the closed ball centered at x̄ ∈ Rn and of radius R). Here, by E being a thick set in Rn, we mean that
there is γ > 0 and L > 0 such that

|E ∩QL(x)| ≥ γLn for each x ∈ Rn,

where QL(x) is the closed cube in Rn (centered at x and of side-length L) and |E ∩ QL(x)| denotes the
Lebesgue measure of E ∩QL(x). We consider the controlled equation:

{
∂ty(t, x) + (−△)

s
2 y(t, x)− cy(t, x) = χE(x)u(t, x), in R+ × Rn,

y(0, ·) ∈ L2(Rn).
(4.17)

Here, χE is the characteristic function of E, u ∈ L2(R+;L2(Rn)) and the fractional Laplacian (−△)
s
2 is

defined by
(−△)

s
2ϕ := F−1(|ξ|sF(ϕ)), ϕ ∈ C∞

0 (Rn),

where and throughout this example, we use F and F−1 to denote the Fourier transform and its inverse
respectively.

For the system (4.17), we have the following conclusions:

• The equation (4.17) can be put into our framework (in Section 1) in the following manner: Let
X = U := L2(Rn) and A := −(−△)

s
2 + c, with D(A) = Hs(Rn). Let B : L2(Rn) → L2(Rn) be

defined by Bv := χEv for each v ∈ L2(Rn). It is well known that A generates a C0-semigroup
{S(t)}t≥0 on X . One can directly check that B ∈ L(U ;X).

• The equation (4.17) with the null control is unstable (see [18, (1.6), as well as the note (d1)]).

• Since E ⊂ Bc(x̄, R), it follows by [20, Theorem 1.3 and its generalization in Section 4.3] that the
equation (4.17) is not null controllable.

• The equation (4.17) is completely stabilizable. (See Theorem 4.5 below).

The next Theorem 4.5 may have independent interest.

Theorem 4.5. Let Ê be a measurable subset of Rn. Then the equation (4.17) (where E is replaced by
Ê) is completely stabilizable if and only if Ê is a thick set.

Remark 4.6. Theorem 4.5 extends [18, Theorem 1.1], which shows that the equation (4.17) (where E is
replaced by Ê) is stabilizable if and only if Ê is a thick set.

The proof of Theorem 4.5. We first show the only if part. Suppose that the equation (4.17) (where E
is replaced by Ê) is completely stabilizable, then it is stabilizable. Thus it follows by [18, Theorem 1.1]
that Ê is a thick set.

We next show the if part. Assume that Ê is a thick set. We will use Theorem 4.1 to show the
statement (iii) of Theorem 1.1 in the following manner: Define, for each k ∈ N, the linear operator on
L2(Rn) by

Pkϕ := F−1
(
χ{ξ∈Rn:|ξ|s−c≤k}F(ϕ)

)
, ϕ ∈ L2(Rn).

By the Plancherel theorem, one can easily check that {Pk}k∈N are bounded and self-adjoint.
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Firstly, we show that {Pk}k∈N are orthogonal projections. To this aim, we first prove {Pk}k∈N are
projections. It is suffices to prove that Pk(I −Pk) = 0 for each k ∈ N. Indeed, for any ϕ, ψ ∈ L2(Rn), by
the Plancherel theorem and the fact {Pk}k∈N are self-adjoint, we have that, for each k ∈ N,

〈Pk(I − Pk)ϕ, ψ〉L2(Rn) = 〈(I − Pk)ϕ, Pkψ〉L2(Rn) = 〈F(ϕ)−F(Pkϕ),F(Pkψ)〉L2(Rn)

= 〈χ{ξ∈Rn:|ξ|s−c>k}F(ϕ), χ{ξ∈Rn:|ξ|s−c≤k}F(ψ)〉L2(Rn) = 0.

This, together with the arbitrariness of ϕ, ψ, means that Pk(I − Pk) = 0 for each k ∈ N. Thus, {Pk}k∈N

are projections. We next show {Pk}k∈N are orthogonal. Indeed, since {Pk}k∈N are projections and self-
adjoint, we have that, for each k ∈ N, Range(Pk) ⊥ Range(I − Pk). Because of Pk being projection, it is
clear that Range(I−Pk) = Ker(Pk) for each k ∈ N. (Indeed, if f ∈ Ker(Pk), then f = Pkf +(I−Pk)f =
(I−Pk)f . Thus, f ∈ Range(I−Pk) and then Ker(Pk) ⊂ Range(I−Pk). Conversely, if f ∈ Range(I−Pk),
i.e., there exists a g ∈ L2(Rn) such that f = (I − Pk)g, then, by the fact Pk(I − Pk) = 0, we have
Pkf = Pk(I − Pk)g = 0, i.e., f ∈ Ker(Pk). Thus, Range(I − Pk) ⊂ Ker(Pk). In summary, we can
conclude that Range(I −Pk) = Ker(Pk).) Therefore, Range(Pk) ⊥ Ker(Pk) for each k ∈ N, i.e., {Pk}k∈N

are orthogonal.
Secondly, by [18, Lemma 3.1 and the inequality (4.1)], there exists a C > 0 such that, for each k ∈ N,

‖Pkϕ‖L2(Rn) ≤ eCk
1
s ‖B∗Pkϕ‖L2(Rn) for any ϕ ∈ L2(Rn);

‖(I − Pk)S(t)
∗ϕ‖L2(Rn) ≤ e−kt‖ϕ‖L2(Rn) for all t ∈ R+ and ϕ ∈ L2(Rn).

The above two inequalities clearly imply the conditions (b1) and (a) in Theorem 4.1 respectively. Then,
by Theorem 4.1, we have (iii) of Theorem 1.1.

Finally, by Theorem 1.1, we see that the equation (4.17) (where E is replaced by Ê) is completely
stabilizable.

Example 2. (Heat equation with Hermite operator in Rn.) Let c ≥ n and let E be a subset of
positive measure in a half-space of Rn. We consider the equation:

{
∂ty(t, x) −△y(t, x) + |x|2y(t, x)− cy(t, x) = χE(x)u(t, x), in R+ × Rn,

y(0, ·) = y0(·) ∈ L2(Rn),
(4.18)

where u ∈ L2(R+;L2(Rn)).
For the equation (4.18), we have the following conclusions:

• The equation (4.18) can be put into the framework in Section 1 by the following manner: Let
X = U := L2(Rn) and A := △−|x|2 + c, with D(A) = {f ∈ L2(Rn) : −△f + |x|2f ∈ L2(Rn)}. Let
B : L2(Rn) → L2(Rn) be defined in the same way as that used in Example 1. Then A generates a
C0-semigroup {S(t)}t≥0 on X (see [38]) and B ∈ L(U ;X).

• The equation (4.18) with the null control is unstable (see [18, (1.7), as well as the note (e1)]).

• It follows by [33, Theorem 1.10] that the equation (4.18) is not null controllable.

• The equation (4.18) is completely stabilizable. (See Theorem 4.7 below.)

The next Theorem 4.7 may have independent interest.

Theorem 4.7. Let Ê be a measurable subset in a half-space of Rn. Then the equation (4.18) (where E
is replaced by Ê) is completely stabilizable if and only if Ê has a positive measure.

Remark 4.8. Theorem 4.7 extends [18, Theorem 1.2], which shows that the equation (4.18) (where E is
replaced by Ê) is stabilizable if and only if Ê has a positive measure.
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The proof of Theorem 4.7. We first show the only if part. Suppose that the equation (4.18) (where E is
replaced by Ê) is completely stabilizable, then it is stabilizable. Thus, it follows by [18, Theorem 1.2]
that Ê has a positive measure.

We next show the if part. Assume that Ê has a positive measure. We will use Theorem 4.1 to show
the statement (iii) of Theorem 1.1. Indeed, according to [38], the operator A0 := −△+ |x|2 has discrete
spectrum set σ(A0) = {2k + n, k ∈ N}. For each k ∈ N, we let πk be the orthogonal projection onto the
linear space spanned by the eigenfunctions of A0 associated with the eigenvalue 2k + n. We then define
the orthogonal projection Pk on L2(Rn) by

Pkϕ :=
∑

0≤j≤(k+c−n)/2

πjϕ, ϕ ∈ Rn.

By [18, Lemma 3.2 and inequality (4.17)], there exists a C > 0 such that, for each k ∈ N,

‖Pkϕ‖L2(Rn) ≤ e
n
2
k ln k+Ck‖B∗Pkϕ‖L2(Rn) for any ϕ ∈ L2(Rn);

‖(I − Pk)S(t)
∗ϕ‖L2(Rn) ≤ e−kt‖ϕ‖L2(Rn) for all t ∈ R+ and ϕ ∈ L2(Rn).

The above two inequalities imply the conditions (b1) and (a) (with αk = k) in Theorem 4.1 respectively.
Then, by Theorem 4.1, we have (iii) of Theorem 1.1. Finally, by Theorem 1.1, we find that the equation
(4.18) (where E is replaced by Ê) is completely stabilizable.

Example 3. (Point-wise control of 1-D heat equation.) Consider the point-wise controlled 1-D
heat equation: 




yt(t, x)− yxx(t, x)− cy(t, x) = δ(x− x0)u(t), in R+ × (0, 1),

y(t, 0) = y(t, 1) = 0, in R+,

y(0, x) = y0(x) ∈ L2(0, 1), in (0, 1).

(4.19)

Here, c > π2, δ(· − x0) is the usual Dirac function, while x0 ∈ (0, 1) is given in the following manner:
First of all, given x ∈ R, we let ‖x‖ := infn∈Z |x−n| and write [x] for the integer so that x−1 < [x] ≤ x.

We next construct a continued fraction [a1, a2, · · · ] by setting

a1 = 2, q0 = 0, q1 = 1,

and defining successively qn, an, n ≥ 2 as

qn+1 = anqn + qn−1, an+1 = [eq
3
n+1 ] + 1, n ≥ 1. (4.20)

(About the definition of continued fractions, we refer readers to [9, Chapter 1].) According to [9, Chapter
1, Theorem II and Theorem III], there is an one-to-one correspondence between continued fractions and
real numbers in (0, 1). We now let x0 be the real number corresponding to the above [a1, a2, · · · ] (for the
construction of x0, one can refer to the proof of [9, Chapter 1, Theorem III]). It is clear that x0 is an
irrational number since the sequence {an}n∈N is infinite.

For the equation (4.19) when x0 is chosen as above, we have the following conclusions:

• The equation (4.19) can be put into the framework in Section 3.1. (See the proof of Theorem 4.9
below.)

• The equation (4.19) with the null control is unstable, since c > π2.

• The equation (4.19) is not null controllable in any time interval. To see this, we first notice that the
eigenvalues of operator −(∂2x + c) with domain H1

0 (0, 1)∩H2(0, 1) are λn := (nπ)2 − c (n ∈ N); the
corresponding normalized eigenfunctions are φn(x) :=

√
2 sin(nπx), x ∈ (0, 1) (n ∈ N). We next

have from [14] and [9, (15) in Chapter 1] that

|φn(x0)| = |
√
2 sin(nπx0)| ≤

√
2π‖nx0‖; ‖qnx0‖ <

1

qn+1
for all n ∈ N. (4.21)
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We then arbitrarily fix T > 0 and consider the series
∑∞

n=1
exp(−λqnT )
|φqn(x0)|

. By (4.20), we see that

λqn = πq2n and qn → +∞, as n → +∞. These, along with the definition of an, yield that there is
N := N(T ) > 0 so that when n > N , exp(−λqnT ) > 1/an, which, together with (4.21) and the
first equation in (4.20), implies

exp(−λqnT )
|φqn(x0)|

≥ 1

an
· qn+1√

2π
≥ qn√

2π
for all n > N. (4.22)

Since qn → +∞, as n → +∞, it follows from (4.22) that the series
∑∞

n=1
exp(−λqnT )
|φqn (x0)|

is divergent.

Thus, we can use [14, Theorem 1] to see that the equation (4.19) is not null controllable over [0, T̂ ]

for any T̂ < T . Since T > 0 was arbitrarily taken, the equation (4.19) is not null controllable in
any time interval.

• The equation (4.19) is completely stabilizable. (See Theorem 4.9 below.)

The next Theorem 4.9 may have independent interest.

Theorem 4.9. Let x̂0 ∈ (0, 1). Then the equation (4.19) (where x0 is replaced by x̂0) is completely
stabilizable if and only if x̂0 is irrational.

Proof. We organize the proof in several steps.

Step 1. We put the equation (4.19) (where x0 is replaced by x̂0) into the framework in Section 3.1.
Let X := L2(0, 1) and U := R. Let

Ay := (∂2x + c)y, y ∈ D(A) = H1
0 (0, 1) ∩H2(0, 1); Bu = δ(· − x̂0)u, u ∈ U.

First, we will prove that the above [A,B] satisfies the assumptions (a) and (b) in Lemma 4.3. For this
purpose, we arbitrarily fix ρ0 > c. The assumption (a) can be checked easily. Indeed, one can directly
check that ρ0 ∈ ρ(A) ∩ R and the operator A, with its domain D(A), generates an analytic semigroup
S(t) (t ≥ 0) on X . From these, it follows that (a) in Lemma 4.3 is true. To show (b), we notice the
following facts:

• Fact One. H2γ
0 (0, 1) ⊂ C[0, 1] continuously for each γ > 1/4. (See [29, Chapter1, Theorem 9.8].)

• Fact Two. D((ρ0I −A)γ) = H2γ
0 (0, 1) for each 1/4 < γ < 3/4, where the norm of D((ρ0I −A)γ) is

as: ‖z‖D((ρ0I−A)γ) = ‖(ρ0I −A)γz‖X , z ∈ D((ρ0I − A)γ). (See [29, Chapter 1, Definition 2.1 and
Theorem 11.6].)

• Fact Three. B ∈ L(U ; [C[0, 1]]′). (This can be directly checked.)

• Fact Four. [D((ρ0I − A)γ)]′ = X−γ for each γ > 0, where [D((ρ0I − A)γ)]′ is the dual space with
the pivot space X(= L2(0, 1)) and X−γ is defined in (b) of Lemma 4.3. (This follows from [41,
Chapter 2, Section 2.9] or [29, Chapter 1, Theorem 6.2 and Theorem 12.2].)

From these facts, we obtain that B ∈ L(U ;X−γ) for each 1/4 < γ < 3/4, which leads to (b) in Lemma
4.3. In summary, the assumptions (a) and (b) in Lemma 4.3 hold for the above [A,B].

Next, we can use Lemma 4.3 to see that the assumptions (H̃1)-(H̃3) in Section 3.1 are satisfied by
[A,B] in the current case. Consequently, the equation (4.19) has been put into the framework in Section
3.1 by the above way.

Step 2. We prove the sufficiency.

Assume that x̂0 is irrational. Then we have

φn(x̂0) 6= 0 for all n ∈ N. (4.23)
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Here φn is the normalized eigenfunctions defined above (4.21). We will verify that all the assumptions in
Theorem 4.4 are true for the current case. When this is done, we can apply Theorem 4.4 to get (iii) in
Theorem 3.4, and then use Theorem 3.4 to see that the equation (4.19) is completely stabilizable.

To this end, we first recall that the assumptions (a) and (b) in Lemma 4.3 have been checked in Step
1. We then define, for each k ∈ N,

Pkϕ :=

k∑

i=1

〈ϕ, φi〉Xφi, ϕ ∈ X.

It is clear that, for each k ∈ N, Pk is the orthogonal projections of X onto the linear span Sk := span{φi :
i = 1, 2, . . . , k}, and PkS(·) = S(·)Pk. From these, we see that the assumption (4.13) in Theorem 4.4
holds. Next, since S(t)∗φn = e−λntφn for all n ∈ N and t ∈ R+, one can directly check that for each
k ∈ N+,

‖(I − Pk)S(t)
∗φ‖X ≤ e−λkt‖φ‖X for all φ ∈ X, t ∈ R+.

This, together with the definition of λk, implies that the dissipative condition (a) in Theorem 4.1. We
finally show the assumption (b′2) in Theorem 4.4. For this purpose, we arbitrarily fix T0 > 0. Define,
for each k ∈ N, the function pk(t) := e−λkt, t ∈ (0, T0). Let E(n, T0), with n ∈ N, be the subspace (in
L2(0, T0)), spanned by the functions {pk}k∈N\{n}. Let dn be the distance of pn to E(n, T0) in L

2(0, T0).
Then there are K > 0 and ε > 0 which are independent of n such that (see [16, Theorem 1.1])

dn ≥ K exp(−ελn) for all n ∈ N.

Thus, it follows by (4.23) that when k ∈ N and ϕ =
∑+∞

n=1 anφn ∈ D(A∗),

∫ T0

0

‖B∗PkS(s)
∗ϕ‖2Uds =

∫ T0

0

∥∥∥e−λjsajφj(x̂0) +
∑

1≤n≤k,n6=j

e−λnsanφn(x̂0)
∥∥∥
2

U
ds

= |aj |2|φj(x̂0)|2
∫ T0

0

∥∥∥e−λjs −
∑

1≤n≤k,n6=j

−anφn(x̂0)
ajφj(x̂0)

e−λns
∥∥∥
2

U
ds

≥ |aj |2|φj(x̂0)|2d2j for all j ∈ {1, 2, . . . , k}.

This, together with (4.23), gives

|aj|2 ≤ 1

d2j |φj(x̂0)|2
∫ T0

0

‖B∗PkS
∗(s)ϕ‖2Uds for all j ∈ {1, 2, . . . , k}.

From the above, we see that when k ∈ N,

‖PkS(T0)
∗ϕ‖2X =

k∑

j=1

|aj |2e−2λjT0 ≤
k∑

j=1

(
e−2λjT0

d2j |φj(x̂0)|2

)∫ T0

0

‖B∗PkS(s)
∗ϕ‖2Uds for all ϕ ∈ D(A∗).

This leads to the condition (b′2) (in Theorem 4.4) with C(k, T0) :=
∑k

j=1

(
e−2λjT0

d2
j |φj(x̂0)|2

)
.

Hence, all assumptions in Theorem 4.4 are satisfied for the current case.

Step 2. We prove the necessity.

By contradiction, we suppose that (4.19) (where x0 is replaced by x̂0) is completely stabilizable, but
x̂0 is a rational number. Then there is n0 ∈ N such that φn0

(x̂0) = 0. Write ϕ(x) := φn0
(x), x ∈ (0, 1).

Arbitrarily fix T > 0. Then we have that ‖ϕ‖X = 1;

‖S(T )∗ϕ‖X = ‖e−λn0
Tφn0

‖X = e−λn0
T ;

‖B∗S(T − t)∗ϕ‖L2(0,T ;U) =

(∫ T

0

|e−λn0
tφn0

(x̂0)|2dt
)1/2

= 0. (4.24)
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Since the equation (4.19) (where x0 is replaced by x̂0) is completely stabilizable, we obtain from (iii) of
Theorem 3.4 (see (1.3)) and (4.24) that for each α > 0, there exists C(α) > 0, which is independent on
T , such that

e−λn0
T ≤ C(α)e−αT for all T > 0,

which is equivalent to

C(α) ≥ e(α−λn0
)T for all T > 0. (4.25)

However, if we take α = λn0
+1, then there is no C(α) > 0 so that (4.25) is true, because the right hand

side tends to +∞ as T tends to infinity. This leads to a contradiction. Thus, x̂0 must be irrational.

Example 4. (A periodic controlled system.) Let X = U := l2 and T := 1. Define a sequence

{τn}n∈N in the manner: τn := 1
α

∞∑
k=n+1

ak, where ak := e−k2

and α :=
∞∑
k=1

ak. (It is clear that α ∈ (0, 1)

and τn ∈ (0, 1) for each n ∈ N). Let

A := −diag{1, 2, · · · , n, · · · }; B(t) := diag
{
χ(τ1,τ0)({t}), · · · , χ(τn,τn−1)({t}), · · ·

}
, t ∈ (0,+∞),

where {t} denotes the fractional part of t, i.e., {t} = t− [t], where [t] is the integer so that t− 1 < [t] ≤ t.
Consider the following 1-periodic system:

d

dt
y(t) :=

d

dt




y1
y2
...
yn
...




(t) = A




y1
y2
...
yn
...




(t) +B(t)




u1
u2
...
un
...




(t), (4.26)

where u = (u1, u2, · · · )⊤ is taken from L2(R+; l2). For the equation (4.26), we have the conclusions:

• One can directly check that the equation (4.26) can be put into the framework in Subsection 3.2.

• The equation (4.26) is not null controllable (see Theorem 4.10 given later).

• The equation (4.26) is periodically completely stabilizable (see Theorem 4.10 given later).

Theorem 4.10. The system (4.26) is not null controllable but completely stabilizable.

Proof. We organize the proof in two steps.

Step 1. We show that (4.26) is not null controllable.

We only need to prove the following Statement A: For each m ∈ N, the system (4.26) is not null
controllable over [0,m]. To this end, we arbitrarily fix m ∈ N. Write ϕm(·;ψ) for the solution to the dual
system:





d

dt
ϕm(t) ,

d

dt




ϕm,1

ϕm,2

...

ϕm,n

...




(t) =




1

2
. . .

n
. . .







ϕm,1

ϕm,2

...

ϕm,n

...




(t), t ∈ [0,m],

ϕm(m) = ψ = (ψ1, ψ2, · · · )⊤.
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Because of the equivalence between the controllability and the observability, (4.26) is not null controllable
over [0,m] if and only if for any C > 1, there is ψ ∈ l2 so that

‖ϕm(0;ψ)‖X > C‖B∗(·)ϕm(·;ψ)‖L2(0,m;U). (4.27)

To show (4.27), we arbitrarily fix C > 1. Take n = n(C) ∈ N such that

n ≥ m+

√
m2 + 2 lnC + ln

2

α
. (4.28)

Then we take ψ = (ψ1, ψ2, · · · )⊤ ∈ l2 with ψn = 1 and ψk = 0, when k 6= n. By a direct calculation, we
find that ‖ϕm(0;ψ)‖ = e−nm and that

‖B∗(·)ϕm(·;ψ)‖2L2(0,m;U) =

∫ τn−1

τn

e−2nτdτ

m−1∑

k=0

e−2nk ≤ e−n2

α(1− e−2n)
<

2

α
e−n2

.

These, together with (4.28), leads to (4.27). Therefore, the system (4.26) is not null controllable.

Step 2. We show that (4.26) is completely stabilizable.

It is sufficient to prove (ii) of Theorem 3.11. To this end, we arbitrarily fix k ∈ N. Let nk = 1 and

C(k) =
√
αek

2/2. Then we have that for each ψ = (ψ1, ψ2, · · · )⊤ ∈ l2,

‖ϕ1(0;ψ)‖2X =
k∑

n=1

e−2nψ2
n +

∞∑

n=k+1

e−2nψ2
n ≤

k∑

n=1

e−2nψ2
n + e−2k

∞∑

n=k+1

ψ2
n ≤

k∑

n=1

e−2nψ2
n + e−2k‖ψ‖2X ;

‖B∗(·)ϕ1(·;ψ)‖2L2(0,1;U) =

∞∑

n=1

∫ τn−1

τn

e−2nτdτψ2
n ≥

k∑

n=1

an
α
e−2nψ2

n.

These, along with the fact that C(k)2an = ek
2

an ≥ 1 when 1 ≤ n ≤ k, yield

‖ϕ1(0;ψ)‖X ≤ C(k)‖B∗(·)ϕ1(·;ψ)‖L2(0,1;U) + e−k‖ψ‖X for any ψ ∈ X,

which, along with Remark 3.13, leads to the statement (ii) of Theorem 3.11. Then it follows from
Theorem 3.11 that the system (4.26) is periodically completely stabilizable.

Acknowledgments. The authors would like to thank the anonymous referees for the valuable sug-
gestions.
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