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Abstract

We introduce a binary, relaxed gradient, trust-region method for optimizing pulse sequences for single
flux quanta (SFQ) control of a quantum computer. The pulse sequences are optimized with the goal
of realizing unitary gate transformations. Each pulse has a fixed amplitude and duration. We model
this process as an binary optimal control problem, constrained by Schrödinger’s equation, where the
binary variables indicate whether each pulse is on or off. We introduce a first-order trust-region method,
which takes advantage of a relaxed gradient to determine an optimal pulse sequence that minimizes the
gate infidelity, while also suppressing leakage to higher energy levels. The proposed algorithm has a
computational complexity of O(p log(p)), where p is the number of pulses in the sequence. We present
numerical results for the H and X gates, where the optimized pulse sequences give gate fidelity’s better
than 99.9%, in ≈ 25 trust-region iterations.

Keywords: ODE-constrained optimization, integer optimal control, quantum mechanics, nonlinear
programming
AMS : 65K10, 49M37, 34L40, 90C10

1. Introduction

Over the past decades the development of algorithms for a quantum computer, which differ from
algorithms for classical computers, and need particular special treatment, brought a great practical
interest to quantum computers [1, 2]. Several high impact problems such as combinatorial optimization
[3], quantum cryptography[4], and large dimensional linear systems [5] are a few notable examples that
motivate the interest in developing quantum computing technologies.

Quantum algorithms become attractive when a quantum computer has a large amount of qubits,
however, state of the art quantum computers currently only have on the order of hundreds of qubits;
and these qubits do not support error correction. Many quantum algorithms demand at least one million
to one-hundred million qubits [6] to be an attractive alternative to classical computing. A popular
approach to building a quantum computer is taking advantage of superconducting electronic circuits,
which is referred to as superconducting quantum computing. While the superconducting circuits reside
inside a dilution refrigerator at milli-Kelvin temperatures, conventional qubit control pulses consisting
of modulations of a microwave carrier tone, are generated outside the fridge at room temperature. As
a result, the control waveform that is delivered to the qubit is the convolution of the applied waveform
with the transfer function of the wiring into the refrigerator. This transfer function is known to depend
on the frequency of the carrier wave, but is hard to characterize precisely. An additional challenge from
having separate control lines for each qubit is the significant heat load on the milli-Kelvin environment
inside the dilution fridge, see [7] for further discussions.

An alternative approach to controlling an array of qubits is by using a classical co-processor that
resides inside the fridge. This approach to coherent control involves irradiation of the qubit with trains of
quantized flux pulses derived from the single-flux-quantum (SFQ) digital logic family [8]. Here, classical
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bits of information are stored as the presence or absence of a phase slip across a Josephson junction
in a given clock cycle, where each phase slip corresponds to a voltage pulse whose time integral equals
Φ0 = h/2e, i.e., the superconducting flux quantum. These circuits have gained the attention of the
quantum computing community for several reasons: (i) SFQ circuits are a promising candidate for scalable
quantum computing, i.e many qubit systems; and (ii) SFQ circuits can realize gate and measurement
fidelity to high accuracy [6]. SFQ circuits offer one possible solution to realizing these many qubit systems.
One limitation of the SFQ technology is that calculations are done by applying a sequence of pulses of
fixed amplitude. This means to conduct computations on a SFQ quantum computer pulses must be
administered in a particular manner to achieve desired unitary gate transformations.

The study of controlling quantum mechanical systems in an optimal manner, referred to as quan-
tum optimal control theory, has increasingly become an important tool for developing optimal control
strategies that yield a favorable outcome in a quantum mechanical system. The performance of a control
strategy can be gauged by a preferred metric, such as realizing gates to high fidelity. We refer the reader
to [9] and the references therein, for a review of the current state-of-the-art of quantum optimal control
in different domains, such as atomic, molecular, and chemical physics, magnetic resonance, and quantum
information and communication. We make special note that [10], and the references therein, discusses
the state of the art approach for solving quantum optimal control problems using reinforcement machine
learning. Reinforcement machine learning is attractive in the quantum computing setting because un-
like supervised machine learning, there is no explicit need to have training data. Generating data, even
for established quantum technologies, could still require expensive experiments to be conducted. Some
quantum architectures that are of interest to researches are still theoretical so data cannot be gathered
in those instances. We include this reference so that i) the reader is aware of the effectiveness machine
learning has had on the field of quantum optimal control for realizing robust high fidelity one and two
qubit gates; and ii) while machine learning approaches for solving the SFQ problem is out of the scope of
this paper, we wish to not dismiss the idea that machine learning approaches could yield effective control
strategies for the SFQ problem. We favor leveraging the binary structure that appears in the problem to
develop an specialized trust-region method for the SFQ architecture that yields quality control strategies
quickly.

In this paper we introduce a binary optimal control problem to determine the manner in which to
apply pulse sequences to the SFQ circuit so that gates are realized to high fidelity. In this work we focus on
controlling only a single qubit. We model the control as a binary vector of fixed size, where each element
of the binary vector represents the decision to apply a pulse, or no to apply a pulse, to the SFQ circuit.
Note that the SFQ architecture only provides two control options in each time interval: either apply a
pulse with predefined amplitude and duration, or not apply a pulse, i.e., a pulse with zero amplitude.
Since we are deciding on a collection of fixed amplitude pulses to realize a gate, rather than a pulse in
which the amplitude varies in time, the popular GRAPE [11] algorithm is not directly applicable. To
solve the optimal control problems with binary variables there are several standard approaches: genetic
algorithms [12, 13, 14], the branch and bound algorithm [15, 16], and annealing [17]. Genetic algorithms
have already been utilized for finding pulse sequences in the SFQ problem [6], but a quality solution
is not guaranteed. To the best of our knowledge annealing has not been applied to the SFQ problem,
but like genetic algorithms, would not guarantee a quality solution. Branch and bound on the other
hand does offer a notion of finding a quality solution of the binary optimal control problem. However in
practice a large amount of binary variables will make the method computationally intractable. In this
paper we introduce a first-order trust-region method that is computationally tractable, as exemplified by
optimizing pulse sequences for realizing H and X gates.

The paper is outlined as follows: In Section 2 we introduce a truncated modal expansion for Schrödinger
equation to model a quantum system of one qubit, and the Hamiltotian we use to model a SFQ quantum
circuit using SFQ pulses. In Section 3 we introduce the optimal control problem for the SFQ quantum
circuit; here, we define the objective function of the optimal control problem that is the sum of an gate
infidelity term and a leakage suppression term. This objective function balances the interests of realizing
gates to high infidelity, while also suppressing leakage to the guard states. In Section 4 we introduce
a first-order trust-region method to solve the SFQ optimal control problem. In Section 5 we solve the
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optimal control problem to realize two quantum gates to high fidelity: the H and X gate. In addition,
we explore how the tip angle, which we define in the paper, impacts gate realization. In Section 6 we
summarize our findings.

2. SFQ optimal control problem

Consider a truncated modal expansion of the Schrödinger equation with N > 0 states for realizing
a gate transformation. The truncation of the expansion is justified by discouraging population of the
states with the highest energy levels. The gate transformation is defined in the ”essential” subspace
corresponding to the E > 0 lowest energy levels and we let G = N − E ≥ 0 denote the number of
“guard” states. The evolution of the state vector satisfies ψ(t;α) = U(t;α)ψ(0;α), where the N × N
complex-valued solution operator matrix U(t;α) satisfies Schrödinger’s equation in matrix form:

dU

dt
+
i

~
H(t;α)U = 0, t ∈ Ω = [0, T ], U(0) = IN . (1)

Here, ~ is the reduced Plank constant, i =
√
−1 is the imaginary unit, and T > 0 is the duration of

the gate transformation. The N × N identity matrix is denoted IN and represents the canonical basis
for the N -dimensional state vector. The Hamiltonian matrix is H(t;α), in which the time-dependence
is parameterized by the p-dimensional binary control pulse vector: α ∈ {0, 1}p, p ≥ 1. As a result, the
solution operator matrix U depends implicitly on α. The Hamiltonian matrix is assumed to be of the
form

H(t) = H0 +HSFQ(t),

where the system Hamiltonian is modeled by

H0

~
= ωa†a− ξ

2
a†a†aa.

Here, a and a† are the lowering and raising operators. The constants ωa and ξ represent the qubit’s
fundamental frequency and anharmonicity (self-Kerr coefficient) respectively. The control Hamiltonian
is given by

HSFQ(t) =
Cc
C
v(t)Q̂, Q̂ = 2e i(a− a†)

Here, Cc and C are the coupling and Josephson capacitance, respectively, and e is the electron charge
constant. We divide time into pulse intervals of length τp > 0, which we refer to as the SFQ time steps,
with tk = kτp, for k = 0, 1, . . . , p, such that T = pτp. We model v(t), which represents the voltage of the
pulse delivered to the system in the following manner:

v(t) =

p∑
k=1

αkB̂(t− tk−1), t ∈ [tk−1, tk].

We use a quadratic B-Spline basis function [18, 19] B̂(t) to represent the pulse delivered at each SFQ
time step. Here, [α]k = αk for k = 1, .., p is a binary variable that indicates whether the pulse is on or
off during the interval t ∈ [tk−1, tk],

αk =

{
1, pulse on

0, pulse off.

If the pulse is on, the function v(t) is scaled such that its strength corresponds to one magnetic flux
quanta, ∫ tk+τp

tk

v(t) dt = Φ0.
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It is convenient to scale the time-function such that

ṽ(t) = Φ0v(t).

Because the magnetic flux quanta is defined by Φ0 = 2π~/(2e),

Cc
C

Φ0v(t)2e i(a− a†) = ~βṽ(t) i(a− a†), β = 2π
Cc
C
.

Thus,

1

~
HSFQ(t) = βṽ(t) i(a− a†).

ṽ(t) =
1

γ

p∑
k=1

αkB̂(t− tk−1), t ∈ [tk−1, tk], γ =

∫ δ

0

B̂(t) dt.

Here 0 < δ ≤ τp is the pulse duration, which defines the support of B̂(t). By defining ṽ(t) in this manner
we ensure that ∫ tk

tk−1

ṽ(t)dt = 1,

if the pulse is on, which corresponds to applying a pulse with strength β. We illustrate a single pulse in
Figure 1 with SFQ time step τp = 2.5× 10−2 nanoseconds (ns) and pulse duration δ = 4× 10−3 ns.

For the case of E = 2 essential states in a system, the Bloch sphere provides a convenient geometric
representation of singe qubit transformations [20]. We illustrate the Bloch sphere in Figure 2. Starting
from the ground state (represented by the North pole on the Bloch sphere) one SFQ pulse will perturb
the state away from the North pole. In terms of spherical coordinates, the corresponding change in polar
angle will be referred to as the tip angle θ, which is related to the pulse strength by β = θ/πτp.

Figure 1: Illustration of a B-spline pulse function with SFQ time step τp = 2.5× 10−2 ns and pulse duration δ = 4× 10−3

ns.

3. Objective and gradient computation

In this section we introduce the objective function for our optimal control problem. We use this
objective function to write a closed form expression for the gradient with respect to the binary control
vector α.
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Figure 2: Illustration of the Bloch sphere.

In this work we denote the column vectors of the solution operator matrix by

U =
[
ψ0 ψ1 · · · ψN−1

]
∈ CN×N , ψj =


ψ0,j

ψ1,j

...
ψN−1,j

 ∈ CN×1.

The unitary target gate transformation VE is only defined for the first E rows and columns of U(T,α).
For notional simplicity we embed it in the blocked matrix V :

V =

[
VE 0E×G

0G×E 0G×G

]
∈ CN×N .

The overlap between the solution operator matrix and the target gate matrix can be measured by the
gate infidelity:

J1(UT (α)) = 1− 1

E2
|〈UT (α), V 〉F |

2 ≥ 0, UT (α) := U(T,α), (2)

where 〈 · , · 〉F denotes the Fröbenius matrix scalar product (with associated norm ‖ · ‖F ). Because the
G last rows and columns of V are zero, only the first E rows and columns of UT matter for this part of
the objective function. We refer to J1 as the infidelity term in the remainder of this paper. In this work
we strive to construct pulse sequences that cause the infidelity to be below 10−3. This is equivalent to
requiring the gate fidelity to be larger than 99.9%.

An important observation we make is that αk is either zero or one for k = 1, . . . , p. This means that
we only need to solve Schrödinger’s equation (1) for the duration of one SFQ time step in two cases:
when the pulse is on, or when it is off. We denote by D0 the solution corresponding to when the pulse
is off, and by D1 when the pulse is on. We can then represent the solution of the state equation at the
final time, t = T , as

U(T,α) = Dαp
Dαp−1

...Dα1
,

which also implies

Uj = U(tj) =

{
DαjDαj−1 · · ·Dα1 , j ≥ 1,

I, j = 0.
(3)

This is a helpful observation because it means that, based on the unitary matrices D0 and D1, the
solution operator matrix can be evaluated by p matrix multiplications, where p is the number of SFQ
pulses. Furthermore, the matrix D0 can be calculated by matrix exponentiation. Hence, only the matrix
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D1 needs to be calculated through numerical time stepping. This only needs to be performed once, in a
pre-processing stage of the algorithm.

The population of the guard states can be measured by evaluating the following expression:

1

T

∫ T

0

E−1∑
j=0

〈
ψj(t,α),Wψj(t,α)

〉
2
dt =

1

T

∫ T

0

〈UP,WUP 〉F , (4)

where the rectangular matrix

P =

[
IE
0G

]
∈ RN×E

is used to single out the first E columns of the matrix that is applied to it. Further, W ∈ RN×N ≥ 0
is a diagonal positive semi-definite weight matrix where only the rows of W corresponding to the guard
states have positive elements. For example, if E = 2 and G = 2, the weight matrix may be

W =


0 0 0 0
0 0 0 0
0 0 w1 0
0 0 0 w2

 , w1, w2 ≥ 0.

We approximate (4) with the trapezoidal rule, using τp as the time step, which results in the following
expression:

J2 =
1

p

1

2
〈U0P,WU0P 〉F +

p−1∑
j=1

〈UjP,WUjP 〉F +
1

2
〈UpP,WUpP 〉F

 . (5)

Here, Uj is defined by (3). In the following, we refer to J2 as the leakage term.
For the quantum control problem with guard states, we formulate the optimization problem as

min
α
J (α) := J1(UT (α)) + C1J2(U(·,α)), C1 > 0,

where U(t,α) is governed by (1). From numerical experimentation we find that C1 = 10−2 helps insure
that both terms of J are of the same order of magnitude during the optimization. We note that this
optimization problem is a large dimensional nonlinear integer programming problem (NIP), since α is a
binary (integer) vector, J (α) is nonconvex. NIP’s are typically in the class of computations problems
that are non-polynomial (NP), which is to say that there does not currently exist a polynomial time
algorithm to solve them. This causes large dimension NIP’s to be extremely hard to solve in practice.
We discuss more about NIP’s in Section 4, and propose a trust-region algorithm to solve the NIP that
arises from the SFQ optimal control problem. An overview of the state-of-the-art theory, and numerical
solutions for NIP’s can be read in [21, 22, 23, 24].

Next, we discuss the gradient computation of the objective function. We note that,

∂J
∂αk

=
∂J1

∂αk
+ C1

∂J2

∂αk
.

In this work we define Aj = Dαj
and Bj = ∂Dαj

/∂αj . The latter expression is defined in the sense of
a relaxed gradient that is calculated by temporarily assuming that αj is real, with 0 ≤ αj ≤ 1. The
continuous gradient can then be defined and evaluated at its upper and lower bounds, corresponding to
the binary variable αj ∈ {0, 1}. In the following, the gradient of the objective function is to be understood
in the sense of this relaxed gradient.

In Appendix Appendix A, we derive the expressions for the gradients of J1 and J2. Here we only
present the main results. To calculate the gradient of the infidelity term J1, we first note that (2) can
be written

J1 = 1− 1

E2
ST S̄T , ST = 〈UpP, V P 〉F , (6)
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where S̄T denotes the complex conjugate of ST . The gradient can then be expressed as

dJ1

dαp−q
= − 2

E2
Re
(
S̄T 〈Bp−qUp−q−1P,Λp−qP 〉F

)
, q = 0, . . . , p− 1,

where the discrete adjoint variable Λk satisfies

Λp−q =

{
Λp = V, q = 0,

Λp−q = A†p−q+1Λp−q+1, q = 1, . . . , p− 1.

The gradient of the leak term can be expressed as

dJ2

dαp−q
=

2

p
Re
〈
Bp−qUp−q−1P, Λ̃p−qP

〉
F
, q = 0, . . . , p− 1.

In this case, the discrete adjoint variable is calculated according to

Λ̃p−q =

{
1
2WUpP, q = 0,

WUp−qP +A†p−q+1Λ̃p−q+1, q = 1, 2, . . . , p− 1.

4. Trust-region method

Trust-region methods are a popular approach for solving continuous nonlinear constrained optimiza-
tion problems [25]. Given an initial feasible solution to the constrained optimization problem at iteration
k, a first or second-order Taylor series approximation is written for an objective function f(x) to be
minimized i.e

f(x) ≈ f̃(x) = f(xk) +∇Txf(xk)(x− xk),

or

f(x) ≈ f̃(x) = f(xk) +∇Txf(xk)(x− xk) +
1

2
(x− xk)T∇2

xf(xk)(x− xk),

where ∇xf and ∇2
xf are the gradient and hessian respectively. Next a trust-region subproblem is solved:

min
x
f̃(x)

subject to

||x− xk||2 ≤ ∆k

g(x) = 0

h(x) ≤ 0,

where ∆k is referred to as the trust-region radius. Once the solution x is found, a condition is tested
to evaluate if the truncated Taylor series approximation made is valid to the true objective function f
constrained to the trust-region radius ∆k. In the case that the assumption is valid, the trust-region
radius is increased by some rule in order to attempt to globalize the search for a local minimum since the
approximation of the objective function and the objective function are approximately the same locally.
If the assumption is not valid, then the trust-region radius is decreased by some rule. This indicates that
the approximation is not accurate to the true objective function within the trust-region radius. This
process continues until the trust-region radius is small, indicating that a local minimum has been found,
thus terminating the trust-region method.

In [26, 27] a trust-region method was introduced for optimal control problems with binary variables.
The main idea of this algorithm is use the standard first-order trust-region method suggested in [25] for
solving nonlinear optimization problems. In this algorithm the gradient is understood to be the relaxed
gradient, derived from the continuous relaxation of the binary variable as explained above.
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Algorithm 1: Steepest-Descent Trust-Region Algorithm.

Given an initial trust-region radius ∆0 ≥ 1, and an initial parameter vector α(0) ∈ {0, 1}p.
Select an acceptance step parameter ρ̂, for example ρ̂ = 0.75, and initialize k = 0.
Evaluate the objective function J (k) = J (α(k)) and the gradient g(k) = ∇αJ (α(k)).
while ∆k ≥ 1 do

Solve the trust-region (knapsack) sub-problem for α̂:

α̂ = minimize
α

g(k)T
(
α−α(k)

)
+ J (k)

‖α−α(k)‖1 ≤ ∆k

α ∈ {0, 1}p

Solve the state equation for the binary parameter vector α̂ and evaluate the objective J(α̂)).
Compute the ratio of actual over predicted reduction:

ρk =
J (k) − J (α̂)

−
(
g(k)

)T (
α̂−α(k)

)
if ||g(k)||2 = 0 or α̂ = α(k) then

α(k) is a local solution
Set α(k+1) = α(k)

Reduce to trust-region radius ∆k+1 = 0
else if ρk > ρ̂ then

Accept the step: α(k+1) = α̂, and evaluate the gradient g(k+1) = ∇α̂J (α(k+1))
if ‖α(k+1) −α(k)‖1 = ∆k, then

Increase the trust-region radius ∆k+1 = 2∆k

else if ρk > 0 then
Accept the step α(k+1) = α̂, and evaluate the gradient g(k+1) = ∇α̂J (α(k+1))
Keep trust-region radius unchanged ∆k+1 = ∆k

else
Reject the step, set α(k+1) = α(k), and copy the gradient g(k+1) = g(k)

Reduce the trust-region radius ∆k+1 = floor
(

∆k

2

)
Set k ← k + 1
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For completeness, we present the first-order trust-region method in Algorithm 1. We note that because
α ∈ {0, 1}p, we may rewrite the trust-region sub-problem (Hamming distance) constraint as:

‖α−α(k)‖1 =

p∑
j=1

α
(k)
j =0

αj +

p∑
j=1

α
(k)
j =1

(1− αj) ≤ ∆k,

which is linear in α. Hence, the trust-region sub-problem is a knapsack problem with computational
complexity O(p log(p)) [28]. In the context of this work, the computational complexity for evaluating the
gradient is O(p). This means that the first-order trust-region method applied to the SFQ problem has
computational complexity O(p log(p)).

The convergence of the binary trust-region is inherited from the fact that the standard continuous
trust-region method converges monotonically, implying that the objective function value must remain
the same or decrease after each trust-region iteration [25]. This is to say that at step k of the standard
trust-region method:

J (αk+1) ≤ J (αk).

In our context, a binary (local) optimal solution α̃ satisfies the condition:

J (α̃) ≤ J (α),

for all α satisfying

||α̃−α||1 ≤ 1.

This is to say no local neighbor in binary space under the Hamming measure produces a lower objective
function value. In this work we assume the existence of at least one local minimizing solution α̃ (even
though it may not be the only local optimal solutions), which the trust-region is theoretically guaranteed
to converge to [25], and indeed find such minimum numerically. A proof for the existence of such
minimizing solutions is out of the scope of this paper.

As we proceed to show in Section 5, our algorithm finds quality local solutions even if the binary
optimization space is of high dimension. We note that we chose a first-order trust-region method versus
a second order trust-region method because then the trust-region problem would become a quadratic
integer programming problem, which could be computationally intractable.

5. Numerical experiments

To evaluate the performance of our trust region algorithm, we consider optimizing pulse sequences
for two standard quantum gates: H and X. For each of these gates we study the cases when the pulse
strength β corresponds to the tip angles θ = π

100 and θ = π
300 .

To model a typical superconducting transmon, we set the fundamental frequency, self-Kerr coefficient,
SFQ time step, and pulse duration according to

ω

2π
= 5.0 GHz,

ξ

2π
= 0.25 GHz τp = 2.5× 10−2 ns,

δ = 4× 10−3 ns.

We numerically calculate the unitary matrices D0 and D1 by the Strömer-Verlet method, which is a
partitioned Runge-Kutta scheme [19]. To effectively eliminate time-stepping errors, we solve the state
equation on the interval [0, τp] with 10,000 time steps. Truncating the modal expansion of Schrödinger’s
equation after N terms is only valid if the occupation of the highest energy level is sufficiently small.
From numerical experimentation we find that retaining four energy levels is sufficient for meeting that
requirement; in the following, we use 2 essential states (E = 2) and 2 guard states (G = 2). The essential
states correspond to the number states |0〉 and |1〉, and the guard states are |2〉 and |3〉. The truncation of
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the modal expansion is justified when the occupation of the |3〉 state is small throughout the duration of
the pulse sequence. Furthermore, for all experiments, we take w1 = 0.1 and w2 = 1 in the weight matrix
W . In our experiments we observe that larger values of w1 and w2 reduce the leakage to higher energy
states, but leads to a larger infidelity. We note that the values for w1 and w2 we use here are only tuned
by numerical experiments. They may be further improved through a separate optimization procedure.
We start by fixing the duration of each gate to T = 40 ns, which correspond to p = 1, 600 SFQ time
steps. In each experiment we apply the trust-region method for 10 random binary initial guesses, and
report the trust-region solution that resulted in the smallest objective function. In these experiments we
set the acceptance step size to be ρ̂ = 0.75, and the initial trust-region radius to equal the number of
SFQ pulses (∆0 = p). In a separate set of numerical experiments, reported in Section 5.4, we explore the
shortest gate duration that is needed to realize the gates to high fidelity.

5.1. H gate experiment

For an H gate, the target unitary matrix is

VE =
1√
2

[
1 1
1 −1

]
.

Starting from the |0〉 or |1〉 states, an H gate is realized when the probabilities of being in either the |0〉
or |1〉 states become equal.

In Figure 3 we plot the populations for the essential states, the leakage from the essential to the
guard states, and the corresponding pulse sequence, for tip angles π

300 and π
100 . We observe that we are

successful in realizing the H gate for both tip angles when the duration is T = 40 ns. In the case of tip
angle θ = π

300 we observe an infidelity that is less than 10−4, corresponding to a gate fidelity larger then
99.99 %. For the tip angle θ = π

100 we observe an infidelity less than 10−3. In that case, the gate fidelity
exceeds 99.9%. Thus both tip angles meet the gate fidelity threshold of 99.9 %.

A desired trait of our approach is that the leakage from the essential states to the guard states is
suppressed. The area under the delivered pulse, β, can be physically interpreted as the energy invested
into the system. Because β ∼ θ, a scaling in θ corresponds to an equivalent scaling in β. So the energy
delivered by a pulse with tip angle θ = π

100 is three times stronger than the energy delivered by a pulse
with tip angle θ = π

300 . We observe in the leakage plots in Figure 3 that more leakage occurs for the
larger tip angle, because that corresponds to administering a pulse with more energy. This indicates
that there is practical impact of using higher energy pulses compared to lower energy pulses. This also
motivates the introduction of the leakage term J2 to suppress transition to the guard states. To justify
the truncation of the modal expansion, it is desired to see sufficiently small population of the |3〉 state. In
this case the largest population of |3〉 is less than 10−2 for θ = π

300 , and less than 10−1 for θ = π
100 . This

observation indicates that there is advantage to using weaker pulses, because it leads to low infidelity and
smaller population of the |3〉 state. Furthermore, the stronger pulse strength cause more leakage to occur,
which increases the leakage term (J2) relative to the infidelity term (J1) in the objective function. As
a result, the infidelity becomes an order of magnitude larger compared to a weaker pulse. This suggests
that stronger pulses may not be favored. In Section 5.4 we discuss how stronger pulses, while generating
more leakage, allow the gate duration to be reduced without increasing the gate infidelity.

In Figure 3 we present the pulse sequences for each of the two tip angles. We plot these in a barcode
format, where the presence of a line indicates αk = 1 for a given k and otherwise αk = 0. We observe
that there is a structure that emerges from solving the optimal control problem, with packets of pulses
being created in what seems to be a semi-periodic structure.

In Figure 4 we plot, for θ = π
300 and π

100 , the trust-region convergence history of the objective
functions J1, J2, and J1 + C1J2. These plots illustrate that the number of iterations required to find
a local minimizing binary solution is modest. For θ = π

300 , we find a minimal solution in around 25
iterations. In the case of θ = π

100 , around 20 iterations are needed. Since the number of control pulses
in this case are p = 1600, there are 21600 ≈ 4.44 × 10481 feasible solutions to the binary optimal control
problem. In spite of the enormous size of the solution space, our method quickly finds quality solutions
for both tip angles, with significant reduction in the infidelity term. We also observe that the leakage
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(a) θ = π
300

. (b) θ = π
100

.

(c) θ = π
300

. (d) θ = π
100

.

(e) θ = π
300

. (f) θ = π
100

.

(g) Pulse sequence for θ = π
300

. (h) Pulse sequence for θ = π
100

.

Figure 3: The evolution of essential and guard state populations during the H gate with tip angle θ = π
300

, π
100

, and
corresponding pulse sequences. In figures (e) and (f), the legend a−b indicates the population of |b〉 corresponding to initial
state |a〉.
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is small in the initial guess and does not become larger in the optimized solution. Similar convergence
histories are observed for the X gate as well.

(a) θ = π
300

. (b) θ = π
100

.

Figure 4: Convergence history for the trust-region method for realizing an H gate with 1600 control pulses, for tip angles
θ = π

300
(left) and π

100
(right).

5.2. X gate experiment

An X gate corresponds to the unitary transformation

VE =

[
0 1
1 0

]
.

To realize the X gate is equivalent to saying that the populations of the initial states are swapped, e.g.
if the qubit starts in state |0〉, it will transition to state |1〉, and vice versa.

In Figure 5 we show the populations for the essential states, the leak probability from the essential
to the guard states, and the pulse sequences associated with the tip angles θ = π

300 and π
100 . We observe

close similarities between the H and X gates. First, we are able to realize the gates with infidelity that is
less than 10−4 for tip angle θ = π

300 . In addition we observe an infidelity less than 10−3 for a tip angle of
θ = π

100 . We observe more leakage for a stronger pulse than a weaker pulse. Similar to the H gate, there
is a semi-periodic structure in the X gate pulse sequences.

5.3. Comparison with the branch and bound algorithm

The branch and bound (B&B) method is the primary algorithm leveraged for integer programming
problems. To read more about the standard method we refer the reader to [29]. B&B only has theoretical
guarantees of finding an optimal solution, even though it may take enormous effort, in the case of convex
integer programming problems. In the case of nonconvex problems, like our SFQ optimal control problem,
the method is merely a heuristic. To compare with our trust-region method, we applied the B&B approach
to the H and X gate experiments. First, we executed the B&B algorithm using several different branching
strategies: most infeasible branching, pseudo cost branching, and strong branching. For each branching
strategy we allowed the B&B solution to search for a solution for the duration of one hour. In each run,
B&B not only could not find an integer optimal solution, but the quality of the fidelity for both the H
and X gate was only on the order of 10−1. We conducted the experiment again, this time increasing the
search time allotted from one hour to ten hours. The quality of the infidelity remained unchanged. These
experiments indicate that the standard branch and bound approach is not successful at finding a quality
solution; whereas our trust-region approaches finds solutions with infidelity less than 10−3 within one
minute of computation. This isn’t to say however that a specialized B&B scheme could not be developed
for the SFQ application, however to develop such a scheme would require deep expertise in the theory
of integer programming, and is still not guaranteed to solve the SFQ optimal control problem. While an
interesting research direction, developing a specialized B&B for this application is out of the scope of the
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(a) θ = π
300

. (b) θ = π
100

.

(c) θ = π
300

. (d) θ = π
100

.

(e) θ = π
300

. (f) θ = π
100

.

(g) Pulse sequence for θ = π
300

. (h) Pulse sequence for θ = π
100

.

Figure 5: The evolution of essential and guard state populations during the X gate, with tip angles θ = π
300

and π
100

, and
corresponding pulse sequences. In figures (e) and (f), the legend a−b indicates the population of |b〉 corresponding to initial
state |a〉.
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paper. We refer the reader to convexification [30, 31, 32] and underestimators [33, 34, 35] used in order
to develop specialized B&B schemes for nonconvex integer programming, to give insight how one may
begin to think about developing a specialized B&B scheme for this application.

5.4. On minimizing the gate duration

We now examine the smallest gate duration that is required to achieve an acceptable gate infidelity
for the H and X gates.

(a) H gate θ = π
300

. (b) H gate θ = π
100

.

(c) X gate θ = π
300

, (d) X gate θ = π
100

Figure 6: The infidelity, leakage, and total objective function on a log10 scale for tip angle θ = π
300

, π
100

for the H and X
gates.

In Figure 6 we study the behavior of the infidelity as a function of gate duration. We solve the optimal
control problem for a gate duration of [0, pτp] for p = 8, 16, 24, . . . , 1600. For each value of p, we draw
10 random samples from {0, 1}p as initial guesses, and execute the trust-region on each sample. The
trust-region solution with the lowest objective function value is shown in Figure 6. For all of the gates
and tip angles considered here, we find solutions with an infidelity less than 10−3 for gate durations less
than 40 ns. We observe that a pulse with three times the strength produces an infidelity that is less than
10−3 for a gate duration that is about three times shorter. In particular, for the H gate we realize a gate
infidelity that is less than 10−3 for the tip angle θ = π

300 in ≈ 28 ns, versus ≈ 10 ns for the tip angle
θ = π

100 . For the X gate, we realize a gate infidelity that is less than 10−3 for the tip angle θ = π
300 in

≈ 24 ns, versus ≈ 8 ns for tip angle θ = π
100 .

Our experiments indicate that high fidelity gates can be realized in shorter duration than 40 ns. The
leakage to the |3〉 state largely depends on the amplitude of each pulse, i.e., less leakage is achieved by
decreasing the tip angle. To find a solution that meets the needs for a small infidelity and a small leakage,
we suggest an iterative approach where the number of pulses is gradually increased until the infidelity
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becomes acceptable. If the leakage is too large, reduce the tip angle and repeat the calculation for a
larger number of pulses.

6. Conclusions

In this paper we introduce a novel approach for optimizing pulse delivery to a SFQ quantum computer.
We pose the problem as a binary optimal control problem, where the binary variables indicate whether
each pulse is on or off, with a primary goal of minimizing the gate infidelity. A secondary goal of our
formulation is to suppress leakage to the higher energy levels. To solve the optimal control problem
we take advantage of a first order trust-region method. We devise an algorithm for calculating the
objective function and its relaxed gradient in O(p) operations, where p is the number of SFQ time steps.
Based on the linearity of the Hamming distance that appears in the trust-region sub-problem, the overall
computational complexity of the algorithm becomes O(p log p). Our numerical experiments indicate that
our trust-region method needs ≈ 25 iterations to find local minima with gate fidelities better than an
99.9%. We also investigated the minimal gate duration that is required to realize a gate. The actual
duration varies from gate to gate, but we have demonstrated that we are able to find pulse sequences
for the H and X gate. Furthermore, our numerical experiments indicate pros and cons when it comes to
using stronger versus weaker pulses. For a given gate, we observe that increasing the pulse amplitude by
a factor of three allows the gate duration to be reduced by a factor of three. However, using stronger
pulses results in more leakage, which is not desired. When using weaker pulses, we observe less leakage,
but the gate duration must be increased to achieve an acceptable gate fidelity. We note that all behaviors
we have observed for the H and X gates have also been observed in separate numerical experiments for
the Y and Z gates. Those experiments were omitted to conserve space.

This paper illustrates that the reduced gradient trust region method is a very promising candidate for
optimizing SFQ pulse sequences. Initial numerical experiments indicate that our approach will generalize
in a straightforward way to SFQ control of two-qubit systems. While out of the scope of this work, in a
future work we intend to introduce the final time duration T as an optimization variable; and penalize it
such that we realize gates in the shortest duration possible for both single and many qubit systems.
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Appendix A. Gradient computation

The gradient of Uj with respect to αk satisfies

∂Uj
∂αk

=



0, k > j,

BkUk−1, k = j,

Ak+1BkUk−1, k = j − 1,

Aj · · ·Ak+1BkUk−1, k ≤ j − 2,

Aj · · ·A2B1, k = 1.

(A.1)
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Recall that p corresponds to the total number of control pulses and that ST ∈ C. By differentiating (6)
with respect to αp and using (A.1), we get

dJ1

dαp
= − 2

E2
Re

(
S̄T

〈
dUp
dαp

P, V P

〉
F

)
= − 2

E2
Re
(
S̄T 〈BpUp−1P, V P 〉F

)
.

For k = p− 1, we observe

dJ1

dαp−1
= − 2

E2
Re

(
S̄T

〈
dUp
dαp−1

P, V P

〉
F

)
= − 2

E2
Re
(
S̄T 〈ApBp−1Up−2P, V P 〉F

)
= − 2

E2
Re
(
S̄T
〈
Bp−1Up−2P,A

†
pV P

〉
F

)
.

For k = p− 2, we observe

dJ1

dαp−2
= − 2

E2
Re

(
S̄T

〈
dUp
dαp−2

P, V P

〉
F

)
= − 2

E2
Re
(
S̄T 〈ApAp−1Bp−2Up−3P, V P 〉F

)
= − 2

E2
Re
(
S̄T

〈
Bp−2Up−3P,A

†
p−1A

†
pV P

〉
F

)
.

Let’s define the discrete adjoint variable Λk according to

Λp = V,

Λp−1 = A†pV = A†pΛp,

Λp−2 = A†p−1A
†
pV = A†p−1Λp−1,

...

Λp−q = A†p−q+1Λp−q+1

This means that all components of the gradient can be evaluated by backwards propagation of the adjoint
variable,

dJ1

dαp−q
= − 2

E2
Re
(
S̄T 〈Bp−qUp−q−1P,Λp−qP 〉F

)
, q = 0, 1, . . . , p− 1.

Note that U0 = I does not depend on α. Because W † = W , the gradient of the leak term satisfies

dJ2

dαk
=

2

p
Re

p−1∑
j=1

〈
dUj
dαk

P,WUjP

〉
F

+
1

2

〈
dUp
dαk

P,WUpP

〉
F


=

2

p
Re

p−1∑
j=k

〈
dUj
dαk

P,WUjP

〉
F

+
1

2

〈
dUp
dαk

P,WUpP

〉
F


For k = p,

dJ2

dαp
=

2

p
Re

〈
dUp
dαp

P,
1

2
WUpP

〉
F

=
2

p
Re

〈
BpUp−1P,

1

2
WUpP

〉
F
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For k = p− 1,

dJ2

dαp−1
=

2

p
Re

(〈
dUp−1

dαp−1
P,WUp−1P

〉
F

+

〈
dUp
dαp−1

P,
1

2
WUpP

〉
F

)
=

2

p
Re

(
〈Bp−1Up−2P,WUp−1P 〉F +

〈
ApBp−1Up−2P,

1

2
WUpP

〉
F

)
=

2

p
Re

(〈
Bp−1Up−2P,WUp−1P +

1

2
A†pWUpP

〉
F

)
For k = p− 2,

dJ2

dαp−2
=

2

p
Re

(〈
dUp−2

dαp−2
P,WUp−2P

〉
F

+

〈
dUp−1

dαp−2
P,WUp−1P

〉
F

+

〈
dUp
dαp−2

P,
1

2
WUpP

〉
F

)
=

2

p
Re

(
〈Bp−2Up−3P,WUp−2P 〉F + 〈Ap−1Bp−2UD−3P,WUD−1P 〉F

+

〈
ADAp−1Bp−2Up−3P,

1

2
WUpP

〉
F

)
=

2

p
Re

〈
Bp−2Up−3,WUp−2 +A†p−1WUp−1 +

1

2
A†p−1A

†
pWUp

〉
F

We now define

Λ̃p =
1

2
WUpP,

Λ̃p−1 = WUp−1P +
1

2
A†pWUpP = WUp−1P +A†pΛ̃p,

Λ̃p−2 = WUp−2P +A†p−1WUp−1P +
1

2
A†p−1A

†
pWUpP = WUp−2P +A†p−1Λ̃p−1

One can verify the recursive formula,

Λ̃p−q =

{
1
2WUpP, q = 0,

WUp−qP +A†p−q+1Λ̃p−q+1, q = 1, 2, . . . , p− 1,

from which all components of the gradient of the objective function can be calculated. As a result, the
contribution to the gradient from the leak term becomes

dJ2

dαp−q
=

2

p
Re
〈
Bp−qUp−q−1P, Λ̃p−qP

〉
F
, q = 0, 1, . . . , p− 1.
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