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Abstract. We study the homogenized energy densities of periodic ferromagnetic Ising sys-

tems. We prove that, for finite range interactions, the homogenized energy density, identifying
the effective limit, is crystalline, i.e. its Wulff crystal is a polytope, for which we can (expo-

nentially) bound the number of vertices. This is achieved by deriving a dual representation

of the energy density through a finite cell formula. This formula also permits easy numer-
ical computations: we show a few experiments where we compute periodic patterns which

minimize the anisotropy of the surface tension.

1. Introduction

The study of discrete interfacial energies has attracted widespread attention in the mathemat-
ical community over last decades, with applications in various contexts such as computer vision
[8], crystallization problems [9], fracture mechanics [7, 19, 36], or statistical physics [41, 42].
To give examples, in computer vision the understanding of these energies allows to investigate
functional correctness of segmentation algorithms [23]. Whereas for crystallization problems
it gives fluctuation estimates on the macroscopic shape of the crystal cluster of ground state
configurations [28, 34, 35, 40].

In this work, we consider energies defined on discrete periodic sets L ⊂ Rd and corresponding
Ising systems. We refer to [1, 13, 21, 22, 29, 31, 37, 38, 39] for an abundant literature on the
derivation of continuum limits of such systems and their effective behavior. More precisely, we
consider L satisfying the following two conditions (see Figure 1)

(i) (Discreteness) There exists c > 0 such that dist(x,L \ {x}) ≥ c for all x ∈ L;
(ii) (Periodicity) There exists T ∈ N such that for all z ∈ Zd, it holds that L+ Tz = L;

To each function u : L → {0, 1} and each A ⊂ Rd we associate an energy

E(u,A) =
∑

i∈L∩A

∑
j∈L

ci,j(u(i)− u(j))+ , (1)

where (z)+ denotes the positive part of z ∈ R, ci,j : L × L → [0,+∞) are T -periodic, that is
ci+Tz,j+Tz = ci,j for all i, j ∈ L and z ∈ Zd and satisfy the following decay assumption

(iii) (Decay of interactions) For all i ∈ L there holds∑
j∈L

ci,j |i− j| < +∞ .
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Figure 1. An example of the set L

Assuming conditions (i)-(iii) (and some additional coercivity assumption) ensures that the as-
ymptotic behavior of (1) is well described (in a variational sense) by a continuum perimeter
energy. More precisely, let us introduce a scaling parameter ε > 0. We consider the scaled
energies

Eε(u) =
∑
i,j∈εL

εd−1cεi,j(u(i)− u(j))+ ,

where cεi,j = ci/ε,j/ε and u : εL → {0, 1}. By identifying u with its piecewise constant interpo-
lation taking the value u(i) on the Voronoi cell centered at i ∈ εL we may regard the energies
as defined on L1

loc(Rd, {0, 1}). Integral representation results [2, 4, 18] then guarantee that the
energies Eε Γ-converge (see [12, 30] for an introduction to that subject) with respect to the
L1

loc(Rd)-topology to a continuum energy of the form

E0(u) =

∫
∂∗{u=1}

ϕ(νu(x)) dHd−1 u ∈ BVloc(Rd; {0, 1}) .

Here, BVloc(Rd; {0, 1}) denotes the space of functions with (locally) bounded variation and
values in {0, 1}, ∂∗{u = 1} denotes the reduced boundary of the level set {u = 1}, νu(x) its
measure theoretic normal at the point x ∈ ∂∗{u = 1}, and Hd−1 denotes the (d−1)-dimensional
Hausdorff measure, see [5] for the precise definitions of these notions. The energy density
ϕ : Rd → [0,+∞) can be recovered via the asymptotic cell formula

ϕ(ν) := lim
δ→0

lim
S→+∞

1

Sd−1
inf
{
E(u,QνS) : u : L → {0, 1}, u(i) = uν(i) on L \Qν(1−δ)S

}
, (2)

where

uν(x) =

{
1 if 〈x, ν〉 ≥ 0 ,

0 otherwise.

Here, QνS is a suitable rotation of the coordinate cube with side-length S such that two faces
are parallel to {ν = 0}. In the case L = Z2, ci,j = 1 if |i − j| = 1 and ci,j = 0 otherwise, we
have that ϕ(ν) = 2‖ν‖1, see Figure 2.

The goal of this article is to investigate the energy density ϕ. In particular we show, that for
finite interaction range ci,j , that is there exists R > 0 such that ci,j = 0 if |i− j| > R, then ϕ is
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Figure 2. The energy density in the case of nearest neighbor interactions on Z2

crystalline, see [32, Definition 3.2]. This means that the solution to

min

{∫
∂∗A

ϕ(νA(x)) dHd−1 : |A| = 1

}
is a convex polytope. The finite range of interaction is crucial. Indeed, example 2.8 shows that
for infinite range interactions this is in general not true. In [16, 17] it is shown that, as the
periodicity T of the interactions tends to +∞, it is possible to approximate any norm as surface
energy density satisfying suitable growth conditions. We refer to [2] for a random setting where
it is shown that an isotropic energy density (and thus non-crystalline) can be obtained in the
limit.

The proof of the crystallinity in the case of finite range interactions relies on the following
alternative representation formula of the density, proven in Proposition 2.6. Namely, we prove
that

ϕ(ν) =
1

T d
inf {E(u,QT ) : u : L → R, u(·)− 〈ν, ·〉 is T -periodic} . (3)

This representation formula is reminiscent of the representation formula of the energy density
of integral functionals obtained via homogenization of T -periodic integral functionals in W 1,p

[15]. To motivate this, consider the positively 1-homogeneous extensions of Eε defined by

Fε(u) =
∑
i,j∈εL

εd−1cεi,j(u(i)− u(j))+ ,

for u : εL → R. The Γ-limit F0 of the above sequence is clearly positively 1-homogeneous and
convex as the sequence of functionals satisfies these properties. Thus, F0 admits an integral
representation of the form

F0(u) =

∫
f0(∇u) dx+

∫
f0

(
dDsu

d|Dsu|

)
d|Dsu| ,

where f0 : Rd → Rd is convex and positively 1-homogeneous, see [14]. (We like to stress however,
that this integral representation for the spin energies considered above is not proven in the
literature.) Here, the important point is that the density of the singular part and the density of
absolutely continuous parts agree. In the continuous setting, in [24, 27] it has been shown that
for continuous and convex densities, that satisfy a coarea formula, the Γ-convergence of sets of
finite perimeter or in the space of BV -functions is equivalent. Thus also in their setting, the
densities agree. The density of the absolutely continuous part can be calculated via (3). This
property eventually allows us to express ϕ via (3) since the density of the absolutely continuous
part can be calculated via (3) and the density of the singular part agrees with the energy density
in (2), see Proposition 2.6. Using convex duality (see [43]) and using (3) we show in Theorem
2.7 that ϕ is crystalline, and estimate an upper bound on the number of extreme points of the
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corresponding Wulff shape. We would like to stress that (3) is not only a useful tool in our proof
but it can be used also for computational purposes as it is a finite and not an asymptotic cell
formula.

The paper is organized as follows. In Section 2 we describe the mathematical setting and
state the main theorems of our paper. In Section 3 we prove Proposition 2.6, the alternate
representation formula for ϕ. In Section 4 we show that, in the case of finite range interactions,
the density ϕ is always crystalline. In Section 5 we discuss some differentiability properties of
ϕ. We present some numerical simulations of our findings in the last chapter.

2. Setting of the problem and statement of the main result

2.1. Notation. We denote by B(Rd) the collection of all Borel-Sets in Rd. For every A ⊂ Rd
we denote by |A| its d-dimensional Lebesgue measure. Given r > 0, we denote by (A)r := {x ∈
Rd : dist(x,A) < r} the r-neighbourhood of A. Given τ ∈ Rd, we set A+ τ := {x+ τ : x ∈ A}.
The set Sd−1 := {ν ∈ Rd : |ν| = 1} is the set of all d-dimensional unit vectors. For v, w ∈ Rd we
denote by 〈v, w〉 their scalar product. We denote by {e1, . . . , ed} ⊂ Rd the standard orthonormal
basis of Rd. Given C ⊂ Rd convex, we denote by extreme(C) its extreme points. Given ρ > 0, we
denote by Qρ := [−ρ/2, ρ/2)d the half open cube centred in 0 with side-length ρ. For ν ∈ Sd−1,
we set Qνρ := RνQρ, where Rν is a rotation such that Rνed = ν. Furthermore, given x ∈ Rd

we set Qνρ(x) := x + Qνρ (resp. Qρ(x) = x + Qρ). Given x ∈ Rd and r > 0 we denote by Br(x)

the open ball with radius r > 0 and center x. For A ⊂ Rd we denote by χ : Rd → {0, 1} the
characteristic function of the set A given by

χA(x) :=

{
1 if x ∈ A ,
0 otherwise.

(4)

We denote by ωd the volume of the unit ball in Rd. Given ν ∈ Sd−1 we define

uν(x) :=

{
1 if 〈ν, x〉 ≥ 0 ,

0 otherwise.
(5)

For z ∈ R we denote by (z)+ := max{z, 0} the positive part of z.

2.2. Discrete energies and homogenized surface energy density. In this paragraph we
define the discrete energies we want to consider and the homogenized surface energy density.

Let L ⊂ Rd satisfy the following two conditions:

(L1) (Discreteness) There exists c > 0 such that for all x ∈ L there holds

dist(x,L \ {x}) ≥ c .

(L2) (Periodicity) There exists T ∈ N such that for all z ∈ Zd there holds

L+ Tz = L .

Note that the two assumptions (L1) and (L2) include multi-lattices, such as the hexagonal
closed packing lattice in three dimensions, and Bravais lattices, such as Zd, or the face-centered
cubic lattice in three dimensions.
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We consider interaction coefficients ci,j : L×L → [0,+∞) and the corresponding (localized)
ferromagnetic spin energies of the form

E(u,A) :=
∑

i∈L∩A

∑
j∈L

ci,j(u(i)− u(j))+ , (6)

where u : L → R and A ∈ B(Rd). If A = Rd we omit the dependence on the set and write
E(u) := E(u,Rd). We want to remark that we are considering interactions on the directed
graph instead of the undirected graph.

We introduce the following three hypotheses on the interaction coefficients ci,j : L × L →
[0,+∞):

(H1) (Periodicity) There holds

ci+Tz,j+Tz = ci,j

for all i, j ∈ L, z ∈ Zd.

(H2) (Decay of Interactions) For all i ∈ L there holds∑
j∈L

ci,j |i− j| < +∞ .

(H3) (Finite Range Interactions) There exists R > 1 such that

ci,j = 0

for all i, j ∈ L such that |i− j| ≥ R.

It is obvious, that hypothesis (H3) implies hypothesis (H2). Note that, if (H1) and (H2) are
satisfied then

max
i∈L

∑
j∈L

ci,j |i− j| = max
i∈L∩QT

∑
j∈L

ci,j |i− j| < +∞

and for all R > 0, there exists CR > 0 such that CR → 0 as R→ +∞ and

max
i∈L

∑
j∈L
|i−j|≥R

ci,j |i− j| ≤ CR .

Definition 2.1. Let ci,j satisfy (H1) and (H2). We then define the homogenized surface energy
density ϕ : Rd → [0,+∞) as the convex positively homogeneous function of degree one such
that for all ν ∈ Sd−1 we have

ϕ(ν) := lim
δ→0

lim
S→+∞

1

Sd−1
inf
{
E(u,QνS) : u : L → {0, 1}, u(i) = uν(i) on L \Qν(1−δ)S

}
, (7)

with uν defined in (5).

Remark 2.2. The definition above can be interpreted as a passage from discrete to continuum
description as follows. Given ε > 0, we consider the scaled energies

Eε(u) :=
∑
i∈L

∑
j∈L

εd−1ci,j(u(εi)− u(εj))+ ,
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where u : εL → {0, 1}. Upon identifying u with its piecewise-constant interpolation, we can
regard these energies to be defined on L1

loc(Rd). We know that their Γ-limit is infinite outside
the space BVloc(Rd; {0, 1}), where it has the form

E0(u) :=

∫
∂∗{u=1}

ϕ(ν) dHd−1

with ϕ given by (7), see for example [2].1 Here, ∂∗{u = 1} denotes the reduced boundary of
the set {u = 1} and Hd−1 denotes the (d − 1)-dimensional Hausdorff measure in Rd (cf. [5],
Chapters 2.8 and 3.5).

Remark 2.3. Testing with uν in (7), using (L1) and (H2), it is easy to see that ϕ(ν) ≤ C for all
ν ∈ Sd−1. Therefore, due to the convexity and the fact that it is a positively one homogeneous
function of degree one, ϕ is Lipschitz continuous.

2.3. Statement of the main result. In this section we state the main result.

Definition 2.4. Given ϕ : Rd → [0,+∞) convex, positively homogeneous of degree one, we
define the Wulff set of ϕ by

Wϕ := {ζ ∈ Rd : 〈ζ, ν〉 ≤ ϕ(ν) for all ν ∈ Sd−1} .
We say that ϕ is crystalline, if Wϕ is a polytope.

Remark 2.5. From the definition of the Wulff set, it is clear that

ϕ(ν) = sup
ζ∈Wϕ

〈ν, ζ〉 .

Furthermore, one can check, that if ϕ is crystalline, then the set {ϕ ≤ 1} is a polytope.

The next proposition shows that, we obtain a finite cell formula in order to calculate ϕ instead
of the asymptotic one, given in (7). We think that this result in itself is interesting, since it
allows for calculations on finite size systems in order to compute ϕ for general Ising systems. This
result is in spirit very close to [10, 14], where convex and positively 1-homogenous continuum
energies are considered. In this case, the surface energy density and the energy with respect to
the absolutely continuous part coincide. For k ∈ N let Λ := Tk and denote by

Aper(QΛ;R) := {u : L → R : u(x+ Λz) = u(x) for all z ∈ Zd} (8)

be the space of Λ-periodic functions.

Proposition 2.6. Let ci,j : L×L → [0,+∞) be interaction coefficients such that (H1) and (H2)
hold true. Then

ϕ(ν) =
1

T d
inf {E(u,QT ) : u : L → R, u(·)− 〈ν, ·〉 ∈ Aper(QT ;R)} . (9)

Theorem 2.7. Let ci,j : L × L → [0,+∞) be interaction coefficients such that (H1) and (H3)
hold true. Then, the homogenized surface energy density ϕ is crystalline. Denote by

N := #{(i, j) ∈ L ∩QT × L : ci,j 6= 0} .
Then,

#extreme(Wϕ) ≤ 3N .

The next example shows that without assumption (H3) Theorem 2.7 fails to hold true.

1Actually, the integral representation for the Γ-limit has only been shown for undirected graphs. However, a
slight modification of the proof shows that it is still true for directed graphs.
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Example 2.8. To construct the example we first observe that if f : Rd → [0,+∞) is crystalline,
then D2f is a Radon-measure with support contained in finitely many hyper-planes. To see this,
note that if f : Rd → [0,+∞) is crystalline, then there exist {ξk}Nk=1 ⊂ Rd such that

f(ν) = max
1≤k≤N

〈ξk, ν〉 .

Here, we assume that {ξk}Nk=1 is chosen minimal, i.e. if we set Vk =
{
ν ∈ Rd : f(ν) = 〈ξk, ν〉

}
,

then |Vk| > 0 for all k = 1, . . . , N . This assumption ensures that all the vectors ξk play an active
role in the definition of f . Now, Df ∈ BVloc(Rd;Rd) is given by

Df(ν) =

N∑
k=1

χVk(ν)ξk ,

with Vk defined above. Then

D2f(ν) =
∑

1≤k<j≤N

(ξk − ξj)⊗ νkjHd−1b∂Vk∩∂Vj ,

where ∂Vk ∩∂Vj =
{
ν ∈ Rd : f(ν) = 〈ξk, ν〉 = 〈ξj , ν〉

}
and νkj ∈ Sd−1 denotes the normal point-

ing towards the set Vk.

Let now L = Zd and ci,j = cj−i = ci−j (in the following denoted by {cξ}ξ∈Zd) be such that

cξ > 0 for all ξ ∈ Zd and ∑
ξ∈Zd

cξ|ξ| < +∞ .

It is then obvious that ci,j is 1-periodic, (H1) and (H2) hold true, but (H3) is violated. Therefore,
due to Proposition 2.6, we have

ϕ(ν) =
∑
ξ∈Zd

cξ|〈ξ, ν〉| .

This is true, since the only admissible functions in the minimum problem given by Proposition
2.6 are uν(i) = 〈ν, i〉+ c for some c ∈ R. We claim that

Dϕ(ν) =
∑
ξ∈Zd

sign(〈ξ, ν〉) cξ ξ ,

where sign: R→ R is defined by

sign(t) =

{
1 t ≥ 0;

−1 t < 0.

Therefore

D2ϕ = 2
∑
ξ∈Zd

cξξ ⊗
ξ

|ξ|
Hd−1b{ν : 〈ξ,ν〉=0} . (10)

This can be seen by approximation. Consider ϕR : Rd → R defined by

ϕR(ν) =
∑
ξ∈Zd
|ξ|≤R

cξ|〈ξ, ν〉| , DϕR(ν) =
∑
ξ∈Zd
|ξ|≤R

sign(〈ξ, ν〉) cξ ξ ,
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Then

D2ϕR = 2
∑
ξ∈Zd
|ξ|≤R

cξξ ⊗
ξ

|ξ|
Hd−1b{ν : 〈ξ,ν〉=0} .

Now

|D2ϕR|(Br) ≤ Crd−1
∑
ξ∈Zd

cξ|ξ| ,

so the total variation of D2ϕR is (locally) uniformly bounded with limiting measure D2ϕ and
DϕR → Dϕ in L1

loc(Rd;Rd), actually weakly in BV . Hence, (10) is shown. Now, since cξ > 0
for all ξ ∈ Zd it is obvious that D2ϕ is not supported on finitely many hyper-planes. Thus ϕ
cannot be crystalline.

Note that ϕ is differentiable in totally irrational directions.2 A similar property is known to
hold, in the continuous setting [6, 25], for homgenized surface tensions. We can state a result
showing that this is still the case in the discrete setting, under assumptions (H1) and (H2).

Proposition 2.9. Under the assumptions of Proposition 2.6, ϕ is differentiable in any totally
irrational direction.

It is expected that it should be, “in general”, not differentiable in the other directions, at least
whenever the minimizers u in (9) are constant on an infinite set, however the proofs in [6, 25]
rely on ellipticity properties of the problem and are less easy to transfer to the discrete case.
The proof of Proposition 2.9, which mimicks the proof in [25], is postponed to Section 5, and
relies on the dual representation (95) introduced later on.

3. Proof of Proposition 2.6

This section is devoted to the proof of Proposition 2.6. We assume throughout this section
that assumptions (L1), (L2) and (H1), (H2) are satisfied. The proof consists in showing that ϕ
can be characterized by several (equivalent) cell-formulas and therefore passing from (7) to (9).

First, we will state and prove some elementary properties of E that will be used throughout
this section.

Lemma 3.1. Let A ∈ B(Rd) and let c > 0 be as in (L1).

(i) There exists a universal constant C > 0 (depending only on ci,j and c in (L1)) such that
for all ν ∈ Rd we have

E(〈ν, ·〉, A) ≤ C|ν||(A)c| .

(ii) Let u : L → R. For all t ∈ R, λ > 0 there holds

E(λu+ t, A) = λE(u,A)

and u 7→ E(u,A) is convex. In particular,

E(u+ v,A) ≤ E(u,A) + E(v,A)

for all u, v : L → R.
(iii) Let u : L → R and B ∈ B(Rd) be such that A ⊂ B. Then

E(u,A) ≤ E(u,B) .

2p is totally irrational if there is no q ∈ Zd \ {0} such that 〈q, p〉 = 0.
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(iv) Let u : L → R and B ∈ B(Rd) be such that A ∩B = ∅ . Then

E(u,A ∪B) = E(u,A) + E(u,B) .

(v) We have

#{i ∈ L ∩A} ≤ 1

cdωd
|(A)c| .

(vi) Let u : L → R. Then, the function τ 7→ E(u(· − τ), A+ τ) is T -periodic.

Proof. We start by proving (ii)-(iv) in Step 1, then (v) and (vi) in Step 2 and Step 3 respectively,
and finally (i) in Step 4.

Step 1.(Proof of (ii) - (iv)) All the three statements are a direct consequence of (6) and the
fact that ci,j ≥ 0.

Step 2. (Proof of (v)) Note that ⋃
i∈L∩A

Bc(i) ⊂ (A)c

and therefore, due to (L1),

cdωd#{i ∈ L ∩A} =

∣∣∣∣∣ ⋃
i∈L∩A

Bc(i)

∣∣∣∣∣ ≤ |(A)c| .

This is the claim.

Step 3.(Proof of (vi)) Let u : L → R and z ∈ Zd. Then, using (H1) and (L2),

E(u(· − Tz), A+ Tz) =
∑

i∈L∩(A+Tz)

∑
j∈L

ci,j(u(i− Tz)− u(j − Tz))+

=
∑

i∈L∩A

∑
j∈(L+Tz)

ci+Tz,j+Tz(u(i)− u(j))+

=
∑

i∈L∩A

∑
j∈L

ci,j(u(i)− u(j))+ = E(u,A) .

Step 4.(Proof of (i)) Let ν ∈ Rd, then, due to (v), (L1), (L2),(H1), and (H2), we have

E(〈ν, ·〉, A) =
∑

i∈L∩A

∑
j∈L

ci,j |〈ν, i− j〉| ≤ |ν|#{i ∈ L ∩A}max
i∈L

∑
j∈L

ci,j |i− j| ≤ C|ν||(A)c| .

�

The next Lemma shows that our energy satisfies a genearlized coarea formula [24, 45].

Lemma 3.2. Let u : L → R and A ⊂ Rd. Then

E(u,A) =

∫ +∞

−∞
E(χ{u>t}(i), A) dt . (11)

Proof. For a, b ∈ R we have

(a− b)+ =

∫ +∞

−∞
(χ{a>t} − χ{b>t})+ dt .
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Therefore,

E(u,A) =
∑

i∈L∩A

∑
j∈L

ci,j(u(i)− u(j))+ =
∑

i∈L∩A

∑
j∈L

ci,j

∫ +∞

−∞
(χ{u(i)>t} − χ{u(j)>t})

+ dt .

Now, by Fubini’s Theorem (note that ci,j ≥ 0), we obtain∑
i∈L∩A

∑
j∈L

ci,j

∫ +∞

−∞
(χ{u(i)>t} − χ{u(j)>t})

+ dt =

∫ +∞

−∞

∑
i∈L∩A

∑
j∈L

ci,j(χ{u(i)>t} − χ{u(j)>t})
+ dt

=

∫ +∞

−∞
E(χ{u>t}, A) dt

and thus the claim. �

Lemma 3.3. Let S > 0, δ > 0 and ν ∈ Sd−1. Then

inf
{
E(u,QνS) : u : L → R, u(i) = uν(i) on L \Qν(1−δ)S

}
= inf

{
E(u,QνS) : u : L → {0, 1}, u(i) = uν(i) on L \Qν(1−δ)S

}
.

Proof. The infimum on the left hand side is taken over a larger class of admissible function, since
here the image of the competitor u is a subset of R and not just of {0, 1}. Hence, one inequality
is trivial. The other inequality follows from a coarea formula satisfied by our energies.
Step 1. (Proof of ’≤’) This inequality is clear, since the infimum on the left hand side is taken
over a larger class of functions.
Step 2. (Proof of ’≥’) Let us take u : L → R such that u = uν on L \ Qν(1−δ)S and denote by

us = χu>s. Then, using Lemma 3.2, there exists t ∈ (0, 1) such that

E(ut, QνS) ≤
∫ 1

0

E(us, QνS) ds ≤
∫ +∞

−∞
E(us, QνS) ds = E(u,QνS) .

Noting that ut(i) ∈ {0, 1} for all i ∈ L and ut = uν on L \QνS , this concludes Step 2. �

Let φ : Rd → [0,+∞] be defined by

φ(ν) = lim
δ→0

lim
S→+∞

1

Sd
inf
{
E(u,QS) : u : L → R, u(i) = 〈ν, i〉 on L \Q(1−δ)S

}
. (12)

φper : Rd → [0,+∞] is defined by

φper(ν) = lim inf
k→+∞

1

(kT )d
inf {E(u,QkT ) : u : L → R, u(·)− 〈ν, ·〉 ∈ Aper(QkT ;R)} . (13)

The next lemma shows that φper can be calculated via a finite cell formula. Additionally, it
shows that the liminf in the definition of (13) is actually a limit.

Lemma 3.4. Let ν ∈ Sd−1. For all k ∈ N there holds
1

(kT )d
inf {E(u,QkT ) : u : L → R, u(·)− 〈ν, ·〉 ∈ Aper(QkT ;R)}

=
1

T d
inf {E(u,QT ) : u : L → R, u(·)− 〈ν, ·〉 ∈ Aper(QT ;R)} .

(14)

In particular,

φper(ν) =
1

T d
inf {E(u,QT ) : u : L → R, u(·)− 〈ν, ·〉 ∈ Aper(QT ;R)} (15)
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and the lim inf in (13) is actually a limit since the sequence, in fact, does not depend on k.

The following example shows that, without any further assumption on ci,j , the minimum in

inf {E(u,QT ) : u : L → R, u(·)− 〈ν, ·〉 ∈ Aper(QT ;R)} (16)

is not achieved by any u : L → R.

Example 3.5. Let L = Z and let ci,j be 2-periodic. We set

ci,j =

{
2−k if j − i = 2k + 1, k ∈ N, i even,

0 otherwise.

Let s ∈ R, u(0) = 0 and u(1) = s be 2-periodic. Then, for ν = −1 we have

E(u,Q2) =

∞∑
k=0

c0,2k+1(u(0)− u(2k + 1) + 2k + 1)+ =

∞∑
k=0

2−k(2k + 1− s)+ .

We have that

inf
u∈Aper(Q2;R)

E(u,Q2) = 0 .

However, clearly, for all u ∈ Aper(Q2;R), E(u,Q2) > 0. In order to ensure the existence in (16)
and the other minimum problems a coercivity condition might be: For any i, j ∈ L there exists
a path γ = (i0, . . . , iN ) such that i0 = i, iN = j and such that cik,ik+1

> 0. By considering the

directed graph G = (L, E), where E := {(i, j) ∈ L × L : there exists z ∈ Zd such that ci,j+Tz >
0} this condition ensures that for two vertices i, j ∈ G there always exists a path of edges (in
the infinite graph) with positive weights connecting them.

Proof of Lemma 3.4. We split the proof into two steps by first observing the (obvious) inequality
that the right hand side in (14) is less than or equal to the left hand side. Then, we prove the
converse inequality by using a superposition argument.

Step 1.(Proof of ’≤’) given u with u(·) − 〈ν, ·〉 ∈ Aper(QT ;R), then obviously u(·) − 〈ν, ·〉 ∈
Aper(QkT ;R) and

E(u,QkT ) =
1

kd
E(u,QT )

so this inequality is obvious.

Step 2.(Proof of ’≥’) This is a standard convexity argument: given u now with u(·) − 〈ν, ·〉 ∈
Aper(QkT ;R), then for i ∈ QT we let:

uT (i) = 〈ν, i〉+
1

kd

∑
z∈{0,...,k−1}d

(u(i+ Tz)− 〈ν, i+ Tz〉) .

Then clearly by construction, uT ∈ Aper(QT ;R) and by convexity,

E(uT , QT ) =
1

kd
E(uT , QkT ) ≤ 1

kd
E(u,QkT ),

which shows the lemma.

�

The following lemma uses a standard cutoff-argument. However, due to the infinite range of
interactions, the arguments for the case of finite range interactions need to be adapted.

Lemma 3.6. Let ν ∈ Rd. Then: φper(ν) = φ(ν).
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Proof. We first show φper(ν) ≤ φ(ν) in Step 1, and then the reverse inequality. In order to do
so, we modify competitors of the respective cell formulas in order to obtain a competitor for the
other formula. Due to the one homogeneity of both functions, we may assume that ν ∈ Sd−1.

Step 1.(Proof of ’≤’) Due to Lemma 3.4, the limit in the definition of φper(ν) (resp. φ(ν))
exists. Thus, we can assume without loss of generality that S = kT for some k ∈ N with k large.
Let δ > 0, ε > 0, and let uδk : L → R be such that uδk(i) = 〈ν, i〉 on L \Q(1−δ)kT and

E(uδk, QkT ) ≤ inf
{
E(u,QkT ) : u : L → R, u(i) = 〈ν, i〉 on L \Q(1−δ)kT

}
+ ε . (17)

We assume that

||uδk||L∞(Q(1+δ)kT ) ≤ 2kT . (18)

If that were not true we perform the following construction with ũδk(i) = (uδk(i)∨(−2kT ))∧(2kT ).
Note that still ũδk(i) = 〈ν, i〉 on Q(1+δ)kT for δ small enough. We define vδk : L → R by setting

vδk(i)− 〈ν, i〉 = uδk(i0)− 〈ν, i0〉 if i = i0 + kTz, i0 ∈ QkT , z ∈ Zd (19)

so that vδk(·) − 〈ν, ·〉 ∈ Aper(QkT ;R). Then clearly, writing i = i0 + kTz and j = j0 + k′Tz as
above:

|vδk(i)− vδk(j)| ≤ |uδk(i0)− uδk(j0)|+ |i0 − j0|+ |i− j| ≤ CkT + |i− j| , (20)

and

vδk(i) = uδk(i) for i ∈ Q(1+δ)kT , (21)

since uδk(i)− 〈ν, i〉 = 0 for i 6∈ Q(1−δ)kT . Additionally,

inf {E(u,QkT ) : u : L → R, u(·)− 〈ν, ·〉 ∈ Aper(QkT ;R)} ≤ E(vδk, QkT ) . (22)

We are finished with Step 1 if we prove

E(vδk, QkT ) ≤ E(uδk, QkT ) +
Cδk
δ

(kT )d , (23)

where Cδk → 0 as k → +∞. In fact, using (17), (22), (23), dividing by (kT )d, letting k → +∞,
and then δ → 0, we obtain the claim by noting that ε > 0 is chosen arbitrarily. Let us prove
(23). We have, using (21),

E(vδk, QkT ) =
∑

i∈L∩QkT

∑
j∈L

ci,j(v
δ
k(i)− vδk(j))+

=
∑

i∈L∩QkT

∑
j∈L∩Q(1+δ)kT

ci,j(v
δ
k(i)− vδk(j))+ +

∑
i∈L∩QkT

∑
j∈L\Q(1+δ)kT

ci,j(v
δ
k(i)− vδk(j))+

≤ E(uδk, QkT ) +
∑

i∈L∩QkT

∑
j∈L

|i−j|≥δkT/2

ci,j |vδk(i)− vδk(j)| .

Hence, in order to show (23), it remains to prove∑
i∈L∩QkT

∑
j∈L

|i−j|≥δkT/2

ci,j |vδk(i)− vδk(j)| ≤ Cδk
δ

(kT )d , (24)
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where Cδk → 0 as k → +∞. Using (20), (H2), and Lemma 3.1(v), we have∑
i∈L∩QkT

∑
j∈L

|i−j|≥δkT/2

ci,j |vδk(i)− vδk(j)| ≤
∑

i∈L∩QkT

∑
j∈L

|i−j|≥δkT/2

ci,j(CkT + |i− j|)

≤
(
C

δ
+ 1

) ∑
i∈L∩QkT

∑
j∈L

|i−j|≥δkT/2

ci,j |i− j|

≤ C

δ
# (L ∩QkT ) max

i∈L

∑
j∈L

|i−j|≥δkT/2

ci,j |i− j| ≤
Cδk
δ

(kT )d ,

where Cδk → 0 as k → +∞. This yields (24) and therefore the claim of Step 1.
Step 2.(Proof of ’≥’) Let ε > 0 and u : L → R be such that u(·)− 〈ν, ·〉 ∈ Aper(QT ;R) and

E(u,QT ) ≤ inf {E(u,QT ) : u : L → R, u(·)− 〈ν, ·〉 ∈ Aper(QT ;R)}+ ε .

Fix δ > 0 and S ∈ N such that S = kT for some k ∈ N, k � 1 and δS � 1. Since u(·)− 〈ν, ·〉 ∈
Aper(QT ;R), we have

E(u,QT (x0)) = E(u,QT ) for all x0 ∈ TZd

and therefore

E(u,QS) =
Sd

T d
E(u,QT ) . (25)

There exists a constant C > 0 (we omit the dependence on T ) such that, due to the fact that
u(·)− 〈ν, ·〉 ∈ Aper(QT ;R),there holds

max
i∈L
|u(i)− 〈ν, i〉| = max

i∈L∩QT
|u(i)− 〈ν, i〉| ≤ Cε . (26)

Let ζS ∈ C∞c (Rd; [0, 1]) be a cut-off function such that

ζS(x) = 1 for x ∈ Q(1−3δ)S , supp ζS(x) ⊂ Q(1−2δ)S , and ||∇ζS ||∞ ≤
C

δS
.

Define uS : L → R by

uS(i) = ζS(i)u(i) + (1− ζS(i))〈ν, i〉 .

Then, uS(i) = 〈ν, i〉 for i ∈ L \Q(1−δ)S and therefore

inf
{
E(u,QS) : u : L → R, u(i) = 〈ν, i〉 on L \Q(1−δ)S

}
≤ E(uS , QS) . (27)

For all i, j ∈ L there holds

uS(i)− uS(j) = ζS(i) (u(i)− u(j)) + (1− ζS(i))〈ν, i− j〉+ (ζS(i)− ζS(j))(u(j)− 〈ν, j〉) ,

which, together with (26), implies for all i, j ∈ L

(uS(i)− uS(j))+ ≤ (u(i)− u(j))+ + |i− j|+ C

δS
|u(j)− 〈ν, j〉||i− j|

≤ (u(i)− u(j))+ + C|i− j| ,
(28)

where we assume that Sδ ≥ Cε (we will first send k to +∞, then δ to 0, and finally ε to 0). For
all i, j ∈ Q(1−3δ)S we have

(uS(i)− uS(j))+ = (u(i)− u(j))+ . (29)
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Using (25), (28), and (29), we obtain

E(uS , QS) ≤
∑

i∈L∩QS

∑
j∈L

ci,j(u(i)− u(j))+ + C
∑

i∈L∩Q(1−6δ)S

∑
j∈L\Q(1−3δ)S

ci,j |i− j|

+ C
∑

i∈L∩QS\Q(1−6δ)S

∑
j∈L

ci,j |i− j|

=
Sd

(kT )d
E(uk, QkT ) + C

∑
i∈L∩Q(1−6δ)S

∑
j∈L\Q(1−3δ)S

ci,j |i− j|

+ C
∑

i∈L∩QS\Q(1−6δ)S

∑
j∈L

ci,j |i− j| .

(30)

We show that ∑
i∈L∩Q(1−6δ)S

∑
j∈L\Q(1−3δ)S

ci,j |i− j| ≤ CδSSd , (31)

and ∑
i∈L∩QS\Q(1−6δ)S

∑
j∈L

ci,j |i− j| ≤ CδSd , (32)

where CδS → 0 as S → +∞ and C > 0 is a universal constant. Note that, due to Lemma 3.4,
since ε > 0 is chosen arbitrary, from (31) and (32) we obtain the claim of Step 2 by using (27),
(30), dividing by Sd, k → +∞ and then δ → 0.

We first prove (31). Note that, for S big enough, due to (H2) and Lemma 3.1(v), we have∑
i∈L∩Q(1−6δ)S

∑
j∈L\Q(1−3δ)S

ci,j |i− j| ≤
∑

i∈L∩Q(1−6δ)S

∑
j∈L

|i−j|≥δS

ci,j |i− j|

≤ #(L ∩QS) max
i∈L

∑
j∈L

|i−j|≥δS

ci,j |i− j|

≤ CδSSd ,

where CδS → 0 as S → +∞. Next, we show (32). Using (H2), and Lemma 3.1(v), we obtain∑
i∈L∩QS\Q(1−6δ)S

∑
j∈L

ci,j |i− j| ≤
∑

i∈L∩QS\Q(1−6δ)S

∑
j∈L

ci,j |i− j|

≤ #(L ∩QS \Q(1−6δ)S) max
i∈L

∑
j∈L

ci,j |i− j|

≤ CδSd .

This is (32) and hence the claim of Step 2. �

Let ψ : Rd → [0,+∞] be defined as the positively homogeneous function of degree one that
for ν ∈ Sd−1 is defined by

ψ(ν) = lim
δ→0

lim
S→+∞

1

Sd
inf
{
E(u,QνS) : u : L → R, u(i) = 〈ν, i〉 on L \Qν(1−δ)S

}
. (33)

The function ψ differs from the function φ in the domain where one calculates the energy.
For the function φ we take the coordinate cube QT whereas for ν we take the cube QνT .
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Remark 3.7. The existence of the limits in (12) and (33) can be deduced from standard
subadditivity arguments, see e.g. [3, Proposition 4.2].

Lemma 3.8. ψ : Rd → [0,+∞] satisfies the following properties:

(i) There exists C > 0 such that ψ(ν) ≤ C|ν| for all ν ∈ Rd ,
(ii) ψ is a continuous function.

Proof. We divide the proof into two steps. We first prove (i) and then (ii). Throughout the
proofs let 1� S.
Step 1.(Proof of (i)) Let ν ∈ Sd−1; it suffices to prove

ψ(ν) ≤ C .

The general case then follows by one-homogeneity. In order to prove (i) we insert u(i) = 〈ν, i〉
for all i ∈ L as a competitor in the cell formula. Using Lemma 3.1(i), we then have

E(u,QνS) = E(〈ν, ·〉, QνS) ≤ C|ν||(QS)c| ≤ CSd .

Dividing by Sd and letting S → +∞ yields the claim.
Step 2.(Proof of (ii)) Due to the one-homogeneity, it suffices to consider the case where ν1, ν2 ∈
Sd−1. Let η > 0 and ν1, ν2 ∈ Sd−1 be such that |ν1 − ν2| ≤ η. Our goal is to prove that there
exists C > 0 independent of ν1 and ν2 such that

|ψ(ν1)− ψ(ν2)| ≤ Cη . (34)

We only prove

ψ(ν1)− ψ(ν2) ≤ Cη , (35)

since then (34) follows by exchanging ν1 and ν2 in (35). To this end let δ > 0 small enough,
S > 0 big enough, u1 : L → R be such that u1(i) = 〈ν1, i〉 on L \Qν(1−δ)S and

1

Sd
E(u1, Q

ν1
S ) ≤ φ(ν1) + η . (36)

We assume that

||u1||L∞(Q
ν1
S ) ≤ S . (37)

If this were not the case, we consider

ũ1(i) =

{
(u1(i) ∧ S) ∨ (−S) i ∈ Qν12S ,

u1(i) otherwise.

Note that for i, j ∈ Qν12S , due to truncation, (ũ1(i) − ũ1(j))+ ≤ (u1(i) − u1(j))+, whereas in
general there holds |ũ1(i)− ũ1(j)| ≤ CS + |i− j|. From this, using Lemma 3.1(v) and (H2), we
deduce

E(ũ1, Q
ν1
S ) =

∑
i∈L∩Qν1S

∑
j∈L∩Qν12S

ci,j(ũ1(i)− ũ1(j))+ +
∑

i∈L∩Qν1S

∑
j∈L\Qν12S

ci,j(ũ1(i)− ũ1(j))+

≤
∑

i∈L∩Qν1S

∑
j∈L∩Qν12S

ci,j(u1(i)− u1(j))+ + C
∑

i∈L∩Qν1S

∑
j∈L

|i−j|≥S/2

ci,j |i− j|

≤ E(u1, Q
ν1
S ) + C#(L ∩Qν1S ) max

i∈L

∑
j∈L

|i−j|≥S/2

ci,j |i− j| ≤ E(u1, Q
ν1
S ) + CSS

d ,
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where CS → 0 as S →∞. In particular CS ≤ η for S big enough. Hence, we can assume (37).

There exists C > 0 such that for S̃ = (1 +Cη)S there holds Qν2
(1−δ)S̃ ⊃ Q

ν1
(1+δ)S . We now define

u2 : L → R by

u2(i) = 〈ν2 − ν1, i〉+ u1(i) .

First, note that u2(i) = 〈ν2, i〉 for all i ∈ L \Qν2
(1−δ)S̃ and therefore

inf
{
E(u,Qν2

S̃
) : u : L → R, u(i) = 〈ν2, i〉 on L \Qν2

(1−δ)S̃

}
≤ E(u2, Q

ν2
S̃

) . (38)

We claim that

E(u2, Q
ν2
S̃

) ≤ E(u1Q
ν1
S ) +

CδS
δ
Sd + CηSd + CδSd , (39)

where CδS → 0 as S → +∞. We postpone the proof of (39) and show first how it implies (35).

Dividing (39) by S̃d, letting S̃ (therefore also S) tend to +∞, δ → 0, and using (38) as well as
(36), we get

φ(ν2) ≤ φ(ν1) + Cη ≤ φ(ν1) + Cη .

This is (35). We now prove (39). Due to Lemma 3.1(ii), there holds

E(u2, Q
ν2
S̃

) ≤ E(u1, Q
ν2
S̃

) + E(〈ν2 − ν1, ·〉, Qν1S̃ ) . (40)

Now, due to Lemma 3.1(i) and the fact that S̃ ≤ 2S, there holds

E(〈ν2 − ν1, ·〉, Qν1S̃ ) ≤ C|ν2 − ν1|Sd ≤ CηSd . (41)

Next, we prove

E(u1, Q
ν2
S̃

) ≤ E(u1, Q
ν1
S ) + CδSd +

CδS
δ
Sd , (42)

where CδS → 0 as S → +∞. We use Lemma 3.1(iv), to obtain

E(u1, Q
ν2
S̃

) = E(u1, Q
ν1
S ) + E(u1, Q

ν2
S̃
\Qν1S ) .

In order to prove (42) it suffices to prove

E(u1, Q
ν2
S̃
\Qν1S ) ≤ CηSd +

CδS
δ
Sd , (43)

where CδS → 0 as S → +∞. To see this we write

E(u1, Q
ν2
S̃
\Qν1S ) =

∑
i∈L∩Qν2

S̃
\Qν1S

∑
j∈L∩Qν1

(1−δ)S

ci,j(u1(i)− u1(j))+

+
∑

i∈L∩Qν2
S̃
\Qν1S

∑
j∈L\Qν1

(1−δ)S

ci,j(u1(i)− u1(j))+ .
(44)

To estimate the first term, note that due to (37), we have |u1(i) − u1(j)| ≤ CS + |i − j|, and
therefore, up to changing C, using (H2), and Lemma 3.1(iv), we get∑
i∈L∩Qν2

S̃
\Qν1S

∑
j∈L∩Qν1

(1−δ)S

ci,j(u1(i)− u1(j))+ ≤ C

δ

∑
i∈L∩Qν2

S̃
\Qν1S

∑
j∈L

|i−j|≥δS/2

ci,j |i− j| (45)

≤ C

δ
#(L ∩Qν2

S̃2
) max
i∈L

∑
j∈L

|i−j|≥δS/2

ci,j |i− j| ≤
CδS
δ
Sd ,
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where CδS → 0 as S → +∞. To estimate the first term, we use the fact that u1(i) = 〈ν1, i〉 on
L \Qν1(1−δ)S , and Lemma 3.1 (i), to obtain∑
i∈L∩Qν2

S̃
\Qν1S

∑
j∈L\Qν1

(1−δ)S

ci,j(u1(i)− u1(j))+ ≤ E(〈ν1, ·〉, Qν2S̃ \Q
ν1
S ) ≤ C|ν1||(Qν2S̃ \Q

ν1
S )c| ≤ CηSd .

This together with (44) and (45) implies (43) which in turn, together with (40) and (41) implies
(39) and therefore the conclusion of Step 2. �

Lemma 3.9. φ : Rd → [0,+∞] satisfies the following properties:

(i) There exists C > 0 such that φ(ν) ≤ C|ν| for all ν ∈ Rd ,
(ii) φ is a positively homogeneous function of degree one,

(iii) φ is a convex function. In particular, φ is Lipschitz continuous.

Proof. We divide the proof into two steps. Throughout the proofs let 1� S.
Step 1.(Proof of (i) and (ii)) In order to prove (i) we insert u(i) = 〈ν, i〉 for all i ∈ L as a
competitor in the cell formula. Using Lemma 3.1(i), we then have

E(u,QνS) = E(〈ν, ·〉, QνS) ≤ C|ν||(QS)c| ≤ CSd .

Dividing by Sd and letting S → +∞ yields the claim. (ii) follows by using Lemma (3.1)(ii) to
obtain E(λu,QS) = λE(u,QS) for all λ > 0 and by noting that, given ν ∈ Rd, if u : L → R
satisfies u(i) = 〈ν, i〉 on L\Q(1−δ)S , then λu(i) = 〈λν, i〉 on L\Q(1−δ)S . Employing this in (12)
it is easy to see that φ is a positively homogeneous function of degree one.
Step 2.(Proof of (iii)) We show that for every S > 0 and δ > 0, Sδ � 1 the function φδS : Rd →
[0,+∞] given by

φδS(ν) :=
1

Sd
inf
{
E(u,QS) : u : L → R, u(i) = 〈ν, i〉 on L \Q(1−δ)S

}
(46)

is a convex function. Note that

φ(ν) = lim
δ→0

lim
S→+∞

φδS(ν) for all ν ∈ Rd .

Thus, the convexity for φδS also implies the convexity of φ. This together with (i) and (ii) implies
that φ is also Lipschitz continuous. Now we prove that φδS is a convex function. Given λ ∈ [0, 1],
ν1, ν2 ∈ Rd, let ε > 0 u1 : L → R, u2 : L → R be such that uk(i) = 〈νk, i〉 on L \Q(1−δ)S and

E(uk, QS) ≤ φδS(νk) +
1

2
ε for k = 1, 2 .

We have that u(i) := λu1(i) + (1 − λ)u2 is admissible for φδS(λν1 + (1 − λ)ν2) and by Lemma
3.1(ii) we obtain

φδS(λν1 + (1− λ)ν2) ≤ E(u,QS) = E(λu1 + (1− λ)u2, QS) ≤ λE(u1, QS) + (1− λ)E(u2, QS)

≤ λφδS(ν1) + (1− λ)φδS(ν2) + ε .

Since ε > 0 is arbitrary. This yields the claim. �

The next Lemma shows that the asymptotic cell-formula describing the surface energy density
is equal to the asymptotic cell-formula with affine boundary conditions. In Lemma 3.11 and
Lemma 3.12 we use the following remark.

Remark 3.10. We point out that Sd−1 ∩ Qd is dense in Sd−1. This follows from the fact
that Qd−1 is dense in Rd−1 and that the inverse of the stereographic projection Pd : Rd−1 →
Sd−1 \ {ed} is a rational and continuous function.
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Lemma 3.11. Let ν ∈ Rd. Then: ψ(ν) = ϕ(ν).

Proof. Due the fact that both ψ and ϕ are positively homogeneous functions of degree one, it
suffices to consider the case where ν ∈ Sd−1. Furthermore, since both functions are continuous,
see Lemma 3.8(ii) and Remark 2.3, it suffices to prove the claim for ν ∈ Sd−1 ∩ Qd. For each
such vector we can find ν1, . . . , νd−1 ∈ Sd−1 ∩ Qd such that the set {ν1, . . . , νd−1, ν} forms an
orthonormal basis of Rd. Then, there exists λ ∈ N such that

λνn = zn for some zn ∈ Zd for all n ∈ {1, . . . , d} . (47)

For t ∈ (−1/2, 1/2) we define an auxiliary function ϕt : Rd → [0,+∞) and for ν ∈ Sd−1 given by

ϕt(ν) := lim
δ→0

lim
S→+∞

1

Sd−1
inf
{
E(u,QνS) : u : L → {0, 1}, u(i) = χ{〈ν,i〉>tS} on L \Qν(1−δ)S

}
.

(48)

Note that ϕ0(ν) = ϕ(ν).
Step 1.(ϕt ≥ ψ for all t) We show that for all t ∈ (−1/2, 1/2) we have

ϕt(ν) ≥ ψ(ν) . (49)

To this end let {ν1, . . . , νd−1, νd = ν} ⊂ Sd−1 ∩ Qd be an orthonormal basis as previously
described and let 1� S1 � S2. We assume that S1 = λT , where λ satisfies (47) and T is given
by (H1). Note that if λ satisfies (47), also kλ satisfies (47) and therefore we can find a sequence
Sk = kλT such that Sk → +∞ of the desired form. The existence of the limit in definition
(7) of ϕ permits us to assume that S is of the specific form. Let t ∈ (−1/2, 1/2), δ > 0 and
u1 : L → {0, 1} be such that u1(i) = χ{〈ν,i〉>tS} on L \Qν(1−δ)S1

and

E(u1, Q
ν
S1

) ≤ inf
{
E(u,QνS1

) : u : L → {0, 1}, u(i) = χ{〈ν,i〉>tS} on L \Qν(1−δ)S1

}
+ 1 . (50)

Due to the assumption on S1 and Lemma 3.1(vi), we have

E(u1(· − z), QνS1
(z)) = E(u1, Q

ν
S1

) for all z = λT

d∑
n=1

knνn, k ∈ L . (51)

Set (omitting the dependence on S1 and S2)

Z :=

{
z = S1

d∑
n=1

knνn : k ∈ Zd, QνS1
(z) ⊂ Qν(1−δ)S2

}
.

We define u2 : L → R by

u2(i) =

{
S1

(
u1(i− z)− 1

2

)
+ 〈ν, z〉 if z ∈ Z, i ∈ QνS1

(z) ,

〈ν, i〉 otherwise.
(52)

We claim that

|u2(i)− u2(j)| ≤ C(S1 + |i− j|) . (53)

We postpone the proof of (53) to the end of Step 1. By the definition of u2, it is clear that

inf
{
E(u,QνS2

) : u : L → R, u(i) = 〈ν, i〉 on L \Qν(1−δ)S2

}
≤ E(u2, Q

ν
S2

) . (54)

It remains to show that

E(u2, Q
ν
S2

) ≤ Sd2
Sd−1

1

E(u1, Q
ν
S1

) + CδSd2 + CS2
1S

d−1
2 +

Sd2
δ
CδS1

, (55)
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where CδS1
→ 0 as S1 → +∞. In fact, once we have shown (55), Step 1 follows from (54) and

(50) by dividing by Sd2 and letting first S2 → +∞, then S1 → +∞, and finally δ → 0. We are
left to prove (55). In order to prove (55) we introduce

r1 = r1(S1, S2, δ) = (1− δ)S2 − 3
√
dS1 ,

r2 = r2(S1, S2, δ) = (1− δ)S2 + 3
√
dS1 .

(56)

We use Lemma 3.1(iv) to obtain

E(u2, Q
ν
S2

) = E(u2, Q
ν
r1) + E(u2, Q

ν
r2 \Q

ν
r1) + E(u2, Q

ν
S2
\Qνr2) (57)

and we estimate the three terms on the right hand side separately. We claim that

E(u2, Q
ν
r1) ≤ Sd2

Sd−1
1

E(u1, Q
ν
S1

) +
Sd2
δ
CδS1

, (58)

where CδS1
→ 0 as S1 → +∞. Indeed, if i ∈ QνS1

(z) such that z = S1

∑d
n=1 knνn ∈ Z and

QνS1
(z) ∩Qνr1 6= ∅ then

u2(i) = S1

(
u1(i− z)− 1

2

)
+ 〈ν, z〉 for all i ∈ Qν(1+δ)S1

(z) . (59)

Due to (52), this is clearly true for i ∈ QνS1
(z), while if i ∈ Qν(1+δ)S1

(z) \ QνS1
(z) there exists

z′ = S1

∑d
n=1 knνn ∈ Z, k ∈ Zd such that ||k − k′||∞ = 1, QνS1

(z′) ⊂ Qνr1 , and i ∈ QνS1
(z′) \

Qν(1−δ)S1
(z′). Then, due to the boundary conditions of u1, we have

u2(i) = S1

(
u1(i− z′)− 1

2

)
+ 〈ν, z′〉 = S1

(
χ{〈ν,i−z′〉>tS} −

1

2

)
+ 〈ν, z〉+ 〈ν, z′ − z〉

= S1

(
χ{〈ν,i−z〉>tS} −

1

2

)
+ 〈ν, z〉 = S1

(
u1(i− z)− 1

2

)
+ 〈ν, z〉 .

Here, the third equality follows, from the fact that ||k − k′||∞ = 1 and therefore 〈ν, z′ − z〉 ∈
{−S1, 0, S1}. To obtain the previous equality, we distinguish the following two cases:

〈ν, z′ − z〉 = ±S1 =⇒ χ{〈ν,i−z′〉>tS} − χ{〈ν,i−z〉>tS} = ∓1 and

〈ν, z′ − z〉 = 0 =⇒ χ{〈ν,i−z′〉>tS} = χ{〈ν,i−z〉>tS} .

Now (59) together with (51) implies for z ∈ Z such that QνS1
(z) ∩Qνr1 6= ∅

E(u2, Q
ν
S1

(z)) =
∑

i∈L∩QνS1 (z)

∑
j∈L∩Qν

(1+δ)S1
(z)

ci,j(u2(i)− u2(j))+

+
∑

i∈L∩QνS1 (z)

∑
j∈L\Qν

(1+δ)S1
(z)

ci,j(u2(i)− u2(j))+ (60)

≤ S1E(u1, Q
ν
S1

(z)) +
∑

i∈L∩QνS1 (z)

∑
j∈L\Qν

(1+δ)S1
(z)

ci,j |u2(i)− u2(j)|

= S1E(u1, Q
ν
S1

) +
∑

i∈L∩QνS1 (z)

∑
j∈L\Qν

(1+δ)S1
(z)

ci,j |u2(i)− u2(j)| .

We estimate the second term on the right hand side of (60) to obtain (58). Note for i ∈ QνS1
(z),

j ∈ L \Qν(1+δ)S1
we have |i− j| ≥ δS1/2 and thus, due to (53), we obtain

|u2(i)− u2(j)| ≤ C

δ
|i− j| for all i ∈ QνS1

(z), j ∈ L \Qν(1+δ)S1
(z) (61)
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for some C > 0 independent of S1, S2 and δ. Now, we get∑
i∈QνS1 (z)

∑
j∈L\Qν

(1+δ)S1
(z)

ci,j |u2(i)− u2(j)| ≤ C

δ

∑
i∈L∩QνS1 (z)

∑
j∈L

|i−j|≥δS1/2

ci,j |i− j|

≤ #(L ∩QνS1
(z)) max

i∈L

∑
j∈L

|i−j|≥δS1/2

ci,j |i− j| ≤
CδS1

δ
Sd1 ,

where CδS1
→ 0 as S1 → +∞. Hence, noting that for z, z′ ∈ Z such that z 6= z′, we have

QνS1
(z) ∩QνS1

(z′) = ∅ and therefore #Z ≤ Sd2/Sd1 , we get

E(u2, Q
ν
r1) ≤

∑
z∈Z

QνS1
(z)∩Qνr1 6=∅

E(u2, Q
ν
S1

(z)) ≤ #Z(S1E(u1, Q
ν
S1

) +
CδS1

δ
Sd1 )

≤ Sd2
Sd−1

1

E(u1, Q
ν
S1

) +
CδS1

δ
Sd2 ,

where CδS1
→ 0 as S1 → +∞. This is (58). Next, we prove

E(u2, Q
ν
r2 \Q

ν
r1) ≤ CS2

1S
d−1
2 . (62)

We use (53) to obtain

E(u2, Q
ν
r2 \Q

ν
r1) =

∑
i∈Qνr2\Q

ν
r1

∑
j∈L

ci,j(u2(i)− u2(j))+ ≤ CS1#(L ∩Qνr2 \Q
ν
r1) max

i∈L

∑
j∈L

ci,j |i− j| ,

where we used that, owing to (L1), we have |i− j| ≥ c if i 6= j. Using Lemma 3.1(v), (H2), and

(56) we have that #(L ∩ Qνr2 \ Q
ν
r1) ≤ CS1S

d−1
2 we obtain (62). As for the third term on the

right hand side we prove

E(u2, Q
ν
S2
\Qνr2) ≤ CδSd2 +

CδS1

δ
Sd2 , (63)

where CδS1
→ 0 as S1 → +∞. To this end we split the summation over j to obtain

E(u2, Q
ν
S2
\Qνr2) =

∑
i∈L∩QνS2\Q

ν
r2

∑
j∈L

|i−j|≤S1δ/2

ci,j(u2(i)− u2(j))+

+
∑

i∈L∩QνS2\Q
ν
r2

∑
j∈L

|i−j|>S1δ/2

ci,j(u2(i)− u2(j))+ .
(64)

Let us note first that QνS2
\Qνr2 ⊂ Q

ν
S2
\Qν(1−2δ)S2

and therefore, due to 3.1(v), we have

#(L ∩QνS2
\Qνr2) ≤ CδSd2 . (65)

Now, for the first term on the right hand side of (64), employing (52), we note that u2(i) = 〈ν, i〉
and u2(j) = 〈ν, j〉. Hence,∑
i∈L∩QνS2\Q

ν
r2

∑
j∈L

|i−j|≤S1δ/2

ci,j |u2(i)− u2(j)| ≤ #(L ∩QνS2
\Qνr2) max

i∈L

∑
j∈L

ci,j |i− j| ≤ CδSd2 ,
(66)
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where we used (H2) and (65). For the second term on the right hand side of (64), we use (53)
and (65) to obtain∑
i∈L∩QνS2\Q

ν
r2

∑
j∈L

|i−j|>S1δ/2

ci,j |u2(i)− u2(j)| ≤ C

δ

∑
i∈L∩QνS2\Q

ν
r2

∑
j∈L

|i−j|>S1δ/2

ci,j |i− j|

≤ C

δ
#(L ∩QνS2

\Qνr2) max
i∈L

∑
j∈L

|i−j|>S1δ/2

ci,j |i− j|

≤ CSd2CδS1
,

(67)

where CδS1
→ 0 as S1 → +∞. Inequality (62) follows from (64), (66), and (67). Now (57),

(58), (62), (63) give (55). To conclude Step 1, it remains to prove (53). There are four cases to
consider:

(a) i = i0 + z, j = j0 + z i0 ∈ QνS1
, j0 ∈ QνS1

, z ∈ Z;
(b) i = i0 + z, j = j0 + z′ i0 ∈ QνS1

(z), j0 ∈ QνS1
(z′), z, z′ ∈ Z;

(c) i = i0 + z, i0 ∈ QνS1
(z), z ∈ Z j0 /∈ QνS1

(z′) for any z′ ∈ Z;
(d) i /∈ QνS1

(z) for any z ∈ Z and j /∈ QνS1
(z′) for any z′ ∈ Z.

Case (a): This case follows since ‖u1‖L∞(QνS1
) ≤ 1.

Case (b): Note that in the case where i = i0 + z, j = j0 + z′ for some i0, j0 ∈ QνS1
and for some

z, z′ ∈ Z, we have

|u2(i)− u2(j)| ≤ |〈ν, z − z′〉|+ CS1 ≤ |〈ν, z + i0 − z′ − j0〉|+ |i0 − j0|+ CS1 ≤ |i− j|+ CS1

and therefore (53) holds true.
Case (c): Note that in the case where i = i0 + z, i0 ∈ QνS1

,z ∈ Z and j /∈ QνS1
(z) for any z ∈ Z,

we have

|u2(i)− u2(j)| ≤ CS1 + |〈ν, z − j〉| ≤ CS1 + |〈ν, i− j〉|+ |i0| ≤ CS1 + |i− j| .

Also here (53) holds true.
Case (d): In this case u2(i) = 〈ν, i〉 and u2(j) = 〈ν, j〉 and therefore (53) holds true. This shows
(53) in general.
Step 2.(ϕt = ψ for almost all t) Given δ > 0, t ∈ (−1/2, 1/2) and S � 1 and set

ϕ(t, S, δ) :=
1

Sd−1
inf
{
E(u,QνS) : u : L → {0, 1}, u(i) = χ{〈ν,i〉>tS} on L \Qν(1−δ)S

}
. (68)

Then, for ε > 0 we find u1 : L → R be such that u1(i) = 〈ν, i〉 for i ∈ L \Qν(1−δ)S and

E(u1, Q
ν
S) ≤ Sd(ψ(ν) + ε) . (69)

Due to Lemma 3.2, there holds

E(u1, Q
ν
S) =

∫ +∞

−∞
E(χ{u1>t}, Q

ν
S) dt ≥

∫ S(1−δ)/2

−S(1−δ)/2
E(χ{u1>t}, Q

ν
S) dt

= S

∫ (1−δ)/2

−(1−δ)/2
E(χ{u1>tS}, Q

ν
S) dt .

(70)

Note that for all t ∈ (−(1 − δ)/2, (1 − δ)/2), due to u1(i) = 〈ν, i〉 we have that χ{u1>tS}(i) =
χ{〈ν,i〉>tS} for i ∈ L \QνS and thus

E(χ{u1>tS}, Q
ν
S) ≥ Sd−1ϕ(t, S, δ) . (71)
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Therefore,

ε+ ψ(ν) ≥
∫ (1−δ)/2

−(1−δ)/2
ϕ(t, S, δ) dt

and then thanks to Fatou’s lemma we deduce for δ0 > 0

ε+ ψ(ν) ≥
∫ (1−δ0)/2

−(1−δ0)/2

ϕt(ν) dt .

After letting δ0 → 0 and ε→ 0, using Step 1, we obtain∫ 1/2

−1/2

ϕt(ν) dt ≤ ψ(ν) ≤ ϕt(ν) for all t ∈ (−1/2, 1/2) .

Hence, ϕt(ν) = ψ(ν) for almost all t ∈ (−1/2, 1/2). This concludes Step 2.
Step 3.(t 7→ ϕt(ν) is constant) To this end, let t1, t2 ∈ (−1/2, 1/2), t2 < t1, let ε > 0, δ > 0,
S � 1, and let u1 : L → {0, 1} be such that u1(i) = χ{〈ν,i〉>t1S} on L \QνS and

E(u1, Q
ν
S) ≤ Sd−1 (ϕt1(ν) + ε) . (72)

We set usν(i) = χ{〈ν,i〉>s} and define u2 : L → {0, 1} by

u2(i) = u1(i) + (ut2Sν (i)− ut1Sν (i))χ(Qν
(1−δ)S)c(i) . (73)

It is obvious that u2(i) = ut2Sν (i) on L \Qν(1−δ)S and therefore

E(u2, Q
ν
S) ≥ Sd−1ϕ(t2, S, δ) . (74)

Next, we show that

E(u2, Q
ν
S) ≤ E(u1, Q

ν
S) + C(δ + |t1 − t2|)Sd−1 +

CδS
δ
Sd−1 , (75)

where CδS → 0 as S → +∞. Now the claim follows by (72), (74), and (75) by dividing with
Sd−1 and letting first S → +∞, then δ → 0, and eventually ε → 0. It remains to prove (75).
Here, we exploit Lemma 3.1(ii) and (73) to deduce

E(u2, Q
ν
S) ≤ E(u1, Q

ν
S) + E((ut2Sν − ut1Sν )χ(Qν

(1−δ)S)c , Q
ν
S) . (76)

We call v = (ut2Sν − ut1Sν )χ(Qν
(1−δ)S)c and note that it suffices to prove

E(v,QνS) ≤ C(δ + |t1 − t2|)Sd−1 +
CδS
δ
Sd−1 . (77)

We observe that

{v = −1} = L ∩BSt1,t2 , where BSt1,t2 := {x ∈ Rd \Qν(1−δ)S : t1S ≤ 〈ν, x〉 < t2S} (78)

and {v = 0} = L \BSt1,t2 . Therefore

E(v,QνS) =
∑

i∈{v=0}∩QνS

∑
j∈{v=−1}

ci,j ≤
∑

i∈L∩QνS

∑
j∈L

|i−j|>δS

ci,j +
∑

i∈{v=0}∩QνS

∑
j∈{v=−1}
|i−j|≤δS

ci,j . (79)

As for the first term on the right hand side of (79), we point out that, due to Lemma 3.1(v), we
have ∑

i∈L∩QνS

∑
j∈L

|i−j|>δS

ci,j ≤
1

δS
#(L ∩QνS) max

i∈L

∑
j∈L

|i−j|>δS

ci,j |i− j| ≤
CδS
δ
Sd−1 , (80)
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where CδS → 0 as S → +∞. Now, let us consider j ∈ L such that |i− j| < δS. For i0, j0 ∈ QT
and ξ ∈ Zd set

Aξi0,j0 :=
{

(z, z′) ∈ TZd × TZd : z′ − z = ξ, i = i0 + z ∈ {v = 0} ∩QνS ,
j = j0 + z′ ∈ {v = −1}

}
.

(81)

We observe that Aξi0,j0 ⊂ {(z, z + ξ) : z ∈ TZd,dist(z, ∂BSt1,t2 ∩Q
ν
S) ≤

√
dT + |ξ|} and thus for

|ξ| ≤ CδS

#Aξi0,j0 ≤ C(δ + |t1 − t2|)(|ξ|+ T )Sd−1 .

Therefore, there holds∑
i∈{v=0}∩QνS

∑
j∈{v=−1}
|i−j|≤δS

ci,j ≤
∑

i0,j0∈QT

∑
ξ∈TZd
|ξ|≤δS

∑
(z,z′)∈Aξi0,j0

ci0+z,j0+z′

≤ C(δ + |t1 − t2|)Sd−1
∑

i0,j0∈QT

∑
ξ∈TZd
|ξ|≤δS1

ci0,j0+ξ(|ξ|+ T ) (82)

≤ C(δ + |t1 − t2|)Sd−1 max
i∈L∩QT

∑
j∈L

ci,j |i− j| ≤ C(δ + |t1 − t2|)Sd−1 .

Here we used that |ξ| ≤ |i− j|+ |i0− j0| ≤ |i− j|+
√
dT and the fact that |i− j| ≥ c = T · (c/T )

for all i 6= j, where c/T > 0 is a fixed constant. This together with (79) and (80) implies (77)
and therefore ϕt2(ν) ≤ ϕt1(ν) +C|t1− t2| for t2 < t1. Due to Step 2, for any t ∈ (−1/2, 1/2) we
can find tn → t such that ϕtn(ν) = ψ(ν) and ϕt(ν) ≤ ϕtn(ν) + |t− tn| = ψ(ν) + |t− tn|. Letting
tn → t we obtain ϕt(ν) ≤ ψ(ν). This together with Step 1 shows ϕt(ν) = ψ(ν).
Due to Step 3 we have that ϕ(ν) = ϕ0(ν) = ψ(ν). This concludes the proof. �

In the next Lemma we show that, assuming affine boundary conditions, the calculation of
the asymptotic cell formula with respect to the coordinate cube and the calculation of the
asymptotic cell formula with respect to the rotated cube are equivalent.

Lemma 3.12. Let ν ∈ Rd. Then: ψ(ν) = φ(ν).

Proof. After reducing to rational directions, we define a sequence of cell problems defined on
cubes QνλT and exploit Lemma 3.6 to show that it suffices to compare the two sequences of cell
problems with periodic boundary conditions.

Since both ψ and φ are positively homogeneous functions of degree one (cf. (33) and Lemma
3.9(ii)) it suffices to consider the case where ν ∈ Sd−1. Thanks to Lemma 3.8(ii) and Lemma
3.9(iii) both functions are continuous. Thus it suffices to prove the claim for ν ∈ Sd−1 ∩Qd. For
each such vector we can find {ν1, . . . , νd−1} ∈ Sd−1 ∩Qd such that the set {ν1, . . . , νd−1, νd = ν}
forms an orthonormal basis of Rd. For such an orthonormal basis, it is clear that there exists
λ ∈ N such that

λνn = zn for some zn ∈ Zd for all n ∈ {1, . . . , d} . (83)
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Let {ν1, . . . , νd−1, νd = ν} ⊂ Sd−1 ∩ Qd be the orthonormal basis described previously. For
ν ∈ Sd−1 ∩Qd fixed, we set

ψper(ν) := lim
k→∞

1

(λkT )d
inf{E(u,QνλkT ) : u : L → R, (84)

u(·+ λkTνn)− 〈ν, ·+ λkTνn〉 = u(·)− 〈ν, ·〉 for all n = 1, . . . , d}

Step 1.(ψper = ψ) We claim that

ψper(ν) = ψ(ν) . (85)

This follows exactly as the proof of Lemma 3.6 by replacing the coordinate cubes with the cubes
QνλkT .
Step 2.(ψper = φper) Due to Step 1 and Lemma 3.6 it suffices to show that

ψper(ν) = φper(ν) . (86)

Step 2.1.(Proof of ’≥’) To this end, let ε > 0, k ∈ N be big enough, and uk : L → R be such
that uk(·+ λkTνn)− 〈ν, ·+ λkTνn〉 = uk(·)− 〈ν, ·〉 for all n = 1, . . . , d and

E(uk, Q
ν
λkT ) ≤ (λkT )d(ψper(ν) + ε) . (87)

Thanks to (83) and the fact that {ν1, . . . , νd} is a basis, we have that uk ∈ Aper(QkmT ;R) for
some m ∈ N depending only on {ν1, . . . , νd} and λ. Fix now M ∈ N such that M � m and let

Z :=

{
z = λkT

d∑
n=1

µnνn : µ ∈ Zd, QνλkT (z) ∩QMkT 6= ∅

}
.

Since, uk ∈ Aper(QkmT ;R) we have that uk ∈ Aper(QkMT ;R) and thus

inf {E(u,QkmT ) : u : L → R, u(·)− 〈ν, ·〉 ∈ Aper(QkMT ;R)} ≤ E(uk, QkMT ) . (88)

Due to the periodicity of uk, the assumption on λ, and Lemma 3.1(vi), we have that

E(uk, Q
ν
λkT (z)) = E(uk(· − z), QνλkT (z)) = E(uk, Q

ν
λkT ) for all z = λkT

d∑
n=1

µnνn, µ ∈ Zd .

(89)

Note that for z ∈ Z we have QνλkT (z) ⊂ Q(M+
√
dλ)kT and thus #Z ≤ (Md + CMd−1λkT )/λd.

Therefore,

E(uk, QkMT ) ≤
∑
z∈Z

E(uk, Q
ν
λkT (z)) ≤ #ZE(uk, Q

ν
λkT ) ≤ Md + CMd−1λkT

λd
E(uk, Q

ν
λkT ) .

(90)

Dividing by (kMT )d, letting first M tend to +∞, then k to +∞, and lastly ε→ 0, and noting
(87) as well as (88), we obtain the conclusion of Step 2.1.
Step 2.2.(Proof of ’≤’) The reverse inequality follows as in Step 2.1 by noting that if u ∈
Aper(QkT ;R) for some k ∈ N, then, due to (83), we have that u(· − λmTνn)− 〈ν, · − λmTνn〉 =
u(·)−〈ν, ·〉 for some m ∈ N and all n = 1, . . . , d. This allows us to perform the same construction
as in Step 2.1. This concludes the proof. �

Proof of Proposition 2.6. Our goal is to prove

ϕ(ν) =
1

T d
inf {E(u,QT ) : u : L → R, u(·)− 〈ν, ·〉 ∈ Aper(QT ;R)} (91)
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for all ν ∈ Rd. Due to Lemma 3.12, Lemma 3.11, and Lemma 3.6, we have

ϕ(ν) = ψ(ν) = φ(ν) = φper(ν) . (92)

Additionally, Lemma 3.4 ensures that

φper(ν) =
1

T d
inf {E(u,QT ) : u : L → R, u(·)− 〈ν, ·〉 ∈ Aper(QT ;R)} .

This shows (91) and concludes the proof. �

4. Crystallinity of the homogenized surface energy density

This section is devoted to the proof of Theorem 2.7. We assume throughout this section that
assumptions (L1), (L2) and (H1), (H3) are satisfied.

We define the set of edges E by

E = {(i, j) ∈ (L ∩QT )× L : ci,j 6= 0} and N = #E . (93)

Proof of Theorem 2.7. We divide the proof into three steps. First, we derive a dual representa-
tion of ϕ. Then, using this representation, we show that ϕ is crystalline.
Step 1.(Dual representation) We define

C =
{
αi,j ∈ [0, ci,j ] : αi+Tz,j+Tz = αi,j for all z ∈ L,∑

j∈L
(αj,i − αi,j) = 0 for all i ∈ QT ∩ L

}
.

(94)

Our goal is to prove

ϕ(ν) =
1

T d
sup

(αi,j)i,j∈C

〈
ν,

∑
i∈L∩QT

∑
j∈L

αi,j(i− j)

〉
. (95)

Let ν ∈ Rd. Due to Proposition, 2.6 there holds

ϕ(ν) = φper(ν) =
1

T d
inf {E(u,QT ) : u(·)− 〈ν, ·〉 ∈ Aper(QT ;R)}

=
1

T d
inf {E(u+ 〈ν, ·〉, QT ) : u ∈ Aper(QT ;R)}

=
1

T d
inf

u∈Aper(QT ;R)

∑
i∈QT

∑
j∈L

ci,j(u(i)− u(j) + 〈ν, i− j〉)+ .

Note that, we can write

φper(ν) =
1

T d
inf

u∈Aper(QT ;R)
sup

0≤αi,j≤ci,j
αi+Tz,j+Tz=αi,j

∑
i∈L∩QT

∑
j∈L

αi,j(u(i)− u(j) + 〈ν, i− j〉) . (96)

To see this, we observe that for all u ∈ Aper(QT ;R) and all 0 ≤ αi,j ≤ ci,j such that αi+Tz,j+Tz =
αi,j for all z ∈ Zd we have

αi,j(u(i)− u(j) + 〈ν, i− j〉) ≤ ci,j(u(i)− u(j) + 〈ν, i− j〉)+

with equality for

αi,j =

{
ci,j if (u(i)− u(j) + 〈ν, i− j〉) ≥ 0,

0 otherwise.
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Given 0 ≤ αi,j ≤ ci,j such that αi+Tz,j+Tz = αi,j for all z ∈ Zd, and u : L → R T -periodic, we
have∑

i∈L∩QT

∑
j∈L

αi,j(u(i)− u(j)) =
∑

i∈L∩QT

∑
j∈L

αi,ju(i)−
∑

i∈L∩QT

∑
j∈L

αi,ju(j)

=
∑

i∈L∩QT

∑
j∈L

αi,ju(i)−
∑

j∈L∩QT

∑
z∈Zd

∑
i∈L∩QT

αi,j+Tzu(j + Tz)

=
∑

i∈L∩QT

∑
j∈L

αi,ju(i)−
∑

j∈L∩QT

∑
z∈Zd

∑
i∈L∩QT

αi−Tz,ju(j)

=
∑

i∈L∩QT

∑
j∈L

αi,ju(i)−
∑

j∈L∩QT

∑
i∈L

αi,ju(j)

=
∑

i∈L∩QT

∑
j∈L

(αi,j − αj,i)u(i) .

Note that, since in all steps the sum over i and, due to (H3), the sum over j runs over a finite
index set, the order of summation can be changed without changing the value of the various
sums. This implies that, given 0 ≤ αi,j ≤ ci,j such that αi+Tz,j+Tz = αi,j for all z ∈ L, we have

inf
u∈Aper(QT ;R)

∑
i∈L∩QT

∑
j∈L

αi,j(u(i)− u(j)) =

0 if
∑
j∈L

(αi,j − αj,i) = 0 for all i ∈ QT ∩ L ,

−∞ otherwise.

(97)

Hence, using (92), (94), (96), and (97), we obtain

ϕ(ν) ≥ 1

T d
sup

(αi,j)i,j∈C

〈
ν,

∑
i∈L∩QT

∑
j∈L

αi,j(i− j)

〉
. (98)

As for the other inequality in finite dimension, that is when cRi,j is such that cRi,j = ci,j if

|i − j| < R and cRi,j = 0 if |i − j| ≥ R, the equality is true due to [43, Corollary 31.2.1]. More
precisely, we obtain:

ϕR(ν) =
1

T d
inf

u∈Aper(QT ;R)

∑
i∈QT

∑
j∈L

cRi,j(u(i)− u(j) + 〈ν, i− j〉)+

=
1

T d
sup

(αi,j)i,j∈CR

〈
ν,

∑
i∈L∩QT

∑
j∈L

αi,j(i− j)

〉
, (99)

where CR = C ∩
∏

(i,j)[0, c
R
i,j ]. Note that CR ⊂ C and thus by (98) and (99), we have

ϕR(ν) ≤ 1

T d
sup

(αi,j)i,j∈C

〈
ν,

∑
i∈L∩QT

∑
j∈L

αi,j(i− j)

〉
≤ ϕ(ν) .

In addition, for all u ∈ Aper(QT ;R) we have

lim
R→+∞

∑
i∈QT

∑
j∈L

cRi,j(u(i)− u(j) + 〈ν, i− j〉)+ =
∑
i∈QT

∑
j∈L

ci,j(u(i)− u(j) + 〈ν, i− j〉)+ ,

monotonically in R. Hence, due to Γ-convergence of monotone sequences we have

ϕ(ν) = lim
R→+∞

ϕR(ν) ≤ 1

T d
sup

(αi,j)i,j∈C

〈
ν,

∑
i∈L∩QT

∑
j∈L

αi,j(i− j)

〉
.
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This shows (95).
Step 2.(Crystallinity) By Remark 2.5, we have

ϕ(ν) = sup
ζ∈Wϕ

〈ν, ζ〉 .

So that, by (95)

Wϕ =

 1

T d

∑
i∈L∩QT

∑
j∈L

αi,j(i− j) : (αi,j)i,j ∈ C

 , (100)

with C given in (94). Recall N and E defined in (93). Define L : RN → Rd by

L (αi,j)(i,j)∈E =
1

T d

∑
(i,j)∈E

αi,j(i− j) . (101)

Hence, we observe that

W :=

 1

T d

∑
i∈L∩QT

∑
j∈L

αi,j(i− j) : (αi,j)i,j ∈ C

 = L (C) ,

where C is a convex closed set as the intersection of two convex and closed sets. Thus, as the
image of the convex and closed set C through the linear map L, W is a closed and convex set.
Then (100) follows by fenchel duality, since

ϕ(ν) = I∗W (ν) = I∗Wϕ
(ν) ,

where IA : Rd → [0,+∞] denotes the support function denotes the support function of the set
A given by

IA(ζ) =

{
0 if ζ ∈ A ,
+∞ otherwise.

Now, since both Wϕ and W are closed and convex, we have

IWϕ
(ζ) = I∗∗Wϕ

(ζ) = ϕ∗(ζ) = I∗∗W = IW .

This shows (100). Furthermore, we find

Wϕ = L

V ∩ ∏
(i,j)∈E

[0, ci,j ]

 , (102)

where V ⊂ RN is a linear subspace of co-dimension k := #(QT ∩ L)− 1 given by

V =

αi,j ∈ RN :
∑
j∈L

(αi,j − αj,i) = 0 for all i ∈ QT ∩ L

 . (103)

Hence, due to (102), Wϕ is the image of the linear map L, given in (101), of a N -dimensional
polytope

∏
(i,j)∈E [0, ci,j ] intersected with the linear subspace V , given in (103). The intersection

of a cube with a linear subspace is a polytope, and thus also its image through a linear map.
This proves that ϕ is crystalline.
Step 3.(Estimate on the number of vertices) Our goal is to prove that

#extreme(Wϕ) ≤ 3N , (104)
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where we recall N defined in (93). Let us note that, due to the Krein-Milman Theorem (cf. [20],
Theorem 1.13) and (102), it is easy to see that there holds

#extreme(Wϕ) = #extreme

L
V ∩ ∏

(i,j)∈E

[0, ci,j ]

 ≤ #extreme

V ∩ ∏
(i,j)∈E

[0, ci,j ]

 .

In order to show (104), it remains to show

#extreme

V ∩ ∏
(i,j)∈E

[0, ci,j ]

 ≤ 3N . (105)

In order to obtain this estimate we note that the extreme points of V ∩
∏

(i,j)∈E [0, ci,j ] lie on the

k-dimensional (here k is the co-dimension of the linear subspace V ) facets of
∏

(i,j)∈E [0, ci,j ].

Furthermore, we can find an injective relation between extreme points and these facets. In fact,
if the matrix determining the intersection of the facet with V is full rank, then the point of
intersection is unique. If that is not the case, then the solution set is itself a subspace and
one can add one additional condition to obtain the extreme point. This implies that here the
extreme point is shared by more k-dimensional facets on a lower dimensional facet. Note that
there are at most

(
N
k

)
2N−k such facets and by the binomial formula we have that(

N

k

)
2N−k ≤

N∑
j=0

(
N

j

)
2N−j = 3N .

This concludes Step 3. �

5. Differentiability of the effective surface tension

In this Section, we prove Proposition 2.9 which states that ϕ is differentiable in totally
irrational directions. It is a corollary of the two lemmas which we state and prove below.

Lemma 5.1. Let ν ∈ Sd−1, let u be a minimizer in (9) and assume that for any s ∈ R, the set
{u = s} is finite. Then ϕ is differentiable in ν.

Proof. The expression (95) shows that ϕ is a convex, one-homogeneous function with subgradient
at ν given by

∂ϕ(ν) =

 1

T d

∑
i∈L∩QT

∑
j∈L

αi,j(i− j) : α = (αi,j)i,j ∈ C maximizer in (95)


It is differentiable at ν if and only if the above set has exactly one element.

Let α, α′ ∈ C be two maximizers in (95). Classical optimality conditions guarantee that for
any i, j, if u(i) 6= u(j), then:

αi,j = α′i,j =

{
ci,j if u(i)− u(j) > 0

0 if u(i)− u(j) < 0.
(106)

Let us denote by p, p′ ∈ ∂ϕ(ν) the subgradients given by the dual variables, respectively, α and
α′, we claim that p = p′. One has:

p− p′ =
1

T d

∑
i∈L∩QT

∑
j:u(j)=u(i)

(αi,j − α′i,j)(i− j). (107)
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Let s ∈ R, i0 ∈ L ∩ QT with u(i0) = s and such that the finite set Js := {j : u(j) = s} has
more than one element. For any i, j, let βi,j := αi,j − α′i,j . Then∑

i∈Js

∑
j∈Js

βi,j(i− j) =
∑
z∈Zd

∑
i∈Js∩(Tz+QT )

∑
j∈Js

βi,j(i− j)

=
∑
z∈Zd

∑
i∈(Js−Tz)∩QT

∑
j∈Js−Tz

βi,j(i− j)

where for the last line we have substituted (i, j) with (i − Tz, j − Tz) and used that β is QT -
periodic. In addition, we have that u(i) = u(j) if and only if u(i− Tz) = u(j − Tz) so that this
can be rewritten: ∑

i∈Js

∑
j∈Js

βi,j(i− j) =
∑
z∈Zd

∑
i∈(Js−Tz)∩QT

∑
j:u(j)=u(i)

βi,j(i− j)

By assumption, the sets (Js − Tz) ∩QT , z ∈ Zd are all disjoint. Otherwise, there would be i, z
with s = u(i − Tz) = u(i) + T 〈ν, z〉 = s, yielding in particular that 〈ν, z〉 = 0, and one would
deduce that i − kTz ∈ Js for all k ∈ Z, a contradiction since we assumed Js was finite. As a
consequence, showing that (107) vanishes is equivalent to showing that∑

i∈Js

∑
j∈Js

βi,j(i− j) = 0 (108)

for any s ∈ R (such that Js is not empty and contains more than one point). Obviously, the
expression in (108) is also ∑

i∈Js

∑
j∈Js

(βi,j − βj,i)i

Thanks to the definition (94) of C, one has for any i that
∑
j βi,j − βj,i = 0, so that:∑

i∈Js

∑
j∈Js

(βi,j − βj,i)i =
∑
i∈Js

∑
j 6∈Js

(βj,i − βi,j)i = 0

thanks to (106). Hence, (108) holds and we deduce p = p′, which shows the lemma. �

Lemma 5.2. Let ν ∈ Sd−1 be totally irrational and let u be a minimizer in (9). Then for any
s ∈ R, the set {u = s} is finite.

Proof. Recalling the notation in the previous proof, let s ∈ R and consider the set Js := {u = s}.
For z ∈ Zd, let Jzs = Js ∩ (QT + Tz) − Tz ⊂ QT . For i ∈ Jzs , u(i) = s + T 〈z, ν〉. Since ν is

totally irrational, we deduce that Jzs ∩ Jz
′

s = ∅ for any z 6= z′, showing that all sets Jzs but a
finite number must be empty. Hence Js is finite. �

6. Numerical illustration

6.1. A simplified framework. In this section, we address, as an illustrative experiment, the
following issue. We consider a basic 2D cartesian graph {(i, j) : 0 ≤ i ≤M − 1, 0 ≤ j ≤ N − 1},
representing for instance the pixels of an image, and we want to approximate on this discrete
grid the two-dimensional total variation

∫
Ω
|Du|, u ∈ BV (Ω). Here it is assumed that Ω ⊂ R2

is a rectangle and that {0, . . . ,M − 1}× {0, . . . , N − 1} is a discretization of Ω at a length scale
∼ 1/N ∼ 1/M .
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There are of course many ways to do this, but we propose here to consider a family of discrete
“graph” total variations, defined for a family (ui,j)i,j ∈ RM×N by:

J(u) =
∑
i,j

c+
i+ 1

2 ,j
(ui+1,j − ui,j)+ + c−

i+ 1
2 ,j

(ui,j − ui+1,j)
+

+ c+
i,j+ 1

2

(ui,j+1 − ui,j)+ + c−
i,j+ 1

2

(ui,j − ui,j+1)+

(109)

and which involves only nearest-neighbour interactions in horizontal and vertical directions.

We assume in addition that the weight c± are T -periodic for some T ∈ N, T > 0, that is,
C±a+kT,b+lT = c±a,b for any (k, l) ∈ Z2, (a, b) = (i + 1

2 , j) or (i, j + 1
2 ), as long as the points fall

inside the grid.

For T = 1, c±a,b ≡ 1, it is standard that (109) approximates, in the continuum limit, the

anisotropic total variation
∫

Ω
|∂1u| + |∂2u|, which, if used for instance as a regularizer for im-

age denoising or reconstruction, may produce undesired artefacts (although hardly visible on
standard applications, see Figure 8).

A standard way to mitigate this issue (besides, of course, resorting to numerical analysis
based on finite differences or elements in order to define more refined discretizations), is to add
to (109) diagonal interactions, with appropriate weights, in order to improve the isotropy of the
limit (see for instance [11]), with the drawback of complexifying the graph and the optimization.
We show here that a similar effect can be attained by homogenization. To illustrate this, let us
first consider the simplest situation, for T = 2.

α β

T = 2

Figure 3. The alternating 2-periodic coefficients yielding the smallest anisotropy

In that case, one can explicitly build coefficients c±a,b, taking two values α, β (see Figure 3),
which will yield the homogenized surface tension

ϕ(ν) = (
√

2− 1)

(
|ν1|+ |ν2|+

|ν1 + ν2|√
2

+
|ν1 − ν2|√

2

)
(110)

whose 1-level set (or Frank diagram) is shown in Figure 4. Observe that this is the same
anisotropy which would be obtained by using constant coefficients and adding interactions along
the edges ((i, j), (i+ 1, j + 1)) and ((i, j), (i+ 1, j − 1)).

In order to obtain (110), one needs to tune α, β so that a vertical edge and a diagonal edge,

in the most favorable position, have the same length (with a
√

2 factor for the diagonal, whose

intersection with the periodicity cell is of course longer). This is ensured if α+β = 4α/
√

2, that

is, β = (2
√

2− 1)α. We find that choosing{
α = 1

4
√

2
≈ 0.1768

β = (2
√

2− 1)α ≈ 0.3232
(111)
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ν1

ν2

−1 1

−1

1

Figure 4. The Frank diagram {ν : ϕ(ν) ≤ 1} given by (110)

yields (110), as an effective homogenized anisotropy.

For larger periodicity cells, it seems difficult to do a similar analysis, first of all, because one
should not expect the optimal minimizers, in most directions (if not all), to be given by straight
lines, but rather by periodic perturbations of straigth lines. We propose an optimization process
in order to compute the optimal weights c±a,b.

6.2. The optimization method. The effective surface tension is obtained by solving the cell
problem:

φ(ν) = min
u

{ ∑
(i,j)∈Y

c+
i+ 1

2 ,j
(ui+1,j − ui,j)+ + c−

i+ 1
2 ,j

(ui,j − ui+1,j)
+

+ c+
i,j+ 1

2

(ui,j+1 − ui,j)+ + c−
i,j+ 1

2

(ui,j − ui,j+1)+ :

ui,j − ν ·
(
i
j

)
Y -periodic

} (112)

where Y = Z2 ∩ ([0, T ) × [0, T )) is the periodicity cell. This is easily solved, for instance by a
saddle-point algorithm [26] which aims at finding a solution to:

φ(ν) = min
v Y -periodic

max
0≤w±• ≤1

∑
(i,j)∈Y

(w+
i+ 1

2 ,j
c+
i+ 1

2 ,j
− w−

i+ 1
2 ,j
c−
i+ 1

2 ,j
)(vi+1,j − vi,j + ν1)

+ (w−
i,j+ 1

2

c−
i,j+ 1

2

− w+
i,j+ 1

2

c+
i,j+ 1

2

)(vi,j+1 − vi,j + ν2),

where we have replaced the variable u with the periodic vector vi,j = ui,j − ν · (i, j)T . For
technical reasons, we need to “regularize” slightly this problem in order to make it differentiable
with respect to the coefficients c = (c±• ). This is done by introducing ε > 0 a (very) small
parameter and adding to the previous objective the penalization

−ε
2

∑
(i,j)∈Y

(w+
i+ 1

2 ,j
)2 + (w−

i+ 1
2 ,j

)2 + (w−
i,j+ 1

2

)2 + (w+
i,j+ 1

2

)2 +
ε

2

∑
(i,j)∈Y

v2
i,j

which makes the problem strongly convex/concave and the solutions w, v unique. We call
φε(ν)[c] the corresponding value. The advantage of this regularization is that one can easily
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show that c 7→ φε(ν)[c] is locally C1,1, with a gradient given by:

lim
t→0

φε(ν)[c + td]− φε(ν)[c]

t
=

∑
(i,j)∈Y

(w+
i+ 1

2 ,j
d+
i+ 1

2 ,j
− w−

i+ 1
2 ,j
d−
i+ 1

2 ,j
)(vi+1,j − vi,j + ν1)

+ (w−
i,j+ 1

2

d−
i,j+ 1

2

− w+
i,j+ 1

2

d+
i,j+ 1

2

)(vi,j+1 − vi,j + ν2)

where (w, v) solves the saddle-point problem which defines φε(ν)[c].

Then, to find coefficients which ensure that φ is as “isotropic” as possible, one fixes a finite
set of directions (ν1, . . . , νk) (typically, (cos(2`π/k), sin(2`π/k)) for ` = 1, . . . , k), and uses a first
order gradient descent algorithm to optimize:

L (c) =

k∑
`=1

(φε(ν`)[c]− 1)
2

The problem is easily solved for Y = {0, 1} × {0, 1}, k = 8 and (ν`)
8
`=1 given as above. For

larger periodicity cells and more directions, it easily gets trapped in local minima and we use a
random initialization in order to be able to find satisfactory solutions. We then test the result
by computing the un-regularized surface tension φ with the resulting coefficients c. We show
some results in the next section. Of course, taking a large value of ε will make the problem
easier to solve, but the learned coefficients will not allow to reconstruct a satisfactory surface
tension: we need to choose ε small, an order of magnitude below the error which we expect on
the anisotropy of φ.

6.3. Numerical results. We show the outcome of the optimization, in the periodicity cell
Y = {0, . . . T − 1} × {0, . . . , T − 1} for T = 2, 4, 6, 8. We plot first the set {ϕ ≤ 1} or Frank
diagram for the effective surface tensions. Figure 5 shows the diagram obtained, for T = 2, 4, 8.

Figure 5. Frank diagrams of the effective anisotropies for T = 2, 4, 8.

For T = 2, the optimization yields the same anisotropy as our construction in (111) which gives
the anistropy (110) and which we conjecture to be optimal for L (c) taking k = 8 (compare
with Fig. 4). However, except when initialized with the values in (111), the algorithm usually
outputs different values with the same effective anisotropy, see Fig. 6 (the values in (111) are in
some sense better, as for instance a vertical edge will always have the same effective energy with
these values, while with the computed values displayed in Fig. 6, it will need to pass through
the edges in the second column of the cell in order to get the minimal energy).

For T = 4, one sees that the behavior is almost isotropic, while for T = 8, the relative
error with the perfect unit disk is about 1%. Here, we estimated this error as (max` φ(ν`) −
min` φ(ν`))/min` φ(ν`), where ` ∈ {1, . . . , k} and k = 180. We illustrate this on an “inpainting”
example, which consists in finding the minimal line in a given direction. We consider as an
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Figure 6. An example of optimized 2-periodic coefficients yielding the same
anisotropy as the choice (111)

Figure 7. A minimal half-plane in the orientation (cos 3π/8, sin 3π/8). Top
left, boundary datum, the region where the perimeter is minimized is in gray.
Top, middle: ϕ(ν) = |ν1| + |ν2|. Top, right: optimal effective ϕ for T = 2.
Bottom: for T = 4, 6, 8.

example the direction (cos 3π/8, sin 3π/8), which is irrational, so that there cannot be a fully
periodic solution. The figure 7 displays several minimal half-planes in this orientation. Observe
that for this orientation, the results for T = 4 or 6 look nicer than the result obtained for T = 8.

We also show a denoising example based on the “ROF” method (which consists simply in
minimizing the total variation (defined by the surface tension ϕ) of an image with a quadratic
penalization of the distance to a noisy data, in order to produce a denoised version, see [44])
with the anisotropic tension ϕ(ν) = |ν1| + |ν2| (“T = 1”) and the optimized homogenized
surface tension for T = 4. The original image is degraded with a Gaussian noise with 10%
standard deviation (with respect to the range of the values). Here, the difference between the
two regularizers is hardly perceptible (since the data term strongly influences the position of the
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discontinuities), yet a close-up (bottom row) allows to see a slight difference, for instance on the
cheek where the T = 1 anisotropy produces block structures.

Figure 8. “ROF” denoising example. Left: noisty image. Middle, denoised
with ϕ(ν) = |ν1|+ |ν2|. Right: with the effective tension computed for T = 4.
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