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GENERALIZED SAV-EXPONENTIAL INTEGRATOR SCHEMES
FOR ALLEN--CAHN TYPE GRADIENT FLOWS\ast 

LILI JU\dagger , XIAO LI\ddagger , AND ZHONGHUA QIAO\S 

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . The energy dissipation law and the maximum bound principle (MBP) are two impor-
tant physical features of the well-known Allen--Cahn equation. While some commonly used first-order
time stepping schemes have turned out to preserve unconditionally both the energy dissipation law
and the MBP for the equation, restrictions on the time step size are still needed for existing second-
order or even higher order schemes in order to have such simultaneous preservation. In this paper, we
develop and analyze novel first- and second-order linear numerical schemes for a class of Allen--Cahn
type gradient flows. Our schemes combine the generalized scalar auxiliary variable (SAV) approach
and the exponential time integrator with a stabilization term, while the standard central difference
stencil is used for discretization of the spatial differential operator. We not only prove their uncon-
ditional preservation of the energy dissipation law and the MBP in the discrete setting, but we also
derive their optimal temporal error estimates under fixed spatial mesh. Numerical experiments are
also carried out to demonstrate the properties and performance of the proposed schemes.

\bfK \bfe \bfy \bfw \bfo \bfr \bfd \bfs . second-order linear scheme, energy dissipation law, maximum bound principle,
exponential integrator, scalar auxiliary variable

\bfM \bfS \bfC \bfc \bfo \bfd \bfe \bfs . 35K55, 65M12, 65M15, 65F30

\bfD \bfO \bfI . 10.1137/21M1446496

1. Introduction. The classic Allen--Cahn equation, originally introduced in [2]
to model the motion of the antiphase boundaries in crystalline solids, takes the fol-
lowing form:

(1.1) ut = \varepsilon 2\Delta u+ f(u), t > 0, \bfitx \in \Omega ,

where the spatial domain \Omega \subset \BbbR d, u(t,\bfitx ) : [0,\infty )\times \Omega \rightarrow \BbbR is the unknown function,
\varepsilon > 0 is an interfacial parameter, and f(u) = u  - u3 is the nonlinear reaction.
Equipped with the periodic or homogeneous Neumann boundary condition, (1.1) can
be viewed as the L2 gradient flow with respect to the energy functional

(1.2) E(u) =

\int 
\Omega 

\biggl( 
\varepsilon 2

2
| \nabla u(\bfitx )| 2 + F (u(\bfitx ))

\biggr) 
d\bfitx ,

where F (u) = 1
4 (u

2  - 1)2 (i.e.,  - F \prime = f) is the double-well potential function, and
thus satisfies the so-called energy dissipation law in the sense that the solution to (1.1)
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1906 LILI JU, XIAO LI, AND ZHONGHUA QIAO

decreases the energy (1.2) along with the time, i.e., d
dtE(u(t)) \leq 0. The solution u

usually represents the difference between the concentrations of two components of the
alloy, and thus should be evaluated between  - 1 and 1 naturally, which corresponds
to another important feature, the maximum bound principle (MBP); i.e., if the initial
value falls pointwise between  - 1 and 1, then so is the solution for all time. Recently,
some variants of the Allen--Cahn equation (1.1) have been developed to model various
processes of phase transition, such as the nonlocal Allen--Cahn equation for phase
separations within long-range interactions [3] and the fractional Allen--Cahn equation
for anomalous diffusion processes [23], and they also satisfy the energy dissipation
law with respect to their respective energy and the MBP. Since the analytic solutions
to these models are usually not available, numerical solutions play a key role in their
study and applications. In order to obtain efficient and stable numerical simulations
and avoid nonphysical results, it is highly desirable to design accurate numerical
methods in space and time which also preserve important physical features of the
models, such as the energy dissipation law and the MBP.

In recent years, numerical schemes preserving the energy dissipation law have
attracted a lot of attention for time integration of the Allen--Cahn type equations
and other gradient flows, including convex splitting schemes [22, 42, 50], stabilized
implicit-explicit (IMEX) schemes [18, 46, 51], discrete gradient schemes [15, 19, 38],
exponential time differencing (ETD) schemes [14, 32, 56], invariant energy quadrati-
zation (IEQ) schemes [52, 54], scalar auxiliary variable (SAV) schemes [9, 43, 44, 45],
and some variants of the SAV method [7, 8, 26, 28, 37]. By combining the SAV
approach with the Runge--Kutta (RK) method, arbitrarily high order linear schemes
preserving the energy dissipation law were developed in [1, 20]. In addition, there is
also a large amount of literature denoted to MBP-preserving numerical schemes for
the Allen--Cahn type gradient flow problems, such as the stabilized IMEX schemes
[41, 48] and the exponential integrator methods [14, 34]. Borrowing the idea of strong
stability-preserving methods [21], MBP-preserving RK-type schemes with high-order
accuracy were studied theoretically and up to fourth-order schemes were provided
for practical computations in [31, 35, 55]. However, among all schemes we have just
mentioned, only a few first-order schemes can preserve simultaneously the energy dis-
sipation law and the MBP unconditionally [14, 16, 41] (i.e., without any restriction on
the time step size), while the second-order schemes always require certain restrictions
on the time step size [27, 36]. It is an interesting and important question whether
there exist second-order or even higher order time stepping schemes preserving both
the energy dissipation law and the MBP unconditionally. An initial improvement
was made in [53] by considering the high-order SAV-RK method [1] to guarantee the
energy dissipation, and the maximum bound is enforced by the cut-off postprocessing
but not by the scheme itself.

The H - 1 gradient flow with respect to the energy (1.2) gives the classic Cahn--
Hilliard equation ut =  - \Delta (\varepsilon 2\Delta u + f(u)), which fails to satisfy the MBP due to the
existence of the fourth-order dissipation term. It is also worth noting that if the
nonlinear reaction function f is changed to the logarithmic one defined by (4.2) (i.e.,
corresponding to the Flory--Huggins potential) tested in our numerical experiments,
the solution of the Cahn--Hilliard equation still remains in the open interval ( - 1, 1) for
all time under some appropriate boundary conditions [10, 17], where \pm 1 are the points
near which the singularities occur. Implicit or IMEX numerical schemes preserving
such uniform boundedness have also been developed, where the singularity of the
nonlinear term plays a crucial role [5, 13] in their construction.

In this paper, our main purpose is to systematically develop first- and second-
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GSAV-EI SCHEMES FOR ALLEN--CAHN TYPE EQUATIONS 1907

order (in time) linear numerical schemes preserving both the energy dissipation law
and the MBP unconditionally for a family of Allen--Cahn type gradient flows. More
precisely, we will consider (1.1) with a more general reaction term f : \BbbR \rightarrow \BbbR given
by a continuously differentiable function satisfying

(1.3) there exists a constant \beta > 0 such that f(\beta ) \leq 0 \leq f( - \beta ).

The periodic or homogeneous Neumann boundary condition is equipped, and the
initial condition is given as u(0, \cdot ) = uinit on \Omega . Then the MBP holds [14] in the
sense that if the absolute value of the initial value is bounded pointwise by \beta , then
the absolute value of the solution is also bounded pointwise by \beta for all time, i.e.,

(1.4) max
\bfitx \in \Omega 

| uinit(\bfitx )| \leq \beta =\Rightarrow max
\bfitx \in \Omega 

| u(t,\bfitx )| \leq \beta \forall t > 0.

Furthermore, the energy dissipation law is also satisfied with respect to the energy
(1.2) with F now being a smooth potential function satisfying F \prime =  - f . The key
ingredient is the appropriate combination of the SAV approach and the exponential
integrator method [11, 25]. Note that similar ideas have been applied to some non-
linear hyperbolic-type equations [12, 29]. We first reformulate the model equation
(1.1) in an equivalent form by defining an auxiliary variable, similar to the idea of the
generalized SAV approach [8]. Then we introduce a stabilization term to the system
and apply exponential integrators to develop first- and second-order linear schemes in
time. We show that both schemes simultaneously preserve the energy dissipation law
and the MBP unconditionally under an appropriate stabilizing constant. In the error
analysis, one of the major difficulties is caused by the variable coefficients from the
nonlinear reaction and the stabilization terms. By using the energy dissipation law
and the MBP, these variable coefficients are shown to be bounded from above and
below by certain generic positive constants, which helps us to successfully prove the
optimal temporal convergence under fixed spatial mesh. To the best of our knowl-
edge, this is the first work providing a second-order linear numerical scheme for time
integration of the model Allen--Cahn type gradient flows, with provable unconditional
preservation of both the energy dissipation law and the MBP.

The rest of this paper is organized as follows. In section 2, we present the spa-
tial discretization with the central finite difference and some useful lemmas. In sec-
tion 3, we propose the first- and second-order generalized SAV-exponential integrator
(GSAV-EI) schemes and then prove their unconditional preservation of both the en-
ergy dissipation law and the MBP, followed by their temporal convergence analysis.
Numerical experiments are carried out to validate the theoretical results and demon-
strate the performance of the proposed schemes in section 4. Finally, some concluding
remarks are given in section 5.

2. Spatial discretization and some preliminaries. Throughout this paper,
we consider the two-dimensional square domain \Omega = (0, L) \times (0, L) for the model
equation (1.1) with f satisfying the assumption (1.3). Without loss of generality, we
impose the periodic boundary condition. Extensions to the three-dimensional case
and homogeneous Neumann boundary condition do not have any difficulties. In this
section, we will present some notations related to the spatial discretization and a few
preliminary lemmas for the analysis of the time integration schemes proposed later.

Given a positive integer M , let h = L/M be the size of the uniform mesh par-
titioning \Omega , and denote by \Omega h = \{ (xi, yj) = (ih, jh) | 1 \leq i, j \leq M\} the set of mesh
points. For a grid function v defined on \Omega h, we denote vij = v(xi, yj). Let \scrM h be the
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1908 LILI JU, XIAO LI, AND ZHONGHUA QIAO

set of all M -periodic grid functions on \Omega h, i.e., \scrM h = \{ v : \Omega h \rightarrow \BbbR | vi+kM,j+lM =
vij , k, l \in \BbbZ , 1 \leq i, j \leq M\} . Let us apply the central finite difference method to
approximate the spatial differential operators. For any v \in \scrM h, the discrete Laplace
operator \Delta h is defined by

\Delta hvij =
1

h2
(vi+1,j + vi - 1,j + vi,j+1 + vi,j - 1  - 4vij), 1 \leq i, j \leq M,

and the discrete gradient operator \nabla h is defined by

\nabla hvij =
\Bigl( vi+1,j  - vij

h
,
vi,j+1  - vij

h

\Bigr) T

, 1 \leq i, j \leq M.

The eigenvalues of \Delta h are given by [33]

(2.1) \lambda kl =  - 4

h2

\biggl( 
sin2

k\pi 

M
+ sin2

l\pi 

M

\biggr) 
\leq 0, 0 \leq k, l \leq M  - 1.

As usual, the discrete inner product \langle \cdot , \cdot \rangle , the discrete L2 norm \| \cdot \| , and the discrete
L\infty norm \| \cdot \| \infty can be defined, respectively, by

\langle v, w\rangle = h2
M\sum 

i,j=1

vijwij , \| v\| =
\sqrt{} 
\langle v, v\rangle , \| v\| \infty = max

1\leq i,j\leq M
| vij | 

for any v, w \in \scrM h and

\langle \bfitv ,\bfitw \rangle = \langle v1, w1\rangle + \langle v2, w2\rangle , \| \bfitv \| =
\sqrt{} 
\langle \bfitv ,\bfitv \rangle 

for any \bfitv = (v1, v2)T ,\bfitw = (w1, w2)T \in \scrM h\times \scrM h. By the periodicity, the summation-
by-parts formula obviously holds:

\langle v,\Delta hw\rangle =  - \langle \nabla hv,\nabla hw\rangle = \langle \Delta hv, w\rangle \forall v, w \in \scrM h.

The space-discrete problem corresponding to (1.1) is then to find a function uh :
[0,\infty ) \rightarrow \scrM h that satisfies

(2.2)
duh
dt

= \varepsilon 2\Delta huh + f(uh), t > 0,

with uh(0) = \^uinit, where \^uinit is the pointwise projection of uinit onto \scrM h. Through-
out the paper, we do not differ \^uinit and uinit anymore since there is no ambiguity. It
is easy to verify the energy dissipation law for the space-discrete problem (2.2), i.e.,
d
dtEh(uh(t)) \leq 0, where Eh is the spatially discretized energy functional defined as

(2.3) Eh(v) :=
\varepsilon 2

2
\| \nabla hv\| 2 + \langle F (v), 1\rangle \forall v \in \scrM h.

As shown in [14], the MBP is also valid for the space-discrete problem (2.2), i.e.,

(2.4) \| uinit\| \infty \leq \beta =\Rightarrow \| uh(t)\| \infty \leq \beta \forall t > 0.

We have assumed that f is continuously differentiable, so \| f \prime \| C[ - \beta ,\beta ] is finite.
Then the following result is valid [14].
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GSAV-EI SCHEMES FOR ALLEN--CAHN TYPE EQUATIONS 1909

Lemma 2.1. Under the assumption (1.3), if \kappa \geq \| f \prime \| C[ - \beta ,\beta ] holds for some pos-
itive constant \kappa , then we have | f(\xi ) + \kappa \xi | \leq \kappa \beta for any \xi \in [ - \beta , \beta ].

Since \scrM h is a finite-dimensional linear space, any grid function in \scrM h and any
linear operator from \scrM h to \scrM h can be treated as a vector in \BbbR M2

and a matrix
in \BbbR M2\times M2

, respectively. For functions of matrix/operator, we have the following
lemma (see [24]).

Lemma 2.2. Let \phi be defined on the spectrum of a diagonalizable matrix A \in 
\BbbR m\times m, i.e., the values \{ \phi (\lambda i)\} mi=1 exist, where \{ \lambda i\} mi=1 are the eigenvalues of A. Then
the following hold:

(i) \phi (A) commutes with A and \phi (AT ) = \phi (A)T ;
(ii) the eigenvalues of \phi (A) are \{ \phi (\lambda i) | 1 \leq i \leq m\} ;
(iii) \phi (P - 1AP ) = P - 1\phi (A)P for any nonsingular matrix P \in \BbbR m\times m.

We still use the notations \| \cdot \| and \| \cdot \| \infty to denote the matrix-induced norms
consistent with \| \cdot \| and \| \cdot \| \infty defined before, respectively. By viewing \Delta h as a matrix,
we know that \Delta h is symmetric, negative semidefinite, and weakly diagonally dominant
with all diagonal entries negative. Moreover, we have the following useful estimate,
which comes from the fact that \Delta h is the generator of a contraction semigroup [14],
and the proof can be found in [14, 31].

Lemma 2.3. For any real numbers a \geq 0 and b \geq 0, we have \| ea\Delta h - bI\| \infty \leq e - b,

where I \in \BbbR M2\times M2

is the identity matrix.

Remark 2.1. Apart from the central difference discretization discussed above, the
lumped mass finite element method with piecewise linear basis functions can also be
adopted and Lemma 2.3 still holds correspondingly [14]. In addition, there have been
some initial explorations on the MBP-preserving methods using the fourth-order accu-
rate spatial discretization, such as the compact difference approximation [49] and the
finite difference formulation of the Q2 spectral element method [47], combined with
the Euler-type time-stepping approaches. However, it is not obvious whether these
fourth-order discrete Laplace operators satisfy Lemma 2.3, and thus it is worthy of
further investigations on the combination of higher-order spatial discretizations with
the exponential integrator methods studied in this paper.

3. Generalized SAV-exponential integrator schemes. From now on, we
always assume the initial value uinit has enough regularity as needed. Let us define
the bulk energy term E1h(v) := \langle F (v), 1\rangle for any v \in \scrM h. The continuity of F implies
that F is bounded from below on [ - \beta , \beta ]. Therefore, according to the MBP (2.4),
there exist two constants C\ast \geq 0 and C\ast \geq 0 such that

(3.1)  - C\ast \leq E1h(uh) \leq C\ast .

Motivated by the idea of the generalized SAV approach [8], we define the auxiliary
variable sh(t) = E1h(uh(t)) and rewrite the space-discrete equation (2.2) in an alter-
nate but equivalent form as

duh
dt

= \varepsilon 2\Delta huh +
\sigma (sh)

\sigma (E1h(uh))
f(uh),(3.2a)

dsh
dt

=  - \sigma (sh)

\sigma (E1h(uh))

\Bigl\langle 
f(uh),

duh
dt

\Bigr\rangle 
,(3.2b)

where \sigma : \BbbR \rightarrow \BbbR is a one-variable function satisfying the following two conditions:
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1910 LILI JU, XIAO LI, AND ZHONGHUA QIAO

(\Sigma 1) \sigma > 0 on \BbbR ;
(\Sigma 2) \sigma is continuously differentiable and \sigma \prime \geq 0 on \BbbR .

These conditions are crucial to the MBP preservation and error analysis of the pro-
posed time integration schemes in this paper. For any v \in \scrM h and r \in \BbbR , define

(3.3) g(v, r) :=
\sigma (r)

\sigma (E1h(v))

(clearly, g(v, r) > 0 due to the condition (\Sigma 1)) and the modified energy

(3.4) \scrE h(v, r) :=
\varepsilon 2

2
\| \nabla hv\| 2 + r.

Obviously, g(uh, sh) \equiv 1 and \scrE h(uh, sh) \equiv Eh(uh) without time discretization.

Remark 3.1. The form (3.2) and the conditions (\Sigma 1) and (\Sigma 2) differ from those
given in [8], where \sigma may not be defined on the whole real line \BbbR and the constructed
schemes may be nonlinear, while our schemes developed later are all linear. A trivial
choice for the function \sigma satisfying (\Sigma 1) and (\Sigma 2) is the positive constant mapping,
e.g., \sigma \equiv 1. This gives a degenerate case since we still have exactly g(uh, sh) \equiv 1
with whatever time discretization, and consequently sh does not provide any feedback
to the update of uh at each time step, which is similar to the idea adopted in [39].
Some nontrivial choices [8] include elementary functions such as \sigma (x) = ex, \sigma (x) =
\pi 
2 + arctan(x), \sigma (x) = 1 + tanh(x), or even special functions constructed by the

integration such as \sigma (x) =
\int x

 - \infty \eta (y) dy for some continuous function \eta \geq 0 on \BbbR .
Next, we develop exponential integrators for the space-discrete system (3.2), in-

stead of the original one (2.2). Let us partition the time interval using the nodes
\{ tn = n\tau \} n\geq 0 with a uniform time step size \tau > 0, and set un and sn as the approxi-
mations of uh,e(tn) and sh,e(tn) = E1h(uh,e(tn)), respectively, where uh,e denotes the
exact solution to the problem (2.2) (equivalently (3.2)).

3.1. First-order GSAV-EI scheme. Set u0 = uinit and s0 = E1h(u
0). Sup-

pose the numerical solution (un, sn) is known for some n \geq 0. Introducing a positive
stabilizing constant \kappa > 0, (3.2a) is equivalent to

duh
dt

= \varepsilon 2\Delta huh + g(uh, sh)f(uh) + \kappa g(un, sn)(uh  - uh)

=  - Ln
\kappa uh +Nn

\kappa (uh, sh),

where the linear operator Ln
\kappa = \kappa g(un, sn)I  - \varepsilon 2\Delta h and the nonlinear operator

Nn
\kappa (v, r) = g(v, r)f(v) + \kappa g(un, sn)v \forall v \in \scrM h, \forall r \in \BbbR .

We know that Ln
\kappa is self-adjoint and positive definite since g(un, sn) > 0 and \kappa > 0.

Using the variation-of-constants formula on [tn, tn+1], we have

uh(tn+1) = e - \tau Ln
\kappa uh(tn) +

\int \tau 

0

e - (\tau  - \theta )Ln
\kappa Nn

\kappa (uh(tn + \theta ), sh(tn + \theta )) d\theta .

By approximating the term Nn
\kappa by its value at \theta = 0, i.e., Nn

\kappa (uh(tn + \theta ), sh(tn +
\theta )) \approx Nn

\kappa (uh(tn), sh(tn)), we obtain the first-order exponential integrator scheme for
computing un+1 as

un+1 = e - \tau Ln
\kappa un +

\biggl( \int \tau 

0

e - (\tau  - \theta )Ln
\kappa d\theta 

\biggr) 
Nn

\kappa (u
n, sn)(3.5a)
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GSAV-EI SCHEMES FOR ALLEN--CAHN TYPE EQUATIONS 1911

= e - \tau Ln
\kappa un + \tau \phi 1( - \tau Ln

\kappa )N
n
\kappa (u

n, sn),

where \phi 1(a) = a - 1(ea  - 1) for a \not = 0. Integrating (3.2b) from tn to tn+1 and using
the approximation g(uh(tn + t), sh(tn + t))f(uh(tn + t)) \approx g(uh(tn), sh(tn))f(uh(tn)),
we obtain the first-order formula for computing sn+1 as

(3.5b) sn+1 = sn  - g(un, sn)\langle f(un), un+1  - un\rangle .

The combination of (3.5a) and (3.5b) defines the first-order generalized SAV-exponential
integrator (GSAV-EI1) scheme, which is uniquely solvable for any \tau > 0 due to its
explicit formulation.

3.1.1. Energy dissipation and MBP. We first show the unconditional preser-
vation of the energy dissipation law with respect to the modified energy \scrE h defined by
(3.4) and the MBP of the GSAV-EI1 scheme (3.5). As a consequence, we then prove
the uniform boundedness of g(un, sn), which is crucial to the convergence analysis.

Theorem 3.1 (energy dissipation of GSAV-EI1). The GSAV-EI 1 scheme (3.5)
is unconditionally energy dissipative in the time-discrete sense that \scrE h(un+1, sn+1) \leq 
\scrE h(un, sn) holds for any \tau > 0 and n \geq 0.

Proof. Using (3.5b), some simple calculations yield

\scrE h(un+1, sn+1) - \scrE h(un, sn) =
\varepsilon 2

2
\| \nabla hu

n+1\| 2  - \varepsilon 2

2
\| \nabla hu

n\| 2 + sn+1  - sn(3.6)

= \varepsilon 2\langle \nabla hu
n+1,\nabla hu

n+1  - \nabla hu
n\rangle  - \varepsilon 2

2
\| \nabla hu

n+1  - \nabla hu
n\| 2

 - g(un, sn)\langle f(un), un+1  - un\rangle 

=  - \langle \varepsilon 2\Delta hu
n+1 + g(un, sn)f(un), un+1  - un\rangle  - \varepsilon 2

2
\| \nabla hu

n+1  - \nabla hu
n\| 2

= \langle Ln
\kappa u

n+1  - Nn
\kappa (u

n, sn), un+1  - un\rangle 

 - \kappa g(un, sn)\| un+1  - un\| 2  - \varepsilon 2

2
\| \nabla hu

n+1  - \nabla hu
n\| 2.

It can also be derived from (3.5a) that

un+1  - un = (e - \tau Ln
\kappa  - I)un + \tau \phi 1( - \tau Ln

\kappa )N
n
\kappa (u

n, sn).

Multiplying [\tau \phi 1( - \tau Ln
\kappa )]

 - 1 = (I  - e - \tau Ln
\kappa ) - 1Ln

\kappa on both sides of the above equation
leads to

[\tau \phi 1( - \tau Ln
\kappa )]

 - 1(un+1  - un) =  - Ln
\kappa u

n +Nn
\kappa (u

n, sn)

= Ln
\kappa (u

n+1  - un) - Ln
\kappa u

n+1 +Nn
\kappa (u

n, sn),

and thus

(3.7) Ln
\kappa u

n+1  - Nn
\kappa (u

n, sn) = [Ln
\kappa  - (I  - e - \tau Ln

\kappa ) - 1Ln
\kappa ](u

n+1  - un).

Note that Ln
\kappa is positive definite and a - (1 - e - a) - 1a < 0 for any a > 0, which means,

by Lemma 2.2, that Ln
\kappa  - (I  - e - \tau Ln

\kappa ) - 1Ln
\kappa is negative definite. Combining (3.6) and

(3.7), we obtain the energy dissipation \scrE h(un+1, sn+1) \leq \scrE h(un, sn) .
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1912 LILI JU, XIAO LI, AND ZHONGHUA QIAO

Remark 3.2. Theorem 3.1 states that the GSAV-EI 1 scheme (3.5) is energy dis-
sipative with respect to the modified energy \scrE h(un, sn) rather than the original energy
Eh(u

n). Note that \scrE h(un, sn) is only an approximation of Eh(u
n) after time dis-

cretization since usually sn \not = E1h(u
n) for n > 0.

Corollary 3.2. For any \tau > 0 and n \geq 0, it holds that sn \leq Eh(uinit).

Proof. Since s0 = E1h(uinit), we have by Theorem 3.1 that

\varepsilon 2

2
\| \nabla hu

n\| 2 + sn = \scrE h(un, sn) \leq \scrE h(un - 1, sn - 1) \leq \cdot \cdot \cdot \leq \scrE h(u0, s0) = Eh(uinit).

Dropping off the nonnegative term \varepsilon 2

2 \| \nabla hu
n\| 2 leads to the expected result.

Theorem 3.3 (MBP of GSAV-EI1). If \kappa \geq \| f \prime \| C[ - \beta ,\beta ], then the GSAV-EI 1
scheme (3.5) preserves the MBP unconditionally; i.e., for any \tau > 0, the time-discrete
version of (2.4) is valid as follows:

(3.8) \| uinit\| \infty \leq \beta =\Rightarrow \| un\| \infty \leq \beta \forall n \geq 0.

Proof. Suppose (un, sn) is given and \| un\| \infty \leq \beta for some n \geq 0. By Lemma 2.3,
we get \| e - \tau Ln

\kappa \| \infty \leq e - \tau \kappa g(un,sn). Since \kappa \geq \| f \prime \| C[ - \beta ,\beta ] and g(u
n, sn) > 0, by Lemma

2.1 we have

\| Nn
\kappa (u

n, sn)\| \infty = g(un, sn)\| f(un) + \kappa un\| \infty \leq \kappa \beta g(un, sn).

Therefore, we obtain from (3.5a) that

\| un+1\| \infty \leq e - \tau \kappa g(un,sn)\beta +

\biggl( \int \tau 

0

e - (\tau  - \theta )\kappa g(un,sn) d\theta 

\biggr) 
\cdot \kappa \beta g(un, sn)

= e - \tau \kappa g(un,sn)\beta +
1 - e - \tau \kappa g(un,sn)

\kappa g(un, sn)
\cdot \kappa \beta g(un, sn) = \beta .

By induction, we have \| un\| \infty \leq \beta for any n \geq 0.

Remark 3.3. By applying e - \tau Ln
\kappa \approx (I + \tau Ln

\kappa )
 - 1 to (3.5a), we can obtain

(3.9)
un+1  - un

\tau 
= \varepsilon 2\Delta hu

n+1 + g(un, sn)f(un) + \kappa g(un, sn)(un+1  - un).

The scheme formed by (3.9) and (3.5b) can be regarded as the stabilizing version of the
generalized-SAV scheme [8], which also satisfies the energy dissipation law (Theorem
3.1) and the MBP (Theorem 3.3). In particular, by setting \sigma (x) = ex, it recovers
exactly the first-order stabilized exponential-SAV scheme [30].

Unlike the time-continuous case in which g(uh, sh) \equiv 1, the coefficient g(un, sn)
may vary at each time step unless \sigma is chosen as a constant function, which leads to
some difficulties for the error analysis. Fortunately, by the energy dissipation law and
the MBP, we can show that g(un, sn) is bounded uniformly in n. The following lemma
(without proof) is useful to estimate some exponential-related functions of matrices.

Lemma 3.4. For any a > 0, the following inequalities hold:

0 < 1 - e - a < a, 0 < \phi 1( - a) < 1, 1 < (1 + a)\phi 1( - a) < 2.
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Corollary 3.5. Given any fixed h > 0 and T > 0, if \kappa \geq \| f \prime \| C[ - \beta ,\beta ] and
\| uinit\| \infty \leq \beta , then there are two constants G\ast > 0 and G\ast > 0 such that

G\ast \leq g(un, sn) \leq G\ast , 0 \leq n \leq \lfloor T/\tau \rfloor ,

where G\ast and G\ast depend on C\ast , C
\ast , | \Omega | , T , uinit, \kappa , \varepsilon , and \| f\| C[ - \beta ,\beta ] but are

independent of \tau .

Proof. Since \| un\| \infty \leq \beta (by Theorem 3.3), according to (3.1) and the conditions
(\Sigma 1) and (\Sigma 2), it holds that 0 < \sigma ( - C\ast ) \leq \sigma (E1h(u

n)) \leq \sigma (C\ast ). According to
Corollary 3.2, we have

g(un, sn) =
\sigma (sn)

\sigma (E1h(un))
\leq \sigma (Eh(uinit))

\sigma ( - C\ast )
:= G\ast .

Using (2.1), we then obtain the uniform bound of the spectral radius of Ln
\kappa , \rho (L

n
\kappa ), as

(3.10) \rho (Ln
\kappa ) \leq \kappa g(un, sn) + \varepsilon 2\rho (\Delta h) \leq G\ast \kappa +

8\varepsilon 2

h2
:=Mh.

Next, we show the existence of the lower bound of \{ sn\} . By making use of the MBP
and the first inequality in Lemma 3.4, we derive from (3.5a) that

\| un+1  - un\| \leq \| I  - e - \tau Ln
\kappa \| \| un\| + \tau \| \phi 1( - \tau Ln

\kappa )\| \| N\kappa (u
n, sn)\| 

\leq \tau \rho (Ln
\kappa ) \cdot \beta | \Omega | 

1
2 + \tau \cdot \kappa \beta g(un, sn)| \Omega | 12 \leq \tau \beta | \Omega | 12 (Mh +G\ast \kappa ).

Since \| f(un)\| \leq F0| \Omega | 
1
2 with F0 := \| f\| C[ - \beta ,\beta ], we then obtain from (3.5b) that

(3.11) sn+1 \geq sn  - g(un, sn)\| f(un)\| \| un+1  - un\| \geq sn  - G\ast F0\beta | \Omega | (Mh +G\ast \kappa )\tau .

By recursion, noting that s0 = E1h(uinit) \geq  - C\ast , we obtain

(3.12) sn \geq s0  - G\ast F0\beta | \Omega | (Mh +G\ast \kappa )n\tau \geq  - C\ast  - G\ast F0\beta | \Omega | (Mh +G\ast \kappa )T := S\ast .

Thus, g(un, sn) \geq \sigma (S\ast )/\sigma (C
\ast ) := G\ast , which completes the proof.

3.1.2. Temporal error analysis. Note that (3.5a) is equivalent to finding
un+1 = w(\tau ) with w(\theta ) satisfying

(3.13)

\left\{   
dw(\theta )

d\theta 
+ Ln

\kappa w(\theta ) = Nn
\kappa (u

n, sn), \theta \in (0, \tau ],

w(0) = un.

Let sh,e(t) = E1h(uh,e(t)). Define wh,e(\theta ) = uh,e(tn + \theta ) for \theta \in [0, \tau ]. It holds that

(3.14)

\left\{   
dwh,e(\theta )

d\theta 
+ Ln

\kappa wh,e(\theta ) = Nn
\kappa (uh,e(tn), sh,e(tn)) +Rn

1u(\theta ), \theta \in (0, \tau ],

wh,e(0) = uh,e(tn),

where the truncation error

Rn
1u(\theta ) = g(uh,e(tn + \theta ), sh,e(tn + \theta ))f(uh,e(tn + \theta )) - g(uh,e(tn), sh,e(tn))f(uh,e(tn))

+ \kappa g(un, sn)(uh,e(tn + \theta ) - uh,e(tn)).
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1914 LILI JU, XIAO LI, AND ZHONGHUA QIAO

For sh,e(t), we have

sh,e(tn+1) - sh,e(tn)(3.15)

=  - g(uh,e(tn), sh,e(tn))\langle f(uh,e(tn)), uh,e(tn+1) - uh,e(tn)\rangle + \tau Rn
1s

for some truncation residual Rn
1s. Furthermore, it is easy to verify that

(3.16) sup
\theta \in (0,\tau )

\| Rn
1u(\theta )\| \leq Ce,h\tau , | Rn

1s| \leq Ce,h\tau ,

where the constant Ce,h > 0 depends on uh,e, \kappa , \varepsilon , and \| f\| C1[ - \beta ,\beta ]. Now we define
the error functions as

(3.17) enu = un  - uh,e(tn), ens = sn  - sh,e(tn).

Lemma 3.6. Given any fixed h > 0 and T > 0, if \kappa \geq \| f \prime \| C[ - \beta ,\beta ] and \| uinit\| \infty \leq 
\beta , then we have

\| g(un, sn)f(un) - g(uh,e(tn), sh,e(tn))f(uh,e(tn))\| \leq Cg(\| enu\| +| ens | ), 0 \leq n \leq \lfloor T/\tau \rfloor ,

where Cg > 0 is a constant depending on C\ast , | \Omega | , uinit, and \| f\| C1[ - \beta ,\beta ].

A special case of this lemma with \sigma (x) = ex has been proved in [30]. Using (3.1)
and the conditions (\Sigma 1) and (\Sigma 2), there is no essential difficulty to obtain the general
result, so we omit the proof.

Theorem 3.7 (temporal error estimate of GSAV-EI1). Given any fixed h > 0
and T > 0 and letting \kappa \geq \| f \prime \| C[ - \beta ,\beta ], assume that the exact solution uh,e is smooth
enough on [0, T ] and \| uinit\| \infty \leq \beta . If \tau > 0 is sufficiently small, then we have the
following error estimate for the GSAV-EI 1 scheme (3.5):

(3.18) \| un  - uh,e(tn)\| + | sn  - sh,e(tn)| \leq Ch,1\tau , 0 \leq n \leq \lfloor T/\tau \rfloor ,

where the constant Ch,1 > 0 is independent of \tau .

Proof. Define e(\theta ) = w(\theta )  - wh,e(\theta ). The difference between (3.13) and (3.14)
leads to\left\{   

de(\theta )

d\theta 
+ Ln

\kappa e(\theta ) = Nn
\kappa (u

n, sn) - Nn
\kappa (uh,e(tn), sh,e(tn)) - Rn

1u(\theta ), \theta \in (0, \tau ],

e(0) = enu,

whose solution e(\tau ) = un+1  - uh,e(tn+1) = en+1
u can be expressed as

en+1
u = e - \tau Ln

\kappa enu + \tau \phi 1( - \tau Ln
\kappa )[N

n
\kappa (u

n, sn) - Nn
\kappa (uh,e(tn), sh,e(tn))](3.19)

 - 
\int \tau 

0

e - (\tau  - \theta )Ln
\kappa Rn

1u(\theta ) d\theta .

Acting I + \tau Ln
\kappa on both sides of (3.19), we obtain

(1 + \tau \kappa g(un, sn))(en+1
u  - enu) - \tau \varepsilon 2(\Delta he

n+1
u  - \Delta he

n
u)(3.20)

= \tau (I + \tau Ln
\kappa )\phi 1( - \tau Ln

\kappa )[N
n
\kappa (u

n, sn) - Nn
\kappa (uh,e(tn), sh,e(tn))]

+ (I + \tau Ln
\kappa )(e

 - \tau Ln
\kappa  - I)enu  - 

\int \tau 

0

(I + \tau Ln
\kappa )e

 - (\tau  - \theta )Ln
\kappa Rn

1u(\theta ) d\theta .
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Taking the discrete inner product of (3.20) with \delta te
n+1
u := (en+1

u  - enu)/\tau , we get the
reformulation of the left-hand side (LHS) of (3.20) as

LHS = \tau \| \delta ten+1
u \| 2 + \kappa g(un, sn)\| en+1

u  - enu\| 2 + \varepsilon 2\| \nabla he
n+1
u  - \nabla he

n
u\| 2

and the reformulation of the right-hand side (RHS) of (3.20) as

RHS = \tau \langle (I + \tau Ln
\kappa )\phi 1( - \tau Ln

\kappa )[N
n
\kappa (u

n, sn) - Nn
\kappa (uh,e(tn), sh,e(tn))], \delta te

n+1
u \rangle 

+ \langle (I + \tau Ln
\kappa )(e

 - \tau Ln
\kappa  - I)enu, \delta te

n+1
u \rangle  - 

\int \tau 

0

\langle (I + \tau Ln
\kappa )e

 - (\tau  - \theta )Ln
\kappa Rn

1u(\theta ), \delta te
n+1
u \rangle d\theta .

By using Corollary 3.5, the identity \| en+1
u  - enu\| 2 = \| en+1

u \| 2 - \| enu\| 2 - 2\tau \langle enu, \delta ten+1
u \rangle ,

and Young's inequality, we obtain

LHS \geq \tau \| \delta ten+1
u \| 2 +G\ast \kappa \| en+1

u \| 2  - G\ast \kappa \| enu\| 2  - 2G\ast \kappa \tau \langle enu, \delta ten+1
u \rangle (3.21)

\geq 7\tau 

8
\| \delta ten+1

u \| 2 +G\ast \kappa \| en+1
u \| 2  - G\ast \kappa \| enu\| 2  - 8G2

\ast \kappa 
2\tau \| enu\| 2.

According to (3.10), when \tau \leq M - 1
h , we have \| I + \tau Ln

\kappa \| \leq 1 + \tau \rho (Ln
\kappa ) \leq 2. By

Lemma 3.4, we have \| e - \tau Ln
\kappa  - I\| \leq \| \tau Ln

\kappa \| \leq Mh\tau . Thus, for \tau \leq M - 1
h , we have

RHS \leq 2\tau \| Nn
\kappa (u

n, sn) - Nn
\kappa (uh,e(tn), sh,e(tn))\| \| \delta ten+1

u \| (3.22)

+ 2Mh\tau \| enu\| \| \delta ten+1
u \| + 2\tau sup

\theta \in (0,\tau )

\| Rn
1u(\theta )\| \| \delta ten+1

u \| 

\leq 8\tau \| Nn
\kappa (u

n, sn) - Nn
\kappa (uh,e(tn), sh,e(tn))\| 2

+ 8M2
h\tau \| enu\| 2 + 8\tau sup

\theta \in (0,\tau )

\| Rn
1u(\theta )\| 2 +

3\tau 

8
\| \delta ten+1

u \| 2.

Using Lemma 3.6, we have

\| Nn
\kappa (u

n, sn) - Nn
\kappa (uh,e(tn), sh,e(tn))\| (3.23)

\leq \| g(un, sn)f(un) - g(uh,e(tn), sh,e(tn))f(uh,e(tn))\| + \kappa g(un, sn)\| enu\| 
\leq (Cg +G\ast \kappa )\| enu\| + Cg| ens | ,

and thus we obtain from (3.22) and (3.23) that

RHS \leq [16(Cg +G\ast \kappa )2 + 8M2
h ]\tau \| enu\| 2 + 16C2

g\tau | ens | 2(3.24)

+ 8\tau sup
\theta \in (0,\tau )

\| Rn
1u(\theta )\| 2 +

3\tau 

8
\| \delta ten+1

u \| 2.

Combining (3.24) with (3.21), we obtain

G\ast \kappa \| en+1
u \| 2  - G\ast \kappa \| enu\| 2 +

\tau 

2
\| \delta ten+1

u \| 2(3.25)

\leq [16(Cg +G\ast \kappa )2 + 8M2
h + 8G2

\ast \kappa 
2]\tau \| enu\| 2 + 16C2

g\tau | ens | 2

+ 8\tau sup
\theta \in (0,\tau )

\| Rn
1u(\theta )\| 2.

The difference between (3.5b) and (3.15) leads to

en+1
s  - ens = \langle g(uh,e(tn), sh,e(tn))f(uh,e(tn)) - g(un, sn)f(un), uh,e(tn+1) - uh,e(tn)\rangle 
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 - g(un, sn)\langle f(un), en+1
u  - enu\rangle  - \tau Rn

1s.

Multiplying the above equation by 2en+1
s yields

| en+1
s | 2  - | ens | 2 + | en+1

s  - ens | 2(3.26)

= 2en+1
s \langle g(uh,e(tn), sh,e(tn))f(uh,e(tn)) - g(un, sn)f(un),

uh,e(tn+1) - uh,e(tn)\rangle  - 2\tau g(un, sn)en+1
s \langle f(un), \delta ten+1

u \rangle  - 2\tau Rn
1se

n+1
s .

For the first term on the RHS of (3.26), using Lemma 3.6, we have

2en+1
s \langle g(uh,e(tn), sh,e(tn))f(uh,e(tn)) - g(un, sn)f(un), uh,e(tn+1) - uh,e(tn)\rangle 

(3.27)

\leq 2| en+1
s | \| g(uh,e(tn), sh,e(tn))f(uh,e(tn)) - g(un, sn)f(un)\| \| uh,e(tn+1) - uh,e(tn)\| 

\leq 2Cg\tau | en+1
s | (\| enu\| + | ens | )\| (uh,e)t(\theta n)\| (tn < \theta n < tn+1)

\leq C1\tau (\| enu\| 2 + | ens | 2 + | en+1
s | 2),

where C1 > 0 depends on C\ast , | \Omega | , uh,e, and \| f\| C1[ - \beta ,\beta ]. For the second term on the
RHS of (3.26), we have

 - 2\tau g(un, sn)en+1
s \langle f(un), \delta ten+1

u \rangle \leq 2\tau G\ast \| f(un)\| | en+1
s | \| \delta ten+1

u \| (3.28)

\leq C2\tau | en+1
s | 2 + \tau 

2
\| \delta ten+1

u \| 2,

where C2 > 0 depends on C\ast , | \Omega | , uinit, and \| f\| C[ - \beta ,\beta ]. For the third term on the
RHS of (3.26), we have

(3.29)  - 2\tau Rn
1se

n+1
s \leq \tau | Rn

1s| 2 + \tau | en+1
s | 2.

Substituting (3.27)--(3.29) into (3.26) leads to
(3.30)

| en+1
s | 2 - | ens | 2 \leq C1\tau \| enu\| 2+C1\tau | ens | 2+(1+C1+C2)\tau | en+1

s | 2+ \tau 

2
\| \delta ten+1

u \| 2+\tau | Rn
1s| 2.

Adding (3.25) and (3.30) and using (3.16), we reach

G\ast \kappa (\| en+1
u \| 2  - \| enu\| 2) + (| en+1

s | 2  - | ens | 2) \leq C3\tau (\| enu\| 2 + | ens | 2 + | en+1
s | 2) + 9C2

e,h\tau 
3,

where C3 > 0 depends on C\ast , | \Omega | , T , uh,e, \kappa , \varepsilon , and \| f\| C1[ - \beta ,\beta ]. Finally, by applying
the discrete Gronwall inequality, we obtain

G\ast \kappa \| enu\| 2 + | ens | 2 \leq \~Ch,1\tau 
2,

where \~Ch,1 > 0 is a constant independent of \tau , which finally gives us (3.18) by taking

Ch,1 =
\sqrt{} 

\~Ch,1/min\{ 1, \widehat G\ast \kappa \} .

3.2. Second-order GSAV-EI scheme. Now we present the second-order
generalized SAV-exponential integrator (GSAV-EI2) scheme, which is developed in
the prediction-correction fashion. Let \kappa > 0 again be the stabilizing constant. First,
we adopt the GSAV-EI1 scheme (3.5) to generate a solution (\widetilde un+1, \widetilde sn+1) as the pre-

diction and define \widetilde un+ 1
2 = (un+\widetilde un+1)/2 and \widetilde sn+ 1

2 = (sn+\widetilde sn+1)/2. Then we rewrite
the space-discrete system (3.2a) in the equivalent form as

duh
dt

= \varepsilon 2\Delta huh + g(uh, sh)f(uh) + \kappa g(\widetilde un+ 1
2 , \widetilde sn+ 1

2 )(uh  - uh)
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GSAV-EI SCHEMES FOR ALLEN--CAHN TYPE EQUATIONS 1917

=  - Ln+ 1
2

\kappa uh +N
n+ 1

2
\kappa (uh, sh),

where the linear operator L
n+ 1

2
\kappa = \kappa g(\widetilde un+ 1

2 , \widetilde sn+ 1
2 )I - \varepsilon 2\Delta h is self-adjoint and positive

definite since g(\widetilde un+ 1
2 , \widetilde sn+ 1

2 ) > 0 and \kappa > 0, and the nonlinear operator

(3.31) N
n+ 1

2
\kappa (v, r) = g(v, r)f(v) + \kappa g(\widetilde un+ 1

2 , \widetilde sn+ 1
2 )v \forall v \in \scrM h, \forall r \in \BbbR .

Applying the variation-of-constants formula gives us

(3.32) uh(tn+1) = e - \tau L
n+1

2
\kappa uh(tn)+

\int \tau 

0

e - (\tau  - \theta )L
n+1

2
\kappa N

n+ 1
2

\kappa (uh(tn+\theta ), sh(tn+\theta )) d\theta .

Approximating the term N
n+ 1

2
\kappa by its value at \theta = \tau 

2 in the above equation, i.e.,

(3.33) N
n+ 1

2
\kappa (uh(tn + \theta ), sh(tn + \theta )) \approx N

n+ 1
2

\kappa (uh(tn+ 1
2
), sh(tn+ 1

2
)),

we obtain the GSAV-EI2 scheme for computing un+1 as

un+1 = e - \tau L
n+1

2
\kappa un +

\biggl( \int \tau 

0

e - (\tau  - \theta )L
n+1

2
\kappa d\theta 

\biggr) 
N

n+ 1
2

\kappa (\widetilde un+ 1
2 , \widetilde sn+ 1

2 )(3.34a)

= e - \tau L
n+1

2
\kappa un + \tau \phi 1( - \tau L

n+ 1
2

\kappa )N
n+ 1

2
\kappa (\widetilde un+ 1

2 , \widetilde sn+ 1
2 ).

To update sn+1, we discretize (3.2b) at t = tn+ 1
2
to give

sn+1 = sn  - g(\widetilde un+ 1
2 , \widetilde sn+ 1

2 )\langle f(\widetilde un+ 1
2 ), un+1  - un\rangle (3.34b)

+
\kappa 

2
g(\widetilde un+ 1

2 , \widetilde sn+ 1
2 )\langle un+1  - \widetilde un+1, un+1  - un\rangle .

The second term on the RHS of (3.34b) is based on the Crank--Nicolson discretization,
and the third term is an artificial stabilization term of high order.

3.2.1. Energy dissipation and MBP. Similar to the analysis of the GSAV-
EI1 scheme, we first prove the unconditional preservation of the energy dissipation law
and the MBP of the GSAV-EI2 scheme (3.34); then we show the uniform boundedness

of g(un, sn) and g(\widetilde un+ 1
2 , \widetilde sn+ 1

2 ), which is important to the error analysis.

Theorem 3.8 (energy dissipation of GSAV-EI2). The GSAV-EI 2 scheme (3.34)
is unconditionally energy dissipative in the time-discrete sense that \scrE h(un+1, sn+1) \leq 
\scrE h(un, sn) holds for any \tau > 0 and n \geq 0.

Proof. Similar to the proof of Theorem 3.1, some simple calculations give us

\scrE h(un+1, sn+1) - \scrE h(un, sn) = \langle Ln+ 1
2

\kappa un+1  - N
n+ 1

2
\kappa (\widetilde un+ 1

2 , \widetilde sn+ 1
2 ), un+1  - un\rangle 

 - \kappa g(\widetilde un+ 1
2 , \widetilde sn+ 1

2 )\langle un+1  - \widetilde un+ 1
2 , un+1  - un\rangle 

 - \varepsilon 2

2
\| \nabla hu

n+1  - \nabla hu
n\| 2 + \kappa 

2
g(\widetilde un+ 1

2 , \widetilde sn+ 1
2 )\langle un+1  - \widetilde un+1, un+1  - un\rangle 

= \langle (Ln+ 1
2

\kappa  - (I  - e - \tau L
n+1

2
\kappa ) - 1L

n+ 1
2

\kappa )(un+1  - un), un+1  - un\rangle 

 - \varepsilon 2

2
\| \nabla hu

n+1  - \nabla hu
n\| 2  - \kappa 

2
g(\widetilde un+ 1

2 , \widetilde sn+ 1
2 )\| un+1  - un\| 2.

Then the energy dissipation comes from the negative definiteness of the operator

L
n+ 1

2
\kappa  - (I  - e - \tau L

n+1
2

\kappa ) - 1L
n+ 1

2
\kappa .
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1918 LILI JU, XIAO LI, AND ZHONGHUA QIAO

Corollary 3.9. For any \tau > 0 and n \geq 0, it holds that sn \leq Eh(uinit) and\widetilde sn+1 \leq Eh(uinit) for the GSAV-EI 2 scheme (3.34).

Proof. Similar to the proof of Corollary 3.2, the uniform boundedness of \{ sn\} is a
direct consequence of Theorem 3.8. Since \widetilde sn+1 is generated by the GSAV-EI1 scheme
(3.5), we have \widetilde sn+1 \leq \scrE h(\widetilde un+1, \widetilde sn+1) \leq \scrE h(un, sn) according to Theorem 3.1, and
thus \widetilde sn+1 \leq Eh(uinit).

Theorem 3.10 (MBP of GSAV-EI2). If \kappa \geq \| f \prime \| C[ - \beta ,\beta ], then the GSAV-EI 2
scheme (3.34) preserves the MBP unconditionally; i.e., for any \tau > 0, the time-
discrete version of MBP (3.8) is valid.

Proof. Suppose (un, sn) is given and \| un\| \infty \leq \beta for some n. According to The-

orem 3.3, we know that \| \widetilde un+1\| \infty \leq \beta , and thus \| \widetilde un+ 1
2 \| \infty \leq \beta . We also have from

Theorem 3.8 that \widetilde sn+ 1
2 \leq Eh(uinit). Noting that (3.34a) has the same form as (3.5a),

the proof can be completed in a way similar to that of Theorem 3.3.

Corollary 3.11. Given any fixed h > 0 and T > 0, if \kappa \geq \| f \prime \| C[ - \beta ,\beta ] and

\| uinit\| \infty \leq \beta , then there are two constants \widehat G\ast > 0 and G\ast > 0 such that

\widehat G\ast \leq g(un, sn) \leq G\ast , \widehat G\ast \leq g(\widetilde un+ 1
2 , \widetilde sn+ 1

2 ) \leq G\ast , 0 \leq n \leq \lfloor T/\tau \rfloor  - 1,

where G\ast is the same constant defined in Corollary 3.5, and \widehat G\ast depends on C\ast , C
\ast ,

| \Omega | , T , uinit, \kappa , \varepsilon , and \| f\| C[ - \beta ,\beta ] but is independent of \tau .

Proof. As done in the proof of Corollary 3.5, the upper bound G\ast of \{ g(un, sn)\} 
and \{ g(\widetilde un+ 1

2 , \widetilde sn+ 1
2 )\} is the direct result of the monotonicity of \sigma and Theorems 3.8

and 3.10, and thus \rho (Ln
\kappa ) \leq Mh and \rho (L

n+ 1
2

\kappa ) \leq Mh with Mh > 0 the same constant

defined in (3.10). For the existence of the lower bound \widehat G\ast , it suffices to show the

existence of the lower bounds of \{ sn\} and \{ \widetilde sn+ 1
2 \} . Similar to the derivations in the

proof of Corollary 3.5, we have

\| un+1  - un\| \leq \tau \beta | \Omega | 12 (Mh +G\ast \kappa ), \| \widetilde un+1  - un\| \leq \tau \beta | \Omega | 12 (Mh +G\ast \kappa ),

and thus \| un+1  - \widetilde un+1\| \leq 2T\beta | \Omega | 12 (Mh +G\ast \kappa ). Then we derive from (3.34b) that

sn+1 \geq sn  - g(\widetilde un+ 1
2 , \widetilde sn+ 1

2 )\| f(\widetilde un+ 1
2 )\| \| un+1  - un\| 

 - \kappa 

2
g(\widetilde un+ 1

2 , \widetilde sn+ 1
2 )\| un+1  - \widetilde un+1\| \| un+1  - un\| 

\geq sn  - G\ast F0\beta | \Omega | (Mh +G\ast \kappa )\tau  - G\ast \kappa T\beta 2| \Omega | (Mh +G\ast \kappa )2\tau .

By recursion, we obtain

sn \geq  - C\ast  - G\ast F0\beta | \Omega | (Mh +G\ast \kappa )T  - G\ast \kappa \beta 2| \Omega | (Mh +G\ast \kappa )2T 2.

Finally, according to (3.11), we also have

\widetilde sn+1 \geq sn  - G\ast F0\beta | \Omega | (Mh +G\ast \kappa )T,

which completes the proof.

3.2.2. Temporal error analysis. The following lemma claims that the tem-
poral truncation error of (3.34) is of second order. The proof involves some careful
computations in calculus, and we present it in Appendix A.
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Lemma 3.12. Given any fixed h > 0 and T > 0, assume that the exact solution

uh,e is smooth enough on [0, T ]. Define \widetilde un+ 1
2

h,e = (uh,e(tn)+uh,e(tn+1))/2 and \widetilde sn+ 1
2

h,e =
(sh,e(tn) + sh,e(tn+1))/2. It holds that

uh,e(tn+1) = e - \tau L
n+1

2
\kappa uh,e(tn) + \tau \phi 1( - \tau L

n+ 1
2

\kappa )N
n+ 1

2
\kappa (\widetilde un+ 1

2

h,e , \widetilde sn+ 1
2

h,e ) + \tau Rn
2u,

(3.35a)

sh,e(tn+1) = sh,e(tn) - g(\widetilde un+ 1
2

h,e , \widetilde sn+ 1
2

h,e )\langle f(\widetilde un+ 1
2

h,e ), uh,e(tn+1) - uh,e(tn)\rangle + \tau Rn
2s,

(3.35b)

with the truncation terms Rn
2u and Rn

2s satisfying

(3.36) \| Rn
2u\| \leq Ce,h\tau 

2, | Rn
2s| \leq Ce,h\tau 

2,

where the constant Ce,h > 0 is independent of \tau .

The error functions enu and ens are defined by (3.17). In addition, we define

\widetilde en+1
u = \widetilde un+1  - uh,e(tn+1), \widetilde en+1

s = \widetilde sn+1  - sh,e(tn+1).

We first present a lemma on the estimates with respect to \widetilde en+1
u and \widetilde en+1

s . The proof
is similar to that of Theorem 3.7 and will be given in Appendix B.

Lemma 3.13. Given any fixed h > 0 and T > 0, let \kappa \geq \| f \prime \| C[ - \beta ,\beta ]. Assume
that the exact solution uh,e is smooth enough on [0, T ] and \| uinit\| \infty \leq \beta . If \tau is
sufficiently small, then it holds that

(3.37) \| \widetilde en+1
u \| 2 + | \widetilde en+1

s | 2 \leq \widetilde Ch(\| enu\| 2 + | ens | 2) + \widetilde ChC
2
e,h\tau 

4, 0 \leq n \leq \lfloor T/\tau \rfloor ,

where the constant \widetilde Ch > 0 is independent of \tau .

Theorem 3.14 (temporal error estimate of GSAV-EI2). Given any fixed h > 0
and T > 0, let \kappa \geq \| f \prime \| C[ - \beta ,\beta ]. Assume that the exact solution uh,e is smooth enough
on [0, T ] and \| uinit\| \infty \leq \beta . If \tau is sufficiently small, then we have the following error
estimate for the GSAV-EI 2 scheme (3.34):

(3.38) \| un  - uh,e(tn)\| + | sn  - sh,e(tn)| \leq Ch,2\tau 
2, 0 \leq n \leq \lfloor T/\tau \rfloor ,

where the constant Ch,2 > 0 is independent of \tau .

Proof. The difference between (3.34a) and (3.35a) gives

en+1
u = e - \tau L

n+1
2

\kappa enu+\tau \phi 1( - \tau L
n+ 1

2
\kappa )[N

n+ 1
2

\kappa (\widetilde un+ 1
2 , \widetilde sn+ 1

2 ) - Nn+ 1
2

\kappa (\widetilde un+ 1
2

h,e , \widetilde sn+ 1
2

h,e )] - \tau Rn
2u.

Acting I + \tau L
n+ 1

2
\kappa on both sides of the above equation, we obtain

(1 + \tau \kappa g(\widetilde un+ 1
2 , \widetilde sn+ 1

2 ))(en+1
u  - enu) - \tau \varepsilon 2(\Delta he

n+1
u  - \Delta he

n
u)(3.39)

= \tau (I + \tau L
n+ 1

2
\kappa )\phi 1( - \tau L

n+ 1
2

\kappa )[N
n+ 1

2
\kappa (\widetilde un+ 1

2 , \widetilde sn+ 1
2 ) - N

n+ 1
2

\kappa (\widetilde un+ 1
2

h,e , \widetilde sn+ 1
2

h,e )]

+ (I + \tau L
n+ 1

2
\kappa )(e - \tau L

n+1
2

\kappa  - I)enu  - \tau (I + \tau L
n+ 1

2
\kappa )Rn

2u.

Taking the discrete inner product of (3.39) with \delta te
n+1
u , similarly to (3.21), we esti-

mate the LHS of the above identity as

LHS = \tau \| \delta ten+1
u \| 2 + \kappa g(\widetilde un+ 1

2 , \widetilde sn+ 1
2 )\| en+1

u  - enu\| 2 + \varepsilon 2\| \nabla he
n+1
u  - \nabla he

n
u\| 2

D
ow

nl
oa

de
d 

01
/1

8/
23

 to
 1

58
.1

32
.1

61
.5

2 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1920 LILI JU, XIAO LI, AND ZHONGHUA QIAO

\geq \tau \| \delta ten+1
u \| 2 + \kappa \widehat G\ast \| en+1

u  - enu\| 2

= \tau \| \delta ten+1
u \| 2 + \widehat G\ast \kappa \| en+1

u \| 2  - \widehat G\ast \kappa \| enu\| 2  - 2 \widehat G\ast \kappa \tau \langle enu, \delta ten+1
u \rangle 

\geq 7\tau 

8
\| \delta ten+1

u \| 2 + \widehat G\ast \kappa \| en+1
u \| 2  - \widehat G\ast \kappa \| enu\| 2  - 8 \widehat G2

\ast \kappa 
2\tau \| enu\| 2,

and, when \tau \leq M - 1
h , we estimate the RHS of (3.39) as

RHS = \tau \langle (I + \tau L
n+ 1

2
\kappa )\phi 1( - \tau L

n+ 1
2

\kappa )[N
n+ 1

2
\kappa (\widetilde un+ 1

2 , \widetilde sn+ 1
2 ) - N

n+ 1
2

\kappa (\widetilde un+ 1
2

h,e , \widetilde sn+ 1
2

h,e )], \delta te
n+1
u \rangle 

+ \langle (I + \tau L
n+ 1

2
\kappa )(e - \tau L

n+1
2

\kappa  - I)enu, \delta te
n+1
u \rangle  - \tau \langle (I + \tau L

n+ 1
2

\kappa )Rn
2u, \delta te

n+1
u \rangle 

\leq 2\tau \| Nn+ 1
2

\kappa (\widetilde un+ 1
2 , \widetilde sn+ 1

2 ) - N
n+ 1

2
\kappa (\widetilde un+ 1

2
h,e , \widetilde sn+ 1

2
h,e )\| \| \delta ten+1

u \| 

+ 2Mh\tau \| enu\| \| \delta ten+1
u \| + 2\tau \| Rn

2u\| \| \delta ten+1
u \| 

\leq 8\tau \| Nn+ 1
2

\kappa (\widetilde un+ 1
2 , \widetilde sn+ 1

2 ) - N
n+ 1

2
\kappa (\widetilde un+ 1

2
h,e , \widetilde sn+ 1

2
h,e )\| 2

+ 8M2
h\tau \| enu\| 2 + 8\tau \| Rn

2u\| 2 +
3\tau 

8
\| \delta ten+1

u \| 2.

Note that

N
n+ 1

2
\kappa (\widetilde un+ 1

2 , \widetilde sn+ 1
2 ) - N

n+ 1
2

\kappa (\widetilde un+ 1
2

h,e , \widetilde sn+ 1
2

h,e )

= g(\widetilde un+ 1
2 , \widetilde sn+ 1

2 )f(\widetilde un+ 1
2 ) - g(\widetilde un+ 1

2

h,e , \widetilde sn+ 1
2

h,e )f(\widetilde un+ 1
2

h,e ) + \kappa g(\widetilde un+ 1
2 , \widetilde sn+ 1

2 )\widetilde en+ 1
2

u

and \widetilde un+ 1
2 , \widetilde un+ 1

2

h,e , \widetilde sn+ 1
2 , \widetilde sn+ 1

2

h,e are all bounded uniformly according to the energy dissi-
pation law and the MBP. Similar to the proof of Lemma 3.6, we can obtain

\| Nn+ 1
2

\kappa (\widetilde un+ 1
2 , \widetilde sn+ 1

2 ) - N
n+ 1

2
\kappa (\widetilde un+ 1

2

h,e , \widetilde sn+ 1
2

h,e )\| (3.40)

\leq Cg +G\ast \kappa 

2
(\| enu\| + \| \widetilde en+1

u \| ) + Cg

2
(| ens | + | \widetilde en+1

s | ).

Combining (3.40) with estimates of the LHS and RHS of (3.39), we get

\widehat G\ast \kappa \| en+1
u \| 2  - \widehat G\ast \kappa \| enu\| 2 +

\tau 

2
\| \delta ten+1

u \| 2(3.41)

\leq [8(Cg +G\ast \kappa )2 + 8M2
h + 8 \widehat G2

\ast \kappa 
2]\tau \| enu\| 2 + 8(Cg +G\ast \kappa )2\tau \| \widetilde en+1

u \| 2

+ 8C2
g\tau (| ens | 2 + | \widetilde en+1

s | 2) + 8\tau \| Rn
2u\| 2.

For the error equation (3.35b), we can add a zero-value term to the RHS to give

sh,e(tn+1) - sh,e(tn)(3.42)

=  - g(\widetilde un+ 1
2

h,e , \widetilde sn+ 1
2

h,e )\langle f(\widetilde un+ 1
2

h,e ), uh,e(tn+1) - uh,e(tn)\rangle +
\kappa 

2
g(\widetilde un+ 1

2 , \widetilde sn+ 1
2 )

\cdot \langle uh,e(tn+1) - uh,e(tn+1), uh,e(tn+1) - uh,e(tn)\rangle + \tau Rn
2s.

The difference between (3.34b) and (3.42) leads to

en+1
s  - ens =

\bigl\langle 
g(\widetilde un+ 1

2

h,e , \widetilde sn+ 1
2

h,e )f(\widetilde un+ 1
2

h,e ) - g(\widetilde un+ 1
2 , \widetilde sn+ 1

2 )f(\widetilde un+ 1
2 ), uh,e(tn+1) - uh,e(tn)

\bigr\rangle 
+
\kappa 

2
g(\widetilde un+ 1

2 , \widetilde sn+ 1
2 )\langle un+1  - \widetilde un+1, en+1

u  - enu\rangle 

 - g(\widetilde un+ 1
2 , \widetilde sn+ 1

2 )\langle f(\widetilde un+ 1
2 ), en+1

u  - enu\rangle 
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+
\kappa 

2
g(\widetilde un+ 1

2 , \widetilde sn+ 1
2 )\langle en+1

u  - \widetilde en+1
u , uh,e(tn+1) - uh,e(tn)\rangle  - \tau Rn

2s.

Multiplying the above equation by 2en+1
s yields

| en+1
s | 2  - | ens | 2 + | en+1

s  - ens | 2

= 2en+1
s

\bigl\langle 
g(\widetilde un+ 1

2

h,e , \widetilde sn+ 1
2

h,e )f(\widetilde un+ 1
2

h,e ) - g(\widetilde un+ 1
2 , \widetilde sn+ 1

2 )f(\widetilde un+ 1
2 ), uh,e(tn+1) - uh,e(tn)

\bigr\rangle 
+ \tau \kappa g(\widetilde un+ 1

2 , \widetilde sn+ 1
2 )en+1

s \langle un+1  - \widetilde un+1, \delta te
n+1
u \rangle 

 - 2\tau en+1
s g(\widetilde un+ 1

2 , \widetilde sn+ 1
2 )\langle f(\widetilde un+ 1

2 ), \delta te
n+1
u \rangle 

+ \kappa g(\widetilde un+ 1
2 , \widetilde sn+ 1

2 )en+1
s \langle en+1

u  - \widetilde en+1
u , uh,e(tn+1) - uh,e(tn)\rangle  - 2\tau en+1

s Rn
2s.

Similar to the deduction from (3.26) to (3.30), we then obtain

| en+1
s | 2  - | ens | 2 \leq C5\tau (\| enu\| 2 + \| en+1

u \| 2 + \| \widetilde en+1
u \| 2(3.43)

+ | ens | 2 + | en+1
s | 2 + | \widetilde en+1

s | 2) + \tau 

2
\| \delta ten+1

u \| 2 + \tau | Rn
2s| 2

with C5 depending on C\ast , | \Omega | , uh,e, \kappa , and \| f\| C1[ - \beta ,\beta ].
Adding (3.41) and (3.43), we obtain\widehat G\ast \kappa (\| en+1

u \| 2  - \| enu\| 2) + (| en+1
s | 2  - | ens | 2)(3.44)

\leq C6\tau (\| enu\| 2 + \| en+1
u \| 2 + \| \widetilde en+1

u \| 2 + | ens | 2 + | en+1
s | 2 + | \widetilde en+1

s | 2)
+ 8\tau \| Rn

2u\| 2 + \tau | Rn
2s| 2,

where C6 > 0 depends on C\ast , | \Omega | , uh,e, and \| f\| C1[ - \beta ,\beta ]. Substituting (3.37) into
(3.44) and using the estimate (3.36), we obtain\widehat G\ast \kappa (\| en+1

u \| 2  - \| enu\| 2) + (| en+1
s | 2  - | ens | 2)(3.45)

\leq C6( \widetilde Ch + 1)\tau (\| enu\| 2 + \| en+1
u \| 2 + | ens | 2 + | en+1

s | 2) + (C6
\widetilde Ch + 9)C2

e,h\tau 
5.

When \tau is sufficiently small, similar to the last paragraph in the proof of Theorem
3.7, applying the discrete Gronwall inequality to (3.45) leads to\widehat G\ast \kappa \| enu\| 2 + | ens | 2 \leq \~Ch,2\tau 

4,

where \~Ch,2 > 0 is a constant independent of \tau , which gives us (3.38) by taking

Ch,2 =
\sqrt{} 

\~Ch,2/min\{ 1, \widehat G\ast \kappa \} .
Remark 3.4. In addition to the periodic or homogeneous Neumann boundary

condition considered above, one can also equip (1.1) with the Dirichlet boundary con-
dition u(t,\bfitx ) = \psi (t,\bfitx ) for t > 0 and \bfitx \in \partial \Omega . Then it is shown in [14] that the
solution satisfies the MBP (1.4) if | \psi (t,\bfitx )| \leq \beta for any t > 0 and \bfitx \in \partial \Omega , and the
energy dissipation law is also valid if \psi (t,\bfitx ) = \psi (\bfitx ) is independent of t. In particu-
lar, for (1.1) with a time-independent boundary value \| \psi \| C(\partial \Omega ) \leq \beta , we are still able
to develop the GSAV-EI schemes simultaneously preserving the MBP and the energy
dissipation law, based on a slight modification of the space-discrete system (3.2). The
main idea is to add an extra term Bh to (3.2a), where Bh depends only on the ratio
\varepsilon 2/h2 and the boundary value \psi ; see [14] for details of the form of Bh. For example,

the GSAV-EI 2 scheme can be established by combining (3.34a) with N
n+ 1

2
\kappa replaced

by N
n+ 1

2
\kappa + Bh and (3.34b) with  - \langle Bh, u

n+1  - un\rangle added to its RHS. Since Bh is
time-independent, the Bh-related terms do not affect the order of the truncation error
in time. The first-order scheme can be developed in a similar spirit. We omit the
details due to the limited space.
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4. Numerical experiments. Let us consider the model equation (1.1) for Allen--
Cahn type gradient flows in two-dimensional square domain \Omega = (0, 1)\times (0, 1) equipped
with a periodic boundary condition or a homogeneous Neumann boundary condition.
In either case, the product of a matrix exponential with a vector can be efficiently
implemented by using the fast transform based on Lemma 2.2(iii). We also set the
interfacial parameter \varepsilon = 0.01. There are two commonly used forms of the nonlinear
function f(u). One is given by the cubic function

(4.1) f(u) =  - F \prime (u) = u - u3,

where F (u) = 1
4 (1 - u2)2 is the double-well potential. In this case, one can set \beta = 1

and \| f \prime \| C[ - 1,1] = 2. The other one is determined by the Flory--Huggins potential

F (u) = \theta 
2 [(1 + u) ln(1 + u) + (1 - u) ln(1 - u)] - \theta c

2 u
2, and

(4.2) f(u) =  - F \prime (u) =
\theta 

2
ln

1 - u

1 + u
+ \theta cu,

where \theta c > \theta > 0. In the following numerical experiments, we set \theta = 0.8 and
\theta c = 1.6; then the positive root of f(u) = 0 is \beta \approx 0.9575 and \| f \prime \| C[ - \beta ,\beta ] \approx 8.02. We
always set \kappa = \| f \prime \| C[ - \beta ,\beta ] for both cases in the following experiments. In addition,
we always adopt the exponential function with a constant parameter a > 0 as

(4.3) \sigma (x) = eax, x \in \BbbR .

Clearly, \sigma (0) = 1 and \sigma \prime (0) = a.

Remark 4.1. For the double-well potential (4.1) and the Flory--Huggins potential
(4.2), it is easy to see that the value of the bulk energy part E1h(u

n) is close to 0 due
to the MBP of \{ un\} . Since sn is also an approximation of E1h(u

n), only the behavior
of \sigma near 0 has a relatively large effect on the performance of the proposed GSAV-EI
schemes. By the Taylor expansion, these typical elementary functions for \sigma given in
Remark 3.1 perform like a linear function near 0 with the y-intercept being 1 and the
slope a = \sigma \prime (0) if parameterized as (4.3). Thus, there is no essential difference on all
these choices for the above test problems.

4.1. Convergence in time. To verify the temporal convergence rates of the
GSAV-EI schemes, let us consider the problem (1.1) with a smooth initial value

uinit(x, y) = 0.1 sin(2\pi x) sin(2\pi y).

By fixing the uniform spatial mesh size h = 1/2048, we compute the numerical
solutions at t = 2 using the GSAV-EI1 and GSAV-EI2 schemes with various time
step sizes \tau = 2 - k, k = 4, 5, . . . , 12. To compute the numerical errors, the bench-
mark solution is generated by using the fourth-order integrating factor Runge--Kutta
(IFRK4) scheme [31] with the time step size \tau = 0.1 \times 2 - 12. Figure 1 plots the L2

norms of the numerical errors versus the time step sizes, produced by GSAV-EI1 and
GSAV-EI2 with \sigma given by (4.3) with a = 1, a = 10, and a = 100, where the left graph
shows the results for the double-well potential case (4.1) and the right one corresponds
to the Flory--Huggins potential case (4.2). The expected convergence rates in time,
first order for GSAV-EI1 and second order for GSAV-EI2, are clearly observed for all
cases. In addition, we find that the larger a leads to smaller numerical errors for the
GSAV-EI2 scheme, but such an effect is not obvious for the GSAV-EI1 scheme.
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We also repeat all the above convergence tests on the spatial mesh with h = 1/512
and find that the results are almost identical to those with h = 1/2048 shown in Figure
1. This suggests that the temporal convergence constants in (3.18) and (3.38) could
be independent of the spatial mesh size h, although we are not able to remove their
dependence on h in the theoretical analysis.
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Fig. 1. The L2 norm errors vs. the time step sizes produced by the GSAV-EI1 and GSAV-EI2
schemes with the spatial mesh of h = 1/2048 for (1.1). Left: the double-well potential (4.1); right:
the Flory--Huggins potential (4.2).

4.2. Unconditional preservation of MBP and energy dissipation law.
We numerically verify the MBP and the energy dissipation law of the proposed GSAV-
EI1 and GSAV-EI2 schemes by simulating the phase transition process beginning with
a random state. Though the discrete energy dissipation law is proved with respect to
the slightly modified energy (3.4), we are more concerned about the original energy
defined by (2.3) since it reflects the real physical mechanism of the dynamic process.
We consider (1.1) on the uniform spatial mesh with h = 1/512. Different from the
previous convergence tests, the initial state is generated by random numbers ranging
from  - 0.8 to 0.8 on each mesh point, and thus it has highly oscillated values.

We compute the numerical solutions by the GSAV-EI1 and GSAV-EI2 schemes
with \tau = 0.01 and various values of a (a = 1, 5, 10, respectively) and treat the results
obtained by the IFRK4 scheme with the time step size \tau = 10 - 4 as the benchmark.
First, we adopt the double-well potential (4.1), and the evolutions of the supremum
norms and the energies of the numerical solutions are shown in Figure 2. Obviously,
the MBP and the energy dissipation law are preserved perfectly. In addition, we
observe that the smaller a produces slightly more accurate numerical solutions in this
case. This behavior is opposite to that with a smooth initial value shown in the
convergence tests. Then we consider the Flory--Huggins potential (4.2) and Figure
3 presents the evolutions of the supremum norms and the energies of the numerical
solutions. Similar to the double-well potential case, the preservation of the MBP
and the energy dissipation law are obvious, and the smaller value of a in (4.3) yields
slightly more accurate numerical solution.

Next, we repeat the above experiments by choosing the (10 times) larger time
step size \tau = 0.1. We can observe the similar results that the MBP and the energy
dissipation law are still preserved well, although the large time step size leads to a
little less accurate numerical solutions.

4.3. Adaptive time-stepping and long-time simulation. Since the two pro-
posed GSAV-EI schemes (3.5) and (3.34) are both one-step approaches, without sac-
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Fig. 2. Evolutions of the supremum norms and the energies of simulated solutions computed
by the GSAV-EI1 (top row) and GSAV-EI2 (bottom row) schemes with \tau = 0.01 for (1.1) with the
double-well potential (4.1).
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Fig. 3. Evolutions of the supremum norms and the energies of simulated solutions computed
by the GSAV-EI1 (top row) and GSAV-EI2 (bottom row) schemes with \tau = 0.01 for (1.1) with the
Flory--Huggins potential (4.2).
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rificing the energy dissipation law and the MBP, they can also be applied on a set of
nonuniform temporal nodes \{ tn\} n\geq 0 with t0 = 0 and tn+1 = tn+\tau n+1, where the time
step size \tau n+1 varies in n. Let us consider (1.1) with \varepsilon = 0.01 and the Flory--Huggins
potential (4.2) again but with the homogeneous Neumann boundary condition. The
spatial mesh and the random initial value are the same as aforementioned. We adopt
the GSAV-EI2 scheme (3.34) with \sigma (x) = ex and variable time step sizes \tau n+1 updated
by using the approach from [40]:

\tau n+1 = max

\biggl\{ 
\tau min,

\tau max\sqrt{} 
1 + \alpha | dtEh(un)| 2

\biggr\} 
,

where dtEh(u
n) = (Eh(u

n) - Eh(u
n - 1))/\tau n and \alpha > 0 is a constant parameter. Here

we choose the minimal and maximal time step sizes as \tau min = 0.0001 and \tau max = 0.1,
respectively, and set \alpha = 105 as done in [40]. For comparison, we also conduct the
simulation by the GSAV-EI2 scheme with the uniform time step size \tau = 0.01.

The coarsening dynamics reach the steady state at around t = 3000. We find that
the CPU time for the whole simulation with adaptive time stepping is only about 10\%
of that with uniform time step size. One can observe from the left and middle graphs
in Figure 4 that the energy dissipation law and the MBP are preserved perfectly. The
right graph in Figure 4 plots the evolution of the adaptive time step sizes. In the
time interval [0, 20], the time step size varies significantly and sometimes is very small
since the energy decreases rapidly most of the time. Then, after t = 20, the energy
changes more and more slowly and the time step size is magnified gradually. When
t > 200, the time step size remains around 0.1 (not shown in the graph), and we
find that, although the large step size is used for this period, the relative error of the
energy is only about 1\% in comparison with the case of uniform time step size. One
can also observe from Figure 5 that the configurations at some moments simulated
by the adaptive time stepping match those generated with the uniform time step size
very well. These results show that the adaptive time-stepping strategy can greatly
help accelerate the computation without sacrificing the desired properties and the
accuracy.
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Fig. 4. Evolutions of the energies (left), the supremum norms (middle), and the time step sizes
(right) of simulated solutions computed by the GSAV-EI2 schemes for (1.1) with the homogeneous
Neumann boundary condition and the Flory--Huggins potential (4.2).

5. Concluding remarks. In this paper, we study the numerical schemes pre-
serving both the energy dissipation law and the MBP unconditionally for a class of
Allen--Cahn type gradient flows by combining the exponential integrator method and
the generalized SAV approach. With the appropriate stabilization terms, we develop
first- and second-order GSAV-EI schemes and prove their unconditional preservation
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Fig. 5. Snapshots of the phase transition generated by the GSAV-EI2 schemes with adaptive
time step (top) and uniform time step (bottom) for (1.1) with the homogeneous Neumann boundary
condition and the Flory--Huggins potential (4.2).

of the energy dissipation law and the MBP in the time discrete sense, as well as their
optimal temporal error estimates under fixed spatial mesh. Different from most ex-
isting numerical schemes, the energy dissipation law and the MBP of the proposed
GSAV-EI schemes can be established in parallel, which provides more flexibility to
apply the proposed schemes to other types of gradient flow equations to preserve some
important physical properties. We also note that the fully discrete error estimate for
the case that the spatial mesh size and the time step size change simultaneously is
still an open question for the proposed GSAV-EI schemes and surely worthy of fur-
ther study. A major difficulty comes from the issue that the matrix exponential e\tau L

n
\kappa ,

defined by a power series of the sparse matrix \tau Ln
\kappa , is dense and affects the solution

globally. In particular, to estimate the temporal truncation error of the GSAV-EI2
scheme (Lemma 3.12), an h-dependent bound is inevitable, and thus we fix the spatial
mesh size to regard such a bound as a constant in this paper.

When constructing the second-order GSAV-EI scheme (3.34), we approximate

the term N
n+ 1

2
\kappa (uh(tn + \theta ), sh(tn + \theta )) in (3.32) by its value at the midpoint \theta = \tau 

2
rather than its linear interpolation in [0, \tau ]. This allows the cancellation between the
nonlinear terms in the analysis of the energy dissipation (Theorem 3.8). Instead, if
we adopt the linear interpolation as usually done for the RK2 method, two terms
involving the numerical solutions at tn and tn+1 will be included with the \phi -functions

of \tau L
n+ 1

2
\kappa as the coefficients, which makes the cancellation unavailable due to the

different coefficients between the updating formula for un+1 and that for sn+1. For a
similar reason, it is an open question whether higher-order GSAV-EI schemes exist in
either RK or multistep form, although there have been third-order multistep schemes
based on the standard ETD method for the epitaxial thin film model [4, 6].

It also remains interesting how to choose the function \sigma appropriately for the
GSAV-EI schemes in practical applications. As we explain in Remark 4.1, we only use
the exponential function (4.3) in section 4 since the differences can hardly be observed
for the typical choices of \sigma given in Remark 3.1 for the specific problems we consider in
the numerical experiments. However, their performance could be significantly different
for some other situations and gradient flows, and more careful investigation is needed.
In addition, the effect of the parameter a on the numerical errors seems completely
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opposite for the smooth and nonsmooth initial data based on our observation from
numerical experiments, and such a phenomenon also deserves deeper study.

Appendix A. Proof of Lemma 3.12.

Proof. From (3.32), we have

uh,e(tn+1) = e - \tau L
n+1

2
\kappa uh,e(tn) +

\int \tau 

0

e - (\tau  - \theta )L
n+1

2
\kappa N

n+ 1
2

\kappa (uh,e(tn + \theta ), sh,e(tn + \theta )) d\theta 

= e - \tau L
n+1

2
\kappa uh,e(tn) +

\biggl( \int \tau 

0

e - (\tau  - \theta )L
n+1

2
\kappa d\theta 

\biggr) 
N

n+ 1
2

\kappa (\widetilde un+ 1
2

h,e , \widetilde sn+ 1
2

h,e ) + \tau Rn
2u,

which gives (3.35a) with

Rn
2u =

1

\tau 

\int \tau 

0

e - (\tau  - \theta )L
n+1

2
\kappa [N

n+ 1
2

\kappa (uh,e(tn + \theta ), sh,e(tn + \theta )) - N
n+ 1

2
\kappa (\widetilde un+ 1

2
h,e , \widetilde sn+ 1

2
h,e )] d\theta 

=
1

\tau 

\biggl( \int \tau 

0

[N
n+ 1

2
\kappa (uh,e(tn + \theta ), sh,e(tn + \theta )) - N

n+ 1
2

\kappa (\widetilde un+ 1
2

h,e , \widetilde sn+ 1
2

h,e )] d\theta 

+

\int \tau 

0

(e - (\tau  - \theta )L
n+1

2
\kappa  - I)[N

n+ 1
2

\kappa (uh,e(tn + \theta ), sh,e(tn + \theta )) - N
n+ 1

2
\kappa (\widetilde un+ 1

2
h,e , \widetilde sn+ 1

2
h,e )] d\theta 

\biggr) 
=:

1

\tau 
(Rn,1

2u +Rn,2
2u ).

For the function N
n+ 1

2
\kappa (v, r) defined in (3.31), let us denote by \nabla vN

n+ 1
2

\kappa (v, r) and

\partial rN
n+ 1

2
\kappa (v, r) the derivatives of N

n+ 1
2

\kappa (v, r) with respect to v and r, respectively. By
the Taylor expansion, we have

N\kappa (uh,e(tn + \theta ), sh,e(tn + \theta )) - N\kappa (\widetilde un+ 1
2

h,e , \widetilde sn+ 1
2

h,e )

(A.1)

= \nabla vN\kappa (\widetilde un+ 1
2

h,e , \widetilde sn+ 1
2

h,e )(uh,e(tn + \theta ) - \widetilde un+ 1
2

h,e )

+ \partial rN\kappa (\widetilde un+ 1
2

h,e , \widetilde sn+ 1
2

h,e )(sh,e(tn + \theta ) - \widetilde sn+ 1
2

h,e ) + re

=
2\theta  - \tau 

2

\Bigl( 
\nabla vN\kappa (\widetilde un+ 1

2

h,e , \widetilde sn+ 1
2

h,e )(uh,e)
\prime (tn+ 1

2
) + \partial rN\kappa (\widetilde un+ 1

2

h,e , \widetilde sn+ 1
2

h,e )(sh,e)
\prime (tn+ 1

2
)
\Bigr) 

+\nabla vN\kappa (\widetilde un+ 1
2

h,e , \widetilde sn+ 1
2

h,e )

\biggl( 
(2\theta  - \tau )2

4
(uh,e)

\prime \prime (tn+ 1
2
) - \theta 2 + (\theta  - \tau )2

4
(uh,e)

\prime \prime (tn+ 1
2
)

\biggr) 
+ \partial rN\kappa (\widetilde un+ 1

2

h,e , \widetilde sn+ 1
2

h,e )

\biggl( 
(2\theta  - \tau )2

4
(sh,e)

\prime \prime (tn+ 1
2
) - \theta 2 + (\theta  - \tau )2

4
(sh,e)

\prime \prime (tn+ 1
2
)

\biggr) 
+ re,

where re represents the higher-order remainder term.
If we integrate both sides of (A.1) with respect to \theta from 0 to \tau and notice that\int \tau 

0
(2\theta  - \tau ) d\theta = 0, then we obtain \| Rn,1

2u \| \leq \widetilde C \prime 
h\tau 

3, where \widetilde C \prime 
h > 0 is a constant

depending on uh,e, T , h, and \kappa because we have \| uh,e(t)\| \infty \leq \beta and  - C\ast \leq sh,e(t) \leq 
Eh(uinit) for all t, and N\kappa (uh,e, sh,e) is smooth with respect to uh,e and sh,e.

According to Lemma 3.4, we also know that

\| e - (\tau  - \theta )L
n+1

2
\kappa  - I\| \leq (\tau  - \theta )\rho (L

n+ 1
2

\kappa ) \leq Mh(\tau  - \theta ).

Combining it with (A.1), we obtain that the leading term of \| Rn,2
2u \| is\int \tau 

0

(\tau  - \theta )| 2\theta  - \tau | d\theta = \tau 3

4
,
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which implies \| Rn,2
2u \| \leq \widetilde C \prime \prime 

h\tau 
3 for some constant \widetilde C \prime \prime 

h > 0 depending on uh,e, T , h, and
\kappa . Thus, we complete the proof of the first inequality in (3.36).

The second inequality in (3.36) can be viewed as a direct consequence of the
Crank--Nicolson discretization.

Appendix B. Proof of Lemma 3.13.

Proof. According to the proof of Theorem 3.7, the error equations with respect
to \widetilde en+1

u and \widetilde en+1
s are given by

\widetilde en+1
u  - enu = (e - \tau Ln

\kappa  - I)enu + \tau \phi 1( - \tau Ln
\kappa )[N

n
\kappa (u

n, sn)(B.1a)

 - Nn
\kappa (uh,e(tn), sh,e(tn))] - 

\int \tau 

0

e - (\tau  - \theta )Ln
\kappa Rn

1u(\theta ) d\theta ,

\widetilde en+1
s  - ens = \langle g(uh,e(tn), sh,e(tn))f(uh,e(tn)) - g(un, sn)f(un),(B.1b)

uh,e(tn+1) - uh,e(tn)\rangle  - g(un, sn)\langle f(un), \widetilde en+1
u  - enu\rangle  - \tau Rn

1s,

where the truncation errors Rn
1u and Rn

1s are identical to those in (3.14) and (3.15),
respectively, and satisfy (3.16).

Taking the discrete inner product of (B.1a) with 2\widetilde en+1
u and using Lemma 3.4 and

(3.23), we get

\| \widetilde en+1
u \| 2  - \| enu\| 2 + \| \widetilde en+1

u  - enu\| 2

\leq 4\| enu\| \| \widetilde en+1
u \| +2\tau \| Nn

\kappa (u
n, sn) - Nn

\kappa (uh,e(tn), sh,e(tn))\| \| \widetilde en+1
u \| +2\tau sup

\theta \in (0,\tau )

\| Rn
1u(\theta )\| \| \widetilde en+1

u \| 

\leq 16\| enu\| 2 +
1

4
\| \widetilde en+1

u \| 2 + 8\tau 2[(Cg +G\ast \kappa )2\| enu\| 2 + C2
g | ens | 2] +

1

4
\| \widetilde en+1

u \| 2

+ 4\tau 2 sup
\theta \in (0,\tau )

\| Rn
1u(\theta )\| 2 +

1

4
\| \widetilde en+1

u \| 2

= 16\| enu\| 2 + 8(Cg +G\ast \kappa )2\tau 2\| enu\| 2 + 8C2
g\tau 

2| ens | 2 +
3

4
\| \widetilde en+1

u \| 2 + 4\tau 2 sup
\theta \in (0,\tau )

\| Rn
1u(\theta )\| 2,

and then

1

4
\| \widetilde en+1

u \| 2 + \| \widetilde en+1
u  - enu\| 2 \leq 17\| enu\| 2 + 8(Cg +G\ast \kappa )2\tau 2\| enu\| 2

+ 8C2
g\tau 

2| ens | 2 + 4\tau 2 sup
\theta \in (0,\tau )

\| Rn
1u(\theta )\| 2.

When \tau \leq 1, by using (3.16), we get

(B.2) \| \widetilde en+1
u \| 2+4\| \widetilde en+1

u  - enu\| 2 \leq (68+32(Cg+G
\ast \kappa )2)\| enu\| 2+32C2

g | ens | 2+16C2
e,h\tau 

4.

Multiplying (B.1b) by 2\widetilde en+1
s yields

| \widetilde en+1
s | 2  - | ens | 2 + | \widetilde en+1

s  - ens | 2

= 2\widetilde en+1
s \langle g(uh,e(tn), sh,e(tn))f(uh,e(tn)) - g(un, sn)f(un), uh,e(tn+1) - uh,e(tn)\rangle 

 - 2\widetilde en+1
s g(un, sn)\langle f(un), \widetilde en+1

u  - enu\rangle  - 2\tau Rn
1s\widetilde en+1

s .

The last two terms on the RHS of the above equality can be estimated as

 - 2\tau Rn
1s\widetilde en+1

s \leq 4\tau 2| Rn
1s| 2 +

1

4
| \widetilde en+1

s | 2,

 - 2\widetilde en+1
s g(un, sn)\langle f(un), \widetilde en+1

u  - enu\rangle \leq 
1

4
| \widetilde en+1

s | 2 + C4\| \widetilde en+1
u  - enu\| 2
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with C4 > 0 depending on C\ast , | \Omega | , uinit, and \| f\| C[ - \beta ,\beta ]. The first term can be
estimated in a way similar to (3.27), and then we obtain

| \widetilde en+1
s | 2  - | ens | 2 + | \widetilde en+1

s  - ens | 2 \leq C1\tau (\| enu\| 2 + | ens | 2 + | \widetilde en+1
s | 2)

+ C4\| \widetilde en+1
u  - enu\| 2 +

1

2
| \widetilde en+1

s | 2 + 4\tau 2| Rn
1s| 2,

and thus

(1 - 2C1\tau )| \widetilde en+1
s | 2 \leq 2| ens | 2 + 2C1\tau (\| enu\| 2 + | ens | 2) + 2C4\| \widetilde en+1

u  - enu\| 2 + 8\tau 2| Rn
1s| 2.

When \tau \leq 1
4C1

, we can get, by using (3.16),

(B.3) | \widetilde en+1
s | 2 \leq \| enu\| 2 + 5| ens | 2 + 4C4\| \widetilde en+1

u  - enu\| 2 + 16C2
e,h\tau 

4.

The sum of (B.2) multiplied by C4 and (B.3) leads to (3.37).
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