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Abstract. This is the first part of an investigation of infinite horizon optimal control problems
subject to semilinear parabolic equations. A discount factor on the state variable is introduced in the
cost. This allows for the treatment of infinite horizon problems without stabilizability assumptions.
The nonlinearities can be of polynomial type, thus covering reaction-diffusion equations which are
important for applications. The control-to-state mapping and its regularity are analyzed in detail.
This involves the relation between the type of the nonlinearity and the discount factor.
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1. Introduction. This is the first part of our work in which we continue our
efforts on infinite horizon optimal control problems for semilinear parabolic differen-
tial equations. The specificity of the present contribution lies in the introduction of a
discount factor on the state variable in the cost functional. This leads to important
differences to our earlier work [8] and [9] with respect to the nature of the control prob-
lems and from an analytical perspective. Semilinear parabolic equations appear in a
multitude of applications, frequently with nonlinearities of polynomial type. Cubic
polynomials arise, for example, in the Allen—-Cahn equation, modeling phase separa-
tion in multicomponent alloys; in the Schlégel model, arising in chemical reactions;
or in the Newell-Whitehead equation, describing the evolution of self-organizing sys-
tems. A quadratic nonlinearity appears in the Fisher equation modeling population
growth, for example. In all of these cases, when formulating optimal control problems
of tracking type, the choice of a specific time horizon over which the optimization
takes place can be delicate and is to some extent ad hoc. The introduction of an infi-
nite time horizon then provides a natural alternative to formulate the optimal control
problem under consideration, unless it is conceived as an infinite horizon problem
from the start.

Let us mention some of the literature on infinite horizon optimal control. In the
monograph [7] the importance of the infinite time horizon for problems in mathemati-
cal biology and in economics is stressed and examples are provided. The mathematical
analysis of infinite horizon optimal control problems was likely started with the work
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1376 EDUARDO CASAS AND KARL KUNISCH

of Halkin; see [10]. We also point out recent contributions in [3, 1, 2, 4, 15]. Except
for one chapter in [7], which is devoted to partial differential equations, all of these
contributions are concerned with control problems for ordinary differential equations.
The case of partial differential equations has received significantly less attention. We
point, however, to one section in the classical monograph [12, Chapter I11.6], which
is dedicated to infinite horizon problems, and to [5, 6], where bilinear optimal control
problems are investigated. In these papers, just as in our previous papers [8, 9] no dis-
count factors are utilized. Thus the infinite horizon formulation relates to optimal sta-
bilization and with optimal trajectories typically asymptotically converging to steady
states. This is not the case once a discount factor is introduced in the cost functional.
Our goal is the analysis of the optimal control problem

. 1 00 . v [ e
(P) Jg&{}dt](u)zi/o e t||yu_yd||2L2(Q)dt+§/O Hu||2L2(w)dt+7/0 [[ull L2 () dt,

where Uyq = {u € L*(0,00; L?(w)) : uy < u(z,t) < up for aa. (x,t) € w x (0,00)},
—0 < Uy <0< up, <400, 0 >0, r>0, and v > 0. Here y, denotes the solution of
the following parabolic equation:

0
(1.1) %—Ay+ay+f(y)=g+uxw in Q=0 x (0,00),
Ony=0 on B=T x (0,00), y(0)=yo in O,

where (2 is a bounded domain in R”, 1 <n < 3, with a Lipschitz boundary I'; w is
a subdomain of Q, g € L>=(0,00; L%(R)), x. denotes the characteristic function of w,
a€L®(),0<a#0, and yo € H'(Q). The symbol wy,, is defined as follows:

u(zx,t) if (z,t) € Q, =w x (0,00),
(ux) (@, t) = { <0 : otIELervgise. ( )

The parameter o is known as the discount factor. The last term in the cost
functional is included to promote sparsity in time of the optimal controls.

In Part I, we mainly concentrate on the analysis of the control-to-state mapping
u — 1yy. The fact that we need to consider this mapping over the half axis leads
to many technical challenges for which we cannot refer back to the finite horizon
case, which has been intensely analyzed in the past; see, for instance, [16]. It is also
different from the analysis in [9], which did not involve a discount factor, and which,
as a consequence, did not allow us to analyze the differentiability properties of the
control-to-state mapping. In Part IT the optimization theoretic aspects of (P) will be
investigated.

For the nonlinear term f : R — R in the state equation we assume that f = f1+ fa,
such that f; is a polynomial of odd degree 2m + 1 with a positive leading coeflicient,
0<m<1ifn=3, and m >0 is an arbitrary integer if n <2, and fo : R — R is a C?
function satisfying

(1.2) f1(0)=f2(0)=0 and 3L;>0:|f5(s)|+|f5(s)| < Ls Vs€R.
Since fi is a polynomial of odd order with positive leading coefficient we infer
(1.3) JA; >0 such that f](s)>—A; VseR.

From (1.2), (1.3), and the assumptions on f; we deduce
(1.4) f'(s)>—Ap=—(A1+ Ls) VseR,

(1.5) if m > 0,then IM; such that f'(s) >0 and f(s)s>0 V|s| > M.

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 06/12/23 to 193.144.185.30 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

INFINITE HORIZON CONTROL PROBLEMS 1377

Remark 1.1. The assumption a # 0 has been introduced for simplicity of presen-
tation, but it is not necessary. All the results of this paper remain valid if we take
a=0. Indeed, if a =0, we redefine f5(s) as fa(s) —s and put a =1, and all the above
assumptions are fulfilled. Analogously, if the condition f;(0) = f2(0) = 0 does not
hold, we can replace f; by fi(s) — fi(0), i=1,2, and g by g — f1(0) — f2(0).

Of course f can be reduced to a polynomial if we take fo =0. Moreover, the case
f = f2 is included in the previous formulation. Indeed, it is enough to take fi(s)=s
and again redefine fo(s) as fo(s) —s. Then f satisfies the above assumptions.

This paper is structured as follows. Section 2 contains the existence theory for
(1.1) and a priori estimates in appropriately weighted functions spaces. The differ-
entiability properties of the control to state mapping are investigated in section 3.
This involves a detailed analysis of the relations between the discount factor o, the
nature of the nonlinearity f, and the weights characterizing the spaces in the which
the linearized state equation and the adjoint equation are well-posed.

We end the introduction by fixing some notation. Given real numbers o € R and

€[1,00], LE(Q) denotes the space of measurable functions ¢ :  — R satisfying

1

160220 = ( / e B(1) 1,y ) < 00 if p< oo,

|\¢||L30(Q) = esssup e*%t|¢(x,t)| < 00.
(z,1)eQ
Let us observe that L2 (Q) is continuously embedded in LZ(Q) for 1 < ¢ <p<oo and
a > 0. The following well-known inequality will be useful throughout this paper:

2

(1.6) Callll 1 () < (/(|V22 +a22)d:lc> Yz e H(Q);
Q

see, for instance, [13, Theorem 2.7.1].

2. Analysis of the state equation. We shall denote by L? (0,00; H(2)) the
space of functions y belonging to L%(0,T; H'(Q2)) for every 0 < T < oo. Analogously
we define L7 (0,00; L3(9)), H},.(0,00; L*(12)), and Cj.([0,00); L?(12)). Following [8]
we define the following solution concept.

DEFINITION 2.1. We call y a solution to (1.1) if y € L? (0,00;H'(2)) N

loc

Cloc([0,00); L2(Q)), f(y) € L3 .(0,00;L2(2)), and for every T > 0 the restriction

loc
of y to Qr =Q x (0,T) satisfies in the usual variational sense the equation

0 .
2.1) {£—Ay+ay+f(y)=g+uxw in Qr,
Ony=0o0n3pr=Tx(0,T), y(0)=yo in &
see, for instance, [11, pages 136-137] or [14, page 108] for the definition of a varia-
tional solution (or generalized solution) of (2.1).

The following existence and uniqueness result can be proved as in [8, Theorem
2.2].

THEOREM 2.2. For every u € L?(Q.,) equation (1.1) has a unique solution v,,.
Moreover y,, € H}_(0,00;L%(Q)) N LE (0,00; HY(2)) holds. Further, there exists a

loc

constant Ky >0 independent of u, g, yo, and T >0 such that

yulleqo, 2y + 1Yull 220,701 ()
(2.2) <Ky (Hy0||L2(Q) + [llgll o 0.00522(2) + VT + HUHL2(QN))-
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Additionally, there exists a constant Cr independent of u, g, and yo such that

vl @r) + 19ulleqo,rm @) + 1 ()l 2@r)
(2.3) < Cr(Ilollzzthy + 19l =0 0esnz@) + luxollzag) +1).

Proof. For this proof we cannot rely on the usual techniques because u is in L?
rather than in LP with p large enough and yo is not assumed to be in L™ (). As a
consequence, the corresponding state does not belong to L*°(Qr). Rather we follow
the proof of [8, Theorem 2.2] and provide the estimates (2.2) and (2.3). Introducing

z(z,t) =e Aty (z,t), where Ay was defined in (1.4), (1.1) is transformed to
9z —Az+az+ f(t,z)=e Mg+ uy,) inQ

(2.4) ot 1Z) = g T UXw T
Opz=0 on X, 2(0)=yo in £,

where f(t,s) = e A1t f(ePrts) + Ays V(t,s) € R%. For any positive integer k setting
fr(t,s) = f(t,Proji_g 1(s)) we consider the equation

(2.5) % — Az +azi + filt,21) = e Mg+ uxe) in Qr,
Onzk =0 on X, Z]g(O) =y in .

As a consequence of (1.2) and (1.4), we get fi,(t,0) =0 and 9, fx(t,s) = f'(eMs)+Af >
0 if |s| < k and 8, fx(t,s) = 0 if |s| > k. By an application of Schauder’s fixed point
theorem we obtain the existence of a solution z;, € L?(0,T; H'(Q)) N C([0,T7]; L*(Q2))
of (2.5). The uniqueness of z; is a consequence of the monotonicity of fk. Using that
fr (t,zk)2zr > 0 and testing (2.5) with zg, we deduce for a constant C' only depending

on C,

2kl oo 0,522 (92)) + 2kl 220,751 (02))
(2.6) < C(||9||Lif(Q) + [lull 2(qu) + llwoll L2 @)

Next we prove that {fi(-,2)}52, is a bounded sequence in L?(Q). Since f is a
polynomial of degree 2m + 1 and leading positive coefficient, and f3(s) < Lss? due to
(1.2), elementary calculus leads to the existence of constants C; >0, Cy >0, C3 > 0,
and Cy4 <0 such that

f(t,s)2<CLf(t,s)s? 4 Cy and f(t,s)s?™H > Cys?™F2 4 Oy Y(t,5) € [0,T] x R.

Using these inequalities, the desired boundedness of { fx (-, 2)} 3, is obtained as in the
proof of [8, Theorem 2.2]. Following that proof, we get the existence and uniqueness
of a solution z of (2.4) which, in addition, belongs to H'(Qr) with f(-,2) € L*(Qr).
Therefore, y, =e 'tz € H(Qr) is a solution of (2.1) for every T > 0. Hence y, is the
unique solution of (1.1). Additionally we have that f(y,) € L?(Q7) and the estimate
(2.3) for f(y,) is satisfied. The estimate (2.3) for y,, in H(Q7)NC([0,T]; H'(Q2)) is

a well-known consequence of the equation

Y ,
{8t — Ayy + ayu =g+ uxw _f(yu) in Qr
OnYu =0 on X7, y,(0)=yp in Q.
Now, we prove (2.2). For every ¢t € (0,T) we set Q, = {z € Q : |y(z,t)| < My}
with M given by (1.5). Let us set Ciy; = supjq <y, [f(s)[- Multiplying (2.1) by y

and using (1.5) we infer
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1d
5%||ylliz(m+/Q[\Vy|2+ay2]dzS/Q(ngXWU)ydz+OMfo|Qt\~

Integrating in (0,¢) and using (1.6) we deduce

1 t
SO+ Co [ I0(6) it

1 1
< §||y0||2L2(Q) T (HQH%oo(o,oo;L?(Q))T‘F ||u||2L2(0,oo;L2(w))>

c, [*
+ G [ 10 B oy dt+ Cor My T

This yields (2.2). |

In the next theorem we establish some infinite horizon regularity properties of
the solution of (1.1). First we introduce the following notation: for every a € R,
L2(0,00; HY(Q)) and C,([0,00); H1(2)) denote the Hilbert and Banach spaces of
measurable functions y : [0,00) — H'(Q) endowed with the norms

[e'e] 1
Y1l L2 (0,00;1 () = (/0 e tHy(t)H%Il(Q) dt) )

lyllc. (o.00)m @) = sup e 2 |y() || (-
te[0,00)

We also define HL(Q) as the space of functions y € L2(0,00; H'(Q2)) such that % €
L2(Q). This is a Hilbert space for the norm

2 3

Li(Q)) '

The next corollary is an immediate consequence of (2.2).

dy
Il @ = (191132 0,001 ) + HE‘

COROLLARY 2.3. For every a > 0 and all u € L*(Qy,) the solution y, of (1.1)
belongs to L2(Q) and

1 1
yullzz (@) < Kfﬁ (H%HL?(Q) + 7a gl e (0,00:2202)) + 1] + ||U||L2(Qw))7
where Ky is the constant introduced in (2.2)

THEOREM 2.4. Let u € L*(Q.), and let y be the solution of (1.1) corresponding
to u. Then the following properties hold for all a > 0:

2.7) F),y*m e L2(Q),
(2.8) y € HL(Q) N Cyl([0,00); H (),
Jim_ e Ty (T) 1112 =0.

Moreover, there exists a constant C independent of o, u, g, and yg such that

1FW)llzz @) + 1™ 2z @) + 19l 1@ + 1Yl cao,00:m 9)
C

(2.10) < mn(La)

(gl 000122600 + iz + ol +1).
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Proof. By Corollary 2.3, we know that y € L2(Q). We divide the proof into three
parts.

Proof of (2.7). If m =0, (2.7) is an immediate consequence of (1.2) and Corollary
2.3. Suppose m > 0. First we demonstrate that e~ f(y)y?>™*! € L1(Q). Let us write
2m—+1 2m—+1

(2.11) fi(s)= Z ajs’ and Cj= Z laj| + Ly.
j=1 j=1
Observe that f;(0) =0 implies that ag = 0. From here we infer
. s)s < S s|>1 an s)s < S s| <1.
2.12 f 2m—+1 Of A4m—+2 v 1 d f 2m—+1 Cf 2 v 1

We set

2 2m
M =max {1, My, = > lajl+Lg | ¢,
m j=1

where M was introduced in (1.5). Let us denote QM = {(z,t) € Q : |y(z,t)| > M}
and Cy = maxy<|sj<pr | f(s)[. Then with (1.5) we get that for every T'>0

/ e~ f(y)y*™ | du dt S/ e f(y)y*™ | du dt
Q Q\QM

+ / e~ f(y)y® ™t du dt
QM

2m—+1
< CuM 12 n

(2.13) -

/ e f(y)y*™ da dt.

Thus we only need to prove the integrability of e=®*f(y)y*>™*! in Q™. To this

end, for every integer k > M we define the projection yx = Proji_ 44 (y) € H} (Q)

and multiply (2.1) by efoztyim-ﬂz

13
E)—rie*o‘ty,%m+1 dx dt + / e M VyVy™t + ayy ™t dw dt
Qr

T

+ / e f(y)ymt da dt
QrNM

C M2m+1 0
O M|

(2.14) < -

/ e (g +uxe)yr ™ da dt.

T

oy 2 . .
and yyim% = 2m1+2 y"at , and integrating by parts

Using that yyszrl > yzm“

twice, we obtain

T
0
//%e_o‘tyimﬂdxdt
0o Ja
! 2m+2 g,

—aT 2 2 —at, 2m+2
> 2m+2(e /kam+ (T)dz+01/ e tyk 1+ d:cdt> */Qyo

T

Moreover, we have VyVyz" ! = (2m + 1)y?"VyVyr = (2m + 1)y7™|Vyx|?. Using
this in (2.14), and taking into account that (1.5) implies that f(y(z,t))yx(z,t) >0 for
every (z,t) € QM, we obtain

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.
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/ 7oztf( ) 2m+1 d]}dt</ y(2)m+2d.13+
QrNRM Q

Cy MP 10
+/ ™ (g + uxa)yy™ ™ dadt < Cllyol| i) + 4 Gu MY
T

+ Ul + laeo) (|
T

C M2m+IQ
M 1

a2m+1

+ B2m+1 / e*O‘tyimJr2 dx dt.

CMM2m+1|Q|
(e%

«

1/2
e” Myt dy dt)

mQ}\l

m 2
< C||Z/0||§pzr92) + (llgllzz @) + lullz20.))

This implies

/Q o e f(y)ye" | da dt
N

m 2 1
<C <||yo||§pzr92) +lyll7z o) + llgllzz @) + lullz2@u)] ™ + a) VT >0 and Vk > M,

where C only depends on f and M. Since yy(z,t) — y(z,t) a.e. in Q, we deduce from
the above inequality, (2.13), and Fatou’s lemma that

/ e f () [y2 | e dt
Q

. 1
(2.15) SC(Hyollle(ﬁf + I3z @) + [lollzz @ + lullz2g.)]° +a)

for a new C' only depending on f and M. Due to the choice of M we have for |s| > M
2m 1 1
f<8)82m+1 > s4m+2 (a2m+1 — Z |GJ|W — Lf527m)
a
> gim+2 (a2m+1 [Z laj| + LfD 27"“ gimt2,

Since f’(s) >0 for |s| > M, we get

Pl )y 1) 2 FEEY 2 0 0), (1) € QM.

Inserting this inequality into the left-hand side of (2.15) we conclude that

M

/ e—aty4m+2 d.’l?dt S M4m/ e—at 2d$ dt—|—/ e—aty47n+2 d.’L’dt
Q Q\QM

2

g M4m 2 +
||1/HL§(Q) Aot

/ e_“tf(y)ygmﬂ dx dt < oo
M

holds, which proves that y?™ 1 € L2(Q). Moreover, since |f(s)] < Cy|s[*™! V|s| > 1
and |f(s)] < Cfls| V|s| <1, we deduce that

f(s)* < C’?(s2 +s'm*2) VscR.
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Therefore, the fact that y and y?™*! belong to L2(Q) implies that f(y) € L2(Q) and
the proof of (2.7) is complete. Additionally, these arguments and Corollary 2.3 lead
to the estimates for the first two terms of (2.10).

Proof of (2.8). First we observe that y € C([0,T]; H*(Q)) for every T > 0.
Indeed, this is a consequence of the fact that f(y) € L2(Q) and yo € H(Q); see
[14, Proposition I11-2.5]. Hence y : [0,00) — H'(Q) is continuous. To prove that
y € L2(0,00; H'(2)) it is enough to multiply (2.1) by e~ ®'y and integrate in Qr,
T > 0 arbitrary, to get

—aT

« —Q
||y(T)||iQ(Q)+§/ —ot 2dxdt+/ e (IVy|* + ay?) dx dt
Qr Qr

— 1 —Q
=/ e t(g+uxw)yd1‘dt+2||yo||%2<m—/Q e~ f(y)ydadt

T
< (l9llzz @) + llullez@)Iyllez @ + 5 Hyolle(Q)
Wz @ llyllLz @) < oo

Above we have used that y € L2(Q); see Corollary 2.3. Now it is enough to take
T — oo to deduce that y € L2(0,00; H!(12)).

To prove that y € C,([0,00); H1(Q2)) we take into account that by Theorem 2.2
y € HY(Q7) for every T > 0. We can multiply (2.1) by e*at% and integrate in Qr
to get

(2.16)

T
/ efat
0

dy
—at
/Te (9 +uxw) Y Y 1 dt.

@ 2

dt+/Teat1d/(v % + ay?) dxdt+/ e f(y )ayd dt
ot llr2(o) 0 2dt Jq 4 Y .

This implies

T
/ e—at
0
1 T
+ie_“T/(Wy(T)\Q+a0y2(T))dx+g/ /e_“t[|Vy|2+ay2]dxdt

1
45 [ (0P + ag)do
Q

Ay |2
ot llL2(q)

Ay |2
ot llrz2(q)

< (gl @) + 2oy + 172 @) | 2] o

1 2 1 T,a
< 5(lsl2@) + Il + 1 i@ +5 [ e
+

C

||y0‘|%11(9)7

T
/ e—at
0

T
+ %/ e | Vy|* + ay?] dz dt
0

and hence
@ 2
ot llL2(o)

di +e~oT / (IVY(T)2 + a0y (T)) da

2
(2.17) < (llgllzz @) + lullL2qu) + IFWlLz@)” + Clivollin -
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Since T > 0 is arbitrary, the above inequality concludes the proof of (2.8). Moreover,
from the obtained estimates and Corollary 2.3 the bounds for the last two terms in
(2.10) follow.

Proof of (2.9). From (2.16) we get

1 0
fe_O‘T/(|Vy(T)|2+a0y dm—/ / Hg+ uxw) ydmdt
2 Q ot

/Teat ay 2
0

«

dt—— [ e 2 dx dt
@ [ I

ot
o !

/ e f ) 2 dwd + /[|Vyo|2+ayg]dx.

Q

Taking the limit in 7" we infer

1
3 lim e_O‘T/(|Vy(T)\2+a0y dw—/ / g—&—uxw)%dxdt
Q

T—o0
e
0 ot

—/-Mﬂ>ymw+fﬂww%wmd
Q

(07

dt — = —atNvy|? dx dt
e 2/0 e~ |Vy|* + ay®] da

We have proved that e~ [ (|Vy(T)[* + agy*(T))dx — 3 as T — oo for a certain
real number 3. But we know that y € L2(0,00; H*(£2)), and hence there exists a
sequence {T}}72, converging to oo such that e~ [, (|Vy(T%)|* + aoy?®(Tk)) dz — 0.
Therefore, § =0 and, since o > 0 is arbitrary, (2.9) holds with (1.6). d

COROLLARY 2.5. For every u € L*(Q,,) the following identities hold:

/ e_“t%z dx dt + / e VY, Vz + ay,z] dv dt + / e " fyu)z da dt
(2.18) Q ot Q Q
:/ e (g +ux,)zdrdt Vze HL(Q),
Q

(07

(2.19) 5/0 e yu ()72 (0 dt-i—/Qeat[|Vyu2+ayZ]dmdt
—|—/ e f(yu)yu dx dt
Q

Ca 1
[ e o et Sl

(2.20) /Q e ot

Yy
—at
+/Qe f(yu)—=— 5t Y dx dt

50|

2 1o
dt + = medI\ZTRE 21 dx dt
v @5 T ot

Oy 1
/e‘“t(g—kuxw)—y dxdt+f/[|Vyo|2+ay§]dx.
0 ot 2 Jo

The identity (2.18) is obtained by multiplying (2.1) by e~ *!z, performing integra-
tion by parts, and passing to the limit as T'— oo with the help of (2.7) and (2.8). To
prove (2.19) we set z = y,, and integrate by parts in the first integral. The identity
(2.20) was established in the last part of the proof of Theorem 2.4.
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Remark 2.6. In the case of g € L?(Q) and f’(s) >0 for every s € R, we can take
My =0 in the last part of the proof of Theorem 2.2 and get

1yullc(o,00);22(Q)) + 1YullL2(0,00;1 () < Kf<||yoHL2(Q) +l9llz2(@) + ”u“LQ(Qw))'

Further, relations (2.7)—(2.10) hold with o = 0, except on the right-hand side of
(2.10), where a and ||g|| 1o (0,00;22(02)) are replaced by 1 and ||g||12(q), respectively;
see [8, Theorem 2.4].

THEOREM 2.7. Let {uy}3, C L*(Q.) be a sequence converging to u. Then the
following convergences hold for every o> 0:

2.21 li —Yllai @ =

(2.21) (g = yllm @) =0,

(2.22) (g =yl pamez ) =0,
(2.23) Jim 1 f () = f(W)llzz(@) =0,
(2.24) gk =yl 0,000 ) = 0,

where y =1y, and Y = yYu, . Moreover, we have for m >1

(225)  Jim |/ (g) — ')l = Jim 7" () — /" () 0,

) | i @

and for m=0
(226)  Jim |17 ()~ 7' &) lzzio) = Jm 1F () — £/l =0 ¥p e [1,00).

Proof. From (2.10) we deduce the existence of a subsequence, denoted in the
same way, such that y, — y in HL(Q) and f(yx) — ¢ in L2(Q). Let us prove that
the convergence of {y;}?2, to y is strong in L2(Q). Given & >0, from (2.2) and the
boundedness of {uy}?2, in L?(Q,,) we infer the existence of 7. > 0 such that

o

(oo} oo
|t =@l < [ e Canate [ e ) di<e,
Moreover, the compactness of the embedding H'(Qr.) C L?(Q7.) implies that yi, —y
in L?(Q7.). Combining these facts, we deduce the strong convergence y — y in L2(Q)
as k — oo. Furthermore, taking a new subsequence we assume that yg(z,t) — y(z,t)
for almost every point (x,t) € Q. Then, by the continuity of f we deduce that ¢ = f(y)
and, hence, f(yx) — f(y) in L2(Q). Now, we prove that y = y,. For this purpose
we have to check Definition 2.1. It is easy to pass to the limit weakly in the state
equation (2.1) satisfied by (yx,ur) and to deduce that (y,u) satisfies the equation in
the variational sense in Qp for every T' > 0. Moreover, from the continuity of the
embedding H}(Q) C C,([0,0); L3(Q)) we have that yo = yx(0) — y(0) in L3(£),
hence y = y,. Now, the uniqueness of the solution of (1.1) implies that the whole
sequence {yx 3, converges to y = ys.
Taking u = uy, in (2.19) we obtain obtain

o0 (o) 1
[ [ivuP +apidede= [ et [ (g4 woxadundzdt+ 5l
0 Q 0 Q

a oo _ oo _
—f/ e “t||yk|\2L2(Q)dt—/ e at/f(yk)ykdmdt.
2 Jo 0 Q
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Using that uy, — u in L?(Q.,), f(yx) — f(y) in L2(Q), and yx — v in L2(Q), we can
pass to the limit in the above identity and deduce from (2.19) with u =a that

o0 o0
1
tw [ et [ [Tu b aldrdi= [ e [ (g uydede+ gl
Q 0 Q

k—oo Jo

a o0 [ee] o0
—5/0 eyl 72 dt—/ 6““/ f(y)ydwdt=/ e‘”‘t/[\Vy\QJrayz]dfvdt-

This implies that limy_, ||kaL2 (0,001 () = 1Yl L2 (0,00 111 ())- Then the continuous
inclusion H}(Q) C L2(0,00; H* (Q)) yields yx — y in L2(0, 00; H1(2)) for every a > 0.
Consequently, strong convergence yi — y in L2 (0, 00; H 1(Q)) holds for every a > 0.

Next we prove that [lyx — yllrr@) — 0 as k — oo for every p € [1,4m + 2].
Let us take a subsequence, denoted in the same way, such that y(x,t) — y(z,t)
a.e. in Q. From (2.10) we get the boundedness of {y;}?2, in Li™*2(Q). Therefore
yr — y in Li™*2(Q) holds. Due to the continuous embedding Li™+2(Q) C LE(Q)
for p < 4m + 2, we only need to prove the convergence of {y;}7, to y in L™ T2(Q).
Since this convergence is obvious for m = 0, let us consider the case m > 1. Setting
B = £, using the inclusion H'(Q) C L*"*2((2), (2.10), the boundedness of {uy}7>,
in L?(Q,,), and the convergence y; — y in Lé (0,00; HY(Q)), we infer

/ at/ 4m+2dmdt<C/ —at”yk( ) ( )HH1+522) dt

—c / e F e — 2ol () — () s )™
<Cllyr — Z/||gg([o,oo);H1(Q))Hyk - Z/||2L2g (0,001 (02)) — 0 @S k — oo0.

Since fi is a polynomlal of degree 2m + 1, we conclude that f; (yk) — fi(y) in L2(Q),

Filu) = fily) in L3275 (Q), and f{/(y) — f{(y) in Lo ™7 (Q). Moreover, the
inequality |fa(yx) — fo(y)| < Lylyr — y| also yields the convergence fa(yx) — f2(y)

in L2(Q). Hence, (2.23) holds. Using (1.2) and applymg Lebesgue’s dominated
convergence theorem, we infer that f4(yx) — f4(y) in LA ™(Q) and fY(yx) — 4 (y)

in Ly 2rame (Q). Therefore, (2.25) follows. If m = 0, then (2.26) follows again by
Lebesgue’s dominated convergence theorem and the fact that f’ and f” are bounded.

Finally, let us prove the convergence of {ay’“} and (2.24). Setting wy =y — yx

and subtracting the equations satisfied by y and yx, we get

{ Ok g - awy = vt — i) + [F ) — ()] in Q.
Onwr =0 on X, wg(0)=0 in Q.

Testing this equation with e_o‘t% and integrating by parts in Q x (0,t), we obtain
t 7at
— QS aw
| e 1% i s+ S [ (Va0 + a7 o
/ / [[Vwg|* + awi] dz ds

/ /qu—uk )+ flyn) — fly )]761 ds

ow
< (lu = wnllz0oesnzn + 1 @) = F@)lz@ ) |

@) 2Q0)’

Using uy — u and (2.23), we deduce (2.21) and (2.24) from the above inequality. 0O
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3. Differentiability of the control-to-state mapping. In this section, we
prove that the mapping u — ¥, is of class C? in appropriately chosen spaces. First
we analyze the linearized state equation. For every 8 € R let us define the space
Ys= Hé(Q) N Cs([0,00); HY(2)) endowed with the norm

lylly, = ||y||Hg,(Q) + 1Yl s (10,00); 1 (92)) -

If m > 1, using the inclusion H!(Q) C L¥"*2(Q) we infer with Young’s inequality

_ m e _ TnTs
|y||L§A,L+2(Q):(/Qe Py 2 g ) <c(/ e Pyt dt)

4m
< C||y||é22([07oo);H1(Q))”y‘ e +E) 00 H1(2))
am

2m 1
> C(2m+ 1 ”yHC%([O,oo);Hl(Q)) + m”yHLQf%(O’OO;Hl(Q)))'

Then we have

2m
if 3>0
2m+1Hy”Y4{3n if >0,
(3.1) 9]l am+2 () <
2mC' .

Hence, Y s and Ys are continuously embedded in L4 142 (Q) if B > 0, respectively,
4m
B8 <0.

LEMMA 3.1. Assume that y € Y for every >0 and take ay = 2A¢. Then for
every h € Lif (Q) the linear equation

(3.2) ot

Onz=0o0n3%, 2(0)=0inQ,
has a unique solution z € H}, (Q) N Cioc([0,00); HY(2)). Further, z € Y, Yo > ay and
the estimates
(3.3) 12122 0,00, 1 (@) F [1Zllc (0,000;22(0)) < Killhllrz (@) Vo= ay,
(3.4) Izl < K (IYIE" ., ((0.00); Hl(Q))+1)||hHL2 @ Ya>a >

2m

{aZ—Az—&-az—kf( y)z=nh in Q,

hold with constants independent K;, i =1,2, independent of y and h.

Proof. From our assumptions on f we deduce the existence of a constant Ch
such that |f/(s)| < C1(s*™ 4+ 1). Then from (2.7) we deduce that f'(y) € L Q)
V3 > 0. Therefore, from the classical theory of evolution partial differentlal equa-
tions and (1.4), the existence and uniqueness of a solution of (3.2), 27 € HY(Qr) N
C([0,T]; H'(£2)), follows for every 0 < T' < oo; see [11, sections II1.1-11L.4]. Hence,
defining z = 27 in Q7 for every T we infer that z € H} (Q) N Cloe([0,00); H()).
Testing (3.2) with e”*®z for o > ay and integrating in Q x (0,t), we obtain after
integration by parts

1, a ' as
3 O+ [ Ny + [ o [ adras

/ /f z da:ds-/ /hzdmds
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Using (1.4), (1.6), and the fact that § > A; we infer
1 — ! —QSs
3¢ 10+ 2 [ e =) e s

I 5 cz [ 5
<56 [ IO ey s+ G [ ) B s

Since t > 0 is arbitrary, the above inequality implies (3.3). To prove (3.4) we take

a > ay, and test equation (3.2) with e=**2Z and get
ds —&——/ [[Vz(t)|? +az?(t)] dx
L*(Q)

/t _ 82
(§

/ /|Vz|2+az d:z:der/ /f z—dxds
/ /h—dmds

Using (1.6), Holder’s inequality with , 4m+2; and 2, and Schwarz’s and Young’s
inequalities, we infer from the above equality for € = o — o’ and constants Cy > 0,

C3>0
t
e
0

t
z
<G [ e (IylEnsaay + Dlellsimsaco| 52
; (L4+2))L()6t

t
0z
il
S A L el S
t
< ol qooonsriio 1) [ e Ny s
t t
1 0z |2
—|—/e_°‘sh2 ds—|—f/e_s— s
e bl dst ; o
This implies, with the identity o — e = o/,
/t —as|| 0%
e
0
t

t
<203(||?J||c  ([0,00); Hl(Q))+1)/O G_QSIIZII%(Q)ds—I—Z/O e (|12 (q) ds.

27n

4m—+2

(“)z

203 0

L2(Q)

L2(9)

ds + Cie™ | 2() |7 (q)

L2(Q)

Finally, (3.4) follows from the above estimate and (3.3). 0

LEMMA 3.2. Let yr — y in Yz for every 8> 0. Given v € L*(0,00; L?(w)) with
v#0, we denote by z, and zj, the solutions of the equations

0z )
(3.5) E—Az—i—az—i—f( Y)z =vXw in Q,
Onz=0o0n %, 2(0)=01in Q,
0z
(3.6) 5 Az+az+ f(yr)z =vXw in Q,
Onz=0on %, z(0)=0 in Q.

Then we have for every o> ay =2A;

1
(3.7) lim |2, — 210 ||y, =0.
k—oco ||’UHL2(QM)
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Proof. Let us set wy = 2z, — 2. Subtracting (3.5) and (3.6) we get

ot
Onpwy, =0 on 3, wi(0)=0in Q.

8wk .
{ — Awy, + awg + f'(y)wr = [f'(yx) — ' (Y))2k0 in Q,
The identity (3.7) follows from (3.4) if the right-hand side of the above equation
converges to zero in L2,(Q) as k — oo for o € (ay,a). To prove this we first consider
the case m > 0. Let us observe that, due to the assumptions on f, there exists a
constant Cq such that

(f'(s2) = ['(51))* =" (514 0(s2— 1)) [P (52— 51)> < C1(s1" 2 + 55" 2 +1) (52— 51)°

for some 6 € (0,1). We define 8 = o’ — . Then, applying Hoélder’s inequality in

with 4242 4mi2 and 2242 e estimate
prosn

1) = 7))ok 22, )

<Oy [ ol R D - R dads
QOO /

<C, / e (3 ) + Dbl oy + 1) 1y = sl 2 [ F ooy
oo

<Co [ e (Il + Dokl + 1) b= el oo s o

4m—2 4m—2
SO‘*(”y”OmB (0.00):r () T IYRNE™ ([o,oo>;H1<m>+1)
Am—2 dm—2

2 2
X |ly — kaC%([O,oo);Hl(Q)) sz,v \Lgf(o,oo;Hl(Q))-

Taking into account that (3.3) yields the estimate ||zx o ||L2 (0,00;1(2)) < CllvllL2(qu)>
and using the assumption on {y;}32, the convergence (3.7) follows.

In the case m = 0, we have that (f'(s2) — f'(s1))* < L}(s2 —s1)*. Then we can
argue similarly as above just dropping the term |y|*™=2 + |yx|*™~2 + 1 and using
Schwarz’s inequality instead of Holder’s inequality. 0

Next, given a >0 we denote by Gy, : L?(Q.) — Y, the mapping G (u) = y,,.

THEOREM 3.3. Let us assume that o > 2ar with oy = 2A¢. Then the mapping
Gy, is of class C, and for every u,v € L*(Q.,), z» = G, (u)v is the solution of the
equation

0z , .
(3.8) 5 —Az+az+ f'(yu)z =vxw in Q,
Onz=0on %, z(0)=0 in Q.

If in addition o > 4ag, then Gy is of class C? and for every u,vi,v2 € L*(Qu),
Zuy we = G (u)(v1,v2) is the solution of the equation

(3.9) % —Az+az+ f(yu)z + [ (Yu) 20, 20, =0 in Q,
Onz=0o0n%, z(0)=0in Q,

where z,, = G’ (u)v;, i =1,2.
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Proof. Given u,v € L2(Q,) we set w=Go(u+v) — Ga(u) — 2y = Yutv — Yu — 2o,
where z,, is the solution of (3.8). Then w satisfies the equation

0
{81: —Aw+aw+ f(yu)w=[f"(yu) = ' (Yu + 0Wuto = Yu)] (Yuto — Yu) in Q,
Opw=0on X%, w(0)=0in Q,

with 0 < 0(z,t) < 1. Assume that m > 0. Let us select o € (2ay,a) and € > 0 such
that o —e > 2ay. Set &, = el zn and a,, = (2m +1)(/ —¢). Utilizing Lemma 3.1
and Holder’s inequality with 1+ 5% and 2m + 1, and (3.1) we infer

||w||Ya < KUH [f/(yU) - fl(yu + 0(yu+v - yu)](yu+v - yu)HLi/(Q)
S Kqul(yu) - f/(yu + e(yu-‘rv - yu)HLer%

Em (
2mC
S oma 1Ku||f/(yu) — ' (Yu + 0(Yuto — yu)HLz;#(Q)

Q) 1Yt — yu||L‘;’;;j2(Q)

(3.10)

||yu+'u - yuHY%au

where K, = K2(||yu||%fzia/ (0,00 H1 () T 1).

In the case m = 0 we have that f'=ay + f} is Lipschitz. The above estimate is
replaced by

lwlly. < Kulllfs(4a) = £2(1a + 0@uto = 9) ] (Yuro — vu) 22, @)
< Kull f2(y) = f5(Wu + 0Wuro = vu)ll s, (@) 1Yuto = YullLs, @)

Using that

.
Wzt <C( [ e IOl dr)
= C”y‘%%qo’mwm» ”yéig (0,003 (@)
811) <50 ( e,y qoepmian + Il omimiay) < 5O, e,
we obtain the following for m = 0:

1
(3.12) wlly, < §CKu||fé(yu) — fo(yu + 0(Yuro — yu)HLi,(Q)Hyu+v - yuHY%/

Let us estimate ¢ = yy, 4+ — Yu, which satisfies the equation

0
{(;f —A¢+ap+ f/(yu + e(yu+v - yu))d) =vXw in @,
On¢=0o0n 3, $(0)=0in Q.

From (3.4) we infer for Ky, = Ko (||yu + 0(Yuto — y“)”g@faf (0.00):H1 (@) T 1)

(3.13) [Yuto = vullys = 19llvs < KupllvllzzQuy V8> oy

Then, applying (2.25) with 8 = 9= > ay, respectively, (2.26) with 8 = § > af, and
(3.13) in (3.10), respectively, in (3.12), we deduce that

[Galutv) = Galw) = 20lly. _ . ]

o]l 2,y =0 vl L2(q.) Ill2iguy 0 0ll22(qu)

Yo
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This proves that G, is Fréchet differentiable and G/, (u)v = z,. To prove the continuity
of G, : L?(Q.) — L(L*(Quw),Ya) we take a sequence uy — u in L?(Q,,). Setting
Zpw = Gl (ug)v and z, = G, (u)v for arbitrary v € L*(Q,,) with [|v]|12q,) = 1 the
convergence

lim —sup |GG (ur)v — Go(wolly, = lim sup |2k — 2llv, =0
k—o0 — k—o0 —
”’UHL2(QM) 1 H’UHL2(QN)

follows from (3.7). Thus, G, is of class C! for every a > 2ay.

Now we consider the second derivative for o > day. Let vy,v2 € L*(Q,) with
”vQ”L?(Qw) =1. We denote Yutv, = Ga(u + Ul)a Yu = Goz(u)7 Zv; = G;(’UJ)U“ 1=1,2,
and 7y, v, = G4, (u + v1)va. Let 2z, 4, be the solution of (3.9). Then we will prove

(3.14) lim sup  ATerwe —Zu ~Zumllve
011l 22 @y =0 vzl 12 g, =1 v1llz2(Q.)

Taking w =1y, v, — 2, — %v;,0, We have

%: — Aw +aw + f'(y,)w
= " (Yu + O(Yusrv, — Yu)) Yu = Yuto, )nvl,vz + [ (Yu) 20, 20, In Q,
Opw=0on %, w(0)=0in Q.

Let us denote Yo = Yu + 0(Yutv, — Yu). Take o € (4o, ). From (3.4) we get for
K =K (lyallE”_, 0,005y T1)

o
2m

lwlly. < KNI (W) (a = Yutos 10,02 + 7 () 201 205 [ 22, (@)
< K" (W) Wu = Yutor) (Mo w2 — 2u2) 122, @)
+ K| f" (o) (Yu + 20, — Yutvr ) Zvs ||L§,(Q)

(3.15) + K| (yu) = £ (Wo)l2v, 20all 22, (@) = K (I + I + Is).

Let us consider the case m > 1. We select ¢ > 0 such that o/ —e > 4ay. Denote
2m—+1
Em =21 and a,, = (2m + 1)(a/ —€). To estimate I; we use Holder’s inequality

with §242 2m 41, and 2m + 1, and (3.1):

L< 1" (o)l oyt

LEwL (Q
4m2C?
=~ m”f”(ye)“ljzgwf_l (Q) ||yu+1}1 - yuHY% H’r}m,vz - ZUQ ||Y12717;; .

)Hyu+v1 - yu||L§’;;j2(Q) 1770102 — 2, HLg’;;jr?(Q)

(3.16)

The term Hf”(ya)”LHﬁ
we have with (3.1) .

is bounded; see (2.25). Regarding the term 7y, v, — Zu,
)

2mC
||77v1,v2 — Zuy ||L37;;+2(Q) < m ||7711177)2 — Rug ”Y%

< HG% (u + Ul) — Gla (U)HE(LZ(Q“;),Y%) —0 as H’UIHLQ(QW) — 0.

am

The convergence to 0 follows from the fact that 7= > 2a; and, hence, the mapping
Gam : L*(Qu) — Yam is of class C'. Using this fact and the estimate (3.13), we

deduce from (3.16) that limj,,

Iy
HLz(Qm)_>0 HUIHL2(Q“})

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 06/12/23 to 193.144.185.30 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

INFINITE HORIZON CONTROL PROBLEMS 1391

In the case m =0, we have that f” = f3’ is bounded by Ly; see (1.2). Then, using
Schwarz’s inequality and (3.11), we obtain

02
L < Lf||yu+v1 *yu”Lﬁ(Q)anhvz — Ry ||L§(Q) < Lf?nyu-&-m *yUHY% HnUh“Q — Rug ||Y%

Now, we can continue similarly as above taking into account that 3 > 2ay.
Let us estimate I, first for m > 1. We use Holder’s inequality as for I; and obtain
4m2C?

1 L <——|f" : — Yy — g .
(3.17) 2> (2m+1)2||f (yo)ll 2+2mf‘_1(Q)||yu+v1 Yu ZU1HY%£%H202HY%$

Em

Inequality (3.4) leads to
HZvQHYZm, < K2(HyuH%’??([0,oo);H1(Q)) + 1) [v2llz2(@u) = KQ(”Z/UHQCT([O,oo);Hl(Q)) + 1)

am
Am.

with § = #8-2L Since %2 > 2ay, the mapping Gon : L*(Qu) — Yem is Fréchet

1
differentiable, and therefore

||yu+v1 —Yu — 2y ||Ym
am

im
|‘1)1|‘L2(Qw)_>0 ||v1HL2(Qw)
|G am (u4v1) — Gom (1) — Glam ()01 ]|y
_ hm 4m 4m am am_ :O
llvill 2 (q,)—0 HleLQ(Qw)

Inserting these estimates into (3.17) we get that By, ) 0 ) — =0. If

1o
Lo ! 0 HU1HL2(QU_,)
m =0, we proceed similarly as we did for I;.

To estimate I3 we use again Hoélder’s inequality as for I; and obtain for m > 1

4m?2C? . "
3fm||f (Yu) — f (yG)HLi;ﬁ(Q)”ZMHY%”ZU2|Y%
4m2C?
P | 224 e
=Ruom )2 17 () = f (Z‘J@)Hi;%;gl(Q)||U1\\L2(Qw)||v2||L2(Qw),

where K, = K2(||yuH%T([O’oo);m(m)—i—l), with 0 as defined above. Since ||va|z2(0.) =1,

using (2.25) we deduce that limj,, = 0. If m = 0, we proceed

2 (qu) =0 m
similarly as we did for I.

Finally, (3.14) follows from (3.15) and the established convergences for I,
1<:<3.

It remains to prove that G% : L*(Q.) — B(L*(Q.)?, Ya) is continuous, where
B(L?*(Q.)?,Y,) denotes the space of continuous bilinear mappings from L%(Q,,)? to
Y,. If we take a sequence uj, — u in L?(Q,,), we have to prove that

lim sup G (ur) = Go(w)l(v1,v2)lly, =0.

k=20 1o || 2 oy =D llv2ll L2 (g, =1

: k
Denoting 2y, ,,

Zy; 00, WE Obtain

=GV (ug)(v1,v2) and zy, 4, = G (u)(v1,v2) and putting wy, = Zﬁl,vz —

0
% — Awy, + awg, + [ (yu)wi

=1 (Wu) = ' a2, 0y + U () 201 200 — ' () 20, 25,] i Q,
Opwr=0o0n %, wi(0)=0in Q,
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where z,, = G (w)v; and zy,, = G, (ug)v; for i = 1,2. From (3.4) we infer for
o € (doy, o)

ol < Koo (I () = £/ @an)leb, 03122, @)
L () 201 20, — f”(yuk)Zk,mZk,vzI\L§,<Q>)

< Kocor (I ) = £/ 0128, 00 122,00
1 ) = £ W)z 20l 22, @)+ 1 W) s = 200)20ll22, )
I )2 (e — 222, )

4
(318) = Ngog—af Zlk,ia
i=1

where K,_o = K2(||yu\|c L ([0,00): () T 1) We estimate wj, for m > 1; the case

m = 0 is obtained 1n a snnflar way just using the modifications considered above.

We first estimate zvl v,- Take B > 8" > 2ay and € > 0 such that ' — ¢ > 20y.
4 2

We set C[g,g/ = maXg>1 K2(||yk||2c"; 47 ([0,00); H (02)) + 1); Em = m+ 16 and 3, =

(2m +1)(8’ — ). Looking at the equaLtlon satisfied by z¥ , and using (3.4) we get
with Hélder’s inequality for 2241 2m +1, and 2m+1, and (3.1) for a constant Cpr ,

125, s v < Campr 1 (i) 2001 202 22, ()
<Cs_p ||f”(l/uk)||L§:’2m% (Q)sz,m HLgT?(Q)HZk v2 HL‘“”“(@)
4m?C?

"
< a1 O I e g okl Nabaallv, < Covam < o0

where we have used (2.25), 7 ﬂ’"

estimate is obtained for sz2

Now, we estimate Ij ;. Selecting again € > 0 such that o/ —e > 4oy, putting
em = zm and ay, = (2m + 1)(¢/ — ), and noting that 8 = = > 205 we get with
the above estimate

> ay, (3.4), and [Jvil|z2(q,) =1 for i =1,2. The same

Tt <" (ya) = 1/ () 2+m (Q)||Z1Ifl,v2 HLi’:‘nfz(Q)
2mC
u) u 2 @ <C ! w) — ! mn 1 .
< 2 ) = 5 ) g g <Al ) = F ) v

The convergence I, ; — 0 as k — oo follows from (2.25).
2
To deal with Iy » we set £, = ¢'T2n-T and a,, = (2m +1)(a/ — ¢). Now, using
Holder’s inequality with Zmtl 9m+1, and 2m + 1, (3.1), and (3.4) we obtain

Ik,Q < ”f”(yu) - f//(yuk)”L2+

Em

) [l 20, ”ngjfz(Q) [l 20, ||L§TL+2(Q)

4
2m—1 (Q

4m2C?
< oo 1 W) = F @)l 2 pas Mzovan 2o van
(2m + 1) L., @ Im T
< Collf"(yu) = " (yui)l S
L., Q)

Using again (2.25), the convergence Iy 2 — 0 as k — oo follows.
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Arguing as we did for Ij » we obtain

4m?2C?
Iis < —— 1" (yu

< Csllze, = 2k Ivan, -
4am

||Z'U1 — Rk, ”Ym szz Hym
) im im

Taking into account that §2 > 2ay, we know that Gam : L?(Q.) — Yam is of class
C' and, consequently,

sup (120 = 2k I vaw = |Glam (1) = Glam (uk)ll£(L2(Qu),vam) =0 as k— oco.

1
|\U1||L2(Qw):1

This proves the convergence to zero of I, 3. The term I}, 4 is treated in an identical
way. Therefore, with (3.18) we conclude that wy — 0 as kK — oo and, hence, G, is of
class C2. 0
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