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Quantitative estimates for stress concentration of the Stokes
flow between adjacent circular cylinders*

Habib Ammarif Hyeonbae Kang? Do Wan Kim? Sanghyeon Yu®

Abstract

When two inclusions with high contrast material properties are located close to
each other in a homogeneous medium, stress may become arbitrarily large in the
narrow region between them. In this paper, we investigate such stress concentration in
the two-dimensional Stokes flow when inclusions are the two-dimensional cross sections
of circular cylinders of the same radii and the background velocity field is linear. We
construct two vector-valued functions which completely capture the singular behavior
of the stress and derive an asymptotic representation formula for the stress in terms of
these functions as the distance between the two cylinders tends to zero. We then show,
using the representation formula, that the stress always blows up by proving that either
the pressure or the shear stress component of the stress tensor blows up. The blow-up
rate is shown to be §=1/2, where ¢ is the distance between the two cylinders. To our
best knowledge, this work is the first to rigorously derive the asymptotic solution in
the narrow region for the Stokes flow.
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1 Introduction and statements of the main results

When two close-to-touching inclusions with high contrast material properties are present,
the physical fields such as the stress may become arbitrarily large in the narrow region
between them. Such field blow-up occurs in electro-statics and elasto-statics, and quan-
titative understanding of such a phenomenon is important in relation with the light con-
finement in the electro-static case, and with materials failure analysis in the elasto-static
case. Lately, significant progress has been made in understanding the field enhancement.
In the electro-static case, it is proved that the electric field, which is the gradient of the
solution to the conductivity equation, blows up in the narrow region between two perfect
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conductors (where the conductivity is infinite) at the rate of 6=/ [2, BI] in two dimen-
sions and of |§log §|~! in three dimensions [5], as the distance § between the two inclusions
tends to zero. The singular term of the stress concentration is also characterized in two
dimensions [I]. This result has been extended to the elasticity in the context of the Lamé
system of linear elasticity, showing that the blow-up rate of the stress in between two
stiff inclusions (where the shear modulus is infinite) is 6~/2 in two dimensions [6] 20].
References cited above are far from being complete. In fact, there is a long list of recent
important achievements in this direction of research, for which we refer to the references
in [20, [14].

In this paper, we consider the stress concentration in the two-dimensional steady Stokes
system when two adjacent circular cylinders are present. Its quantitative analysis is impor-
tant in understanding hydrodynamic interactions in soft matter systems. This problem is
particularly interesting in comparison to the case of linear elasticity. In the linear elasticity
case, the divergence of the displacement vector field blows up in general as the distance
between two inclusions tends to zero, as was proved in [20]. However, the divergence of
the velocity vector in Stokes flow is confined to be zero, namely, the flow is incompressible.
Thus, it is not clear whether the stress blows up or not in the case of Stokes flow, and how
large it is if it actually blows up. The stress in the Newtonian fluid including the Stokes
flow consists of two components, the pressure and the shear gradient of the velocity field.
We investigate the blow-up rate of each component when the distance between the two
cylinders tends to zero.

More precisely, suppose that two circular cylinders, denoted by Dy and Ds, of the same
radius R are immersed in Stokes flow and they are separated by a distance § > 0. Since
Dy and D3 are (rigid) cylinders, the boundary values of the steady flow on 0D; and 0D,
are given as a linear combination of three vector fields representing rigid motions {1 };-’:1,
which are defined as

|1 |0 |y
’(pl - |:O:| ) ¢2 - |:1:| 9 1/’3 - |:—$:| . (11)
Thus, we consider the following Stokes system in the exterior domain D¢ := R?\ Dy U Ds:
puAu = Vp in D¢,
V-u=0 in D¢,
3
1.2
u:zcl‘y’l‘b‘] on 8DZ, 7::1,2, ( )
j=1
(u—U,p—P) € My,

where 1 represents the constant viscosity of the fluid, ¢;; are constants to be determined
from the equilibrium conditions (see (LI0]) below), (U, P) is a given background solution
to the homogeneous Stokes system in R?, namely,

pAU = VP in R? (1.3)

and the class M is characterized by decay conditions at co. The precise definition of My
is given later in Subsection Here we just mention that the problem ([2)) admits a
unique solution.



Throughout this paper, we assume that both the gradient VU of the background
velocity field and the pressure P are constant functions. Since the pressure is determined
up to a constant, we assume that P =0 and

U@@:B_;Hﬂ (a2 + (c + d)* # 0) (1.4)

for some constants ¢ and d. The fields in ([L4) are the only divergence-free fields in the
case where VU is constant. The condition a? + (¢ + d)? # 0 is imposed from the fact that
otherwise

—X

S =[],

and hence U with a constant p is the solution to the problem (L2]), and its gradient does
not blow up. If we write U as

c+d c—d |y x c+d |y c—d |y
= ex —a  Us = Y 5 1.
e L e e R e A P

and denote respectively by (Uex, Pex) and (ugh, psh) the solutions to (L2) when U = Ug,
and U = Uy, then the solution (u,p) is given by

c+d c—d
U= allex + —— g+ — [_‘yx} (1.6)
and td
P = aPox + < 5 Psh + ¢ 5 const. (1.7)

The singular behavior of the stress comes solely from those corresponding to (Uex, Pex)
and (ugp, psh)- The flows Uy and Uy are called the extensional flow and the shear flow,
respectively, which explains the subscripts ex and sh in our notation.

For the solution (u, p) to the Stokes system, the strain tensor, denoted by £[u], is given
by

ﬂM:%Wu+WFL (1.8)

where the superscript 7' denotes the transpose, and the corresponding stress tensor is
given by
olu,p] = —pI +2p&ul], (1.9)

where I is the identity matrix. The constants ¢;; appearing in (L.2]) are determined by the
boundary integral conditions

/ P -oluplvdl =0, i=1,2 j=1,23 (1.10)
oD;

Here, v denotes the unit normal on the boundary dD; and dl is the line element. Physically,
these integral conditions imply that each rigid inclusion is in equilibrium, namely, the net
translational and rotational stress on each boundary is zero (see, e.g., [7]).

The following is the main result of this paper. It shows that the stress always blows
up. There and in what follows, A < B means that there is a constant C' independent of §
such that A < CB, and A ~ B means that both A < B and B < A hold. The supremum
norm on D€ is denoted by || - ||co-



Theorem 1.1. Let Dy and Dy be disks of the same radii and let (u,p) be the the unique
solution to (L2) when U is of the form (I4) and P =0. Then,

lor[w, plflee = 6712 (1.11)

In fact, we can separate our problem into the cases where the pressure or shear stress
blows up as the following two theorems show, of which the main theorem is an immediate
consequence. To present these results clearly, we assume for convenience that the centers
of Dy and Ds are, respectively, given by

c1=(—R—10/2,0) and ¢ = (R+4/2,0) (1.12)

after applying rotation and translation if necessary, where R is the common radius of the
disks and ¢ is the distance between them. To describe the two-dimensional Stokes flow,
we construct a pair of stream functions using the bipolar coordinates, and then use the
stream function formulation to construct special solutions (hj,p;), j = 1,2, to the Stokes
system (see Section [l for precise definitions of (hj,p;)). It turns out that these special
solutions, called singular functions, capture precisely the singular behavior of o[uex, Pex|
and o[ugy, psn]. As a result, we are able to characterize the blow-up of the pressure and
the shear stress for the different configurations of the background velocity field U: when
U = U,,, the pressure blows up at the rate of 6~ %/2 while the shear stress is bounded;
when U = Uy, the other way around.

The precise statements of the results are presented in the following theorems. Here
and afterwards, II; denotes the narrow region between the two cylinders defined by

Ils := ([-R —6/2, R+ 6/2] x [-V/3,V4]) N D°. (1.13)

Theorem 1.2. Suppose that Dy and Do are arranged so that (ZI2) holds and that U =
Ug and P = 0. It holds that

[€fuedlloe $1 and [pexloo ~ 57 (1.14)

as 0 — 0. In the narrow region 1lg,

172 (y* + 3R3)(y* — RJ)
(y* + Ro)?

Theorem 1.3. Suppose that Dy and Do are arranged so that (ZI2) holds and that U =
Ug, and P = 0. It holds that

U[uempex](x,y) = 2#@5_

1+0(1). (1.15)

I€[ush]lloo 2 7% and  |psulleo S 1 (1.16)

as 0 — 0. In the narrow region Ilg,

gy, pan)(z,y) = 2“\/?%61% [(1) (1)] +0(1). (1.17)

Let (u,p) be the solution to (L2]). According to (6] and (L7),
c+d
olu,p] = ao[Uex, pex) + Ta[ush,psh] +0(1). (1.18)
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Thus, Theorem [[LT]is an immediate consequence of (LI5]) and (LI7]).
What is actually shown in this paper is that if the background velocity field U is of
the form (I4]) and P = 0, then the solution (u,p) is of the following form:

2 +d
(u,p) = aﬁ&?’/z(hl,pl) + 67 VR (ha, p2) + (o, po), (1.19)

where (ug, pp) is a solution to the Stokes problem whose stress tensor is bounded. See the
end of section [Blfor a brief proof of this fact. Since the singular functions (h;,p;) (j = 1,2)
are given explicitly, the decomposition formula (II9) may cast light on the challenging
problem of computing the Stokes flow in presence of closely located rigid cylinders.

Some historical remarks on the study of the Stokes flow in presence of two circular
cylinders are in order. Jeffrey developed in [I5] a separable solution method based on
bipolar coordinates and then analyzed in [16] the flow generated by two rotating circular
cylinders. Several other authors independently developed similar methods [27,3]. Jeffrey’s
method has been applied to various problems of Stokes flow [24 28] 29, [17) 26 30} 8 [13].
In particular, Raasch derived the exact analytic solution for two circular cylinders under
the equilibrium condition, which represents suspended particles in a viscous fluid [22] (see
also [23, @]). However, due to the high complexity of the solution, it is difficult to analyze
the singular behavior of the solution when the cylinders are close-to-touching. In this
work, this difficulty is successfully overcome by introducing the singular functions.

Other than the method of bipolar coordinates, a formal asymptotic technique called the
lubrication theory was also developed for the viscous flow in the narrow region [10} 1T, 19].
Berlyand et al [7] constructed a refined lubrication approximation and then derived an
asymptotic formula for the effective viscosity of concentrated suspensions. We mention
that the approximation (I.19) is different from the lubrication one in two respects. Firstly,
it provides a rigorous pointwise approximation of the solution in the narrow region. Sec-
ondly, its singular parts satisfy the Stokes system at the exact level, which is a key to the
development of an accurate numerical scheme.

The organization of the paper is as follows. In the next section, we introduce the
bipolar coordinates and review the stream function formulation for the Stokes system.
Section Bl is to construct singular functions which are the building blocks in describing
the singular behavior of the solution to the Stokes system (.2)) as the separating distance
between D7 and Dy tends to zero. Sections E] and [l are to prove Theorems and
Section [0l and [7 are to prove that stress does not blow up if the no-slip boundary condition
is prescribed on the boundary of the circular inclusions. Appendices are to prove some
auxiliary lemmas. The paper ends with a short discussion.

2 Preliminaries

2.1 Bipolar coordinates

Given a positive constant a, the bipolar coordinates (¢, ) are defined by

eS—i0 41

FE et (2.1)

Ty =a



so that i ¢ "
sin sin
_ g SO 2.2
* acosh(—cos@’ 4 acosh(—cos@’ (2:2)

or equivalently,

C=1o (x4 a)? + y?
SV arr e

The coordinate curve {¢ = ¢} represents a circle of radius a/|sinh ¢| centered at the point
(a/tanh¢,0). Similarly, the curve {§ = ¢} represents a circle of radius a/| sin ¢| centered at
(a/tanc,0). The point of infinity corresponds to (¢,6) = (0,0). See, e.g., [I5] for bipolar
coordinates in relation with the Stokes system.

The geometry of two disks (the cross sections of the two circular cylinders) can be
described efficiently in terms of bipolar coordinates. Let

o= o (r+5) (2.0

Then the boundary 0D; of the cylinder D; can be parameterized by a (-coordinate curve
as follows:

0 = arg(z —a,y) — arg(x + a,y). (2.3)

0D, = {C = _8}7 0D, = {< = +8}7 (25)
where
s =sinh~(a/R). (2.6)
We note that

s:\/%+0(53/2) as d — 0. (2.7)

The exterior domain D¢ of D1 U Ds is characterized in bipolar coordinates (¢, 6) by the
rectangle
D ={(¢,0) € (=s,s) x [0,2m)}. (2.8)

In particular, {({, ), |¢| < s} is the line segment connecting the two points (—d/2,0) and
(0/2,0).

Let {e;, e,} be the standard unit basis vectors in R? and let {e¢,ep} be the unit basis
vectors in the bipolar coordinates, namely,

o VC VO
CTve T vel

Let [e¢, eg] denote the 2 x 2 matrix whose columns are e; and eg. Then one can easily see

from (2.3]) that

) —
== [eg,eg] = —aﬁ(%—,,g) —ggg:@; s (29)
where L p 0 ¢ sin 0
0(C,0) = 1 — cosh ( cos B(C,0) = sinh ( sin (2.10)

cosh ¢ —cosf ’ cosh ¢ —cos @’

Since o? + 32 = 1, we have
E2=1. (2.11)

[«



This means that = is the transition transformation in the sense that
les, ey] = Elec, ). (2.12)
Define the scaling function

cosh ¢ — cos 0

h(¢,0) = (2.13)
Then, for any scalar function f, its gradient V f can be expressed as
Vf=h(¢0)0fec+ Oof eg] (2.14)

(see, e.g., [25]). Here and throughout this paper, d; and dp denote the partial derivatives
with respect to the ¢ and @ variables, respectively. Moreover, the line element, denoted
by dl, on 0Ds is given by

dl = h(s,0)1de. (2.15)

One can easily check that, for i = 1,2,
Ot lop, = (1T (OIS yiy (2.16)

and

anL‘)Di = (_1)ih(<79)89f‘<:(_1)is ) (2.17)

where 0, and Jp denote the normal and tangential derivatives, respectively.
Using ([Z2) and (Z4), one can see that

U B S NS S ST SN |

If (z,y) lies in the narrow region Ils defined in (ILI3]), then |z| < d, and hence

L, 1_y2 1
sre @ TY¥) — 5= 35ps 3 TOW.

Moreover, if ({,#) lies in Iy, then there is a positive constant C' < 7 such that |0 — 7| < C.
Since [¢| < s ~ /3, we have

cosh( —cosf =1 —cosf+ O(¢?*) =1 —cos 0 + O(6).

Thus we have ) )
cos oy 1
1—cos 2R§ 2 +009),

or equivalently,

+ O(0) (2.18)
in the region II5. One can also easily see from (ZI0) that in Il

a(C,0) =1+0(8), B((0) =O0(Ws),



and hence
0

— 1
== [o _J + O(V9). (2.19)
Using (2.2)), one can see
9 o9, o9 cosh(+cost
X" =24y = cosh( —cos @’

Since the following relation holds for large enough |x| (or small enough ¢ and 6)

| ‘_QZCOShC—COSGZ %—I—%
cosh( +cosf 2+ 0O(¢%?+6?)’

we obtain ) )
S H07) < X7 < S(E+67). (2:20)

2.2 The stream function

Here we review the stream function formulation in the two-dimensional incompressible
flow and collect some useful formulas.

It is well known that any solution (u, p) to the Stokes system, pAu = Vp and V-u = 0,
can be written using a scalar function ¥ satisfying the biharmonic equation A?¥ = 0. The
function ¥ is called the stream function. Once the function ¥ is known, the velocity field
u = (ug, uy)T can be determined from the relations

Uy = Oy, uy = —0,V, (2.21)

and the pressure p is a harmonic conjugate of pAW (see, e.g., []).

Let us write the stream function formulation in terms of bipolar coordinates. It is also
known (see, e.g, [28, 29]) that the Laplacian in Cartesian coordinates is related to bipolar
coordinates via

1
Ay U = o ((cosh ¢ — cos0)A¢ g + (cosh ¢ + cos @) — 2(sinh (O; + sin 60p)) (hV), (2.22)
where h is the function defined in (ZI3]). Using this formula, the biharmonic equation
A%U = 0 can be rewritten as
(8¢ + 20205 + 05 — 20¢ + 205 + 1) (h¥) =0, (2.23)
and the general solution to the above equation takes the following form:

(h¥)(C,0)
= K(cosh { — cosf)In(2cosh ¢ — 2cos ) + ag cosh ¢ + by¢ cosh ¢ + ¢g sinh ¢ + do¢ sinh ¢

+ (aq cosh 2¢ + by + ¢1 sinh 2¢ + dy() cos 6 + (ay cosh 2¢ +51 + ¢y sinh 2¢ + c?lC) sin 0

+ Z <an cosh(n + 1)¢ + by, cosh(n — 1)¢ + ¢, sinh(n + 1)¢ + d,, sinh(n — 1)() cos nf

n=2

+ Z <?in cosh(n 4 1)¢ + by, cosh(n — 1)¢ + &, sinh(n + 1)¢ + dy, sinh(n — 1)() sinnf.
n=2

(2.24)



Using (Z14)) and (Z2I]), one can see that the components of the velocity u = ucec+ugeq
are given as follows:

sin 6
Ue = —hoyV¥ = <—89 + —COShC — COS@) (h), (2.25)
B B - sinh ¢
ug = +h8¢\If = <8< —COShC — COS@) (h\If), (2.26)

and the pressure p satisfies the relations
agp = —uagA\I’, agp = ué)CA\I/. (2.27)

The entries of the strain tensor £[u] when represented in terms of the basis {e¢,eq}
are given by

Ece = —hO: (hopW) — hO W Ogh, (2.28)
Eop = +h0g (hO: V) + hdp WO, h, (2.29)
£ = 5 (0 (W0,0) — 0y (W057)) (2.30)
Therefore, the following relation holds:
Eee &
Eu] == &€ C"] 2.31
== & (231

where = is the matrix given in (2.9]). The entries of the stress tensor in bipolar coordinates
are given by

occ=-—p+ 2/15«, Opp = —p + 2#5(9, ocp = 2#5(9. (2.32)
Similarly, we have the following relation for the stress tensor:
_ = | oce| =
olu,pl =2 =. 2.33
wrl == |7 7] 2.3
Since each component of = is bounded, it follows from (ZI1]), (231) and ([233)) that
1€l oo 7y = 1€cclLoe (1) + €00l e (1) + I Ecoll Lo (1) (2.34)
and
llo[w, plllze ) = llocclnoe iy + llogellLoe () + llocoll oo (1) (2.35)

for any subset K of D€.
Using integrations by parts on the exterior domain D¢ we have for any solutions
(u,p), (v,q) to the Stokes system such that u(x),v(x) — 0 as |x| — oo that

/ wolvgy = [ Elulioiv.g
oDe

L
= ou | EMu]: €WV (2.36)

De
This implies in particular that the following Green’s theorem holds:

/8D€ u-olv,qlv = /8De v - ofu,plv. (2.37)
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2.3 An exterior Dirichlet problem
Let F(X) = (Fij(x))i,j:1,2 be

€XT;T

7), xeR*\{(0,0)},

1
Fij(X) = ——(5@’ log |X| +

drp x|

and define p = (p;);=1,2 by

1 x
27 |x|?’

P = x € R*\ {(0,0)}.

Then, (T, p) is the fundamental solution to the Stokes system, namely,
pAT — Vp = 0(x)L.

Let I'a be the fundamental solution to the Laplacian given by

1
Ia(x) = 7 log |x|.

The existence and uniqueness of the exterior Dirichlet problem, proved in [21] Theorem
9.15], is as follows.

Theorem 2.1. Assume that 2 is a bounded Lipschitz domain. Then the exterior Dirichlet
problem

pwAu = Vp in R?\ Q,
V-u=0 in R?\ Q, (2.38)
u=g on 012,
with the decaying conditions
u(x) =T(x)A + C+ O(]x| "),
Oju(x) = 9;T(x)A + O(x|7?),
p(x) = VIa-A+O(x|7?)
as |x| — oo for some constant C € R?, has a solution, which is unique modulo adding

functions to the pressure term which are locally constant in R%. Here, A € R? is a priori
given constant.

We shall consider the exterior Dirichlet problem with A = 0. Let M be the set of all
pairs of functions (u,p) satisfying

Vu(x) = O(|x|72), (2.39)

as |x| — oo for some constant C € R%. We denote by M the set of all pairs of functions
(u, p) satisfying the decay conditions (239]) with C = 0.

10



3 The singular functions for the Stokes system

In what follows, we construct the singular functions (h;,p;), j = 1,2, which is the unique
solution to the following problem:

,uAhj = ij in De,

(—1) . (3.1)
hj = "3 'l,bj ODZ, 1= 1,2,
(hj,pj) e M.

We then provide quantitative estimates of the blow-up of these functions in the subse-
quent propositions. We call the solutions (h;, p;) the singular functions since they are the
building blocks in describing the singular behavior, i.e., the stress tensor blow-up, of the
solution to (L2]). In fact, we will see that the solution to (L2) can be expressed as a linear
combination of singular functions (modulo a regular function) and the nature of the stress
tensor blow-up is characterized by (hy,p1) and (ha, p2).

Proposition 3.1. Define two constants Ay and By by

1 1

A= ——— =—— A
! 2s — tanh 2s’ ! 2cosh2s”

(3.2)
(i) The stream function ¥y associated with the singular functions (hy,p1) is given by

\Ill(Ca 9) =

h((l, ) (A1¢ + B sinh 2¢) sin 6. (3.3)

(ii) The components of the velocity hy = hicec + higeg are given by
1 — cosh ( cosf

=(A By sinh 2 4
fn¢ = (ArC + By sinh 20) cosh ¢ —cos@ ’ (3.4)
inh (A By sinh 2

hap = sin 0 Ay + 2B, cosh2¢ — SURCAIC + Bisinh 20)) (3.5)

cosh ¢ — cos 0

(iii) The pressure py is given by

21 21

p1 = 7((141 — 2By) cosh ( cos 6 + By cosh 2( cos 26) — F(Al — By). (3.6)

Proof. The formulas [B3)-(B.0) are derived in the following way. We use the expansion
[224) for the general solution to the Stokes system, and then determine its unknown
constant coefficients by matching the boundary conditions on dD¢, given by {{ = *s},
and using formulas (212]), [225]), and (220]). Let us show that the boundary conditions
are fulfilled. If ( = +s, we have

1 — cosh scos6 1
h =+s5 — =* 70 ’
icle=+ 2(cosh s — cos 0) 2a(s )
sinh s sin 6 1
higle=ts = = F-0(s,0).
tole== :F2(cosh s — cosf) :F2ﬁ(s )

11



One can see from the relation (2I2]) that the boundary conditions on dD; U 9Dy are
satisfied.

The formula B.0) follows from [227)) and [B3]). In fact, applying [222]) to ¥; given
in (B.3]), we see that

-2
pAU, = —'u((Al — 2B;)sinh ( sin @ + By sinh 2( sin 26).
a

The harmonic conjugate of this function vanishing at (¢,6) = (0,0) is nothing but the one

given in (3.6).
We now prove that (hy,p;) belongs to M. We first prove that hy(x) = O(|x|7!) as
|x| = oo, which amounts to proving

h(¢,0) = O([cl+10]),  (¢,0) = (0,0), (3.7)
thanks to (2.20). We have from (34]) and (3.3]) that
[¢I% + 101

€12+ 1612

ol < CIOI(1+ el s ) < €O (35

el < C(I¢] +[¢] ) < €Il

Here and throughout this proof, the constant C' may depend on s, but is independent of
(¢,0). This proves [B1).

Similarly, one can show that
Ochicl < €, [Ochicl <€, |Ochac] < C, |9chac| < C. (3.9)
Since hy = hicec + higeg, we have
|Vhi| < C(|Vhic| + |hicVee| + [Vhig] + |h1gVeg)). (3.10)

It then follows from ([B.8) and the following lemma, whose proof will be given in Appendix

[Al that
|Vhy| < C(|Vhice| + [Vhig| + ¢ +10]%). (3.11)

Lemma 3.2. It holds that
Vel + Vel S [C] +10]. (3.12)

We then have from (B.9]) that
Vha| < C(1hdchic| + [Ophac| + [hDchag| + [hDphag + ICI* +101%) < C(I] + |C* + 16]).
One can see from the definition of the function A that
[A(¢,0)] < C(IC1” +161),

and hence
[Vhy| < C(IC]* + 16]%),

12



or equivalently, Vhy(x) = O(|x|?) as |x| — oo.
Note that p(¢,0) = O(|¢|*>+10)?) as (¢,8) — (0,0). Thus, p(x) = O(|]x|~2) as |x| — oo,
and hence (hy,p;) € M. This completes the proof. O

It is helpful to write h; in terms of Cartesian coordinates. By (2.2)), we have
Uy = A1y¢ + Byysinh(,
and hence
V¥, = Ai(e, + A1yV({ + By sinh (e, + Byycosh (V(.
Then, since hy = (V¥;)+, we have

hy = (A1¢ + By sinh()e, + (A; + By cosh {)y(V()*. (3.13)

Herea (x7y)l = (y7 —.’L’).

Proposition 3.3. We have
€Ml S 6732 and |p1]loo ~ 677 (3.14)
as 6 — 0. In the narrow region Ilg,

3 oy + 3ROy — R9)

o, pil(z,y) = —7ukRo F 1 RO I+0(573/?). (3.15)

Proof. One can see from the explicit forms of the constants A; and By in ([B.2]) that
3

A = 23—3 FO(T), Bi=—1is8 4067, (3.16)
Using (228)-(230) and Proposition B1] (i), we have
Ece = —h(¢,0)(A1 + 2B cosh 2€) cos 0, (3.17)
Epp = h((,0)(Ay + 2By cosh 2§) cos 6, (3.18)
Eco = h(¢,0)2B; sinh 2¢ sin §. (3.19)

We first estimate E¢¢c. It follows from the Taylor expansions of cosh2( and sinh 2(,
and from (B.I0) that

1+ cosf + O(¢?)
a

5« = — (A1 + 2B + O(Cz))COS 0.

Observe from (B.16) that A; +2B; = O(s~1). Since |¢| < s and a, s ~ V/3, we have
[Eecl S 671

Estimates for &y and &£y are simpler. In fact, one can see immediately from (B.I8])

and (3.19) that
[€00] = |Ecc| <07

13



and
Ecol S a7 Bi¢| S 672

Then (Z34) yields the first estimate in (B.14)).
We now consider the pressure p;. Since a ~ v/, we have
p1(¢,0)] < 672 (cosh ¢ | cos 6] + 1),
Since |¢| < s =~/ by @) if (¢,0) € D¢, we have

p1(¢,0) S 072
Using the Taylor expansion of cosh (, we see

p1 = g,uR(S_2 <cos€ - % cos? 0> +0(67h).

In particular, we have ||p1]|oo = 672, and the second statement in (3.I4]) follows. Now the
expansion ([B.I5]) in the narrow region follows from (9] and (2I8]). O

The expressions for the solution (hg,p2) are quite involved even though it is possible
to express it explicitly. However, its singular part, which is to be used in the rest of the
paper, can be expressed in a rather simple way. To express the singular part, which is

denoted by (hg, p2), let

1
Ag = —— . 2
2 25 + sinh 2s (3.20)

Then, the components of the velocity field flg = Eggeg + EQQG@ are given by

hac = AsCB(C,0), (3.21)
hag = AsCa(C,0) + Ay sinh ¢, (3.22)

and the pressure po is given by
- 2
D2 = ——'uAg sinh ¢ sin 6. (3.23)
a

Then one can see easily that (Hg, D2) belongs to M and is a solution to the Stokes system.
Moreover, hs satisfies

i

_21) 1/’2 - C2¢37 1= 17 27 (324)

hy|ap, =
where 5 is the one given in (L) and C; is the constant given by

. h2
Cy = Sma iy (3.25)

In fact, one can easily check using (ZI2)) that

sinh s

V. (3.26)

egplop, = — cosh s1p, —

14



It then follows from ([B.2I)) and (3:22]) that

}~12|8D2 = A28(5eg + Oéeg) + Ao sinh sey

sinh? s

= Ays(—1y) + As(—sinh s cosh s)1py — Agtps.

This proves (3.24) on dD3. (3.24) on dD; can be proved in the same way. In Cartesian
coordinates, hy is represented in a simple form as

a

flg = —AQCey + AQQZ‘(VC)J' (327)

Some words about how to derive (Hg,ﬁg) may be helpful. As in Proposition Bl we
first derive the relevant stream function Wy using the expansion (2:24]) for the general
solution, which turns out to be

1
h(¢,0)
We then let (flg, p2) be its associated solution to the Stokes system.

Thanks to ([B:24)), how to find the solution (hg,ps) is clear. Let (hyot,prot) be the
solution to

Uy(C,0) = Ao sinh (. (3.28)

,uAhrot = Vprot in D¢,

V- hrot =0 in De,

h. = ’l,bg 0Dy U aDg,
(hrotaprot) S M

The existence and uniqueness of the solution are guaranteed by Theorem 211 We will
construct the stream function for (hyet, prot) explicitly in subsection and prove the
following theorem in section [7}

Theorem 3.4. We have

(3.29)

[€hrot]lloo S 1, [[Protlloc S 1 (3.30)

and
“U[hrotaprot]“oo 5 1. (331)

We immediately have the following proposition.

Proposition 3.5. Let (hy,ps) be as given in (321)-(323) and Cy the constant given in
(2.23). The solution (hg,ps) to [31) is given by

(ha,p2) = (ha, 52) + Ca(Bor, Prot). (3.32)
Proposition 3.6. It holds that
|EMa]llso = 671 and  [[p2floc ~ 671/, (3.33)
as 6 — 0. In the narrow region Ilg,

-~ R 0 1
olha, pa) (2, y) — 0" [

—1/2
mawal 0}+0(5 ). (3.34)

15



Proof. We first note that 1
Ay = v + O(s). (3.35)

Since |¢| < s ~ V/§ and a &~ V/§, the second estimate in ([B33) immediately follows from
EZ).

Since a &~ s as one can see from (Z.0)), it follows from (335 and the definition of Cy
in (3.25) that C3 is bounded regardless of §. In view of ([3.30), we only need to derive

estimates related to (hs,ps). Using (228)-(2.30) and (B28]), we have

6cclia] = 0, (3.36)
Epp[ha] = 0, (3.37)
gcg[flg] = MAQ COShC. (3.38)
We then have from (338]) that N
[Ecolho]| S 971,
and hence _
1€ Ma]]loe S 7

We see from (24)), 27), B35]) and [B38) that
~ 1
Ecolha] = —E(coshg —cosf)+ O(1).
In the narrow region Ils, we have

Ecolia] = _4_15(1 — cos6) + O(1).

In particular, |E¢p| 2 67!, and the first estimate in ([:33) follows. The asymptotic formula
B34) follows from (LA), 2I]), I9) and 233). O
4 Proof of Theorem

Thanks to the symmetry of the problem ([2) with U = Uy = (2, —y)” and P = 0, the
velocity u enjoys the following symmetry:

Ux(x,y) = ul‘(‘r7 _y) = _ul‘(_x7y)7
uy(x,y) = _uy(x7 _y) - uy(_x7y)7
and the pressure p does:
p(z,y) =p(—z,y), p(z,y) =Dp(T,~Y).

Thus, we infer
c11 = —co1 and ¢p=c¢3=0 fori=1,2.

In other words, we have

u = —621'1,01 on aDl, u = Cgl’l,bl on aDg. (4.1)

16



Therefore, the solution (u,p) := (Uex, Pex) admits the decomposition in terms of the sin-
gular function
u=vy+2h;, p=q +2cup; in D (4.2)

where (v1,q1) is the solution with the no-slip boundary condition, namely,

WAV = Vg in D¢,
R in DE
V-vi=0 in D¢, (4.3)

(Vl - on,%) e M.
We will construct the stream function for (v, ;) in subsection [6.I]and prove the following
theorem in section [7]

Theorem 4.1. Let (vi,q1) be the solution to ({{.3). Then, the following estimates hold:

[€villlo S 1, la1llo S 1, (4.4)
and
lovi, a1]llee S 1- (4.5)
It then follows from (2] that
5[11] = 26215[}11] + O(l),
p = 2ca1p1 + O(1), (4.6)
J[u7p] = 26210’[1'11,]91] + 0(1)7

as 0 — 0. Here, O(1) means that the supremum norms of the remainder terms are bounded
on D¢ regardless of §. Because of ([B:I4)), it is now sufficient to estimate the constant co;.
We first express co1 in terms of boundary integrals. To do so, we let

I = / e, - U[hhpl]V dl and Jq:= U- U[hhpl]l/dla (47)
8D2 aD2

with U = Ugy = (2, —y)7T.

Lemma 4.2. We have

Co1 = ;—11 (4.8)

Proof. By Green’s identity for the Stokes system on D¢, we obtain that
/ (u—U)-a[hl,leJrV—a[u—U,pHJrV'hl:0. (4.9)
oDe

Since hy|gp, = (—1)'3%y, it follows from the boundary integral conditions ([I0) that

/ J[u,p]|+1/-h1:0, i=1,2.
0D;

17



Applying Green’s identity on D;, we have

/ J[U,O]|+V~h1:/ o[U,po]|_v-hy =0, i=1,2

It then follows from (4.9) that

/ (u_U)'O-[h17p1”+V:07
oDe

or equivalently
/ u-a[hl,pl]‘JrV: U'U[hhleJrV-
oDe oDe

By symmetry, we have
/ u-olhy,pi]| v = U -olhy, pi]|, v
8D2 aDZ

Then the conclusion follows from (4.1]). O

We have the following lemma whose proof is given in Appendix Bl

Lemma 4.3. As § — 0, we have

3/2
7= ST (BN oy, (4.10)
2 0
and
J1 = —3muR + O(9). (4.11)

As an immediate consequence of Lemmas .2 and 3] we have the following corollary:

Corollary 4.4. As § — 0, we have

2
cop = —=8%2 + O(5°/?). 4.12
0= (6°7%) (4.12)

Now Theorem follows from Proposition B3], (4£.0), and Corollary [4.4]

5 Proof of Theorem [1.3

Assume that U(xz,y) = Uy, = (y,2)7. We write (u,p) for (ug,,psn) for ease of notation.
In this case the velocity u satisfies

e (2,y) = —ue(r, —y) = us(=2,y),

Uy(l‘,y) = uy(ﬂj’ _y) = _uy(_ﬂf,y)a (5'1)

and the pressure p satisfies:

p(z,y) = —p(—z,y), plr,y) = —p(r,~Y).
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Then, we see that coo = —cq9, ca3 = ¢13 and ¢;1 = ¢;1 = 0 for i = 1,2. As a result, we have

)

u = —cpt, +ca3tPs on dD;, u=cpy+ca3ps on dDs. (5.2)

Let us decompose the solution (u,p) in D€ as

(u,p) = (v2,q2) + 2c22(ha, p2) + c23(yot, Prot ), (5.3)

where (vg,g2) is the solution to

WAvVy = Vo in D¢,

-ve =0 in D¢
V- vy in D¢, (5.4)
vo =0 0D1 U 0Ds,

(vo = Ugn, q2) € M,

and (hyot, Grot) is the solution to ([3:29). Note that vo also satisfies the no-slip boundary
condition like vi. We will construct the stream function for (ve,gs) together with those
for (hyot, grot) and (v1,¢q1) in subsection and prove the following theorem in section [71

Theorem 5.1. We have
[€vallle S 1, lla2llee S 1, (5.5)

and
lo[va, 2]lloe S 1. (5.6)

It follows from (B.3]) that

5[11] = 26225[}12] + C23g[hr0t] + O(l),
P = 2¢22p2 + €23Prot + O(1), (5.7)
ou,p] = 2cpa0ha, pa]| + ca30[hrot, Prot] + O(1),

as § — 0.
As before, we represent the constant cps using the integrals

Igj = / ’l/Jj . O’[hg,pg]l/ dl, j = 2,3, (58)
0D

Lot 1= ".bg : O-[hrotaprot]ydla (5'9)
0D

Jo = U - olhy, po]vdl, (5.10)
0Do

Trot = U- U[hrotyprot]y dl, (511)
0Do

where U = Uy, = (y,2)”. We have the following lemma whose proof is similar to the one

of Lemma
[122 123] [022} _ [52]
Tz Trot] |C23 Trot]
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Proof. As in the proof of Lemma [£2] we have

/ u-a[hg,pg]‘JrV: U’U[h27p2H+l/7
0Dso 0D>

and
/ u - o[hyot, Prot] ‘+V = U - o[hyot, Prot] ‘_,’_V'
0D2 0Do
Then, by (52]), we see
Toocoe + Lazcaz = Ja,
and
Py - [Nyt Prot) |, v - €22 + Trorc23 = Jrot-
0Do
Then, Green’s identity yields

17b2 : O-[hrotyprotH_i_V = /

ODo oDe oDe

= Y3 - olhg, pa]| v = Loz,
0Do
and hence the conclusion follows.
We have the following lemma whose proof is given in Appendix[Cl Let

fol) 4e~" sinh? z(cosh z + sinh z) — 42
x) =
0 x3(sinh 2z + 22) ’
4z

sinh 22 + 22’

go(z) :=
and let - -
Fy = / folx)dz, Go:= / go(x)dx.

0 0

Lemma 5.3. As § — 0, we have

R
122 = —WM\/;-F O(l),

R

Tos = L O(V3),
Fy

4 2

Irot - - 7T,UR + O(\/g)
Foy
1 _
Fy
1 _
Trot = —47wR2TGO +O(V9).
0

As an immediate consequence, the following corollary holds:
Corollary 5.4. As § — 0, we have
Co9 = VR5+O(5), C23 :O(l).

hy - U[hrotyprot]‘+7/ = / hyo - U[h27p2H+V

(5.12)

O

(5.13)

(5.14)

(5.15)

(5.16)

(5.17)
(5.18)
(5.19)

(5.20)

(5.21)

Now, Theorem follows from Theorem B.4] Proposition 3.6, (5.7) and Corollary
B4l One can also see that the decomposition formula (LI9]) for the solution (u,p) is an

immediate consequence of (@6, (Z12), (57) and (G2I)).

20



6 No blow-up with no-slip boundary conditions I

In this and next sections, we show that the stress tensor does not blow up under the no-slip
boundary condition, that is, we prove Theorems [3.4] [£.1] and [B.Il Theorem [3.4] is for the
problem with the boundary condition given by 15, and Theorems [A1] and (.11 for those
with the no-slip boundary conditions. For doing so we first construct solutions (v;,g;),
j =1,2, and (hyot, prot) by using the stream function formulation and bipolar coordinates.
To avoid notational confusion, we denote the stream functions by @ in this section instead
of ¥ which was used in previous sections.

6.1 Construction of stream functions

In the following three lemmas we present stream functions for (vi —Uex, q1), (V2 —Ugn, ¢2),
and (hyot, prot). Each stream function is found using the general form (224]) and matching
the boundary conditions using the formula ([2.25]) and (226]) for u components of the
solution.

6.1.1 Stream function for (v; — U, q1)

Lemma 6.1. Let @1 be the stream function associated with the solution (vi — Uex, q1).
We have

(h®1)(¢,0) = ay sinh2¢ sinf + by sin b

+ Z <an sinh(n + 1)¢ + by, sinh(n — 1)() sinnd, (6.1)
n=2

where

2ae~%(sinh s — se™*)

T T inh 2s — 2scosh 2s
b 4a sinh? s
1™ Sinh2s — 2scosh 25’
2a(e™" sinhns — e *nsinh s)
ap = — - - , n>2,
sinh 2ns — nsinh 2s

2a(e~"* sinh ns — e*nsinh

b — a(e™ " sinhns — e®nsin s)’ N>

sinh 2ns — nsinh 2s

Proof. We need to show that the solution (v, ¢;) constructed from ®; satisfies the no-slip
condition vi =0 on dD; and D5, and (vi — Ug, q1) € M.

We first observe that ®) := xy is the stream function associated to the background
solution (U, 0). Here and throughout this proof U = Ug,. In fact, U = (x, —y) = (VO?)+
and a harmonic conjugate of uA®Y = 0 is constant. We see from (2.2]) that

o a’sinh(siné
1™ (cosh ¢ — cos 6)2

in bipolar coordinates.
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Notice that <I>? has the odd symmetry in both ¢ and 8. So we look for ®; with the
same symmetric property. We assume that ®; of the form (6II) which is the part with
such symmetry of the general solution (2.24]), and determine the coefficients a,, and b,
from the no-slip boundary condition.

For that, define ®'°* by

Ot = DY + @y,
so that ®!° is the stream function associated with (v, q;). If we write vi = vicec +vigey,
then the no-slip boundary condition becomes

vie =0 on (= +s, (6.2)
vip =0 on (= *s. (6.3)

Then, from the formula (2ZI7) for the tangential derivative and ([225) for the stream
function in bipolar coordinates, we have

0= vicle=ts = —(hDp®1™")|¢=ts = FOr O (=ts

This amounts to ®!°* being constant on {¢ = s} and {¢ = —s}. Since ®!°* is odd in (, we
further require that
P =0 on (= +ts.

We also have from ([2:26]) and (€3] that on {¢ = +s}

sinh ¢

— — q>t0t — P s
0= vig = hocds <6C cosh ¢ — cos 6

) (hBEY) = 0, (hDi).

Thus the no-slip boundary condition is fulfilled if

h(I)tl()t =0 on ( = *s,
e (h®t) =0 on ¢ = s,
or equivalently
h®, = —h(I)(l) on C = s, (6 4)
8((}1(1)1) = —ag(h@(l]) on C = *+s. )
Note that
(h®9)(¢,0) = asinh(sind =2a sinh(i e Clsinng, ¢ #£0 (6.5)
LS cosh { — cos ’ ‘ :

n=1

We then see from (6.1]) that (6.4]) is equivalent to the following linear systems for a,, and
bp:

sinh 2s s| (a1| —2a sinh se™* (6.6)
2 cosh 2s 1| |61 |—2acoshse™® + 2asinh se™* |’ )
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and

sinh(n + 1)s sinh(n —1)s an
(n+1)cosh(n+1)s (n—1)cosh(n—1)s| |b,
—2a sinh se™"™*
= >
[—2@ cosh se™™ + 2a sinh sne‘”s] , n22 (6.7)

Solving these linear systems yield the expressions for a,, and b,,.
We now show

(vi—U,q1) € M. (6.8)

We first prove
(vi = U)(x) = O(x|1),  [x] = oo. (6.9)

Since |x| — oo is equivalent to (¢,0) — (0,0), it is equivalent to proving
(vi =U)(C,0) = O([cl +10]), (¢, 0) = (0,0). (6.10)

One can see from the explicit forms of a,, and b,, that there is a constant C' independent
of n (C may dependent on s) such that

|ap| 4 |bp| < Cne=2ms

for all n. Thus for any positive number k there is a constant C' such that
o0
> nFe (Jan| + [ba]) < C (6.11)
n=1

The constant C' may differ at each appearance.
If we write vi — U = feec + fpey, then it follows from ([2.25]) and ([2:26) that

fe=—hoy®, = (—0p + F) (h®q), (6.12)
fo= —|—h8§(1)1 = (8< - G) (h®y), (6.13)
where 0 ¢
sin sin
F= cosh ¢ —cos @’ = cosh( —cos @’ (6.14)

According to (61]), h®; can be written as

(h®1)(¢,0) = a1 sinh 2¢sin 6 + bi¢sin 6 + Y (anw;! (¢,0) + baw, (¢,6)) , (6.15)
n=2
where
wE(¢,0) := sinh(n £ 1)¢ sinnf. (6.16)
One can see that

[z (C,0)] < n*e™|C). (6.17)

It thus follows from (6.I1]) that
|(h®1)(¢,0)] S 1CO] +1¢O] Y n*e"™ (|an| + [bal) S [¢6- (6.18)

n=2
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Similarly, one can show that there is C' independent of ({,6) such that

|0c(h®1)] < C|0], [0g(h®1)| < CIC],

|02 (h@1)] < C¢0], |95 (he1)| < CI¢h],  |0¢0p(h®1)| < C. (6.19)
Since
Flx o ol o (6.20)
as (¢,0) — 0, we have from (6.12)), (6.13), (6€I8) and (G.I9]) that
[ fel + | fol < C(IC] + 101) (6.21)

for some constant C' (depending on s, and hence on §), which implies ([€.9]).
Next, we prove
V(vi = U)(x) = O(|x[7%), |x| = oo, (6.22)

or equivalently

V(vi = U)((,0) =0 +6%), (¢,0) — (0,0). (6.23)
Since vi — U = fee; + fpeqp, we have
IV(vi = U)| < C(Vfe| + [ fcVec + [V fol + [ foVeol).
Lemma B2l and (621]) yield
IVvi = U| S|V el + [V fol + (P +67).

We see from (6.12])
Ocfe = (—(9@89 + FO: + 8¢F) (h®y).

One can see easily that |0.F| < (¢246?)~!. Thus we obtain from (6I8), (619) and (6.20)

Ocfe = O(1).

Similarly, one can show
dofe =0(1), Ocfo=0(1), 0Opfg=0().

Therefore, we have

Ve = O(hdcfel + Ihdafc]) = O(h]) = O(C2 + 62, (6.24)
V fo = O(|hd fol + |hda fo]) = O(|h]) = O(¢* + 6%). (6.25)
This proves ([6.22)).
We now prove the estimate of the pressure:
qi(x) = O(x|7?),  |x| = oo, (6.26)
or equivalently,
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Let
wy(C,0) :=sinhn(sinnbh, w,((,0) = coshn( cosnb. (6.28)

The pressure ¢; is given by

2 20 2 -
q=C- alf@wl W) + bl_uwl - z,u ((n+ Day — (n — 1)by)10y
n=2
+2’”‘§: ; 205 i (6.29)
7 2nanwn+1 - ; 2:271 nWn—1, .
n= n=

for some constant C'. In fact, one can see from ([2.:22)) that

2 2 2 —
APy = a1~ (2wy —wp) — by -wy + - Y Dan — (n— 1)by)wn
1 ala( wy — wa) 1aw1+an:2((n+ )a (n—1)by)w

2 — 2 —
— = E NApWpa1 + — E nbpWy—1.
a a
n=2 n=2

Since ¢ is a harmonic conjugate of pA®; and —w, is a harmonic conjugate of w,,, ([6.29)
follows.
We choose the constant C' to be

C=""a - —b1 L Z an + by) (6.30)

Then, ¢; take the form
2 - _ 20, .
qgq=C— alf(Q(wl —1) — (wg — 1)) + blzlu(wl —1)

— %u ((n+1a, — (n—1)by)(w, — 1)
n=2

+ — Znan (Wpy1 — 1) an (Wp—1 — 1). (6.31)

n=2

Note that
D (C,0) — 1] S n°e™(¢* + 67). (6.32)
This together with (G.IT]) yields
la1] < (1 + Zn?’ "(lan| + \bn])) 1C% + 6% = O(¢* + 6%).

This proves ([6.20]) and hence ([G8]). The proof is completed. O
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6.1.2 Stream function for (vy — Ug,, ¢2)

Lemma 6.2. The stream function ®o associated with the solution (vo — Ugp, q2) is given
by

(h®3)(¢,0) = Ky(cosh ¢ — cos ) In(2cosh ¢ — 2cos ) + ¢y cosh ¢ + dp¢ sinh ¢

[ee]
+ (¢ cosh(n + 1)¢ + dy, cosh(n — 1)¢) cos n, (6.33)
n=1
where
a(l — tanhs — 2500 pp7)
v T 1 s(sinh2s—2tanhs)
2T T oamnzs -+ M
with -
M Z 4n sinh s cosh s —I—.e_"s sinhns - 4n? sinh? 87 (6.34)
vt n(n? — 1)(sinh 2ns + n sinh 2s)
and - ,
4dn sinh” s
M' = 6.35
Z:; sinh 2ns + nsinh 2s’ (6.35)
o 8 asinh? s N —14e2 —25(1+ s)
7 72 " Sinhscoshs + s Y 25 + sinh 2s ’
d — a sinh? s
O Sinhscoshs + s s + cosh ssinh s’
1
c1 = CL(—l + Coth 23) + Kvm,
a a tanh s
dy == — K,(1 -
R e
2a(e~" coshns — e *nsinh s) LK e " sinhns + e *nsinh s
e = ,
" sinh 2ns + nsinh 2s “n(n + 1)(sinh 2ns + nsinh 2s)
4 - 2a(e~ "™ coshns — e*nsinh s) oK e~ " sinhns + e*nsinh s
" sinh 2ns + nsinh 2s “n(n — 1)(sinh 2ns + nsinh 2s)’

Proof. Like the proof of Lemma 6], one can see that the stream function associated with
the background solution (U, 0) is given by
1

Py = 5(—952 + 7). (6.36)

Here and throughout this proof, U = Ug,. One can see from (2.2) that

1 a?(—sinh? ¢ + sin? )
Y = = : 6.37
272 (cosh( — cos )2 (6.37)
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Since <I>(2) has the even symmetry in both ¢ and 6, we seek ®5 in the form (6.33]) which
has the same symmetric property. Let

(h®X)(¢,0) := K,(cosh ¢ — cos#) In(2cosh ¢ — 2cos6), (6.38)
(h®L)(¢,0) := co cosh ¢ + doC sinh ¢
+ i (cn cosh(n + 1)¢ + dy, cosh(n — 1)¢) cos nb, (6.39)
n=1
so that
Dy = oF + ol (6.40)
Let

O = DY + .

Then, ®Y* is the stream function associated with (vo,g2). We determine the coefficients
¢, and d, from the no-slip boundary condition vo = 0 on 9D and 0D5. One can show
as in the proof of Lemma that this condition is fulfilled if

tot _ —
h®3*t =0 on ¢ = ks, (6.41)
e (h®5*) =0 on ( = +s.
In other words,
hel = —hd§ — hek on ( = =s, (6.42)
Oc(h®@L) = -0, (h®Y) — O (h®F)  on ¢ = =+s. ’
Let
1 a®(—sinh? ¢ + sin? )
0 S
(h®2)(C,6) = 2 cosh( — cosf
= Lo-ldl 4 &2 ~ asi S el
5¢ + 5¢ cos asmh|§|nzz:2e cos nf
=: Z #0(¢) cosnd, (6.43)
and
K 6_2‘<
(h®5)(¢.0) = Ko(|¢] cosh ¢ + e — K, (14 S +[¢]) cos
—(n—=1)¢| e_n‘q e_(n"l‘l)‘q
+ K, Z( p— — 2cosh( - + I )cosn@
=: Z 5 (¢) cosnb. (6.44)
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Then one can infer from (6.42]) that the following system of equations for ¢,, d,, hold:

[coshs ssinh s HCO]:[ (_¢0<)_¢5<<s) }

sinhs  sinhs+ scoshs| |dy o5 (s) — () (s)]
K K
e N o e W B

oo r s (=t ] [a2] = [k~ o)

for n > 2. Solving these linear systems yields the expressions given in the lemma for ¢,
and d,, in terms of K,. We then determine the constant K, by imposing the condition

and

co+ > (en+dn)=0. (6.45)
n=1

This condition is required to prove
(Vg - U, QQ) e M. (6.46)

We will be brief in presenting the proof of (6.46]) since it is parallel to (6.8]). We only
mention why the condition ([6.45]) is required, and write down the formula for the pressure
term ¢o since it will be used in latter part of this section.

Similarly to (6I1]), one can show that for any positive number k there is a constant C'
such that

an " (len| 4 |dn]) < C. (6.47)

Note that

(hq>e,F)(<-’ 0) = ¢ COShC + dOCSiHhC + Z (Cn?I)jL_(C, 9) + dnm;(ga 0))7

n=1
where

WE(¢,0) = cosh(n + 1)¢ cosnd.
Thanks to (6.43]), we have

(h@*F)(C, 9)—co(coshC—1)+doCs1nhC+ch (¢,0) = 1) + dyn (w0, (¢, 0) — 1).

n=1

We then use ([6.32) to obtain
(h®“T)(C,0) = O(C* + 7).
We use ([222) to see that A®XK =0 and

2 2 2 &
Ady = AP = 2 do=(1 — = Ve, — (n— 1)d,,) i,
2 2 = _cotdo( w1)+aZ((n+ Jen = (n = 1)dy )

n=1

2 — 2 —
- = E NCpWnt1 + — E nd, Wy—1.
a a
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Since the pressure g5 is a harmonic conjugate of pA®¢, we have

[e.9]

2 2
4 = ;Mdowl n ;" ;((n F 1)en — (1 — 1)dp)wn
2 2 &
— ;,u Z NCpWp11 + ;,u Z ndy,wyp_1 + C (6.48)
n=1 n=1

for some constant C'. We choose C' = 0. Then, since
wn (¢, 0)] < n?e™ (¢ + 67), (6.49)

we have go = O(¢? + 62) as ((,0) — 0, namely, (6.46) holds. O

6.1.3 Stream function for (h,, prot)

Lemma 6.3. The stream function ®,o associated with the solution (hyot, prot) s given by

(h®y01) (¢, 0) = Kyot(cosh ¢ — cos 0) In(2 cosh ¢ — 2 cos ) + afy cosh ¢ + dfy¢ sinh ¢

+ Z (ay, cosh(n + 1)¢ + b}, cosh(n — 1)¢) cos nb, (6.50)

n=1

where

—-1
ssinh? s tanh s 1
Koot = — —+M
rot a<sinhscoshs+s+2+ >

with M given in (6-54), and

d = a— Krot(s% + s + e ®sinh s) g — Kot sinh? s
0 sinh scosh s + s ’

 sinhscoshs + s’
1 1

a) = §Kmte_ssech 5, b= Kpi(s+1— 3 tanh s),

_ 2K;ot(ne”?sinh s + e7"* sinh ns)

~ n(n+ 1)(sinh 2ns + nsinh 2s)

2Kt (ne’sinh s + e " sinhns)
n(n — 1)(sinh 2ns + nsinh 2s) -

Proof. Let

(hrotaﬁrot) = (hrotaprot) - (1037 0)
Then (flmt, Drot) is the solution to

,uAflrot = VDrot in D¢,
V- hyo =0 in De, (6.51)

(hrotaﬁrot) - (—¢370) € M,

with the no-slip boundary condition, namely,

flrot|8D1 = 07 I~1rot|8D2 =0. (652)
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Observe that the above equation is similar to the equation (5.4 for (va, g2) with the only
difference being that the background solution Uy, is replaced with —p5.
It is easy to see that the function ®° . defined by

rot

1
<I>190t = _§($2 +9?)

is a stream function associated with the solution (—1)3,0). In bipolar coordinates,

1 a?(—sinh? ¢ + sin? 9)
PV, == : 6.53
92 (cosh ¢ — cos 6)2 (6.53)

Note that ®0, has the even symmetry in both ¢ and . In exactly the same way as in the

proof of Lemma [62] we can find the stream function associated with (hyot, Prot), which
immediately yields Lemma O

6.2 Asymptotics of K, and K,

Lemma 6.4. As § — 0, we have

B 1—G0\/§
Ky = R—p=2y 5+ 0(D), (6.54)

R |R
Krot — _FO g + O(l)v (655)

where Fy and Gg are the numbers given in (B.15]).

Proof. The proof is based on a special case of the Euler-Maclaurin summation formula: if
f € CYR*Y)N L' (RT), then, for a small parameter s > 0, we have

SZ f(zog+ns) = /OO f(x)dx + Ry, (6.56)
n=0 Zo

where the remainder term R; satisfies

[e.9]

mil S s (1ol + | O ).

We first consider the asymptotics of the series M defined by ([6.34]). One can easily see
that

[e.e]

Z 4e7" sinh?(ns)(cosh ns + sinhns) — 4n?sinh? s
n(n? — 1)(sinh 2ns + nsinh 2s)

)

> 1
M+2S —— =
+ nZ::zn(nz—l)

n=2

and

> 1 1
) Y —
én(nQ—l) 2
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Thus, the Euler-Maclaurin summation formula yields

M 1 3 i 4e~"* sinh?(ns)(cosh ns + sinh ns) — 4(ns)?(sinh s/5)?
N (ns)((ns)? — s2)(sinh 2ns + ns(sinh 2s/s)

n=2
= 52 fs(z)dz + s°Ry, (6.57)
2s
where
(o) = 4e~* sinh? 2(cosh 2 + sinh x) — 422 (sinh s/5)?
s x(x? — s2)(sinh 2z + (sinh 2s/s)x) ’
and

o0

mussQM%ﬂ+/

2s

Fialic).

By straightforward but tedious computations, one can see that
[ee]
fel<c [ i@l <o,
2s
where C' and C’ are constants independent of s > 0. Therefore, as s — 0, we obtain
1 o0
M+ = 32/ fol@)dz + O(s%) = $2Fy + O(s%).
0

So, for small s, we have

1 -1 a
Krot = —qa <§ + M + 0(83)> = _ﬁ + O(l)
The other quantity K, can be estimated similarly, and the proof is completed. O

7 No blow-up with no-slip boundary conditions 11
7.1 Proof of Theorem [4.1]

We first estimate the strain tensor £[v]. Since E[U] = O(1), we estimate E[v; — U].
The following formulae are derived using the relations (2:28])-(230]) between the strain
tensor and the stream function ®; and (G.1I):

Ece[vi — U] = —h(¢,6)2a1 cosh 2¢ cos @ — h(¢, )by cos b

o0

—h(¢,0) Z (dn cosh(n 4 1)¢ + by, cosh(n — 1)() cos nd,
n=2
Eco[vi — U] = h((,0)2a; sinh 2¢ sin §
+ h(¢,0) Z (ELn sinh(n + 1)¢ + by, sinh(n — 1)C> sinnb,
n=2

Epolvi — U] = =&[vi — U],
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where

an =n(n+ 1ay,, by, =n(n—1)b,.
Here, a,, and b,, are given in Lemma

Using the hyperbolic identities

cosh(n + 1)¢ + cosh(n — 1) = 2 cosh n¢ cosh ¢,
cosh(n + 1)¢ — cosh(n — 1) = 2sinh n¢ sinh ¢,

we can rewrite ¢ and ¢y as

Ece[vi — U] = —h(¢,6)2a1 cosh 2¢ cos @ — h(¢, )by cos b
— h(¢,0) Z ((dn + by) cosh n¢ cosh ¢ + (@, — by ) sinh n¢ sinh C) cosnb,

n=2
and
Eco[vi — U] = h((,0)2a; sinh 2¢ sin 6

+ h(¢,0) Z ((an + b,,) sinh n¢ cosh ¢ 4 (&, — by,) cosh n¢ sinh ¢) sinnf.

n=2
From the expressions of a,, and b, given in Lemma [6.Il we have, for n > 2,

4a nse~" sinhns — (ns)%ne + (ns)>m

- 5 __xa
fin 7+ On s sinh 2ns — 2nsny ’
= 4a (ns)?e~" sinhns — (ns)3ng + s2(ns)?m
Qp — bn =3 . s
5 sinh 2ns — 2nsny
where
(s) sinh? s (s) sinh 2s
=m(s) = —— =1o(s) := .
nm=m 2 2 =12 9%
If we define
re *sinhx — x2ny + 23 r?e T sinhx — 23 + %2
fiz) = o fox) =

sinh 2z — 22, sinh 2z — 221

then a,, + l;n and a, — Bn can be rewritten as

N ~ 4a - - 4a
Gy + by, = —?fl(ns), Gy, — by, = —gfg(ns).

It follows from & and E¢y that from (Z2)) and (Z.6]) that

Ecelvi — U] = —h(¢,0)2¢; cosh 2¢ cos § — h((, 0)dy cos O

(e o]

+ %h(ﬁ, 6) Z (f1(ns) coshn¢ cosh ¢) cosnf

n=2
oo

T j—gh(é ,0)> " (f2(ns) sinh n¢ sinh ¢) cos .

n=2
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Let, for j = 1,2,
A;:n(() = f] (ns) COSh nC7 A;n(c) - f](ns) Sinh TLC,

and then define S;»H', Sj_+, etc, by

SFH =" AT (Q)ah(¢,0)cosnd, ST = AT, (()ah((,0)sinnd.
n=2 n=2

Then, (1) reads
4 ++, 4 —+
Eeelvi — U] :So—l—gcoshCSl +§sth52 ;

where

So = —h(¢,0)2ay cosh 2¢ cos @ — h(¢,0)by cos .

Similarly, one can see that &g is written as
~ 4 __ 4 4
Ecolvi — U] = Sy — —cosh ¢S]~ — — sinh (S5,
s s

where B
So = h(¢,0)2b; sinh 2¢ sin 6.
We use the following lemma here and present its proof in Appendix [Dl

Lemma 7.1. If 2s < z, then

\fi(@) + [fj@)] + 1 ()] S (1 +2%)e™, j=1,2

If 2s < x <1, then

THORE

Lemma 7.2. The following asymptotic formulas hold for j = 1,2:

Sz |ff@) -1 5w

S;.H' = —%fj(QS) cosh 2¢ cos 0 + f;(2s) cosh 2¢ cos 20
1
- §fj(38) cosh 3¢ cos 20 + O(s),
1
S;F_ = —§fj(28) cosh 2¢ sin 6 + f;(2s) cosh 2¢ sin 260

— %fj(&s) cosh 3¢ sin 260 + O(s),
—4 o
Sj - 0(8)7

as s — 0.
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Proof. We first have the following identity:
ah((,0) cos nf = cosh ¢ cosnf — cos 6 cos nf
= —% (cos(n + 1)0 — 2 cosh ¢ cosnb + cos(n — 1)6)
= —%(cos(n +1)6 — 2 cos nf + cos(n — 1)8) + (cosh ¢ — 1) cos nf
= —%(cos(n +1)0 — 2cosnf + cos(n — 1)8) + sinh?(¢/2) cos nf.
By substituting this identity into (Z9) and then rearranging indices, we arrive at

1
+ + + +
S; T = —§(Aj72 cos§ — 245, cos 20 + A 5 sin 20)
1 o0
+ + +
-3 E (Aj,n+1 — 2Aj7n + Ajﬂ_l) cosnb
n=3

+ sinh?(¢/2) Z Afn cosnf =: Sf(;r + S]ifr + S]i; (7.19)
n=2
Note that Ajfn is of the form
+ +
Aj,n = F.’jann’
where

Fjn= fj(ns), G} =coshn(, G, =sinhn(.

n

We then have
A =247 + AL, = FjanGryy = 2F5.Gy + Fjn Gy
= (Fjnt1— 2Fjn + Fin-1)Gy + Fjn(Gryy — 2GE + G7_))
+ (Fjn1 — Fjn) (G — GE) + (Fjn — Fjn-1)(Gy — Gii_)).

One can easily see that
GE,) — GF = sinh(¢/2)(e"+2) F e~ (F3)C),
G | —2GE + GE | =2sinh?(¢/2)(e" £ e7™).
Since || < s, we have
GRS €™, |Gy =GRl Sse™, |Gy — 2G5 + G| S %™, (7.20)

Next, we estimate [}, and its finite differences. By the mean value theorem, there
exist z), € (ns,(n+1)s), 25" € ((n —1)s, (n + 1)s) such that

M = fi(x}), o1 = 25;’" + Fjn @),
Then, by (.I4)), we infer
|Fjnl S (14 (ns)*)e2, (7.21)
|Fjns1 — Fjn| < s(14 (ns))e 2", (7.22)
|Fjni1 — 2Fjp + Fjn-1| S 32(1 + (ns)?’)e_z”s. (7.23)
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These estimates together with (Z.20]) lead us to
AT S € Fnl S (14 (ns)?)e™™,
and

|AE | —24F + AL || < |Fuy1 — 2F, + Fo_y|e™ + Fps2e™

n+1
+ |Fhy1 — Fplse™ + |F, — Fp—1|se™
s2(1 + (ns)®)e ",

Using ([6.50), we have

si+|<Z|,4n+1 2AF + AX |<Z (14 (ns)®)e™™s

[e.9]
< S/ (1+2%)e %dx < s,
0

and
Si+|<322|Ai|<322 (1+ (ns)3)e s
< s/ (1+2%)e "dr < s.

0

Therefore, from (I9) and (T.24)), we see that
S++ S++ + O(s),

which is the formula (ZI6]). Similarly,

Sj_+ = Sj_’(f + O(s)
1, _ _ -
= —§(Aj72 cos — 24,5 cos20 + A5 cos26) + O(s)

—%(fj(Zs) sinh 2¢ cos 6 — 2f;(2s) sinh 2¢ cos 20 + f;(3s) sinh 3¢ cos 20) + O(s).

Since sinh ¢ = O(s) and | f;(2s)| +|f;(3s)| is bounded thanks to (ZI4)), the estimate (ZIS)
for S]-_+ follows.
Using the identity
1
ah(¢,0)sinnd = —§(Sin(n +1)0 — 2sinnf + sin(n — 1)¢) + sinh*(¢/2) sin né),

one can see that

S]i_ =—— (Ai2 sinf — 24T S2sin20 + Ajfg sin 26)

- = Z ( St 2AjE + AJ . 1) sinnf + sinh?(¢/2) Z Ajfn sinng.  (7.24)
n=2
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The other formulas, namely, (Z17) and (ZI8) for S;~, can be proved in the same way.
The proof is completed. O

We are now prepared for estimating & and £¢y. By applying Lemma to (Z10)

and (ZI2]), we have
4
5<<[V1 — U] =S50+ 3 cosh CSiH_ + O(l)

=5y — % cosh (| f1(2s) cosh 2¢ cos 0

— 2f1(2s) cosh 2¢ cos 26 + f1(3s) cosh 3¢ cos 26] + O(1),
and
Ecolvi — U] = 5 — %sinh ¢Sy~ +0(1)
= So+ % sinh ¢ [fj(2s) cosh 2( sin 6
— 2f;j(2s) cosh 2( sin 20 + f;(3s) cosh 3¢ sin 20| + O(1).
By applying Taylor expansions to f; given in (ZH)), we see that

F1(25) = 5+ O(s2),  f1(35) = gs +O(s2),

Fa(25) = 25+ O(2), fol3s) =~ + O(:?).
So we have
Eccvi] = So+0(1),  Eplva] = S0+ O(1).

It remains to estimate Sy and go. Applying Taylor expansions to a; and by given in

Lemma [6.1] we have
3a
a; = E + O(S), bl =

Then, from (TII) and (ZI3), we have
So = —h(¢,0)(2a; cosh 2 + by) cos @ = —h(¢,0)(2a1 +b1) + O(1) = O(1),
So = h(¢,0)2a; sinh 2¢ sin = O(1).

_3a

5s + O(s). (7.25)

Therefore, we obtain that
Eeeni] =0Q),  Eplvi] = O(1). (7.26)

We now prove that the pressure ¢; is bounded regardless of §. Recall from (G.31)) that
q1 is given by

o= —al%@(wl S 1) = (i — 1)) + bl%"(wl .y

2 ((n+1)ap — (n —1)b,) (W, — 1)

a n=2
241 241
+ = ZQnan(wnH —1) = Zznbn(wn_l —1),
n= n—
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where w0, (¢, 0) = coshn¢ cosnf. Using notation in (7.Il), we have
01 = 2 (=201 + by — 2a)in + (a1~ Baz + by — 3bs)iy
D (S S A (7.27)
Note that
Gy — b — Gt + g1 = %((an+1 4 bnst) — (@t + En_1)>

1

- 5 <(dn+1 - Bn—l—l) - 2(dn - Bn) + (an—l - Bn—l))-

Then we have from (7.6]) that
- = . ~ 2a
Qp, — by —ap—1 4+ bpy1 = —?(fl((n +1)s) — fi((n — 1)3))

+ i—g(fz((n +1)s) — 2fa(ns) + fo((n — 1)s)).
Therefore, by (T.27), we have

1 1
la1] S g! —2a1 + by — 2bo| + ;!al — 3ag + by — 3bs|

N i scoshns o fi((n + 1) — il(n = Do)
- Sig(f2((n +1)s) = 2fa(ns) + fa((n — 1)s)) ‘ (7.28)

By applying the mean value theorem, we have

1 1
1] S <1 = 2a1 + b1 = 2ba[ + —Jar — 34z + by — 3by|

= scoshns o

n=3

(7.29)

for some z} € ((n—1)s,(n+1)s) and 2" € ((n — 1)s,(n + 1)s).
By regarding the infinite series in (Z.29) as a Riemann sum, we infer

7o Z scoshnst1 1| < /0 cosh:n‘zfl( ) ),

n=3
It then follows that

1< / / UL o fi (@)~ )l

/ cosh33| (f1( ) — ;) (2( )_1)|d;p-|—/ coshx|2f1( ) — //(x)|d:17

1

cosh x cosh x _
e

N

(x + z)dx —I-/
0 1 z

1 +/ 2e7%dr <1,

A
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where the third inequality follows from (ZI5I).
We next estimate the first two terms in the right-hand side of (28). By Taylor
expansions we obtain

la 3a 3a
as = §g+O(S)= by :_§§+o(3), bgz_ZngO(s). (7.30)

These together with (7.23]) yield
—2a1 + by —2bs = O(s), a1 —3ag + by — 3bs = O(s).
Therefore, from ([Z.29)), we have
] < 1.

This completes the proof. O

7.2 Proofs of Theorems [3.4] and [5.1]

We only prove Theorem B.Il Thanks to the similarity between the stream functions ®9
and ®,., Theorem [34] can be proved in exactly the same way.
We first estimate the strain tensor £[ve — UJ. In this proof, U = Ug,. Using ([2:28)-

(230) and (6.33]), one can see that

sinh

Eeelve — U] = —K, sin@ + h(¢,0)2c; sinh 2¢ sin ¢

+ h(¢,0) Z (én sinh(n + 1)¢ + d,, sinh(n — 1)() sinn#, (7.31)

n=2

cosh 2¢ — 2 cosh  cos 8 + cos 20
Ecolve — U] = K, 12 <

2a
+ h(¢, 0)dy cosh ¢ + h((,0)2c; cosh 2¢ cos O
+ h(¢,0) Z (én cosh(n 4 1)¢ + d,, cosh(n — 1){) cos nb, (7.32)
n=2
599[V2 - U] = —5<<[V2 - U], (733)

where 3
én=n(n+1)cy, dp=n(n—1)b,.

Using the hyperbolic identities

sinh(n + 1)¢ + sinh(n — 1)¢ = 2sinh n¢ cosh ¢,
sinh(n + 1) — sinh(n — 1)¢ = 2 cosh n¢ sinh ,

we can rewrite & and ¢ as

inh
Ecclve — U] = K, sinh ¢ sin @ + h((,0)2c; sinh 2¢ sin 6
+ h(¢,0) Z (¢, + dy) sinhn¢ cosh ¢ + (&, — dy,) cosh n¢ sinh ¢) sinnf, (7.34)
n=2
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and

cosh 2¢ — 2 cosh ¢ cos 0 4+ cos 20
Ecolve — U] = K, SOR2 2;

+ h(¢,0)dy cosh ¢ + h(¢,0)2¢; cosh 2¢ cos 0

o0

h(¢,0) Z ((én + dp) cosh n¢ cosh ¢ + (&, — dy,) sinh n¢ sinh ¢) cosnf.

n=2

From the expressions of ¢, and d,, given in Lemma [6.2] one can see that, for n > 2,

(7.35)

. ~ 4a nse~" coshns — (ns)’ny + (ns)? ns
& vd = : (ns)™m2 + ( )771_4Kv8771. ’
5 sinh 2ns 4 2nsny sinh 2ns 4 2nsne
- 4a (ns)?e~" coshns — (ns)3ng + (ns)?s%n LK e~ sinhns + nsny
2 sinh 2ns + 2nsne Y sinh2ns + 2nsny

where 77 and 7y are the quantities given in (7.4]). Define, for 0 < z < oo,

re® coshx — xny + x3m

(@) = sinh 2z 4 221
(2) = oo
x) = ,
92 sinh 2x + 2xm,
() r2e % coshx — x3my + 225
x) =
93 sinh 2z + 2xm
e *sinhax + zn
ga(z) :=

sinh 2z + 2xm

Then, we have

~ ~ 4a
+d, = ?91 (ns) — 4Kv377192(n5)7

_ 4a
Cn — an ?93(”8) + 4K, g4(ns).
It follows from (7.34]) that

ECC[V2 -Ul=-K,

sin @ + h(¢,0)2c; sinh 2¢ sin 6

4—ah(C 0) Z (91(ns) sinhn¢ cosh ¢) sin nd
n=2

—4K,h(C,0) Z gg ns) Slnhngcoshg“) sin nf
n=2

sinh ¢
a

Z (gg ns) cosh n( sinh C) sin nf

n=2
oo

+4K,h(¢,0) Z (9a(ns) cosh n¢ sinh ¢) sin nd.

n=2
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If we define

T;JF(C, 0) == ah Z gj(ns) coshn cosnb,

n=2

T;_(C, 0) == ah Z gj(ns) coshn(sinnd,

n=2

Tj_+(C, ) :=ah Z gj(ns)sinhn( cos nd,

n=2

T, (¢,0) = ah Z gj(ns) sinh n¢ sinnf,

n=2
then the component &+ can be rewritten as

4Kv3771

4
Eeelvo —=U] =Ty + B cosh (T}~ — cosh (T, ~

4 4K
+ — sinh (T?)'"_ + = SinhCTj_,
S a

where -
sinh ¢ sin @ + h((,0)2c; sinh 2¢ sin 6.

To = — K,
Similarly, £ can be written as

4K

~ 4
Eco[vo — U] =Ty + — cosh CT1++ _ 2208 osh CT2++
s a

4 4K
+ = Sinh(T§+ + = SinhCT4_+,
S a

where

~ h2( — 2cosh 2
T - K, cosh 2¢ 0052 ¢ cos B + cos 20
a

+ h(¢,0)dy cosh ¢ + h((,0)2¢y cosh 2¢ cos .

The proof the following lemma is given in appendix [E]

Lemma 7.3. For j =1,2,3,4, we have

lg; ()| + 19§ (@) + |9 ()| S (1+2%)e™, 0<z < oo.

(7.39)

(7.40)

(7.41)

(7.42)

(7.43)

We omit the proof of the following lemma since it can be proved using Lemma in

the same way as Lemma
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Lemma 7.4. For j =1,2,3,4,

1
T].JFJr = —igj(2s) cosh 2 cos 0 + g;j(2s) cosh 2( cos 26

1
- igj(3s) cosh 3¢ cos 20 + O(s), (7.44)
Tj+_ = —%gj(28) cosh 2¢ sin 6 + g;(2s) cosh 2( sin 260
1
- §gj(38) cosh 3¢ sin 20 4+ O(s), (7.45)
—4 o
T:7% = 0(s). (7.46)

We infer using the definition (T38]) of g; that for k = 2,3,

1 1
gi(ks) = 3 +0(s), galks) =  +0()
1 1
g3(ks) = 15 +0(s?),  ga(ks) = 3 + O(s). (7.47)
Thus, we have
T3~ =0(s)
and
- 1 ) 1 ) 1 )
T, = ~1 cosh 2¢ sin 6 + 3 cosh 2( sin 26 — 1 cosh 3¢ sin 26 4+ O(s)

1
= —Z(sine —sin20) + O(s),

as s — 0. It then follows from (7.39) that

K, : .
Ecelvo = U] =Ty + TC(_ sinf + sin 26) + O(1). (7.48)
Since
e = a(—1 + coth 25) + Ky = %, + & 4 0(s) (7.49)
b “Tae 2 VT2 ’ ‘
it follows from (7.40) that
inh h
Ty = —-K, Sma ¢ sin 6 + cosa C201 sinh 2¢ sin 6 — CO; 0261 sinh 2( sin 6
_ ¢ . ¢ .. ¢ ..
= —K,>sinf + 2K,>sinf — K,>sin 20 + O(1)
a a a
= Kvg sinf — Kvg sin 260 + O(1). (7.50)
This together with (748]) yields the desired estimate
gCC[V2 — U] = O(l) (7.51)

Likewise, we use (.41]), Lemma [I4] and (T.47) to ensure

~ 1 K,s 1 K,s
ECG[VQ—U] :To—l-(—%-i- 22 )COSQ—FH‘% — 22

)cos 20 + O(1).
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Then, using the estimate
. h2
sib?s a4 Kvg +O(s) (7.52)

a
v .
s + cosh ssinh s 2s

dn = _
0 sinh s cosh s + s

in addition to (Z49]), we obtain

K K, 1K, 1—-cosf  a s
/ v
Y R,V Ly il
0= 5, — cos +2 - cos (28+ )
1 0
—I-&(KU—SIQA-E)COS@%—O(D
a s
K, 1 1 K 1 K, K 1 1 K K 1
P (P ) (22 0 ycosd
2s 2a a s

(§)+23_ 20 2 a a S
1K, 1K, Ky, 1
v (v - 2 1
(2 p 2(@ ” —1—8))005 0+ 0(1)
1 Kys Kys 1
= (= — 5 ) cos @ + ( 5g 2—8)00829+O(1), (7.53)

where we have used the following identity for the second equality

(1 —cos®)cosf = —% + cosf — %COSQ@.

Thus, we have

5(9[V2 -U]=0().

So far we proved that

1€[va]llo < 1.

We now prove that the pressure g¢» is bounded independently of §. It was shown in

©.13)

2 [ee]
Q@ = ;’udo’uq Z_: n+1)e, — (n—1)dy)wy,

20 2
- ; Z:l NCpWn41 + ; Z:l ndnwn—h
n= n=

where wy, (¢, 0) := sinhn{ sinnf. It can be rewritten as

— Cp—1 + dn+1)wn, (7.54)

_Z,u( do + 2(c1 + da) —1— E 1
c w — —
q2 a 0 1 2 1 4 n

where &, = n(n + 1)¢, and d,, = n(n — 1)d, for n > 2

Note that

_ s ~ _ ~ 1 _
Cn — dn —Cp—1+ dn—l—l = (Cn—l—l + dn—l—l) - §(Cn—1 + dn—l)

+ o=
—_
/N
?
IS8
i
o
SN—
|
—
%)
3
+
AN
|
S
3
+
AN
SN—
N—



It then follows from (.37 that

Cn — dNn —Cp-1+ Czn-i-l = %(91((” + 1)8) - gl((n - 1)3))

— 2K, 5’1 (g2((n + 1)s) — ga((n — 1)s))
—2a(g3((n +1)s) — 2g3(ns) + g3((n — 1)s))
— 2K,5%(g94((n + 1)s) — 2g4(ns) + ga((n — 1)s)).

By the mean value theorem, there are z;, € ((n —1)s, (n + 1)s) such that
195 ((n+1)s) = g;((n = 1)s)| S slgj(xjn)l, J=12

and
l9;((n +1)s) = 2g;(ns) + g;((n — 1)s))| S s*|gj (250)], = 3,4
We then infer from (T.43]) that

l9;((n +1)s) — g;((n = )s)| S s(1+ (ns)*)e™", j=1,2,

and

19;((n +1)s) = 2g;(ns) + g;((n — 1)s))] £ s*(1 + (ns))e™™",  j =3,4.

Since a ~ s and K, = O(s™!), it then follows from (Z55)) that
G — dp — 1+ dns1| < 5(1+ (ns))e 2,

and from (Z54]) that

1
lg2| < (Jdo| + 2]c1 + dal) + Z E(l + (ns)3)e™2" sinhnd.

n=2

One can see from (7.52]) that

a K,s
do = — —
07 95 2

+0(s) = 0(1).

One can also see from expressions of ¢; and ds in Lemma [6.2] that

1 = %Kv + 0(1)7 dy = _%Kv + 0(1),

and hence ¢; + d2 = O(1). Thus we have from (Z.50)

> ssinhns > ginht
<1 0 e s < q / 1+ tHe Hdr < 1.
@l S1+) = =+ ()™ S14 | ==+ )t 5

n=2

This completes the proof.
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Concluding remarks

In this paper, we have investigated the problem of quantifying the stress concentration in
the narrow region between two rigid cylinders and derived precise estimates for the stress
blow-up in the Stokes system when inclusions are circular cylinders of the same radii. We
have shown that, even though the divergence of the velocity is confined to be zero, either
the pressure component or the shear stress component of the stress tensor always blows
up, and that the blow-up rate is 6=1/2, where § is the distance between the cylinders. This
blow-up rate coincides with the ones for elasto-statics and elasto-statics. In the course of
deriving the results, it is proved that the blow-up of the stress tensor does not occur when
the no-slip boundary is prescribed. We also derived an asymptotic decomposition formula
which explicitly characterizes the singular behaviour of the solution. This formula may
play an important role in computing the Stokes flow in presence of closely located rigid
cylinders.

Since the method of bipolar coordinates is employed, extension of this paper’s results
to the case of circular cylinders with different radii is not a big issue. However, it is
quite challenging to extend them to the more general case when the cross sections of the
cylinders are strictly convex. In particular, proving no blow-up for the problem with the
no-slip boundary condition on the convex boundaries seems already quite challenging.

A Proof of Lemma
We have from (212]) that
ec = ae; — fPe,, ey = —Pe, — ae,.
So we have
[Vec| + [Veo| = 2(IVal +[VB]) S [hdcal + |hdsal + [hOc B| + [hdpf|.
Since

sinh ¢ sin” 6
a(cosh ¢ — cos @)’

h(‘)ca = —

one can see that
|hocal S 0] < [¢]+16].

Similarly one can show that
|hOsarl, RO, |h0sB] < IC] + 0]

This completes the proof. O

B Proof of Lemma

According to the transition relation (Z33)), the stress tensor o[hy,pi] is given by

— = 1,¢¢ 1,¢0 —
o l| = .
[ 17p1] |:C 1,(0 61,60:|
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In particular, we have
ec-olhy,pilec =o1¢c, ec-olhi,piles = o1 co. (B.1)
On 0Dy which is parametrized by {¢ = s}, the outward unit normal v is given by
vlop, = —eclc=s,

and, according to (212, e, is expressed as e, = a((,0)e; — B((,0)eqy, where o and 3 are
defined by 2I0)). So, we have

e, -olhy,pi|lv = —(a(s, 0)o1cc — B(s, 0)0’1749).
Due to (ZI3), we have

7 = — /7r (04(8,9)0'17@ — 5(8,9)01749)]1(3’9)—1(19. (B,Z)

—Tr

We now compute (a(s,8)o1 cc — B(s,0)01,c0)h(s,0)7 . It follows from the formulas
[228) and ([230) of the strain in bipolar coordinates, the strain-stress relation ([2.32]), and
the formula (B3) for the stream function that

O1¢cle=s = %(2 + sech 25 — 4 cosh® s sech 25 cos 6 4 cos 26), (B.3)
O1,c0lc=s = —%(coshs — cos #)2 tanh 2ssin 6. (B.4)

Using the definitions (ZI0) of « and 8, (B3) and (B.4), we arrive at
(a(s, 0)o1,.cc — B(s, 9)01,<g)h(s, 9)_1 = 211 A1(—1 + cosh ssech 2s cos 6). (B.5)

Then by integrating both sides of (B.5) over [—7, 7], we obtain

dmp _ 3mu 1
2s — tanh 2s 2 g3 +0(s7). (B.6)

Il = —47T/LA1 =

Thanks to the asymptotic formula (2.7]) of s as 0 tends to 0, we get the asymptotic formula

#I1Q) for 7;.

Next we consider J;. Similarly to the case of Z;, we have

U -olhy,pilvdl = U -olhy,pi](—e¢)dl
ODso 0D>

K

= —/ (U<e< + Uyey) - (Ul,CCeC + O'LQt)eg)h(S, 9)_1d9

= —/ (Uco¢c + Upo co)le=sh(s,0) ' db.
Since Us = U - e and Ug = U - ey, it follows from (Z2) and ZI0) that
Urloes = asinh s (1 — cosh s cos 6 + sin? 6)
= = (cosh s — cos 0)2 ’
asin 6 (1 — cosh s cos § — sinh? s)
(cosh s — cos 0)?

Uple=s = (B.7)
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It is convenient to use the following functions:

cosnf
n=qn(s,0) = ——— 7 5 =0,1,2,.... B.8
? an(s,9) coshs —cosf’ (B8)
We obtain, by using (B.3)), (B.4)) and (B.1), that
(Ucorce + Upaco)h(s, 0) "
= —apAy sech 2s sinh s((—1 + 2 cosh 2s)go — 2 cosh sq1 + g2). (B.9)

As before, by integrating both sides of the equality in (B.9]) over [—m, 7], we arrive at
J1 = —apA; sech 2ssinh s((—1 + 2 cosh 25) Q) — 2 cosh sQ} + QF), (B.10)

where

Q, = Qn(s) = /7r qn(s,0)do. (B.11)

—

We also obtain the following asymptotic expansion of Q,,, whose proof will be given
after the current proof is completed.
Lemma B.1. [t holds that

Qn(s) = 2% —2nm + (n? —1/3)7s + O(s?), as s — 0. (B.12)

Then, together with the asymptotic formula ([277) of s as ¢ tends to 0, applying Lemma
B to (B.10) yields (@II). O

Proof of Lemmal[B.Jl One can easily see that Q;,(s) is the real part of the following contour
integral:

Zn
9 dz,
/Cz2 " 2zcoshs 11

where C'is the unit circle. Then the residue theorem yields

On(s) = %e_ns, (B.13)

sinh s

from which (BI2) follows. O

C The asymptotics of the boundary integrals

Here we compute the asymptotics of the boundary integrals Zoo, Zog, Jo, Zrot, and Jrot,
and prove Lemma [5.3]

C.1 A lemma
The following result will be used to prove Lemma
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Lemma C.1. Suppose that a solution (v,q) to the Stokes system on the exterior region
D¢ satisfies (v,q) € M, and that its corresponding stream function ¥ is given by

(h¥)(¢,0) = K(cosh ¢ — cos @) In(2cosh ¢ —2cos @) + ag cosh  + dp sinh ¢
+ Z (an, cosh(n + 1)¢ + by, cosh(n — 1)¢) cos n. (C.1)
n=1
Then we have the following formulas for the boundary integrals:
Py - o[v,qlv = dodmp, (C.2)
0D>

Vs - olv, qlv = Kdrmpa. (C.3)
D>

where a is the number defined in (27).

Proof. Let us write in terms of bipolar coordinates the stress tensor o[v, ¢] and the strain
tensor £[v,q] as

[1]
[1]

olv,q] =

0 00|z ey ol = = |6 549}
[age JGJ , Elv,q] [&6 Ero

One can show in the same way as of deriving (B.2) that
Ko = : Py - olv,qlv = / (5(8, B)oce + a(s,@)agg)h(s,ﬁ)_ld& (C.4)
Do -7

Using (3.26]), one can also see that

a a
K3 = . _ ' B |
’ 0Do ¢3 U[V7 q]y tanh s oDy /l'b2 U[V’ q]y sinh s /8D2 €y U[V7 Q]V
_ ¢ a Q »
= tanhS,Cz + - /_7r ocolc=sh(s,0)”"db. (C.5)

We assume for a moment that the stream function ¥ is given by
(hW)(¢,0) = K(cosh( — cos0)In(2cosh ¢ — 2cos6). (C.6)

Applying the formula ([2:22)) for the Laplacian in bipolar coordinates, we see that pA¥ = 0.
Together with the relation (227) between the pressure and the stream function and the
condition ¢ — 0 as |x| — oo, this implies that the corresponding pressure ¢ = 0. Then, by
22])-230) (the strain-stream function relation) and (Z32) (the stress-strain relation),

we obtain
2
Occle=s = —K;’u sinh ssin 6, (C.7)

ocolc=s = %(sinh2 s —sin? @ + (cosh ¢ — cos 6)?). (C.8)
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We also have
(B(s,0)0¢c + (s, 0)0cp)|c=sh(s,0) ! = —2p cosh s cos 6.
Then, by integrating over [—m, 7|, we arrive at
Ko =0.
We now consider 3. We see from (C.0) and (C.8)) that

™ /sinh? s — sin? 6
Ku/_ﬂ (m—i-coshs—cosH)dH

Ks=0+ sinhs

= Kp(27sinh s — 2me™® + 27 cosh s)
Slnh 5
= Kdmpua,

where we have used (B.I3]) for the second equality. So far, we have computed Ko and K3
when the stream function ¥ is given by (C.0]).
Next we assume that U is given by

(h¥)(¢,0) = do¢ sinh ¢ 4 ag cosh ¢ + Z (an cosh(n + 1)¢ + by, cosh(n — 1)¢) cosnf. (C.9)

n=1

By symmetry and from the fact that hs|gp, = (—1)'2 ¥, we have

—1 1
Ky — / Ly ofv.g + / L —
oD, 2 Dy 2

:/ hy - o[v, qv.
aDe
Then, by (238 (the divergence theorem), we have
Ko=—2u | E[ho: EV].
De
Recall from (3.36))-([B.38) that
Ecclho] =0, Epolha] =0,  Ecplha] = h((,0) Az cosh(. (C.10)
By (2:30]), one can easily check that
Ecolv] = h(C, 8)do cosh ¢

h(¢, ) Z(n(n + 1)ay, cosh(n 4+ 1)¢ + n(n — 1)b,, cosh(n — 1)¢) cosnf. (C.11)

n=1

So we obtain

Ko = —2pu / Eccha]Ec[v] + 2E¢ [h2]5¢0[V] + Ego[h2]Ego [V]

_ o /_ /_ 28¢o ol oVl << gy 104¢

= —2u(2m) / 2A9dg cosh? ¢ d¢ = —dodmpAy(2s + sinh 2s) = dodmp.

48



We now compute K3. We have from (C.0) and (C.II]) that

_ a 2ua .
Ka = tanh s 2+ smhs/ Ectle=sh(s,0)""do (C.12)

_ a 2ua

= tanhs(d047w) + sinh s /_7r dg cosh sdf

=0 (C.13)

The proof is completed.

C.2 Proof of Lemma

Now we are ready to compute the asymptotics of integrals Zoo, Zo3, Jo, Ziot, and Jrot.
We first consider Zos. We see from Theorem [3.4] and Proposition that

loThs — by, p2 — Po]lloc < (C.14)

So we get

Ty = 1, - olhy, Polv + O(1).
0Do

Therefore, Lemma [CI with ¥ = Uy vields
Too = A247T,u + 0(1)
Hence, since s &~ v/§, the asymptotic formula (B.35) for Ay yields (E.18]).
We now consider Zgz. Recall from (5.12)) that

To3 = 1/’2 : U[hrotapI‘Ot] |+V’
0D

Then, Lemma [C.Il with ¥ = W, yields

Kot sinh? s
Toa = — 47 1.
2 sinh s cosh s + s T

Similarly, we have
Lot = Krotdmpa.

Since s ~ V/§, the asymptotic formula ([655) for Ko yields (517) and (GI8).

Next we consider Jo and Jyor. Using the symmetry and the fact that (vo — U)|sp, =

—U, we have

1

Bo=3 [ (D2 =0) ool

Here U(z,y) = Ug, = (y,7)T. Thanks to Green’s formula ([237), the following holds:

1 1
522——/ hy -o[ve — U, v = —= Py - o[ve — U, ).
2 Jope 2 Jop,
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It can be proved in the same way as the proof of Lemma that
/ hQ'O'[Vg—U,QQ]V:O.
oDe

Thus,

To = -5 Py - olve — U, go]v.
0Do

Similarly, we have

Trot = — Y3 olva — U, go]v.
0Do

Since the stream function ¥, 5 associated with (v — U, ¢2) is given in (633)), we may
apply Lemma to have

4 a sinh? s

2 sinhscoshs +s  's-+ coshssinhs
Trot = —Kydmua.

Since s ~ a ~ /4, the asymptotic formula [B54) for K, yields (5I9) and (5.20). The
proof is then completed. 0

D Proof of Lemma [7.1]

If 1 < & < o0, then one can easily see that

(@) + | fj @) + 1 f] ()] S a’e™™

for j = 1,2. So we consider the case when 2s < x < 1, and prove

[fi@)|+ @+ 1ff @) S1, j=12 (D.1)
and (ZI3]).
Let
a1(x) = re Csinhz — 22y + 231,
ag(x) = z?e T sinhz — 23y + s,

1

Bla) = sinh 2z — 2xm,’

so that the following relations hold:
N(@) = (2)B(x),  falz) = az(z)B(2).

One can see from the definition (Z4) of n; that

2
m = 1+ 0(52)7 T2 = 1+ §32 + R1(8)7 (DZ)
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where the remainder term Rj(s) satisfies

provided that s is sufficiently small.
Suppose 2s < x < 1. Since

2
ar(z) = (1 =m)z® + (=1 +m)a’ + 22’ + O(a”),
we have

o1 = 204 0(%). ai(a) = 20'+ 06N, of(a) = 2"+ 0,

where

Likewise, since

2
ag(x) = (1 — o) + gaz‘r’ — (z* = s%2%m1) + O(2®),
we have
ag=a+0(z%, oy=a +0("), of=a"+0(@",
where 5
a(z):=(—-1+ gx)a(x)
Let

w(z) := sinh 2x — 2xns.

so that B(x) = w(z)~!. Note that
: 4 4
sinh 2x = 2x + 3% + Ro(z),

where the remainder term Ry satisfies Ro(x) = O(x°) and

4
Ray(x) > 1—5x5.
Then 4 4
w(x) = gaz?’ - 33233 + R,

where R := Ra(z) — Ry(s)x. Since z > 2s, it follows from (D.3) and (D.8]) that
4
R > 1—5:17(x4 —s%) > Cx®
for some positive constant C'. Therefore, we have
4
=b

$H@)(1+0(?),

w(x) =

o1

(D.8)



where the remainder term O(x?) is larger than Cz? for some positive constant C' and

b(z) = 23 — 5%z = @. (D.9)
Thus we have 3 1
Blz) =w(x)™' = 100 + O(z™1). (D.10)

Since B’ = —B%w’ and " = 283 (w')? — B2w”, we have

Fa) =Y Lo, g

~32(6)2 — by
4 b2 1 3"

yi— O(z™3). (D.11)

Now it is easy to see that fi(x) = O(z) and f](z) = O(1). To prove the first part of

([C15)), we invoke (D.4), (D.I0) and (D.II) to derive

1a'b— al/
fl= T T O(z).
Since a = xb, we have
a'b — al/
—m— =1L (D.12)

which yields the first part of (TI5). To prove that f; is bounded, we again use (D.4),
(DI0) and (DII) to derive
,  1ad"b* —24't'b + 2a(V)? — abt”

1=5 b3 + O(1).

One can easily see that

a"b? — 2a/b'b + 2a(V')? — abb”  [a'b—ab"\’
b3 - b2 '
Thus, thanks to (D.12), we infer

ab* — 2a/b'b + 2a(V')? — abl”
b3 N

0. (D.13)

This proves (D)) for j = 1.
It is easy to see that fa(x) = O(x) and fi(x) = O(1). On the other hand, we have

3a"b? — 2a'b'b + 2a(b')? — aby”
é/ = Z b3 ( ) + O(l‘)

Because of (D7), (D12) and (D3], we have

a'b? — 2a'b'b + 2a(b)? —abb”  3a’b* —3ablb 4

b3 b3 3

Thus f} = 1+ O(x), which proves the second part of (ZI5) as well as (D.1) for j = 2.
This completes the proof. O
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E Proof of Lemma

The functions g; can be rewritten as
g1(z) = (e " coshz — mpx + ma?)v(z),
g2(z) = v(z),
g3(z) = (ze " cosha — 2y + s*ma)v(),
e *sinhx
(== +m)v(a).

where
x

v(z) = sinh 2z + 2xns’
We estimate v first. Since 7o = sinh(2s)/(2s) > 1, we have

x> 0. (E.1)

(@) < o,
sinh 2z + 2x
and hence
lo(z)] < (1+ :E)e_zx. (E.2)

By straight-forward computations, one can see that

V() = (@) (v(@)?, v (2) = (@)(u(2))?,

where
sinh 2z — 2z cosh 2z
T(z) = = :
() 2(3z + x cosh 4z — sinh 4x) + 4m2 (22 cosh 22 — (1 + 222) sinh 27)
Y2 (T ) ‘= .

3
x
By Taylor expansions, it is easy to see that «; and o are bounded if 0 < x < 1. It is
also easy to see that |vi(7)| < 271e?® and |yo(x)| < 272 if 1 < 2 < co. Putting these
estimates together, we have

2x 4x
M@ S 7 @IS o 0<e <o
Then, from (E.2), we obtain
6232
V(@) S 1o @) S (1 ), (6:3)
4x
V(@) S g @) S (142 (B4)

Since go = v, the estimate ([43]) for j = 2 is already proved. Let us prove it for j = 1.
We are ready to estimate g; and their derivatives. We consider g; only for simplicity. We
write

g1(z) =v(z)v(x), where ~(z)=e ®coshz —mz + mz?.

It is easy to show that

V@) S1+2% W@ Si+z, @)l S (E.5)
and the estimate (T43]) for j = 1 is an easy consequence of (E.2)-(ER). (Z43) for j = 3,4
can be proved in the same way. O
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