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Abstract. A fourth-order finite volume embedded boundary (EB) method is presented for the
unsteady Stokes equations. The algorithm represents complex geometries on a Cartesian grid using
EB, employing a technique to mitigate the “small cut-cell” problem without mesh modifications,
cell merging, or state redistribution. Spatial discretizations are based on a weighted least-squares
technique that has been extended to fourth-order operators and boundary conditions, including an
approximate projection to enforce the divergence-free constraint. Solutions are advanced in time
using a fourth-order additive implicit-explicit Runge-Kutta method, with the viscous and source
terms treated implicitly and explicitly, respectively. Formal accuracy of the method is demonstrated
with several grid convergence studies, and results are shown for an application with a complex bio-
inspired material. The developed method achieves fourth-order accuracy and is stable despite the
pervasive small cells arising from complex geometries.
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Notation.
D spatial dimension, indexed with d
x location in space, e.g., (x, y, z)
Vi volume of a cell i
Af area of a face f
κ volume fraction relative to the Cartesian cell
n̂ surface unit normal vector
~F flux tensor, components Fd
u velocity vector, components ud
i grid indices, e.g., (i, j, k)
ed unit vector in direction d
f face indices
〈·〉 cell-averaged or face-averaged quantity
D divergence operator
G gradient operator
L Laplacian operator
P projection operator
O(h) order of accuracy proportional to a cell length
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1. Introduction. Finite volume methods (FVMs) can achieve high solution ac-
curacy and efficiency on structured Cartesian grids with a high degree of parallel-
ism [1]. High-order methods have successfully been created for Cartesian grids [19]
using polynomial reconstructions from structured data. Despite these advantages,
representation of complex geometries on structured grids is a significant challenge.
Technologies such as mapped multi-block methods [20, 13] can represent moderately
complex geometries using structured grids by combining several blocks of curvilinear
grids. However, mapped multi-block grids struggle to represent rough surfaces, and
creating quality grids is often time-consuming [24].

Alternatively, the embedded boundary (EB) method [2] can represent complicated
geometries with little restriction, while maintaining the advantages of structured grid
solvers. EB grids are created by embedding the boundary geometry in a Cartesian
grid, and cells that intersect the boundaries are cut, as illustrated by Fig. 1.1. The
resulting grid is one that is regular away from the boundary, while near the boundary
the grid is made up of partial, or “cut” cells. This approach retains the advantages of
solving on structured grids on the interior of the domain, while having relatively little
restriction in geometries that may be represented. Additionally, this grid generation
process can be done efficiently and quickly in parallel. However, the presence of
cut-cells introduces challenges for both higher-order accuracy and numerical stability.
Specific stencil construction schemes are required near the boundaries, since regular
grid-aligned stencils may not be consistent or stable if they use cut-cell values. In
addition, volumes of cut-cells may also become arbitrarily small, and maintaining
stability of these small cells requires special care.
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Fig. 1.1: Illustration of a grid for EB methods. The shaded region lies outside the
problem domain of interest.

While the EB method has been used in a number of complex fluid dynamics ap-
plications [12, 2, 22, 8], typical applications have only achieved up to second-order
accurate solutions, with first-order or inconsistent results near embedded boundaries
[25]. There has been recent progress with improvements in accuracy [21], for example a
high-order finite volume EB method for smooth and kinked (C0) domains was demon-
strated for Poisson’s equation by Devendran et al. [11]. The present work extends that
fourth-order EB method to solve the time dependent Stokes equations. Furthermore,
a fourth-order additive Runge-Kutta (ARK) scheme is applied to integrate viscous
terms implicitly, but any source terms explicitly. The implicit-explicit (ImEx) time
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integration is coupled with a projection method [9] to enforce the divergence-free
constraint on the velocity.

This paper is organized as follows. Section 2 describes the FVM for the EB
method, and details the approach taken to solve for the Stokes equations. Next, in
Section 3, the algorithm for the fourth-order EB method is developed and applied
specifically for the Stokes equations. The developed algorithm is then verified and
validated in Section 5 for a number of test cases, and results for complicated geometries
are presented and discussed in Section 6. Finally, we draw conclusions and propose
directions for future work in Section 7

2. The Finite-Volume Method for Embedded Boundaries. The FVM
discretizes time dependent partial differential equations (PDEs) in “flux-divergence”
form,

∂

∂t
u(x, t) +∇ · ~F(u) = s(u,x, t) ,

where u is a solution vector that varies in space x and time t, ~F is a flux dyad, and s
is a source term that may depend on the solution u. To apply the FVM, the system
of PDEs is converted to integral form over volumes Vi, and the divergence theorem is
applied to the flux term ~F yielding

(2.1)
∂

∂t

∫
Vi

u dx +

∫
∂Vi

~F · n̂ dx =

∫
Vi

s dx .

The volume’s surface ∂Vi is split into separate discrete regions Af , indexed with f ,
so that ∂Vi ≡ ∪fAf . The surface flux integral then becomes:∫

∂Vi
~F · n̂ dx =

∑
Af∈∂Vi

∫
Af

~F · n̂f dx ,

where n̂f is the corresponding outward unit normal vector.
FVMs then define averaged quantities on faces and volumes,

〈u〉i ≡
1

Vi

∫
Vi

u dx , 〈F〉f ≡
1

Af

∫
Af

~F · n̂f dx ,

and express Eq. (2.1) in terms of averages in the discrete ODE form:

(2.2)
d

dt
〈u〉i +

∑
f∈∂Vi

Af

Vi
〈F〉f = 〈s〉i .

Note that Eq. (2.2) has a term of V−1
i that must be carefully balanced to avoid

numerical stability issues. As a measure of how small cells are, we define the volume
fraction κ so that κhD = Vi , where h is the Cartesian grid spacing. Because cut-
cells can be arbitrarily small in our discretization, Eq. (2.2) must be well-defined
in terms of how Af and 〈F〉f are evaluated on a given small cell as Vi (and thus κ)
approach zero. Regardless, this remains an exact formulation with no approximations,
providing the averages and geometric quantities are exact. In practice, the fluxes and
time derivatives require numerical approximations, which characterize the accuracy
and stability of the method.
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2.1. Projection Form of the Unsteady Stokes Equations. The unsteady
Stokes equations with constant density are given by

∂

∂t
u = −∇p+ ν∆u ,(2.3)

∇ · u = 0 ,(2.4)

where u is the flow velocity, p the pressure, and ν is the constant kinematic viscosity.
Boundary conditions for inflows prescribe a velocity u = uin, while outflows are
specified by ∇u · n̂ = 0. Viscous boundary conditions prescribe a boundary velocity
u = uwall.

A Hodge projection operator P has been used in the finite volume literature [9, 7]
to enforce the divergence-free velocity field constraint. We can define this acting on
any vector field w that is not divergence free:

P(w) = v(2.5)

∇ · v = 0(2.6)

P(w) ≡
(
I−∇∆−1∇·

)
w ,(2.7)

where v is the divergence free component of w, with appropriate boundary conditions.

2.2. Finite Volume Projection Formulation. We choose discretizations for
each of the spatial operators in Eqs. (2.3-2.4), and write the resulting discrete equa-
tions at cell location i as

∂

∂t
ui = −(Gp)i + ν(Lu)i ,(2.8)

(Du)i = 0 ,(2.9)

where D,G, and L are fourth-order finite volume approximations of divergence, gra-
dient, and Laplacian terms, respectively (note that from here on, we will drop the
subscript i for simplicity). The goal is to discretize these operators so that

Du = ∇ · u +O(h4) ,(2.10)

Gu = ∇u +O(h4) ,(2.11)

Lu = ∇ · ∇u +O(h4) ,(2.12)

in the regular interior of the domain, with some potential loss of accuracy near bound-
aries and in cut-cells.

We use co-located cell-average velocity and pressure, for which a traditional
marker-and-cell (“MAC”) staggered-grid discretization of the projection is not avail-
able, so we instead use an approximate projection [17]. This implies that instead of a
strictly zero discrete divergence, we allow u to have a divergence that is at the level
of the discretization error. The equivalent discrete projection is

(2.13) P(w) =
(
I−GL−1D

)
w ,

which requires the inversion of the Laplacian operator over the entire domain. Using
this projection operator, our approximation of the unsteady Stokes equations is

d

dt
u = P (νLu) +O(h4)(2.14)

Du = O(h4) ,(2.15)

4
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and we have eliminated the pressure from the time evolution equations. The procedure
for advancing this system in time is to first do an intermediate update for the viscous
terms, and then apply the projection Eq. (2.13), which produces an approximately-
divergence free solution at the end of each time step. This is essentially a higher-order
accurate version of the projection operator described by Trebotich et al [25].

2.2.1. Projection Formulation for Open Boundaries. Boundary conditions
for the projection operator can be specified for open domain boundaries, so that
a given velocity, such as that resulting from the viscous terms, has three separate
components: w = Gψ + v + Gφ. First, ψ is the scalar potential flow solution which
satisfies only the boundary conditions and is thus divergence-free inside the domain.
The two other parts satisfy homogeneous boundary conditions: φ such that Gφ·n̂ = 0,
and the divergence-free part, v, such that Dv ≈ 0 and v · n̂ = 0. Each of these
components is determined from w by solving the equations:

Lψ = 0, Gψ · n̂ = u · n̂ (potential flow with BCs),(2.16)

Lφ = Dw, Gφ · n̂ = 0 (interior gradient),(2.17)

u = v + Gψ = w−Gφ.(2.18)

This allows u to be approximately divergence-free and satisfy the correct domain
boundary conditions.

Some modifications to this procedure are required for outflow [25], given that flow
back into the domain may occur. For the divergence operator on the right-hand side
of Eq. (2.17) the boundary conditions are: w matches the velocity at inflow w = uin,
solid walls require no normal-flow w · n̂ = 0, and outflow boundaries use no boundary
condition. Eq. (2.16) and Eq. (2.17) use outflow boundary conditions ψ = 0 and
φ = 0, respectively.

3. Embedded Boundary Spatial Discretization. In the embedded bound-
ary approach, there are three categories of cells: regular, irregular, and invalid. This
distinction between cell types is illustrated in Fig. 1.1. Regular cells are those that
are full Cartesian cells, and do not contain a portion of the boundary. Irregular or
cut-cells, are those which are partial cells because they intersect with the boundary
geometry. Invalid cells, as the name indicates, are cells that fall outside the domain
boundaries and are thus not in the solution domain. To denote the EB regions, we
intersect the irregular domain, Ω, and Υi, any regular cell, to denote a particular cell
by Vi = Υi ∩ Ω.

The challenge of EB methods is to approximate the flux terms 〈F〉f when regular
grid stencils can not be used due to nearby cut-cells. A general reconstruction eval-
uates local polynomials and their derivatives on faces to calculate the face-average
fluxes in Eq. (2.2). For a structured grid, reconstructed polynomials lead to grid-
aligned regular stencils. When using an EB method, stencils near the boundary
depend on the local geometry. In those cases, we use a weighted least-squares poly-
nomial approximation in a local region of neighboring cells. Theoretically, this can
produce any order spatial discretization (see Devendran et al.[11]), but demonstrat-
ing a fourth-order method is the focus of this paper. In the following section, the
necessary operators needed for the fourth-order EB method are described.

5
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3.1. Multi-Dimensional Taylor Expansion. Stencils for the high-order EB
method are produced from a multi-dimensional polynomial defined as

(x− x̄)q =

D∏
d=1

(xd − x̄d)qd , q! =

D∏
d=1

qd! , |q| =
D∑
d=1

qd ,

where q is a multi-index or D-dimensional non-negative integer vector, and x̄ is a
given point in space, which is the center of the interpolation and different for each
cell or face. For a sufficiently smooth scalar function φ, its multi-dimensional Taylor
series of order Q can be written as

(3.1) φ(x) =
∑
|q|<Q

1

q!
φ(q)(x̄)(x− x̄)q +O(hQ) ,

where φ(q) is the multi-index partial derivative notation,

φ(q)(x) =

(
D∏
d=1

∂qd

∂x
qd

d

)
φ(x) ,

and any qd = 0 implies no derivative. To fit a multi-dimensional polynomial to cell-
averaged data, integration over (regular or irregular) cells is needed. Using moments
to define integration of basis polynomials over a region, we define volume moments
and face moments as

mq
i (x̄) =

∫
Vi

(x− x̄)q dx , mq
f (x̄) =

∫
Af

(x− x̄)q dx .(3.2)

3.2. Flux Reconstruction. To reconstruct a high-order solution from cell-
averaged data, we use a Taylor expansion about cell centers x̄i of each uncut-cell
Υi. For velocity component ud, we can define multi-dimensional polynomial coeffi-

cients, cqdi = 1
q!u

(q)
d (x̄i), and approximate each neighboring j cell-average as

〈ud〉j =
1

Vj

∫
Vj

ud dx

=
1

Vj

∫
Vj

∑
|q|<Q

1

q!
u

(q)
d (x̄i)(x− x̄i)

q +O(hQ) dx

=
1

Vj
∑
|q|<Q

cqdim
q
j (x̄i) +O(hQ) .(3.3)

The number of coefficients, cqdi, is Np = (D+Q)!
D! Q! . Determining these Np coefficients

requires solving a linear system of equations with at least that many linearly in-
dependent values 〈ud〉j . We select more cells than coefficients, to establish an over-
determined least-squares system, which provides some robustness when there are small
cells present in the interpolation neighborhood.

Adapting linear algebra notation, we write the vector u of neighboring cell-average
velocities 〈ud〉j , so our approximation is

u ≈M c ,

6
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where the geometric moment matrix M comes from Eq. (3.3) for each j, and the
vector c contains the multi-dimensional polynomial coefficients cqdi.

If we add a diagonal weighting matrix W , making a weighted least-squares (WLS)
algorithm, we may improve stability of the stencils (as in [11]); further discussion is in
section 3.3. With the weighting matrix, this yields the system to determine coefficients
as

(3.4) c = arg min
c̃
‖Wu−WMc̃‖2 → c = (W M)†W u ,

where (W M)† indicates the pseudo-inverse of (W M).

3.2.1. Higher-order EB Viscous Flux Stencil. We can use the WLS ap-
proach to calculate face-average fluxes for Eq. (2.2) from cell-average quantities (as in
[11]). This is accomplished by determining the stencil sf applied to neighbor values
u, derived from the coefficient vector c:

Af 〈Fd〉f ≡ sᵀf u
= bᵀ c

=
(
bᵀ (W M)†W

)
u ,

where b is a vector that approximates any face-average flux (or other quantity) from
the known coefficients. For a linear flux, such as the viscous term Fd = ν∇ud, we
determine b (and thus sf ) using a Taylor expansion from the face center x̄f :

Af 〈Fd〉f =

∫
Af

∇ud · n̂f dx +O(hQ)

=

∫
Af

∇
( ∑
|q|<Q

cqd(x− x̄f )q
)
· n̂f dx

≡
∑
|q|<Q

cqdb
q
f = bᵀc .

Each bqf can be expressed as a sum of normal-weighted face moments mq
f ,d:

(3.5) bqf =

D∑
d=1

∫
Af

∂

∂xd
(x− x̄f )q n̂f ,d dx =

D∑
d=1

qdm
q−ed

f ,d ,

where q − ed is required to be positive (derivatives of constants are zero).
For grid-aligned cell faces, normals ed are constant, so the normal-weighted mo-

ments are simply the face moments. However for curved embedded boundaries, all
the components of the normal play a role in the interpolation, especially in the case of
inhomogeneous boundary conditions. Ultimately, the viscous flux stencil sf depends
only on the local neighbor volume and boundary moments, so it may be initialized
once per geometry and stored as a sparse matrix operator over the (much smaller)
subset of irregular cells.

3.2.2. Approximate Projection. The higher-order projection operator starts
with cell-average velocities, 〈u〉i, and modifies them to be approximately divergence-
free (Eq. (2.14)). To accomplish this, we require discretizations and boundary con-
ditions for each operator in Eq. (2.13). First, the Laplacian operator L is essentially

7
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the same as the viscous flux in section 3.2.1, as a divergence of face-averaged quanti-
ties, but with different boundary conditions based on Eq. (2.16). For the cell-average
gradient operator, G, the WLS stencil is similar to Eq. (3.5). However, in this case
we use cell moments instead of face moments to calculate a cell-average gradient:

(3.6) Gq
d,i =

∫
Vi

∂

∂xd
(x− x̄i)

q dx = qdm
q−ed

i .

The gradient operator uses the same boundary conditions as the Laplacian operator.
Finally, we define a cell-average divergence operator D using the divergence the-

orem, ∫
Vi
∇ · u dx =

∫
∂Vi

u · n̂ dx ,

so the cell-average of the divergence of the velocity field can be determined from
face-average quantities as

〈∇ · u〉i =
∑

f∈∂Vi

Af

Vi
〈u · n̂〉f .

The divergence flux 〈u · n̂〉f can be constructed similarly to the Laplacian, with an
operator that computes a average velocity flux Uf from each velocity component
coefficient

Uq
f =

D∑
d=1

∫
Af

(x− x̄i)
qn̂f ,d dx =

D∑
d=1

mq
f ,d .(3.7)

Again, the terms on regular faces have single component normal vectors n̂f = ed, and
as a result 〈u · n̂〉f = 〈ud〉f . The boundary condition for the divergence is u · n̂ = 0 at
any solid wall, including EB boundaries. The velocity is specified at inflow boundaries,
while outflow has no boundary conditions applied [10].

3.2.3. Physical Boundary Conditions. For Dirichlet boundary conditions,
each face with a prescribed function uses a boundary average value 〈u〉f = 〈ubc(x)〉f .
A polynomial fitting the function about a face can be reconstructed using:

Af 〈ubc,d〉f =

∫
Af

ubc,d dx

=

∫
Af

∑
|q|<Q

cqf (x− x̄f )q dx

=
∑
|q|<Q

cqfm
q
f .

Including this additional equation and value into the stencil system will match the
boundary condition in a least-squares sense, with a similar method for Neumann
boundaries. These extra boundary condition equations are used when any neighboring
cell included in the reconstruction contains a portion of the boundary, and so can
accommodate different parts of the boundary (such as corners, etc.). This does require
that the boundary conditions and derivatives are known at least to order Q.

8
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3.2.4. Interpolation Neighborhoods. An important aspect of the WLS re-
construction is neighborhood selection. Conceptually, we require a large enough inter-
polation neighborhood to attain the desired accuracy and stability properties, while
not making it so far-reaching so as to create large (expensive), ill-conditioned interpo-
lation matrices. In this paper, the focus is on fourth-order accurate stencils, which in
the general 2D case, requires a minimum of 10 neighbors (with at least Q in each di-
rection) for all of the polynomial coefficients for |q| < Q = 4. Higher-order derivative
operations will require more neighbors to maintain the same accuracy, and values near
an embedded boundary will require the boundary condition and further cells because
of the lower accuracy of one-sided differences. For example, for a fourth-order WLS
viscous operator (Laplacian), flux stencils of radius 3 cells from the reconstructed face
can be used for a third-order accurate gradient. This is illustrated for a radius of 3
in Fig. 3.1(a) for regular regions, and Fig. 3.1(b) in the presence of an EB region
with the inclusion of boundary conditions. However, for stencils that do not specify a
boundary condition, such as the divergence on outflow boundaries, this radius of cells
may need to be expanded to make the system sufficiently over-determined. Similarly,
for stencils that evaluate cell-averaged values, such as the gradient for the projection
operator, cell-average reconstructions are used. An example of a stencil of radius 3
centered about a cell is shown in Fig. 3.2(a) for regular cells and Fig. 3.2(b) for a
cut-cell, following a similar pattern to reconstruction centered on faces. Cell-average
reconstructions may include the cell where the reconstruction takes place, which is
indicated as a radius of zero.

1 12

2

2

2

2

2

3

3

3

3

3

3

3

3

3

3

(a) An example regular flux stencil with 18
cells and no boundary conditions.

1
1

2

2

2

2

3

3

3

3

3

3

3

(b) An example irregular flux stencil, using
13 cells and 6 boundary conditions.

Fig. 3.1: Stencil neighborhoods for flux construction in 2D on the red highlighted
faces, with cells numbered according to the Manhattan distance from the indicated
red face. Boundary sections included in the stencil are colored in (b).

3.3. Weighting and Stability. To reconstruct the stencils required for the
spatial discretization in the presence of EB geometries, the WLS method Eq. (3.4) is
used. First, we select a neighborhood of cells within a given radius (including any cut-
cells and their contained subset of the boundary). Rather than exhaustively searching
for an interpolation neighborhood that can determine all the required coefficients with
finite volume stencils, we use a larger number of neighbors and a weighting scheme
that assigns relative importance to each cell’s entry in the WLS system. Smaller
relative weights mean that cells have less importance and a smaller coefficient in the
resulting stencils. As in Devendran et al. [11], an effective weighting for a fourth-order
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(a) An example regular cell stencil with 25
cells and no boundary conditions.
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(b) An example irregular cell stencil, using
16 cells and 7 boundary conditions.

Fig. 3.2: Stencil neighborhoods for cell value construction around the red highlighted
cells, with cells numbered according to the Manhattan distance from the red cell.
Boundaries included in the stencil are colored in (b).

interpolation is:

(3.8) Wi,f = max(Di,f , 1)−5 ,

where Di,f is the Euclidean distance between cell i center and face f center. This
weighting was shown to improve solution stability and spectral properties, especially
when interpolation neighborhoods are large and there are many possible consistent
stencils.

4. Implicit-Explicit Time Marching Method. When solving the Stokes
equations, the maximum stable time step for the source and viscous terms can be
significantly different. The source terms may generally be non-linear but less stiff,
making them well suited for explicit time marching methods. In contrast, the viscous
terms for the Stokes equations are stiff, but linear in each velocity variable, making
them well suited for implicit time integration using fast linear solvers. In the con-
text of EB methods, where cut-cells can become arbitrarily small, the difference of
time step stability constraints between terms can be orders of magnitude different.
A hybrid implicit-explicit (ImEx) Runge-Kutta (RK) method [4, 26] is chosen for
the EB algorithm, which allows for the source terms to be updated using an explicit
method, and the viscous terms with an implicit method. This method has successfully
been demonstrated for stiff, higher-order finite volume methods for advection-diffusion
problems [26]. To achieve fourth-order accuracy, the six-stage, L-stable ImEx scheme
ARK4(3)6L[2]SA [15] is used. At each stage, the implicit time integrator is applied
to the viscous term discretization for each velocity component, requiring a globally-
coupled sparse matrix system to be solved. To do this efficiently, we use an algebraic
multigrid (AMG) solver from PETSC [5, 6]. After the final stage update from the
time integrator, we apply the approximate projection operator (2.13) to the predicted
velocity to enforce (to the target order of accuracy) the divergence-free constraint
(2.4).
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5. Algorithm Verification. We use grid convergence to demonstrate the order
of accuracy of the algorithm. The solution error is computed from cell-averages as

Ei = 〈φ(x, t)〉i − 〈φexact(x, t)〉i ,

and convergence rates are evaluated using L∞, L2, and L1 norms computed as

L∞ = max
i∈Ω
|Ei| , L2 =

(
1

Nc

∑
i∈Ω

E2
i

) 1
2

, L1 =
1

Nc

∑
i∈Ω

|Ei| ,

where Nc is the number of cells in the domain Ω. These solution errors are notably
not weighted by the cell volumes, in order to properly represent the errors in small
cells. When exact solutions are known, convergence rates are calculated as

(5.1) Qobsv = logr

( ‖φhi
− φexact‖

‖φhi+1 − φexact‖

)
.

where φhi represents the solution at refinement level hi.
The method of manufactured solutions can be used to generate artificial analytic

solutions for verification [23]. For this method, a manufactured solution of sufficient
complexity is chosen, then a source term and boundary conditions are derived which
satisfy the governing equations. However, for the Stokes equations manufactured
solutions should still obey the divergence free constraint, limiting the availability of
analytical solutions without implementing discrete boundary integral methods.

Algorithm verification of cases without analytic solutions use a standard Richard-
son extrapolation method to evaluate the convergence by including an additionally
refined solution. Convergence rates with this method [26] are measured by

(5.2) Qobsv ≈ logr

( ‖φhi
− φhi+1

‖
‖φhi+1

− φhi+2
‖

)
.

We verify the projection and viscous operators separately on simple embedded
boundary geometries. The projection operator was verified for correctness and sta-
bility using the Taylor Green vortex. The viscous operator with boundary conditions
was verified using manufactured solutions in space and time. The order of accuracy
for solving the Stokes equations was verified on a Couette flow between concentric
circles.

5.1. Projection of the Taylor-Green Vortex. The approximate projection
operator P(u) is demonstrated to be both fourth-order accurate and stable by solving
the classic Taylor-Green vortex [9] on a unit domain. The stream function is defined
by

(5.3) ψ = sin(nπx) sin(nπy) .

and the corresponding velocity field in Cartesian coordinates is,

u = sin(nπx) cos(nπy) , v = cos(nπx) sin(nπy) ,(5.4)

which is analytically divergence free. For this case, we choose the period n = 2, and
as a result there is no flow through the domain boundary. In addition, EB boundaries
are cut along the contours of the stream function at ψ = −0.8. Initial conditions use
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(a) The Taylor-Green velocity magnitude |u|
and streamlines.

(b) Log plot of the divergence magnitude Du
and a coarsened grid representation.

Fig. 5.1: The Taylor-Green vortex at h = 1/256.

the exact velocity profiles, integrated to fourth-order cell-averages, while projection
boundary conditions are specified (no-flow, but not viscous, walls). The geometry
and velocity field are shown in Fig. 5.1(a).

Stability of the approximate projection operator is demonstrated by showing that
repeated applications of the projection on a velocity field reduce the discrete diver-
gence monotonically towards zero. The velocity divergence Du and pressure gradient
Gφ are computed on a grid with cell size h = 1/256 for 100 projection applications
and plotted in Fig. 5.2. These quantities strictly decrease, showing stability of the
fourth-order approximate projection.

1 10 100

10−9

10−8

10−7

Iteration

L∞(Du)

L2(Du)

L1(Du)

(a) Error norms of the velocity divergence.

1 10 100

10−13

10−12

10−11

10−10

10−9

Iteration

L∞(|Gφ|)
L2(|Gφ|)
L1(|Gφ|)

(b) Error norms of the pressure gradient.

Fig. 5.2: Solution error norms from repeated projections of the Taylor-Green vortex
on grid size h = 1/256.

Convergence tests are performed to ensure the targeted fourth-order accuracy is
achieved. The projection is applied once for grids of decreasing refinement, and the
divergence field Du is used to evaluate the solution error. The finest levels are chosen
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with cell sizes h = 1/256 and h = 1/192, and subsequent coarser levels each double h.
The L1, L2, and L∞ errors are calculated and plotted in Fig. 5.3, where convergence
rates reach and exceed expected fourth-order accuracy. Divergence errors are the
largest in cut-cells at the embedded boundaries, as seen in Fig. 5.1(b), and dominate
the L∞ errors. Nevertheless, the solution in cut-cells still converges at the expected
rate.
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Fig. 5.3: Convergence rates of the divergence for the Taylor-Green vortex in 2D. The
gray series of points are coarsened from a fine level of h = 1/192, and the white series
coarsened from h = 1/256.

5.2. Manufactured Solution for Diffusion Inside a Circle. To demonstrate
the accuracy of the viscous operator in the Stokes equations, we use a manufactured
solution and solve without the projection operator. This completely decouples the
velocity equations. The algorithm targets fourth-order in space and time using the
high-order stencils described in section 4 and the ImEx scheme in section 3. A circular
domain is created of radius 0.3 centered about the point (0.5, 0.5). The manufactured
solution is the same for each component, defined by

(5.5) ud(x, t) = sin(2πt) sin(R2 − (x− x0)2)

where R = 0.3 matches the domain radius, and x0 = (0.5, 0.5) gives the domain
center. The embedded boundaries are specified by Dirichlet conditions with values
determined by the manufactured solution. Following the method of manufactured
solutions, a source term is added to balance the equation where

sd(x, t) =2π cos(2πt) sin(R2 − (x− x0)2)

− sin(2πt)

D∑
d

(
−4xd sin(R2 − (x− x0)2) + 2 cos(R2 − (x− x0)2)

)
.

The source term is evaluated explicitly in time, while the Laplacian term is evaluated
implicitly. The solution is initialized using fourth-order cell-averages at time 0.125,
and a viscosity of ν = 1. On the finest level, with grid size h = 1/128, a time step of
∆t = 0.1 is taken to advance the solution forward for 128 steps. Subsequent coarser
levels double the cell size and time step, while halving the number of time steps to
reach the same end time. Using the chosen exact solution in Eq. (5.5), the L1, L2,
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and L∞ errors and convergence rates are calculated and compiled in Table 5.1. Third-
order truncation error is anticipated at the embedded boundaries, and will dominate
the L∞ norm. However, the L1 and L2 norms still attain fourth-order accuracy
because the embedded boundary is only codimension one [14]. Fourth-order accuracy
is demonstrated in these error norms, verifying the algorithm.

Table 5.1: Viscous operator convergence errors and rates for diffusion inside a circle.

N L1 Rate(L1) L2 Rate(L2) L∞ Rate(L∞)
16 3.676e-07 5.323e-07 1.271e-06
32 1.421e-08 4.693 2.111e-08 4.656 6.810e-08 4.223
64 6.449e-10 4.463 9.529e-10 4.470 3.186e-09 4.418
128 3.688e-11 4.128 5.467e-11 4.123 2.195e-10 3.860

5.3. Spherical Couette Flow. A pair of concentric spheres are created with
radii rinner = 0.25 and router = 0.475. The inner sphere is held stationary, while the
outer sphere is rotated about the z-axis with constant angular velocity ωouter = 1

0.475
so that the outer sphere has a peak tangential velocity of 1. Velocity of the rotating
sphere is specified purely tangential to the surface by

utan = sin(ϕ)Rω

where R is the sphere radius, ω the angular velocity, and ϕ the polar angle from the
z-axis. Converting this to Cartesian coordinates prescribes a velocity field

u = ωy , v = −ωx , w = 0 ,

where x and y are the Cartesian coordinates on the sphere centered at the origin.
The solution is initialized to zero velocity uniformly with a viscosity of ν = 1. Using
the developed method in this work, the Stokes equations are solved to steady state.
A two-dimensional case normal to the z-axis is shown in Fig. 5.4(a), and the three-
dimensional version in Fig. 5.7.

On the finest level, of grid size h = 1/256, a time step of ∆t = 1× 10−3 is
taken to advance the solution forward until the divergence norm converges in the
two-dimensional case. To validate the solutions, radial profiles of the solution in two
dimensions are compared to the analytic solution [18]

uθ(r) = ωouterrouter
r/rinner − rinner/r

router/rinner − rinner/router
,

in Fig. 5.4(b), where good agreement is observed. Convergence rates are measured
and shown in Fig. 5.5(b) using the Richardson extrapolation method for a series of
grids coarsened by a factor of 2 from refinements of both h = 1/256 and h = 1/192.
Solution norms for the u and v velocity components only have differences on the
order of machine precision, since the flow is symmetric, and so only one set of errors
are shown. Results show that fourth-order accuracy is achieved or exceeded for all
solution norms. The L∞ norm in particular is dominated by cut-cell values, as shown
in Fig. 5.5(a). On the finest grid there are 39 364 valid cells, of which 716 are cut-cells
with volume fractions as small as κ = 1.317× 10−5, demonstrating the robustness of
the method. The distribution of cut-cell sizes is shown in Fig. 5.6.
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(a) Velocity magnitude and vectors for the
h = 1/256 solution.
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(b) Velocity magnitude profiles compared to
the analytic solution.

Fig. 5.4: The two-dimensional circular Couette flow at steady state.

(a) Solution errors of the u velocity on the
h = 1/128 grid, with a coarsened grid repre-
sentation.
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Fig. 5.5: The two-dimensional circular Couette flow solution errors.

6. Results. Using the verified and validated fourth-order EB algorithm, Stokes
flow over a circle and sphere in a channel are tested, and convergence order is verified.
The Stokes equations are also used to solve for flow through a complex bio-inspired
material of engineering interest.

6.1. Steady Stokes Flow Over a Sphere in a Channel. A square channel
is generated with a channel length of 2 in the x-direction, and an inlet length of 1
in the y and z directions. A sphere of radius r = 0.15 is centered in the channel
at x = 1. A developed inflow of peak value 1 is specified at the inflow on the left
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Fig. 5.6: Distribution of cut-cell sizes for the two-dimensional Couette flow at grid
size h = 1/256.

Fig. 5.7: The three-dimensional spherical Couette flow at steady state. The velocity
vector field is shown, and a slice along the x-y plane shows the grid and velocity
magnitude.

most boundary, while an outflow is specified for the right most boundary. All other
boundary conditions are specified as walls. The Stokes equations are solved to steady
state in both two-dimensions, in Fig. 6.1, and three-dimensions, in Fig. 6.4. Although
no analytic solution for this flow can be used for comparison, qualitatively the flow
is observed to be highly symmetric and respect the imposed boundary conditions.
Notably, the inflow boundary and outflow nearly match, and have streamlines normal
to the boundaries as expected. At wall boundaries, solution velocities approach zero,
although particularly along the sphere there is some discrepancy due to the projection
and viscous operators smearing the third-order boundary solution with the fourth-
order interior.

Convergence rates for the u and v velocity from Richardson extrapolation are
plotted in Fig. 6.2. L1 and L2 norms indicate fourth-order accuracy, but the L∞
norm lags slightly. The plot of solution error (Fig. 6.3) indicates lower accuracy in
cut-cells and parts of the domain boundary.
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Fig. 6.1: Stokes flow for a circle in a channel, where the left boundary is an inlet, the
right an outlet, and all other boundaries walls. Streamlines are shown in black, and
the contours plot the velocity magnitude.
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Fig. 6.2: Convergence rates of the 2D circle in a channel.

Fig. 6.3: Solution errors for the u velocity of the 2D Stokes flow over a circle in a
channel on the h = 1/265 grid, with a coarsened grid representation.

6.2. Stokes Flow for Bone Scaffolding. Cellular structures have been a topic
of interest for a range of bio-inspired materials because their geometries can be quickly
adapted to target desired mechanical properties. In the work by Asbai-Ghoudan el
at.[3] a structure for bone replacement is analyzed, and a key challenge identified
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Fig. 6.4: Stokes flow over a sphere in a channel, where the left boundary is an inlet,
the right an outlet, and all other boundaries walls. The streamlines and contour plot
show the velocity magnitude.

when modeling such structures is mesh generation. We construct models of similar
geometry using the EB method to significantly simplify the meshing process. The
geometry of interest is defined by the gyroid function

(6.1) f(x) = cos(nπx) sin(nπy) + cos(nπy) sin(nπz) + cos(nπz) sin(nπx) ,

evaluated in two dimensions along the z = 0.1 plane where f(x) = 0 with a period
of n = 2. The surface is approximately thickened to width of 1/6. Flow is solved
through a pipe of radius r = 0.95 and length 8, with a cut of the gyroid centered
in the pipe at x = 4. A cut is made through the centerline with radius r = 0.175.
The cut boundaries are smoothed (as in Devendran et al. [11]) to prevent singular
solutions around sharp exterior corners. Stokes flow through this structure is shown
in Fig. 6.5 for a grid refinement of h = 1/512 in the flow direction.

Fig. 6.5: Velocity magnitude and streamlines for a two-dimensional representation of
the bone scaffold geometry.

The flow is found to be symmetric, and well-behaved along the cut-cell boundaries.
The EB grid for this case contains 26 585 valid cells, of which 1643 are cut-cells with
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the smallest volume fraction of κ = 5.933× 10−5. A close up view of this grid is
shown in Fig. 6.6(a), and the distribution of cut-cell sizes is shown in Fig. 6.6(b). In
particular, the mesh generation requires trivial involvement, and because the geometry
is specified analytically, adjustments such as gyroid size, position, and thickness are
easily made. This shows promise for more detailed analysis using the high-order EB
method, where a large design space of geometries could be examined quickly without
special considerations for mesh generation or solution stability.

(a) A close up of the EB grid.
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(b) Distribution of the cut-cell sizes.

Fig. 6.6: Bone scaffold grid.

7. Conclusions and Future Work. In this work, we demonstrate that our EB
algorithm capable of representing complex geometries is fourth-order accurate for the
Stokes equations. Additionally, our algorithm is shown to be stable when encoun-
tering small cells, without cell merging, redistribution, or grid remediation to avoid
small cells. These results demonstrate the feasibility of high-order EB methods, and
provide confidence that the developed algorithm can be extended to solve engineering
problems without making case specific considerations for mesh generation.

7.1. Future Work. The natural next step for this work is to tackle the incom-
pressible Navier-Stokes equations. This requires an approach for proper treatment
of the non-linear advection term, and the ability to create stable upwind stencils for
small cells. We will also implement a geometric multigrid solver [16, 26] to improve
the performance of our AMG-based solver. Additionally, future work with this high-
order EB method will include adaptive mesh refinement to improve solution accuracy
in regions of interest [26, 11].
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