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PARTIAL DEGENERATION OF TENSORS

MATTHIAS CHRISTANDL, FULVIO GESMUNDO, VLADIMIR LYSIKOV,
AND VINCENT STEFFAN

Abstract. Tensors are often studied by introducing preorders such as restriction and
degeneration: the former describes transformations of the tensors by local linear maps
on its tensor factors; the latter describes transformations where the local linear maps
may vary along a curve, and the resulting tensor is expressed as a limit along this
curve. In this work we introduce and study partial degeneration, a special version of
degeneration where one of the local linear maps is constant whereas the others vary along
a curve. Motivated by algebraic complexity, quantum entanglement and tensor networks,
we present constructions based on matrix multiplication tensors and find examples by
making a connection to the theory of prehomogeneous tensor spaces. We highlight the
subtleties of this new notion by showing obstruction and classification results for the unit
tensor. To this end, we study the notion of aided rank, a natural generalization of tensor
rank. The existence of partial degenerations gives strong upper bounds on the aided rank
of a tensor, which allows one to turn degenerations into restrictions. In particular, we
present several examples, based on the W-tensor and the Coppersmith-Winograd tensors,
where lower bounds on aided rank provide obstructions to the existence of certain partial
degenerations.

1. Introduction

Restriction and degeneration are preorders on the set of tensors that capture many
important concepts in classical algebraic geometry, complexity theory, combinatorics, en-
tanglement theory and the study of tensor networks. In this work, we introduce the
notion of partial degeneration, a special version of degeneration defining a preorder which
is intermediate between restriction and degeneration.

One key contribution of this work is to show that restriction, partial degeneration and
degeneration are mutually inequivalent notions. To show a separation between the notions
of restriction and partial degeneration we present a number of constructions based on
tensors motivated from algebraic complexity theory and tensor networks. We also draw a
connection to the theory of prehomogeneous tensor spaces which allows us to derive further
examples manifesting this separation. To show a separation between partial degenerations
and degenerations, we prove a no-go result for the unit tensor which moreover allows us
to classify certain families of partial degenerations.

Moreover, we introduce the notion of aided restriction, which is performed on a version
of the tensor augmented via an aiding matrix. This raises the question on how large the
rank of such an aiding matrix should be in order to allow certain restrictions. We study
upper and lower bounds, highlighting the role of degenerations and partial degeneration.

In the remainder of this introduction we describe in more detail the main contributions
of this work and briefly outline future directions and open questions.
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1.1. Background. Throughout the paper, U1,U2,U3, V1, V2, V3 are complex vector spaces
of dimension u1, u2, u3, v1, v2, v3, respectively. For each of these spaces, write e1, e2, . . . for
a fixed basis. Tensors in U1⊗U2⊗U3 can be understood as a resources by introducing the
notions of restriction and degeneration: For tensors T ∈ U1 ⊗U2⊗U3 and S ∈ V1⊗V2⊗V3,
we say that T restricts to S, and write T ≥ S, if there exist linear maps Ai ∶ Ui → Vi for
i = 1,2,3 such that

S = (A1 ⊗A2 ⊗A3)T ;

we say that T degenerates to S, and write T ⊵ S, if S is a limit of restrictions of T . It is
a classical result that T ⊵ S if and only if there are linear maps Ai(ǫ) ∶ Ui → Vi depending
polynomially on ǫ, that is with entries in the polynomial ring C[ǫ], such that

(A1(ǫ)⊗A2(ǫ)⊗A3(ǫ))T = ǫdS + ǫd+1S1 + ⋅ ⋅ ⋅ + ǫ
d+eSe

for some natural numbers d, e and some tensors S1, . . . , Se. The integers d and e are called
approximation degree and error degree, respectively; write T ⊵ed S when it is useful to keep
track of these integers.

One can define analogous notions for any number k of tensor factors. It is known
that for k = 2, the notions of restriction and degeneration are equivalent whereas for
k = 3 they differ. This phenomenon already appears in [Syl52] and it occurs already
when the tensor factors are two 2-dimensional. Write ⟨r⟩ = e1 ⊗ e1 ⊗ e1 + ⋅ ⋅ ⋅ + er ⊗ er ⊗ er
for the r-th unit tensor in C

r
⊗ C

r
⊗ C

r. Define the W -tensor in C
2
⊗ C

2
⊗ C

2 to be
W = e1⊗e1⊗e2+e1⊗e2⊗e1+e2⊗e1⊗e1. It is a classical result that ⟨2⟩ ⊵W but ⟨2⟩ ≱W .

Understanding tensors in this resource theoretic way has led to advances in various fields
in mathematics, physics and computer science:

● The study of degenerations has lead to advances in several combinatorial problems,
in particular the sunflower problem and cap sets [EG17, Tao16]. In [CFTZ22], the
study of combinatorial degenerations has lead to advances in the problem of finding
large corner free sets.
● In quantum information theory, the study of restrictions and degenerations led
to an improved understanding of the entanglement of multi-partite quantum
states [DVC00, CD07].
● Tensor network representations of many body quantum states are a special case
of tensor restrictions. Studying degenerations of tensors can lead to more efficient
tensor network representations of quantum states [CLVW20, CGSW21].
● In algebraic complexity theory, tensor restriction and degeneration play an impor-
tant role in the study of the asymptotic complexity of bilinear maps. In particular,
starting from [BCLR79, Bin80], essentially all upper bounds on the exponent of the
matrix multiplication rely on degenerations of suitable tensors to the matrix mul-
tiplication tensor [Str87, CW87, AW21]. A refined understanding of these notions,
even in small cases, can lead to further improvements [BCS97, Blä13, CGLV22].

In of all these cases, the notions of restriction and degeneration are used to compare
tensors: For example, in complexity theory, T ≥ S or T ⊵ S reflects the fact that the
bilinear map corresponding to T is harder to compute than the one corresponding to S;
in quantum physics, it expresses the fact that the quantum state described by T is more
entangled than the one described by S.

1.2. Partial degeneration. In Section 3 of this work, we introduce and study the inter-
mediate notion of partial degeneration: For tensors T ∈ U1 ⊗U2 ⊗U3 and S ∈ V1 ⊗ V2 ⊗ V3,
we say that T partially degenerates to S, and write T ▸ S, if T degenerates to S where
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the degeneration map A1(ǫ) = A1 can be chosen constant in ǫ. Analogous notions can
be defined by assuming that A2(ǫ) or A3(ǫ) are constant. For simplicity, we will always
assume that the constant map is the one acting on the first factor. Hence, we have T ▸ S

if and only if there are linear maps A1,A2(ǫ) and A3(ǫ), with A2(ǫ) and A3(ǫ) depending
polynomially on ǫ such that limǫ→0

1
ǫd
(A1 ⊗ A2(ǫ) ⊗ A3(ǫ))T = S for some d. As in the

case of degeneration, we sometimes write T ▸ed S to keep track of the approximation and
error degrees. We point out that requiring two of the three linear maps to be constant
in ǫ provides a notion of degeneration which is equivalent to restriction, see Theorem 3.2.
A priori, it is unclear whether the notion of partial degeneration is indeed non-trivial, or
whether one might always reduce a degeneration to a partial degeneration or a partial
degeneration to a restriction. We will show this is not the case. We point out that an
example of partial degeneration has been known since [Str87], and it was used to achieve
a breakthrough result in the study of the complexity of matrix multiplication: the tensor

(1) Strq =
q−1∑
i=1

ei ⊗ eq ⊗ ei + ei ⊗ ei ⊗ eq ∈ C
q−1
⊗C

q
⊗C

q

has tensor rank equal to 2q − 2 but it is a partial degeneration of the unit tensor ⟨q⟩.
In this work, we study for the first time partial degenerations in depth. In Section 3, we

construct various families of examples of partial degenerations which are not restrictions.
We also study the question under which circumstances partial degenerations cannot exist
and provide a no-go result for certain partial degenerations of the unit tensor.

In Section 3.3, we construct a family of partial degenerations of the matrix multiplica-
tion tensor. Let ⟨m,n, p⟩ be the matrix multiplication tensor associated to the bilinear
map multiplying an m × n matrix with a n × p matrix. To construct a family of partial
degenerations of the matrix multiplication tensor ⟨2,2,2⟩, the challenge is to show that
these are not actually restrictions of ⟨2,2,2⟩. To see this, we resort to notion of tensor
compressibility, in the sense of [LM18].

In Section 3.4, we study the notion of partial degeneration in the setting of prehomoge-
neous tensor spaces where we can find many more examples of honest partial degenerations.
We say that the action of a linear algebraic group G on a vector space V is prehomogeneous
if there is an element v ∈ V whose orbit under the group is dense in V , equivalently in the
Zariski or Euclidean topology. Consider the action of GL(U2)×GL(U3) on U1⊗U2⊗U3; if
this action is prehomogeneous, with the tensor T having a dense orbit, then every tensor
in U1 ⊗ U2 ⊗ U3 is a partial degeneration of T . Prehomogeneous tensor spaces of this
form have been studied in [SK77] and are well-understood, and the prehomogeneity of the
action is determined by simple arithmetic relations among the dimensions of the tensor
factors. In Section 3.4, for every instance where the space U1⊗U2⊗U3 is prehomogeneous
under the action of GL(U2)⊗GL(U3), we provide an example of a tensor that cannot be
a restriction of a tensor with dense orbit. We emphasize that while it is well-understood
under which conditions U1 ⊗ U2 ⊗ U3 is prehomogeneous, there are in general no closed
formulas for elements having dense orbit. If dim(U1) = 2, that is the case of matrix pencils,
explicit elements with dense orbit are known, see, e.g., [Gan59, Ch. XIII] and [Pok86].
In Section 3.4, we use these examples to provide explicit partial degenerations for matrix
pencils.

In Section 3.5, we study situations in which partial degenerations cannot occur. More
precisely, we show that every partial degeneration of the unit tensor ⟨r⟩ to a concise tensor
T ∈ U1⊗U2⊗U3 with dim(U1) = r can be reduced to a restriction. We use this result to show
that for dim(U1) = r − 1, tensors of the form Equation 1 are essentially all honest partial
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degenerations that can occur. Furthermore, we construct honest partial degenerations of⟨r⟩ for any r to non-concise tensors. These no-go results show that restriction, partial
degenerations and degenerations are in fact three different notions.

1.3. Aided restriction and aided rank. The starting point of the second part of this
work is the fact that any degeneration can be turned into a restriction using interpolation.
It is known that if T ⊵ed S then T ⊠⟨2d+1⟩ ≥ S and T ⊠⟨e+1⟩ ≥ S, where ⊠ is the Kronecker
product of tensors; this dates back essentially to [BCLR79], and extends to a number of
different settings [CGJ19, CLVW20, CGSW21]. In Section 4, we study the case where
the supporting tensor is a matrix instead of a unit tensor. More precisely, for a tensor
T ∈ U1 ⊗U2 ⊗U3, define

T ∎p = T ⊠ ⟨1,1, p⟩ ∈ U1 ⊗ (U2 ⊗C
p)⊗ (U3 ⊗C

p);
here ⟨1,1, p⟩ = e1⊗∑p

1 ei⊗ ei is a special instance of the matrix multiplication tensor; note
that in fact ⟨1,1, p⟩ is an identity matrix of size p, regarded as a tensor on three factors.

Theorem 4.2 shows that if T ⊵ S then there exists a p such that T ∎p ≥ S. We call ⟨1,1, p⟩
the aiding matrix and p the rank of the aiding matrix. We study upper bounds on the
rank of an aiding matrix in terms of approximation and error degree of a degeneration
and a partial degeneration.

In Section 4.1, we show that for partial degenerations of approximation degree d and
error degree e, the rank of the aiding matrix can be equal to min{d + 1, e + 1}. More
precisely, if T ▸ed S then T ∎d+1 ≥ S and T ∎e+1 ≥ S. Even more strikingly we show that
if T ∈ U1 ⊗ U2 ⊗ U3, where the space U1 ⊗ U2 ⊗ U3 is prehomogeneous under the action
of GL(U2) × GL(U3), and if the orbit of T is dense, then T ∎2 ≥ S for any other tensor
S ∈ U1 ⊗U2 ⊗U3. Using methods from algebraic geometry, we generalize this observation
to the setup where the orbit closure is a lower dimensional variety.

It turns out that these findings are in strong contrast to the case of degenerations that
are not partial degenerations. To see this, in Section 4.2, we develop a method to give
lower bounds on the minimal possible rank of an aiding matrix. This relies on a variant
of the substitution method [AFT11]. In Section 4.2, we define the notion of aided rank as

R∎p(T ) =min{r ∶ ⟨r⟩∎p ≥ T}.
When p = 1, this reduces to the notion of tensor rank [Lan17, Prop. 5.1.2.1]. We show
that one can generalize the substitution method to give lower bounds on aided rank and
on the minimal possible rank of an aiding matrix for several examples of degeneration.
For example, for the degeneration

(2) ⟨2k⟩ ⊵W⊠k

we show that R∎2k−1(W⊠k) ≥ 2k+1. In other words, the minimal rank p of an aiding matrix
turning the degeneration in Equation 2 into a restriction is 2k. Note that for this example,
the no-go result for partial degenerations Theorem 3.14 gives that the degeneration cannot
be realized as a partial degeneration. Also note that the minimal possible rank of an aiding
matrix differs from our naive upper bound from Theorem 4.2 only by a factor of 1/2.
1.4. Conclusion and outlook. In this work, we introduce and study for the first time
partial degenerations which is the natural intermediate notion of restriction and degener-
ation of tensors. We believe that studying partial degenerations can yield deeper insight
in the theory of restriction and degeneration of tensors and thereby also deeper insight
into combinatorial and complexity theoretic questions as well as physical processes.
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In fact, part of the motivation to introduce aided rank and partial degeneration was the
vision to use them as a tool to study the conversion of entanglement structures, in the
spirit of [CLVW20]. Indeed, our results on aided rank find application in this context, see
[CLS+23, Section IV.A]. On the lattice, tensors are associated to plaquettes touching only
on adjacent vertices, rather than on all vertices as with the Kronecker product. Additional
EPR pairs on the side of the plaquettes might therefore be moved from one plaquette to
the other, enabling unexpected lattice transformations.

Furthermore, interpolation has proven a useful tool in lattice conversion [CLVW20,
CGSW21], but requires a unit tensor over the entire lattice. If degeneration is only to
take place on a subset of the vertices a less demanding more localized entangled state may
be sufficient; an idea that awaits its full exploration in future work.

In fact, we emphasize that partial degenerations allow for a more economical conversion
into restrictions than honest degenerations. In the three-particle SLOCC entanglement
context, this means that instead of requiring a global GHZ state, we only need an EPR
pair combining the vertices on which the non-constant maps are applied thus requiring
fewer resources. The degree of the degeneration is additive under taking tensor copies,
independently on whether this happens as a Kronecker product, or with more general
structures, see [CGJ19]. On the other hand, the interpolation argument is only linear in
the degree. Therefore for n-copy SLOCC operations only O(logn) 2-level EPR pairs are
required. Again, the full potential of this proposition remains to be explored in future
work.

We identify some open problems arising from this work:

(1) Consider the tensor

λ = e1 ∧ e2 ∧ e3 + e3 ⊗ e3 ⊗ e3 ∈ C
3
⊗C

3
⊗C

3

where ∧ is the antisymmetric product. In [CLVW20], the fact that ⟨2,2,2⟩ ⊵ λ

was used to construct an efficient representation in the ‘projected entangled pair’
(PEPS) formalism of the ‘resonating valence bond state’ (RVB state) [And73]. It
is known that ⟨2,2,2⟩ /≥ λ and we conjecture that a partial degeneration is not
possible either.

(2) Consider a degeneration

(A1(ǫ)⊗A2(ǫ)⊗A3(ǫ))T = ǫdS + e∑
i=1

ǫd+iSi.

The approximation degree d and the error degree e control the sizes of tensors in
interpolation results which are used to transform degenerations into restrictions,
see [BCLR79, CJZ18]. These degrees are not well understood. We propose that
it might be more tangible to study the approximation and error degrees in the
context of partial degenerations.

(3) The fact that degenerations can be turned into restrictions by interpolating with
a unit tensor (see Theorem 4.1) is the key ingredient that allows one to use border
rank in the study of matrix multiplication complexity, see e.g. [BCLR79, CW87].
It has been used more recently to construct more efficient tensor network represen-
tations of quantum states [CLVW20] and for many other theoretical applications
like showing that tensor rank and tensor border rank are not multiplicative under
the tensor product [CJZ18, CGJ19]. It is interesting to ask for similar applications
when interpolating with a matrix instead of a unit tensor as in Theorem 4.2.

(4) In this work, we focused on tensors of order three over complex numbers. Many
of our results generalize to the more general setup of k-fold tensor products of
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vector spaces over any field and it would be interesting to further explore these
situations. For higher order tensor products, one potentially has a hierarchy of
partial degenerations, depending on the number of linear maps depending on ǫ.

(5) In the recent work [JLV22], the authors prove uniqueness results and polynomial
time algorithms for r-aided rank decompositions. They generalize their results to
so-called (X ,W)-decompositions. Many of our results on r-aided rank also can
be generalized to this setup and it would be interesting to further explore this
direction.

1.5. Acknowledgements. M.C., V.L. and V.S. acknowledge financial support from the
European Research Council (ERC Grant Agreement No. 81876), VILLUM FONDEN via
the QMATH Centre of Excellence (Grant No.10059) and the Novo Nordisk Foundation
(Grant No. NNF20OC0059939 ‘Quantum for Life’). F.G.’s work is partially supported
by the Thematic Research Programme “Tensors: geometry, complexity and quantum en-
tanglement”, University of Warsaw, Excellence Initiative – Research University and the
Simons Foundation Award No. 663281 granted to the Institute of Mathematics of the
Polish Academy of Sciences for the years 2021–2023.

2. Preliminaries

In this section, we revisit the theory of restrictions and degenerations of tensors. We
introduce a few special tensors that will be used in the paper and mention their relation to
algebraic complexity theory and quantum information theory. For a thorough introduction
to geometric aspects of degeneration of tensors we refer to [Lan12]. More details about the
relation to algebraic complexity theory can be found in [BCS97, Blä13]. An introduction
to tensor networks can be found in [CPGSV21].

Let U1,U2,U3 and V1, V2, V3 be complex vector spaces of dimensions u1, u2, u3 and
v1, v2, v3, respectively, and consider tensors T ∈ U1 ⊗ U2 ⊗ U3 and S ∈ V1 ⊗ V2 ⊗ V3. We
say that T restricts to S and write T ≥ S if there are linear maps Ai ∶ Ui → Vi such that
S = (A1 ⊗A2 ⊗A3)T . We say that T degenerates to S and write T ⊵ S if there are linear
maps Ai(ǫ) ∶ Ui → Vi depending polynomially on ǫ such that

(A1(ǫ)⊗A2(ǫ)⊗A3(ǫ))T = ǫdS + ǫd+1S1 + ⋅ ⋅ ⋅ + ǫ
d+eSe

for some natural numbers d, e and some tensors S1, . . . , Se. The quantities d and e are
called approximation degree and error degree, respectively. Sometimes, we want to keep
track of d and e and write T ⊵ed S.

Recall the Kronecker product of tensors. Fix bases in the tensor factors and let T ∈
U1 ⊗ U2 ⊗ U3 and S ∈ V1 ⊗ V2 ⊗ V3 be specified in these bases by coefficients Ti1,i2,i3 and
Sj1,j2,j3 , that is,

(3) T =
u1,u2,u3∑
i1,i2,i3=1

Ti1,i2,i3ei1 ⊗ ei2 ⊗ ei3 , S =
v1,v2,v3∑
j1,j2,j3=1

Sj1,j2,j3ej1 ⊗ ej2 ⊗ ej3 .

We define their Kronecker product T ⊠ S ∈ (U1 ⊗ V1)⊗ (U2 ⊗ V2)⊗ (U3 ⊗ V3) as
T ⊠ S = ∑

i1,i2,i3,j1,j2,j3

Ti1,i2,i3 ⋅ Sj1,j2,j3(ei1 ⊗ ej1)⊗ (ei2 ⊗ ej2)⊗ (ei3 ⊗ ej3).
Write T⊠k for T ⊠ ⋅ ⋅ ⋅ ⊠ T where the Kronecker product was taken k times.
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T
S

Figure 1. Visualizing the direct sum of two tensors T and S: The tensor
T ⊕S is block-diagonal where one block is the tensor T and the other block
the tensor S.

Another way of combining two tensors T and S in Equation 3 into one is the direct
sum. For that, pick a basis e1, . . . , eui+vi of Ui ⊕ Vi for i = 1,2,3 and define the tensor
T ⊕ S ∈ (U1 ⊕ V1)⊗ (U2 ⊕ V2)⊗ (U3 ⊕ V3) via

(T ⊕ S)i1,i2,i3 =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Ti1,i2,i3 if i1 ≤ u1, i2 ≤ u2, i3 ≤ u3,

Si1−u1,i2−u2,i3−u3
if i1 > u1, i2 > u2, i3 > u3,

0 otherwise.

We visualize the direct sum of two tensors T and S in Figure 1.

A third order tensor T ∈ U1⊗U2⊗U3 defines naturally three linear maps U∗1 → U2⊗U3,
U∗2 → U1⊗U3, U

∗
3 → U1⊗U2, called the flattening maps of T . We say that T is concise if the

three flattenings are injective. Equivalently, T is concise if there are no subspace U ′i ⊆ Ui,
with at least one strict inclusion, such that T ∈ U ′1⊗U

′
2⊗U

′
3. The image T (U∗1 ) is a linear

subspaces of U2⊗U3 = Hom(U∗2 ,U3), which can naturally be identified with a linear space
of matrices. It is an immediate fact that the linear space T (U∗1 ) uniquely determines T

up to the action of GL(U1). We often identify a linear space of matrices with a tensor
defining it. This point of view is classical, but it turned out to be extremely useful in
recent work in the study of tensor restriction and degeneration [HJMS22, JLP24, CGZ23].

We will now introduce a few special tensors that will be important throughout this
work. Let U be an r-dimensional vector space with basis e1, . . . , er. We call

⟨r⟩ = e1 ⊗ e1 ⊗ e1 + ⋅ ⋅ ⋅ + er ⊗ er ⊗ er

the r-th unit tensor. Restriction and degeneration of the unit tensor define the notions of
rank and border rank of tensors: given S ∈ V1 ⊗ V2 ⊗ V3, the rank of S is R(S) = min{r ∶⟨r⟩ ≥ S}; the border rank of S is R(S) =min{r ∶ ⟨r⟩ ⊵ S}.

Another important tensor is W = e1⊗e1⊗e2+e1⊗e2⊗e1+e2⊗e1⊗e1. It is the smallest
possible example for an honest degeneration. In fact, while one can show that R(W ) = 3,
one easily sees ⟨2⟩ ⊵W via

ǫW = (e1 + ǫe2)⊗3 − e⊗31 +O(ǫ2),
henceR(W ) = 2. In Theorem 3.14, we will see that in fact ⟨2⟩ does not partially degenerate
to W .

A tensor that will be important is the matrix multiplication tensor defined for any
m,n, p as

⟨m,n, p⟩ = m,n,p∑
i,j,k=1

(ei ⊗ ej)⊗ (ej ⊗ ek)⊗ (ek ⊗ ei) ∈ (Cm
⊗C

n)⊗ (Cn
⊗C

p)⊗ (Cp
⊗C

m).
We will in particular use matrix multiplication tensors of the form ⟨1,1, p⟩. For a tensor
T ∈ U1 ⊗U2 ⊗U3, we will often consider the tensor T ∎p = T ⊠ ⟨1,1, p⟩.
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The tensors mentioned in this section have natural applications in algebraic complexity
theory. A tensor T ∈ U1 ⊗ U2 ⊗ U3 naturally defines a bilinear map T ∶ U∗1 × U

∗
2 → U3.

For example, the bilinear map induced by ⟨r⟩ multiplies two r-dimensional vectors entry-
wise. The induced bilinear map for the matrix multiplication tensor ⟨m,n, p⟩ is the matrix
multiplication, mapping two matrices, of size m×n and n×p respectively, to (the transpose
of) their product, which is a matrix of size m × p. In this context, the rank of a tensor
encodes the number of scalar multiplications needed to evaluate the associated bilinear
map. For example, a major open problem in algebraic complexity theory is to determine
the exponent of matrix multiplication ω. This is the minimal ω such that for any ǫ > 0 one
can multiply n × n matrices using O(nω+ǫ) multiplications; it can be defined in terms of
rank and border rank as the minimum ω such that R(⟨n,n,n⟩) or equivalently R(⟨n,n,n⟩)
is in O(nω) [BCS97, Blä13].

Moreover, the tensors introduced so far have a natural interpretation in quantum infor-
mation theory as well. In quantum physics, tensors correspond to multiparticle quantum
states and the notion of restriction is known as conversion under stochastic local opera-
tions and classical communication (SLOCC). In this context, the unit tensor is known as
the unnormalized Greenberger-Horn-Zeilinger (GHZ) state. The W tensor also plays an
important role: The fact that ⟨2⟩ ≱W and W ≱ ⟨2⟩ was used in [DVC00] to observe that
three qubits can be genuinely three-party entangled in two inequivalent ways. The tensor⟨1,1, p⟩ has a natural interpretation as well: It describes a quantum state on three parties
where the second and third parties share an Einstein-Podolsky-Rosen pair (EPR pair) on
p levels. For any tensor T , the tensor T ∎p is the overall (unnormalized) quantum state
when all three parties share a quantum state associated to T and the second and third
party in addition are given an EPR pair on p levels.

3. Partial degeneration

In this section, we introduce and study the notion of partial degeneration, a natural
intermediate notion between restriction and degeneration. In Section 3.1, we will define
partial degeneration. After that, we review in Section 3.2 a known example of a partial
degeneration. In Section 3.3, we will recall a property of tensors called compressibility and
demonstrate with an example how this can be used to rule out restriction. We will see
more examples in Section 3.4 using the theory of prehomogeneous tensor spaces. Finally,
in Section 3.5 we will study situations where no honest partial degeneration exist.

3.1. Definition and motivation. The main concept of this section is the following spe-
cial version of degeneration, intermediate between restriction and fully general degenera-
tion.

Definition 3.1. Let T ∈ U1 ⊗ U2 ⊗ U3 and S ∈ V1 ⊗ V2 ⊗ V3 be tensors. We say that T

degenerates partially to S and write T ▸ S if there is a linear map A1∶U1 → V1 and linear
maps A2(ǫ),A3(ǫ) with entries in the polynomial ring C[ǫ] such that

(A1 ⊗A2(ǫ)⊗A3(ǫ))T = ǫdS + ǫd+1S1 + ⋅ ⋅ ⋅ + ǫ
d+eSe.

We sometimes write T ▸ed S to keep track of d and e. We call a partial degeneration T ▸ S

an honest partial degeneration if T does not restrict to S.

It is clear that every restriction is a partial degeneration and every partial degeneration
is a degeneration. This raises the following two questions:
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(i) Can every partial degeneration T ▸ S be realized as a restriction T ≥ S?
(ii) Can every degeneration T ⊵ S be realized as a partial degeneration T ▸ S?

We point out that only allowing one of the three linear maps to depend on ǫ provides the
same notion as restriction:

Remark 3.2. Let T ∈ U1 ⊗ U2 ⊗ U3, S ∈ V1 ⊗ V2 ⊗ V3 be tensors and suppose there are
linear maps A1,A2,A3(ǫ) with Ai ∶ Ui → Vi, and A3(ǫ) depending polynomially on ǫ such
that S = limǫ→0

1
ǫd
(A1 ⊗ A2 ⊗ A3(ǫ)T ). Then S is a restriction of T . To see this, write

A3(ǫ) = ǫdA3,d+⋯ǫ
d+eA3,e with A3,j ∶ U3 → V3. It is immediate that S = (A1⊗A2⊗A3,d)T ;

this expresses S as a restriction of T . ♢

In Section 3.2, Section 3.3 and Section 3.4, we provide families of examples demonstrat-
ing that the answer to question in (i) is negative. In Section 3.5, we show that the answer
to question (ii) is negative as well.

3.2. Strassen’s tensor. In [Str87], a first example of a partial degeneration was found:
Let U1 ≃ C

q−1 and U2 ≃ U3 ≃ C
q and consider the tensor

Strq =
q−1∑
i=1

ei ⊗ ei ⊗ eq + ei ⊗ eq ⊗ ei ∈ U1 ⊗U2 ⊗U3.

It is not hard to see that R(Strq) = 2q − 2. On the other hand, it is a partial degeneration
of the unit tensor ⟨q⟩ via

ǫStrq =
q−1∑
i=1

ei ⊗ (eq + ǫei)⊗ (eq + ǫei) − (q−1∑
i=1

ei)⊗ eq ⊗ eq +O(ǫ2).
In Section 3.5, we will show that these are essentially all partial degenerations of ⟨r⟩ that
can be found in U1 ⊗U2 ⊗U3 with dim(U1) = r − 1.
3.3. Compressibility of tensors and matrix multiplication. In this section, we will
find a family of examples of partial degeneration of the 2 × 2-matrix multiplication ten-
sor. One challenge of finding an honest partial degeneration is to show that this partial
degeneration is actually not a restriction. To achieve that, we recall the notion of com-
pressibility [LM18].

Definition 3.3. A tensor T ∈ U1 ⊗ U2 ⊗ U3 is (a1, a2, a3)-compressible if there are linear
maps Ai ∶ Ui → Ui of rank ai such that (A1 ⊗A2 ⊗A3)T = 0.

Equivalently, T is (a1, a2, a3)-compressible if there are linear subspaces U ′i ⊆ U∗i with
dimU ′i = ai, such that, as a trilinear map T ∣U ′

1
×U ′

2
×U ′

3
≡ 0. In coordinates, this is equivalent

to the existence of bases of the spaces U1,U2 and U3 such that, in these bases, Ti1,i2,i3 = 0 if
ij ≥ dimUj−aj. We visualize the concept of an (a1, a2, a3)-compressible tensor in Figure 2.
The following technical result will become handy later.

Lemma 3.4. Let T ∈ U1 ⊗U2 ⊗U3 and S ∈ V1 ⊗ V2 ⊗ V3. Let T ≥ S and let S be concise.
If S is (a1, a2, a3)-compressible then T is (a1, a2, a3)-compressible.

Proof. By assumption, there are maps Ai with rank ai such that (A1 ⊗ A2 ⊗ A3)S = 0.
As S is concise, the restriction maps Mi must be surjective where S = (M1 ⊗M2 ⊗M3)T .
Therefore, the maps A1M1,A2M2 and A3M3 also have rank a1, a2 and a3, respectively.
Since (A1M1 ⊗A2M2 ⊗A3M3)T = (A1 ⊗A2 ⊗A3)S = 0 the claim follows. �
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0

Figure 2. Visualization of an (a1, a2, a3)-compressible tensor: This large
u1×u2×u3-cube is the tensor T ∈ U1⊗U2⊗U3. The entries of T – specified
in some fixed basis – can be written in the cells of this cube. The smaller,
red a1 × a2 × a3-cube depicts a block of size a1 × a2 × a3 where each entry
of T equals zero. By choosing the linear maps as projectors onto the last
u1 − a1 resp. u2 − a2 resp. u3 − a3 coordinates, we see that each such tensor
is (a1, a2, a3)-compressible.

Theorem 3.4 can be used to exclude restrictions T ≥ S if T is less compressible than
S. An example of a tensor that is not “very compressible” is the matrix multiplication
tensor.

Lemma 3.5. The 2 × 2 matrix multiplication tensor ⟨2,2,2⟩ is not (2,3,3)-compressible.

Proof. Note that any 4 × 4 matrix M = (M(u,v),(x,y))u,v,x,y=1,2 (labelled by double indices)
induces a linear endomorphism of the space of 2 × 2 matrices via

M ∶ C2
⊗C

2
→ C

2
⊗C

2

x↦M.x, where (M.x)i,j = ∑
k,l=1,2

M(i,j),(k,l)xk,l.

Recall that ⟨2,2,2⟩ corresponds to calculating the four bilinear forms zj,i = xi1y1j+xi2y2j
for i, j = 1,2, that is, the entries of (x ⋅ y)T where the entries of x and y are regarded as
variables.

Let S = (A1 ⊗A2⊗A3)⟨2,2,2⟩ be a restriction of the 2× 2 matrix multiplication tensor.
Interpreting A1,A2 and A3 as 4 × 4 matrices, an easy calculation shows that the four
bilinear forms corresponding to the tensor S are the four entries of the transpose of

(4) A3. ((A1.x) ⋅ (A2.y)) .
Now, let the rank of A1 and A2 be at least 3 and the rank of A3 be at least 2. It is

clear that the space of all A1.x for x ∈M2×2 is at least 3-dimensional (the same holds for
A2). It is well-known that every subspace of M2×2 of dimension at least 3 must contain an
invertible matrix. Choosing x0 ∈M2×2 such that A1.x0 is invertible, we see that the space
of matrices of the form (A1.x0) ⋅ (A2.y) for y ∈ M2×2 contains three linearly independent
matrices. Hence, since we assumed that A3 has rank ≥ 2, we see that Equation 4 cannot
be identically 0. This finishes the proof. �

We record the following technical result, describing restrictions, degenerations and par-
tial degenerations of the matrix multiplication tensor. Analogous statements are true for
more general tensor networks, see e.g. [CMS23].
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Lemma 3.6. Let V1, V2, V3 be vector spaces with dimensions v1, v2, v3 and let S ∈ V1⊗V2⊗

V3. Then ⟨m,n, p⟩ ≥ S if and only if there exist three families of matrices

(5)

α1, . . . , αv1 ∈ C
m×n

β1, . . . , βv2 ∈ C
n×p,

γ1, . . . , γv3 ∈ C
p×m

such that for every i, j, k

Sijk = tr(αiβjγk).
Moreover, ⟨m,n, p⟩ ⊵ S if and only if there are matrices as in (5), depending on a variable
ǫ, and an integer d such that

ǫdSijk = tr(αi(ǫ)βj(ǫ)γk(ǫ)) +O(ǫd+1).
In particular, if the matrices αi can be chosen constant in ǫ, then ⟨m,n, p⟩ ▸ S.

We will apply Theorem 3.6 to characterize degenerations of the matrix multiplication
tensor ⟨2,2,2⟩.
Proposition 3.7. Let S ∈ C3

⊗C
4
⊗ C

4 be a concise (3,3,3)-compressible tensor. Then
S is an honest partial degeneration of ⟨2,2,2⟩.
Proof. Fixing bases, we can write our tensor S as

S =
3,4,4∑
i,j,k=1

Si,j,kei ⊗ ej ⊗ ek

such that Si,j,k = 0 whenever both j and k are at least 2.

From Theorem 3.6, it suffices to find 2 × 2 matrices

α1, . . . , α3 ∈ C
m×n, β1(ǫ), . . . , β4(ǫ) ∈ C[ǫ]n×p, γ1(ǫ), . . . , γ4(ǫ) ∈ C[ǫ]p×m

such that

(6) ǫSi,j,k = tr(αiβjγk) +O(ǫ2).
Choosing matrices

α1 = (1 0
0 −1

) β1 = (ǫ(S1,1,1 − 1) + 1 S2,1,1

S3,1,1 1
) γ1 = (ǫ + 1 0

0 1
)

α2 = (0 0
1 0
) β2 = (ǫS1,2,1 ǫS2,2,1

ǫS3,2,1 0
) γ2 = (ǫS1,1,2 ǫS2,1,2

ǫS3,1,2 0
)

α3 = (0 1
0 0
) β3 = (ǫS1,3,1 ǫS2,3,1

ǫS3,3,1 0
) γ3 = (ǫS1,1,3 ǫS2,1,3

ǫS3,1,3 0
)

β4 = ( 0 ǫS2,4,1

ǫS3,4,1 −ǫS1,4,1
) γ4 = ( 0 ǫS2,1,4

ǫS3,1,4 −ǫS1,1,4
)

one easily verifies that Equation 6 is fulfilled.
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Since S is concise and is (3,3,3)-compressible, by Theorem 3.4 and Theorem 3.5 we
deduce that S is not a restriction of ⟨2,2,2⟩, therefore S is an honest partial degeneration
of ⟨2,2,2⟩. �

An explicit example of a concise and (3,3,3)-compressible tensor in C
3
⊗C

4
⊗C

4 is Str4
from Section 3.2. Hence, Theorem 3.7 proves that ⟨2,2,2⟩ /≥ Str4 and ⟨2,2,2⟩ ▸ Str4.
Remark 3.8. Theorem 3.5 implies that no concise tensor in C

3
⊗C

4
⊗C

4 which is (2,3,3)-
compressible is a restriction of ⟨2,2,2⟩. On the other hand, Theorem 3.7 shows that every(3,3,3)-compressible tensor is a partial degeneration of ⟨2,2,2⟩. One might wonder if(2,3,3)-compressible tensors are degenerations or partial degenerations of ⟨2,2,2⟩. This
is not the case. In fact, the variety of all degenerations of ⟨2,2,2⟩ in C

3
⊗ C

4
⊗ C

4 has
dimension 31 [BDG21, Section 5]. However, a simple calculation – the code for which can
be found in Appendix A – shows that the orbit closure of a generic element of C3

⊗C
4
⊗C

4

which is (2,3,3)-compressible has dimension 37; in particular the variety of all (2,3,3)-
compressible tensors has dimension at least 37. ♢

3.4. Prehomogeneous spaces. In this section, we will see more examples of partial
degenerations by making a connection to the well-studied theory of prehomogeneous tensor
spaces.

Definition 3.9. Let G be a group acting on a vector space V . We say that V is preho-
mogeneous under the action of G if there is an element T ∈ V such that G.T is dense in V

with respect to the Zariski topology, i.e. G.T = V .

Consider the space U1⊗U2⊗U3 where the Ui are vector spaces of dimension ui. Clearly,
if T,S ∈ U1⊗U2⊗U3 such that S is in the orbit closure of T under the action of GL(U2)×
GL(U3), then T ▸ S. Hence, if U1 ⊗ U2 ⊗ U3 is prehomogeneous under the action of
GL(U2)×GL(U3), and T is an element of the dense orbit then all tensors S ∈ U1⊗U2⊗U3

are partial degenerations of T .

Prehomogeneity of U1 ⊗U2⊗U3 under the action of GL(U2)×GL(U3) only depends on
the dimensions of the vector spaces involved and is easy to check [SK77].

Theorem 3.10. Assume u2 ≤ u3. Define λ(u1) = u1+
√

u2

1
−4

2
. Then, the space U1⊗U2⊗U3

is prehomogeneous under the action of GL(U2) ×GL(U3) if and only if u3 > λ(u1)u2.
Hence, for any choices of u1, u2, u3 satisfying the conditions in Theorem 3.10, there is

an element T ∈ U1 ⊗U2 ⊗U3 such that for all S ∈ U1 ⊗U2 ⊗U3 it holds T ▸ S.

To show that there exists S which is not a restriction of T , we use the following well-
known statement. For completeness, we will include a proof.

Lemma 3.11. Let T,S ∈ U1 ⊗ U2 ⊗ U3 be tensors. Assume S is concise. Then T ≥ S if
and only if T and S lie in the same GL(U1) ×GL(U2) ×GL(U3)-orbit.

Proof. By definition, T ≥ S holds if and only if there are linear maps A1,A2 and A3 such
that (A1 ⊗ A2 ⊗ A3)T = S. In particular S ∈ (ImA1) ⊗ (ImA2) ⊗ (ImA3). If one of the
maps Ai is not invertible, the corresponding image ImAi is a proper subspace Ui, showing
that S is not concise. �
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Theorem 3.12. Let U1,U2,U3 have dimensions u1, u2, u3 such that λ(u1)u2 < u3 < u1u2,
where λ(u1) = u1+

√
u2

1
−4

2
. Then there exist tensors T,S ∈ U1⊗U2⊗U3 such that T ▸ S, but

T /≥ S.
Proof. We know from Theorem 3.10 that the space U1⊗U2⊗U3 is prehomogeneous under
GL(U2) ×GL(U3). Let T be a tensor in the dense GL(U2) ×GL(U3)-orbit, so that T ▸ S
for every S ∈ U1 ⊗U2 ⊗U3.

Let p = u1u2 − u3. Note that u1 − 1 ≤ λ(u1) < u1, so λ(u1)u2 < u3 < u1u2 implies that
0 < p < u2. Define the tensor S ∈ U1 ⊗U2 ⊗U3 as

S =
u1−1∑
i=1

ei ⊗
⎛
⎝

u2∑
j=1

ej ⊗ e(i−1)u2+j
⎞
⎠ + eu1

⊗
⎛
⎝
u2−p∑
j=1

ej ⊗ e(u1−1)u2+j
⎞
⎠

It is not hard to see that the tensor S is concise.

To show that T and S lie in different GL(U1) ×GL(U2) ×GL(U3)-orbits, we compute
the dimensions of these orbits. Denote G = GL(U1) ×GL(U2) ×GL(U3).

For T we have U1 ⊗ U2 ⊗ U3 ⊃ G ⋅ T ⊃ [GL(U2) ×GL(U3)] ⋅ T = U1 ⊗ U2 ⊗ U3, hence
G ⋅ T = U1 ⊗U2 ⊗U3 and dimG ⋅ T = u1u2u3.

For S, the dimension of the orbit G ⋅S can be found as dimG ⋅S = dimG−dimStabG(S).
The stabilizer StabG(S) is isomorphic to P (1, u1)×P (u2−p,u2) where P (a, b) ⊂ GLb is the
parabolic group preserving a subspace of dimension a. Indeed, let Si ∈ U2⊗U3 be the slices
of S corresponding to the standard basis, that is, S = ∑u1

i=1 ei ⊗ Si. Note that rk(Si) = u2
for i < u1 and rk(Su1

) = u2−p. Moreover, a nonzero linear combination ∑u1

i=1 αiSi has rank
u1 − p if and only if αi = 0 for i ≤ u2 − 1. It follows that if (A ⊗ B ⊗ C)S = S, then A

preserves the 1-dimensional subspace ⟨eu1
⟩. Therefore, we have au1,u1

(B ⊗ C)Su1
= Su1

and it follows that B preserves the (u2 − p)-dimensional subspace ⟨e1, . . . , eu2−p⟩, which is
the image of Su1

considered as a linear map U∗3 → U2. Now, given A and B which preserve
the required subspaces, the map C such that (A⊗B⊗C)S = S always exists and is unique.
To prove this, note that S considered as a linear map U∗3 → U1 ⊗ U2 is an isomorphism
between U∗3 and the subspace (⟨e1 . . . eu1−1⟩⊗U2 ⊕ ⟨eu1

⟩⊗ ⟨e1, . . . , eu2−p⟩) ⊂ U1 ⊗U2 Thus,
C can be found as the contragredient map to A⊗B restricted to this subspace.

From the description of StabG(S) it follows that
dimStabG(S) = (u21 − u1 + 1) + (u22 − p(u2 − p))

and

dimG ⋅ S = u23 + (u1 − 1) + p(u2 − p) = u3(u1u2 − p) + (u1 − 1) + p(u2 − p) =
u1u2u3 − p(u3 − u2) + u1 − 1 − p2 < u1u2u3 − u3 + u2 + u1 − 2 < u1u2u3.

The last inequality holds because u2 cannot be equal to 1 under the assumptions of the
theorem, and thus u3 ≥ (u1 − 1)u2 > u1 − 2 + u2.

It follows that the orbits of T and S are distinct and thus, T /≥ S by Theorem 3.11. �

The proof of Theorem 3.12 can be used to find concrete examples for partial degener-
ations: In fact, the proof of Theorem 3.10 gives a recursive way of constructing elements
with dense orbit. A closed formula for elements of U1 ⊗U2 ⊗U3 that have dense orbit on
the other hand is not known. To see more concrete examples of partial degenerations, we
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now focus on tensors T ∈ C2
⊗C

m
⊗C

n. Clearly, Theorem 3.10 tells us that this space is
GL(Cm) ×GL(Cn)-prehomogeneous whenever m ≠ n. Fixing as basis e1, e2 of C2, write
T = e1 ⊗ T1 + e2 ⊗ T2 where T1, T2 ∈ C

m
⊗C

n can be thought of as m × n matrices. Hence
T is uniquely determined by a pair of matrices [T1, T2], one often called the matrix pencil
associated with T .

The fact that matrix pencil spaces are prehomogeneous has been known for a long time.
In particular, we know an explicit element whose orbit is dense from [Pok86].

Theorem 3.13. For m < n the action of GL(Cm) ×GL(Cn) on C
2
⊗C

m
⊗C

n is preho-
mogeneous, that is, there is a tensor T ∈ C2

⊗ C
m
⊗ C

n such that its orbit closure is the
whole space:

(GL(Cm) ×GL(Cn)).T = C2
⊗C

m
⊗C

n

In particular, for any tensor T with dense orbit, every other tensor is a partial degeneration
of T . A particular choice of a tensor T with dense orbit is the tensor associated with the
matrix pencil [I1, I2] where

(7) I1 =

⎛⎜⎜⎜⎜⎜⎝

1 0 0 . . . 0 0 . . . 0
0 1 0 . . . 0 0 . . . 0
0 0 1 . . . 0 0 . . . 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮

0 0 0 . . . 1 0 . . . 0

⎞⎟⎟⎟⎟⎟⎠
, I2 =

⎛⎜⎜⎜⎜⎜⎝

0 . . . 0 1 0 0 . . . 0
0 . . . 0 0 1 0 . . . 0
0 . . . 0 0 0 1 . . . 0
⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮

0 . . . 0 0 0 0 . . . 1

⎞⎟⎟⎟⎟⎟⎠
For example, let n =m + 1. According to Theorem 3.12, the pencil

S1 =

⎛⎜⎜⎜⎜⎜⎝

1 0 0 . . . 0 0
0 1 0 . . . 0 0
0 0 1 . . . 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮

0 0 0 . . . 1 0

⎞⎟⎟⎟⎟⎟⎠
, S2 =

⎛⎜⎜⎜⎜⎜⎝

0 . . . 0 1
0 . . . 0 0
0 . . . 0 0
⋮ ⋱ ⋮ ⋮

0 . . . 0 0

⎞⎟⎟⎟⎟⎟⎠
is an honest partial degeneration of the dense orbit element in Equation 7.

3.5. A no-go result for the unit tensor. In this section, we will see that under certain
circumstances, partial degenerations do not exist even when degenerations do. Recall that
we defined the unit tensor as ⟨r⟩ = e1 ⊗ e1 ⊗ e1 + ⋅ ⋅ ⋅ + er ⊗ er ⊗ er. We first show that there
are no proper partial degenerations of the unit tensor if the constant map has full rank.
This no-go result will be used to prove a classification result in this setting.

Proposition 3.14. Let S ∈ V1 ⊗ V2 ⊗ V3 be any tensor. If ⟨r⟩ ▸ S via degeneration maps
A1,A2(ǫ) and A3(ǫ) where the constant map A1 is of full rank r then ⟨r⟩ ≥ S.
Proof. It is clear that we can assume dim(V1) = r and that A1 is invertible.

Assume

S = lim
ǫ→0
(idV1

⊗A2(ǫ)⊗A3(ǫ))⟨r⟩
is a degeneration where the first map is the identity. That is, we have

(8) S = e1 ⊗M1 + ⋅ ⋅ ⋅ + er ⊗Mr

where Mi = limǫ→0A2(ǫ)ei ⊗A3(ǫ)ei. Hence, it is clear that for all i, Mi must be a rank-1
matrix as limit of rank-1 matrices. But clearly, a tensor of the form in Equation 8, where
all matrices Mi have rank 1, is a restriction of ⟨r⟩.
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Now, let S = limǫ→0(A1 ⊗ A2(ǫ) ⊗A3(ǫ))⟨r⟩ be any partial degeneration of ⟨r⟩. From

before, we know that S̃ = (A−11 ⊗ idV2
⊗ idV3

)S = limǫ→0(idV1
⊗ A2(ǫ) ⊗ A3(ǫ))⟨r⟩ is a

restriction of ⟨r⟩. Hence, the same holds for S = (A1 ⊗ idV2
⊗ idV3

)S̃. This finishes the
proof. �

Remark 3.15. We note that the result in Theorem 3.14 does not apply to degenera-
tions. Theorem 3.14 in particular says that if V1 has dimension r and S ∈ V1 ⊗ V2 ⊗ V3

concise we cannot have an honest partial degeneration ⟨r⟩ ▸ S (otherwise the constant
map would be invertible by conciseness of S). But, for example, it is well-known that the
unit tensor ⟨2⟩ does not restrict but degenerates to W = e1⊗e1⊗e2+e1⊗e2⊗e1+e2⊗e1⊗e1
which is concise in the same space as ⟨2⟩. Hence, W is an honest degeneration of ⟨2⟩ but
not a partial degeneration. We note that the same holds for the degenerations ⟨2k⟩ ⊵W⊠k

for all k. ♢

It is clear that one cannot drop the condition that A1 has full rank: in Section 3.2, we
saw that Strassen’s tensor Strr is an example of a partial degeneration of ⟨r⟩ where A1

has rank r − 1. In fact, we can use Theorem 3.14 to prove the following characterization
of all partial degenerations of ⟨r⟩ where the constant map has rank r − 1.

Proposition 3.16. Let T ∈ U1 ⊗ U2 ⊗ U3 with dim(U1) = r − 1 be a concise tensor such
that ⟨r⟩ ▸ T and ⟨r⟩ /≥ T . Then, for some q such that 3 ≤ q ≤ r, the tensor T decomposes
as

T = Sq +Xr−q
where Strq ≥ Sq and ⟨r − q⟩ ≥Xr−q.

Proof. Suppose ⟨r⟩ ▸ T via a partial degeneration

lim
ǫ→0

1

ǫd
(A1 ⊗A2(ǫ)⊗A3(ǫ))⟨r⟩ = T ∈ U1 ⊗U2 ⊗U3.

Since T is concise, the map A1 has rank equal to dim(U1) = r − 1. Note that A1 can be
factored as A1 = AMqDP where A∶Cr−1

→ U1 is invertible, Mq ∶C
r
→ C

r−1 is defined as

Mq ∶

⎧⎪⎪⎨⎪⎪⎩
ei ↦ ei for 1 ≤ i ≤ r − 1

er ↦ e1 + ⋅ ⋅ ⋅ + eq−1

with 1 ≤ q ≤ r, D∶Cr
→ C

r is diagonal, and P ∶Cr
→ C

r is a permutation matrix. Indeed,
suppose π ∈Sr is a permutation such that A1eπ(1), . . . ,A1eπ(r−1) are linearly independent
and A1eπ(r) = λ1A1e1 + ⋅ ⋅ ⋅ + λq−1A1eq−1 with nonzero λ1, . . . , λq−1. Defining A to be the

map A∶ ei ↦ λiA1eπ(i), D = diag(λ−11 , . . . , λ−1q−1,1, . . . ,1), and P the permutation matrix

corresponding to π−1, we get the required factorization.

Note that (DP ⊗ id⊗ id)⟨r⟩ = (id⊗DP−1 ⊗P−1)⟨r⟩. Now, we can rearrange the partial
degeneration (A1 ⊗A2(ǫ)⊗A3(ǫ))⟨r⟩ as
(A1 ⊗A2(ǫ)⊗A3(ǫ))⟨r⟩ = (A⊗ id⊗ id)(id ⊗A2(ε)DP−1 ⊗A3(ε)P−1)(Mq ⊗ id⊗ id)⟨r⟩

This means that if ⟨r⟩ ▸ T , then up to a change of basis T is a partial degeneration of

(Mq ⊗ id⊗ id)⟨r⟩ = q−1∑
i=1

ei ⊗ (ei ⊗ ei + er ⊗ er) + r−1∑
i=q

ei ⊗ ei ⊗ ei

with identity map on the first factor.

Define Hq = ∑q−1
i=1 ei ⊗ (ei ⊗ ei + eq ⊗ eq) ∈ Cq−1

⊗C
q
⊗C

q. We have (Mq ⊗ id ⊗ id)⟨r⟩ ≃
Hq ⊕ ⟨r − q⟩. Using Theorem 3.14, we see that T = Sq + Xr−q where Sq is a partial
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degeneration of Hq and Xr−q is a restriction of ⟨r − q⟩. It remains to analyze partial
degenerations of Hq.

So, consider a partial degeneration

Sq = lim
ǫ→0

1

ǫd
(id⊗B(ǫ)⊗C(ǫ))Hq.

Define bi(ǫ) = B(ǫ)ei and ci(ǫ) = C(ǫ)ei. Suppose that bq(ǫ) = bq,µǫ
µ
+ bq,µ+1ǫµ+1 + . . . .

After a basis change we may assume that bq,µ = eq. Define

E(ǫ)∶⎧⎪⎪⎨⎪⎪⎩
ei ↦ ei, i < q

eq ↦ ǫ−µbq(ǫ)
We have limǫ→0E(ǫ) = id, so by changing B(ǫ) to E(ǫ)−1B(ǫ) we obtain a partial degen-
eration for the same tensor Sq with bq(ǫ) = ǫµeq. Using the same argument, we can assume
without loss of generality that cq(ǫ) = −ǫνeq. In this situation, we have

Sq = lim
ǫ→0

1

ǫd
(id⊗B(ǫ)⊗C(ǫ))Hp =

q−1∑
i=1

ei ⊗ ( 1
ǫd
bi(ǫ)⊗ ci(ǫ) − ǫλ+µ−deq ⊗ eq) .

If λ + µ > d, we clearly have

Sq = lim
ǫ→0

q∑
i=1

ei ⊗ ( 1
ǫd
bi(ǫ)⊗ ci(ǫ)) .

In this case, Sq is a partial degeneration of ⟨q − 1⟩ and by Theorem 3.14, we can choose
the bi(ǫ) and ci(ǫ) constant in ǫ and obtain ⟨q − 1⟩ ≥ Sq which yields T ≤ ⟨r − 1⟩ ≤ ⟨r⟩.

If λ + µ < d, we must have

bi(ǫ) = ǫσe0 + b̃i(ǫ)
ci(ǫ) = ǫτe0 + c̃i(ǫ)

with σ + τ = λ + µ so that

Sq = lim
ǫ→0

1

ǫd

q−1∑
i=1

ei ⊗ (ǫσb̃i(ǫ)⊗ eq + ǫ
τeq ⊗ c̃i(ǫ)) .

For each i = 1, . . . , q − 1, the limit

e∗i Sq = lim
ǫ→0

1

ǫd
(ǫσ b̃i(ǫ)⊗ eq + ǫ

τeq ⊗ c̃i(ǫ))
must exist and is of the form bi ⊗ eq + eq ⊗ ci for some bi ∈ U2 and ci ∈ U3. Consequently,

Sq = ∑q−1
i=1 ei ⊗ (bi ⊗ eq + eq ⊗ ci) is a restriction of Strq.

Finally, consider the case λ + µ = d. Here it holds that

Sq = lim
ǫ→0

q−1∑
i=1

ei ⊗ ( 1
ǫd
bi(ǫ)⊗ ci(ǫ) − ǫλ+µ−deq ⊗ eq) =

= lim
ǫ→0

1

ǫd

q−1∑
i=1

ei ⊗ (bi(ǫ)⊗ ci(ǫ)) − (q−1∑
i=1

ei)⊗ eq ⊗ eq

In this case, Sq is a partial degeneration of ⟨q⟩, and applying Theorem 3.14, we see that⟨q⟩ ≥ Sq and ⟨r⟩ ≥ T .
We obtain that the only case where ⟨r⟩ /≥ T is when T = Sq +Xr−q with Sq ≤ Strq and

Xr−q ≤ ⟨r − q⟩ for some q such that 1 ≤ q ≤ r. We can exclude cases q = 1 and q = 2 because
in these cases Strq ≤ ⟨q⟩. �
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4. Aided restriction and aided rank

A related notion to partial degeneration is the notion of aided rank which we will
introduce in Section 4.1. There, we will also explain its relation to partial degenerations.

In Section 4.2, we will present a generalization of the method to lower bound rank
in [AFT11] and use it in Section 4.3 to calculate the aided rank for tensor powers of the
W -tensor.

4.1. Aided restriction and interpolation. In this section, we will introduce the notion
of aided rank and show its relation to partial degeneration. For any tensor T ∈ U1⊗U2⊗U3

recall the notation
T ∎p = T ⊠ ⟨1,1, p⟩.

Recall the following interpolation result, which is based on ideas introduced in [BCLR79].

Theorem 4.1. Let T ∈ U1 ⊗ U2 ⊗ U3 and S ∈ V1 ⊗ V2 ⊗ V3 such that T ⊵ed S. Then,
T ⊠ ⟨e + 1⟩ ≥ S and T ⊠ ⟨2d + 1⟩ ≥ S.

We start by observing that one can use a unit matrix instead of a unit tensor to inter-
polate degenerations. We use notation from matrix multiplication in order to write this
matrix as ⟨1,1, p⟩ where p is the rank of the unit matrix.

Lemma 4.2. Consider tensors T ∈ U1 ⊗U2 ⊗U3 and S ∈ V1 ⊗ V2 ⊗ V3 and assume T ⊵ S.
Then,

T ∎u3v3 ≥ S.

Proof. Fixing bases of the vector spaces involved, write

T ∎u3 = ∑
i,j,k,l

Ti,j,kei ⊗ (ej ⊗ el)⊗ (ek ⊗ el)
where i = 1, . . . , u1, j = 1, . . . , u2 and k, l = 1, . . . , u3.

Letting Π3 ∶ U3 ⊗ U3 → C be the linear functional that maps ej ⊗ el to 1 if j = l and 0
otherwise, we see by applying ΠU3

on the third tensor factor that

T ∎u3 ≥ ∑
i,j,k

ti,j,kei ⊗ (ej ⊗ ek) = T̃ .

The tensor T̃ is the tensor T seen as a bipartite tensor in U1 ⊗ (U2 ⊗U3). We can also

interpret S as bipartite tensor S̃ ∈ V1 ⊗ (V2 ⊗ V3). By assumption T̃ ⊵ S̃. In fact, since

degeneration and restriction are equivalent for tensors on two factors, we deduce T̃ ≥ S̃.

Again fixing bases, we have

S̃∎v3 = ∑
i,j,k,l

Si,j,kei ⊗ (ej ⊗ ek ⊗ el)⊗ el.

As before, we can now define ΠV3
∶ V3 ⊗ V3 → C which maps ek ⊗ el to 1 if k = l and 0

otherwise. Applying id⊗ΠV3
to the second tensor factor we see S̃∎v3 ≥ S.

After all, we have seen

T ∎(u3⋅v3) = (T ∎u3)∎v3 ≥ T̃ ∎v3 ≥ S̃∎v3 ≥ S.
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�

Remark 4.3. The proof technique for Theorem 4.2 is inspired from the physical inter-
pretation of tensors: Considering the tensors as three party quantum states, we used two
EPR-pairs to teleport the particle at the third party to the second party and back. ♢

The main question we ask is for a degeneration T ⊵ S, how big must p be such that T ∎p ≥
S. We will see that the minimal p necessary to turn the degeneration into a restriction
T ∎p ≥ S can be chosen drastically smaller if the degeneration is a partial degeneration. On
the other hand, we will calculate p precisely for the degeneration ⟨2k⟩ ⊵ W⊠k where we
know from Theorem 3.14 that no partial degeneration exists. As it will turn out, here the
minimal p differs from the naive bound in Theorem 4.2 only by a factor of 1

2
. To simplify

further discussions, let us introduce the following definition.

Definition 4.4. Let S ∈ V1 ⊗ V2 ⊗ V3 and fix p ≥ 1. We define the p-th aided rank of S as

R∎p(T ) =min{r∶ ⟨r⟩ ∎p ≥ S}.
Clearly, we have R∎1(T ) = R(T ). Theorem 4.2 shows that R(S) = r implies that there

is some q such that R∎p(S) = r. To find better bounds on the minimal p, we now show a
variation of Theorem 4.1.

Proposition 4.5. Let T ∈ U1 ⊗U2 ⊗U3 and S ∈ V1 ⊗ V2 ⊗ V3 and assume T ▸ed S. Then,

T ∎d+1 ≥ S and T ∎e+1 ≥ S.

Proof. Suppose that the partial degeneration is given by

(9) (A1 ⊗A2(ǫ)⊗A3(ǫ))T = ǫdS + e∑
i=1

ǫd+iSi.

Powers of ǫ higher than d have no effect on the coefficient of ǫd; hence without loss of
generality, we may assume

A2(ǫ) = d∑
i=0

ǫiA2,i, A3(ǫ) = d∑
i=0

ǫiA3,i.

We then observe

S = A1 ⊗ ( d∑
i=0

A2,i ⊗A3,d−i)T
and therefore

A1 ⊗ ( d∑
i=0

A2,i ⊗ e∗i )⊗ (
d∑
i=0

A3,d−i ⊗ e∗i )T ∎d+1 = S
which shows T ∎d+1 ≥ S.

In order to see T ∎e+1 ≥ S, note that for ǫ > 0, we can rewrite Equation 9 as

(A1 ⊗ (A2(ǫ)/ǫd)⊗A3(ǫ))T = S + ǫS1 + ⋅ ⋅ ⋅ + ǫ
eSe =∶ q(ǫ).

Using Lagrangian interpolation we can pick α0, . . . , αe ≠ 0 such that

q(ǫ) = e∑
j=0

q(αj) ∏
m≠j

ǫ − αm

αj − αm

.
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By writing µj ∶= ∏m≠j
αm

αm−αj
, we therefore get S = q(0) = q(α0)µ0 + ⋅ ⋅ ⋅ + q(αe)µe. Note

that the q(αj) are all restrictions of T where the first restriction map can be chosen to be
A1. With that,

S = q(0) = ⎛⎝A1 ⊗ ( e∑
j=0

µj

αd
j

A2(αj)⊗ e∗j )⊗ (
e∑

j=0

A3(αj)⊗ e∗j )⎞⎠T ∎e+1
which finishes the proof. �

In particular, we can exclude partial degeneration with a certain approximation de-
gree if we give lower bounds on the aided rank of a tensor. Note that in the case of
prehomogeneous spaces, we can find an even better bound.

Proposition 4.6. Assume that U1 ⊗ U2 ⊗ U3 is prehomogeneous under the action of
GL(U2)×GL(U3) and let T be an element with dense orbit. Then, for all S ∈ U1⊗U2⊗U3

it holds that
T ∎2 ≥ S.

Proof. Consider the affine degree-1 curve L parameterized by L(ǫ) = T + ǫ(S − T ). It is
clear that both T and S lie on L. Clearly, the linear span of any two distinct points
on L contains all points on L. The orbit of T is open in U1 ⊗ U2 ⊗ U3, therefore the
intersection of L and the complement of the orbit of T is a closed subset of L, that is, a
finite collection of points. Hence, there exists a second point T̃ in the orbit of T on L.
Writing T̃ = (id ⊗M2 ⊗M3)T , and S = λT + µT̃ , we observe

[id⊗ (λid ⊗ e∗1 + µM2 ⊗ e∗2)⊗ (id⊗ e∗1 +M3 ⊗ e∗2)]T ∎2 = S
which proves the claim. �

Note that Theorem 4.6 supports the intuition that in the case of partial degenerations,
the minimal aiding rank q turning it into a restriction is small. In Section 3.4, we saw
that whenever T ∈ U1 ⊗U2⊗U3 has a dense orbit under the action of GL(U2)×GL(U3) it
holds for all S ∈ U1 ⊗U2 ⊗U3 that T ▸ S.

We prove two variants of Theorem 4.6 in the case where the GL(U2) ×GL(U3) is not
dense. For that, we use an argument introduced in [CGJ19], where one exploits the
genericity of certain linear spaces intersecting the orbit to reconstruct elements on the
linear space. In the proofs of Theorem 4.7 and Theorem 4.8 we use some basic notation
and results from algebraic geometry, we refer to [Har92] for details. In particular, we
refer to [CGJ19, Remark 4.4] for a characterization of the degree of an algebraic variety
in terms of intersection multiplicity for a generic line.

Proposition 4.7. Let T ∈ U1⊗U2⊗U3; let ΩT = (GL(U2)×GL(U3)) ⋅[T ] ⊆ P(U1⊗U2⊗U3)
be the orbit of the point [T ] and let XT = ΩT be its Zariski-closure. Suppose XT is a
hypersurface in P(U1⊗U2⊗U3). Let S ∈ U1⊗U2⊗U3 be an element such that multXT

([S]) ≤
deg(XT ) − 2. Then

T ∎2 ≥ S.

Proof. Let m = multXT
([S]). In particular m = 0 if [S] ∉ XT . Let L be a generic

line through [S]. The genericity assumption guarantees that XT ∩ L is a 0-dimensional
scheme of degree deg(XT ); by Bertini’s Theorem [GH94, Sec. 1.1, p.137] this scheme has
a component of degree m supported at [S] and deg(XT ) −m distinct points. Moreover,
by genericity L ∩ (XT ∖ΩT ) is either empty or it contains the single point [S], therefore
all intersection points in L ∩XT , except possibly S, belong to ΩT .
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By assumption deg(XT ) −m ≥ 2, so there exist two distinct points [T1], [T2] ≠ S in
L ∩ ΩT . Since [T1], [T2] are distinct, they span the line L; therefore there exist scalars

λ1, λ2 ∈ C such that S = λ1T1+λ2T2. Since [T1], [T2] ∈ ΩT , there exist g
(1)
2 ⊗g

(1)
3 , g

(2)
2 ⊗g

(2)
3 ∈

GL(U2) ×GL(U3) such that Ti = g
(i)
2 ⊗ g

(i)
3 T .

Consider the restriction of T ∎2 = T ⊠ ⟨1,1,2⟩ to U1 ⊗U2 ⊗U3 defined by the maps

M1 = idU1
∶ U1 → U1

M2 = λ1g
(1)
2 ⊗ e∗1 + λ2g

(2)
2 ⊗ e∗2 ∶ U2 ⊗C

2
→ U2

M3 = g
(1)
3 ⊗ e∗1 + g

(2)
2 ⊗ e∗2 ∶ U3 ⊗C

2
→ U3.

It is immediate that M1 ⊗M2 ⊗M3(T ∎2) = S. �

Proposition 4.8. Let T ∈ U1 ⊗U2 ⊗U3 be concise in the first factor; let ΩT = (GL(U2) ×
GL(U3)) ⋅ [T ] ⊆ P(U1 ⊗ U2 ⊗ U3) be the orbit of the point [T ] and let XT = ΩT be its
Zariski-closure. Let c = codimXT be the codimension of XT in P(U1 ⊗ U2 ⊗ U3). Let
S ∉ XT . Then

T ∎(c+1) ≥ S.

Proof. Since T is concise in the first factor, the variety XT is not linearly degenerate.
In particular deg(XT ) ≥ c + 1 [Har92, Corollary 18.12]. Let L be a generic linear space
through S of dimension c. Bertini’s Theorem, together with the genericity assumption,
guarantees that L∩XT is a set of deg(XT ) distinct points and by genericity they all belong
to ΩT . Moreover, it is easy to see that L ∩XT is not linearly degenerate in L. Therefore,
there exist [T0], . . . , [Tc] ∈ L∩XT that span L, and in particular there exist λ0, . . . , λc such
that S = λ0T0 +⋯+ λcTc.

Since Tj ∈ ΩT for every j, there exists g
(j)
2 ⊗ g

(j)
3 ∈ GL(U2) ×GL(U3) such that g

(j)
2 ⊗

g
(j)
3 T = Tj.

Consider the restriction of T ∎(c+1) = T ⊠ ⟨1,1, c+ 1⟩ to U1⊗U2⊗U3 defined by the maps

M1 = idU1
∶ U1 → U1

M2 =
c∑

j=0

(λjg
(j)
2 ⊗ e∗j ) ∶ U2 ⊗C

c+1
→ U2

M3 =
c∑

j=0

(g(j)3 ⊗ e∗j ) ∶ U3 ⊗C
c+1
→ U3.

It is immediate that M1 ⊗M2 ⊗M3(T ∎(c+1)) = S. �

4.2. A substitution method for aided rank. In this section, we will give a method to
bound from below the aided rank. Our method builds on a known method from [AFT11].
We will use it to calculate aided ranks of powers of the W -tensor. We start by mentioning
the following easy technical fact without proof.

Lemma 4.9. Let V be a vector space and U be a subspace of dimension d of V . If U is
contained in the span of vectors u1, . . . , ud, then all ui must be elements of U .

The second lemma gives a useful characterization of restrictions of ⟨n⟩∎p in terms of
flattenings. It is a simple generalization of a well-known characterization of tensor rank,
see for example [Lan12, Theorem 3.1.1.1]
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Lemma 4.10. Let S ∈ V1 ⊗ V2 ⊗ V3 be any tensor and fix some natural number p. Then
we have

R∎p(S) =min{r ∶ S (V ∗1 ) ⊆ V2 ⊗ V3 spanned by r matrices of rank ≤ p}.
Proof. If ⟨r⟩∎p ≥ S we can write S = a1⊗M1+ ⋅ ⋅ ⋅ +ar⊗Mr for matrices Mi of rank at most
p, in other words, S(V ∗1 ) is spanned by r matrices M1, . . . ,Mr of rank at most p.

On the other hand, assume S(V ∗1 ) = ⟨N1, . . . ,Nr⟩ for matrices Ni of rank at most p.
Fixing a basis of V1 the tensor S is given by ∑v1

i=1 ei⊗Pi where Pi = S(ei). Since S(V ∗1 ) is
spanned by the Nj, we can find coefficients λij such that Pi = ∑r

j=1 λijNj. Hence,

S =
r∑

j=1

( v1∑
i=1

λi,jei)⊗Nj,

which expresses S as a restriction of ⟨r⟩ ∎p. This concludes the proof. �

We can use Theorem 4.10 to generalize a method to lower bound rank of tensors intro-
duced in [AFT11] .

Theorem 4.11. Let S ∈ V1 ⊗V2 ⊗V3 with dim(V1) = v1. Fix a basis e1, . . . , ev1 of V1, and
write

S =
v1∑
i=1

ei ⊗Mi

for matrices Mi ∈ V2 ⊗ V3 and assume M1 ≠ 0. Moreover, for complex numbers λ2, . . . , λv1

define

Ŝ(λ2, . . . , λv1) =
v1∑
j=2

ej ⊗ (Mj − λjM1).
We have the following:

(i) There exist λ2, . . . , λv1 ∈ C such that

R∎p(Ŝ(λ2, . . . , λv1)) ≤ R∎p(S) − 1.
(ii) Assume that M1 has rank at most p. Then, for all λ2, . . . , λv1

R∎p(Ŝ(λ2, . . . , λv1)) ≥ R∎p(S) − 1.
Hence, if M1 has rank at most p, we always find λ2, . . . , λv1 such that

R∎p(Ŝ(λ2, . . . , λv1)) = R∎p(S) − 1.
Proof. Let r = R∎p(T ), that is, S(V ∗1 ) is contained in the span of r matrices of rank at
most p. Denote these matrices by X1, . . . ,Xr and write

Mi =
r∑

j=1

µi,jXj for i = 1, . . . , v1.

Without loss of generality assume that µ1,1 ≠ 0 and set λj =
µj,1

µ1,1
. We easily see that

Ŝ(λ2, . . . , λa)(V ∗1 ) ⊂ ⟨X2, . . . ,Xr⟩, and therefore

R∎p(Ŝ(λ2, . . . , λv1)) ≤ R∎p(S) − 1.
That shows the first claim.
On the other hand, if M1 has rank at most p and Y1, . . . , Ys span Ŝ(λ2, . . . , λv1), then
clearly the matrices M1, Y1, . . . , Ys will span S(V ∗1 ), which shows the second claim. �
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In the next section we will see how one can use Theorem 4.11 to calculate aided ranks.

4.3. Aided rank of Kronecker powers of the W -tensor. Let V1, V2 and V3 be 2-
dimensional with fixed bases e1, e2. In this section, we will use the method developed
in Section 4.2 to calculate the aided rank of powers of the W -tensor

W = e1 ⊗ e1 ⊗ e2 + e1 ⊗ e2 ⊗ e1 + e2 ⊗ e1 ⊗ e1 ∈ V1 ⊗ V2 ⊗ V3.

The main result of this section is the following.

Proposition 4.12. For the k’th Kronecker power of the W tensor W⊠k ∈ V ⊗k1 ⊗V
⊗k
2 ⊗V

⊗k
3

it holds that

R∎p(W⊠k)⎧⎪⎪⎨⎪⎪⎩
= 2k if p ≥ 2k

> 2k if p < 2k.

Proof. It is clear that for any r < 2k, ⟨r⟩∎p /≥W⊠k independently of p. On the other hand,
W (V ∗1 ) is the span of e1⊗e2+e2⊗e1 and e1⊗e1, in other words, R∎2(W ) = 2. Consequently,
we know that ⟨2k⟩ ∎2k ≥W⊠k for all k, in other words, R∎2k(W⊠k) ≤ 2k.

We will now use Theorem 4.11 to show that ⟨2k⟩ ∎2k−1 ≱W⊠k which will finish the proof.
One can verify easily that – thinking of the elements of V ⊗k2 ⊗ V ⊗k3 as 2k × 2k matrices –

all matrices in W⊠k((V ⊗k1 )∗) are of the form

(10)

⎛⎜⎜⎝
∗ x0

. .
.

x0 0

⎞⎟⎟⎠ .

That is, all matrices in W⊠k((V ⊗k1 )∗) have the same entry x0 in all antidiagonal entries

and zeros in all entries below the antidiagonal. Now, assume for some p that ⟨2k⟩∎p ≥W⊠k.
By Theorem 4.10, there are matrices Ni of rank at most p such that

(11) W⊠k ((V ⊗k1 )∗) ⊆ ⟨N1, . . . ,N2k⟩.
As W⊠k is concise, W⊠k (V ⊗k1 )∗) has dimension 2k. Therefore, by Theorem 4.9, the Ni

are elements of W⊠k ((V ⊗k1 )∗). We observe that a matrix of the form Equation 10 with

x0 ≠ 0 has full rank 2k. That is, if the matrices Ni have rank p < 2k and are elements
of W⊠k ((V ⊗k1 )∗), their span only contains matrices with zeros on the antidiagonal. That

is, Equation 11 cannot be satisfied if all Ni have rank at most p < 2k, that is,

⟨2k⟩∎p ≱W⊠k if p < 2k.

In other words, R∎p(W⊠k) > 2k for p < 2k. �

In particular we see that the minimal rank of an aiding matrix turning the degeneration⟨2k⟩ ⊵W⊠k into a restriction differs from the bound in Theorem 4.2 only by a factor of 1
2
.
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Appendices

Appendix A. Code for Theorem 3.8

The following Macaulay2 [GS] code gives a lower bound of 37 on the dimension of the
orbit of a generic tensor in C

3
⊗C

4
⊗ C

4 which is (2,3,3)-compressible. This code is an
adjustment of the one used in [BDG21].

V_1 = QQ[v_(1,1)..v_(1,3)]

V_2 = QQ[v_(2,1)..v_(2,4)]

V_3 = QQ[v_(3,1)..v_(3,4)]

W_1 = QQ[w_(1,1)..w_(1,3)]

W_2 = QQ[w_(2,1)..w_(2,4)]

W_3 = QQ[w_(3,1)..w_(3,4)]

ALL = V_1**V_2**V_3**W_1**W_2**W_3

M_1 = sub(random(QQ^4,QQ^4),ALL)

M_2 = mutableMatrix(ALL,4,4)

M_3 = mutableMatrix(ALL,4,4)

for i from 0 to 3 do(

M_2_(0,i)=random(QQ);

M_2_(i,0)=random(QQ);

M_3_(0,i)=random(QQ);

M_3_(i,0)=random(QQ);

)

M_2 = matrix M_2

M_3 = matrix M_3

T = 0

for i from 1 to a do(

for j from 1 to b do(

for k from 1 to c do(

T = T + M_i_(j-1,k-1)*w_(1,i)*w_(2,j)*w_(3,k);

);

);

)--T is now (2,3,3)-compressible with random entries

-- a random point in Hom(W1,V1) + Hom(W2,V2) + Hom(W3,V3)

-- the rank of the differential of the parameterization map at randHom

-- will provide a lower bound on dim of the orbit closure of our tensor

randHom =flatten flatten apply(3,j->

toList apply(1..di_(j+1),i ->w_(j+1,i)=>sub(random(1,V_(j+1)),ALL)))

-- compute the image of the differential

-- LL will be a list of elements of multidegree (1,1,1),

-- which are to be interpreted as elements of V1 \otimes V2 \otimes V3

-- generating the image of the differential of the parameterization map

LL = flatten for i from 1 to 3 list (

ww = sub(vars(W_i),ALL);

vv = sub(vars(V_i),ALL);

flatten entries (sub( (vv ** diff(ww,Tused)),randHom)));

minGen = mingens (ideal LL);

orbitdim = numcols(minGen) --37
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Appendix B. Partial degenerations of the unit tensor

We have seen in Theorem 3.14 that the unit tensor ⟨r⟩ does not admit partial degener-
ations where the constant map A1 is full rank. However, we also saw that in the case that
A1 has rank r−1 there are honest partial degenerations which we classify in Theorem 3.16.
In this appendix, we see that also in the realm of matrix pencils, examples exist. For that,
we consider for simplicity only matrix pencils in C

2
⊗C

m
⊗C

m+1. Recall that the matrix
pencil T given in Equation 7 has a dense orbit under the action of GLm ×GLm+1. It is
well known (see, for example, Theorem 3.11.1.1 in [Lan12]) that this pencil has rank m+1.
On the other hand, it is known that the maximal rank of a tensor in C

2
⊗C

m
⊗C

m+1 is⌈3m
2
⌉. Hence, we can find tensors S in C

2
⊗C

m
⊗C

m+1 with ⟨m+ 1⟩ ≥ T ▸ S, R(S) >m+ 1
and consequently ⟨m + 1⟩ ▸ S but ⟨m + 1⟩ ≱ S.

To see an explicit example, let us construct for every m a matrix pencil of rank greater
or equal to m + 1 to which ⟨m⟩ degenerates partially. For this, we recall the following
well-known result about the rank of matrix pencils [Gri78, Já79].

Proposition B.1. Consider p1 × q1 matrices T ′1, T
′

2 and p2 × q2 matrices T ′′1 , T
′′

2 . Let T ′

be the tensor corresponding to the matrix pencil [T ′1, T ′2] and similar for T ′′ and write
T ∈ C2

⊗C
p1+p2 ⊗C

q1+q2 for the tensor corresponding to the matrix pencil

[(T ′1
T ′′1
) ,(T ′2

T ′′2
)] .

Then, it holds that

R(T ) = R(T ′) +R(T ′′).
We will now construct a partial degeneration of ⟨m⟩ and will show using Theorem B.1

that it has rank at least m + 1. Applying the linear map

A1 ∶ U → C
2, ek ↦ e1 + ke2

we see that ⟨m⟩ restricts to the tensor corresponding with the matrix pencil [idm,diag(1 . . . m)].
Since the matrix

M =

⎛⎜⎜⎜⎜⎜⎝

1 1
2 1
⋱ ⋱

m − 1 1
m

⎞⎟⎟⎟⎟⎟⎠
has m different eigenvalues 1, . . . ,m, we deduce that also the tensor associated to the
matrix pencil [idm,M] is a restriction of ⟨m⟩.

For any 1 < k <m define Sk,m to be the tensor corresponding to the matrix pencil

(12)

⎡⎢⎢⎢⎢⎢⎣
⎛⎜⎝
(idk−1, 0) 0

0 ( 0
idm−k

)
⎞⎟⎠ ,(

J1 0
0 J2

)
⎤⎥⎥⎥⎥⎥⎦
.

where
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J1 =
⎛⎜⎝
1 1
⋱ ⋱

k − 1 1

⎞⎟⎠ , J2 =
⎛⎜⎜⎜⎜⎜⎝

1
k + 1 1

⋱ ⋱

m − 1 1
m

⎞⎟⎟⎟⎟⎟⎠

One verifies that applying the degeneration maps

A2(ǫ) = diag(1, . . . ,1´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
k

, ǫ, . . . , ǫ´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶
m−k

), A3(ǫ) = diag(ǫ, . . . , ǫ´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶
k+1

,1, . . . ,1´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
m−k−1

)

the tensor corresponding to the matrix pencil [idk,diag(1, . . . ,m)] results in ǫSk,m +O(ǫ2). In particular, ⟨m⟩ ▸ Sk,m.

From Theorem B.1, we know that

(13) R(Sk,m) = R(S1
k,m) +R(S2

k,m)
where S1

k,m corresponds to [(idk−1,0), J1]) and S2
k,m to [(0 idm−k)T , J2], respectively.

Using flattenings, one can now verify that the two pencils in Equation 13 have ranks k

and m − k + 1, respectively, which shows R(Sk,m) ≥m+ 1. Hence, it is not a restriction of⟨m⟩.

Appendix C. The aided rank of the Coppersmith-Winograd tensor

In this appendix, we demonstrate with further examples how to compute aided rank us-
ing Theorem 4.11, we are going to calculate the aided ranks of the Coppersmith-Winograd
(CW) tensors. The study of these tensors was a crucial tool in the breakthrough re-
sult [CW87] bounding the exponent of matrix multiplication ω from above by 2.376.

Definition C.1. Let V1 ≃ V2 ≃ V3 ≃ C
q+2 and fix a basis e0, . . . , eq+1. The q’th CW tensor

is the symmetric tensor

TCW,q =
q∑
i=1

e0 ⊗ ei ⊗ ei + eq+1 ⊗ e0 ⊗ e0+

q∑
j=1

ej ⊗ e0 ⊗ ej + e0 ⊗ eq+1 ⊗ e0+

q∑
k=1

ek ⊗ ek ⊗ e0 + e0 ⊗ e0 ⊗ eq+1 ∈ V1 ⊗ V2 ⊗ V3.

We want to calculate R∎p(TCW,q) for any p and q.

Proposition C.2. For p ≥ 2, the p-aided rank of the q’th Coppersmith-Winograd tensor
is given by

R∎p(TCW,q) = q + 1 + ⌈q + 2
p
⌉ .
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Proof. Writing

M(x0, . . . , xq+1) =
⎛⎜⎜⎜⎜⎜⎝

xq+1 x1 . . . xq x0
x1 x0
⋮ ⋱

xq x0
x0 0

⎞⎟⎟⎟⎟⎟⎠
we have TCW,q(V ∗1 ) = {M(x0, . . . xq+1) ∶ x0, . . . xq+1 ∈ C}. Note that TCW,q is concise.
Hence, we have R∎p(TCW,q) ≥ q+2 for any p ∈ N. Moreover, it is clear that R∎p(TCW,q) ≤ q+2
whenever p ≥ q + 2 which gives R∎p(TCW,q) = q + 2 for all p ≥ q + 2.

For p ≤ q + 1, we will use Theorem 4.11. Suppose p ≥ 2. Interpreting V2 ⊗ V3 as space of(q + 2) × (q + 2) matrices, we have

TCW,q =
q+1∑
i=0

ei ⊗M(xi = 1, xj = 0 for i ≠ j),
The matrix M(0, . . . ,0,1) has rank 1, hence we can find λ

(1)
0 , . . . , λ

(1)
q using Theorem 4.11

such that

T
(1)
CW,q

=
q∑
i=0

ei ⊗ (M(xi = 1, xj = 0 for i ≠ j) − λ(1)i M(0, . . . ,0,1))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=∶M(1)(xi=1,xj=0 for i≠j)

satisfies

R∎p(T (1)CW,q) = R∎p(TCW,q) − 1.
Note that the matrices M (1)(x0, . . . xq) have the form

M (1)(x0, . . . , xq) =
⎛⎜⎜⎜⎜⎜⎝

∗ x1 . . . xq x0
x1 x0
⋮ ⋱

xq x0
x0 0

⎞⎟⎟⎟⎟⎟⎠
.

Still, M (1)(0, . . . ,0,1) has only non-zero entries in the first column or in the first row.
That is, it has rank less than or equal to p, hence we can apply Theorem 4.11 again and

obtain λ
(2)
0 , . . . , λ

(2)
q such that

T
(2)
CW,q =

q−1∑
i=0

ei ⊗ (M (1)(xi = 1, xj = 0 for i ≠ j) − λ(2)i M (1)(0, . . . ,0,1))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=∶M(2)(xi=1,xj=0 for i≠j)

satisfies

R∎p(T (2)
CW,q
) = R∎p(T (1)

CW,q
) − 1.

Again, we see that the elements of T
(2)
CW,q
(V ∗1 ) have the form

M (2)(x0, . . . , xq−1) =
⎛⎜⎜⎜⎜⎜⎝

∗ x1 . . . ∗ x0
x1 x0
⋮ ⋱

∗ x0
x0 0

⎞⎟⎟⎟⎟⎟⎠
Repeating this procedure q + 2 times leads to

T
(q+1)
CW,q = e0 ⊗ (M (q)(1,0) − λ(q+1)M (q)(0,1))

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶M(q+1)

.
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with

M (q+1) =

⎛⎜⎜⎜⎜⎜⎝

∗ ∗ . . . ∗ 1
∗ 1
⋮ ⋱

∗ 1
1 0

⎞⎟⎟⎟⎟⎟⎠
By Theorem 4.11 we reduced the aided rank by exactly 1 in each step yielding

R∎p(T (q+1)
CW,q

) = R∎p(T (q)
CW,q
) − 1 = ⋅ ⋅ ⋅ = R∎p(TCW,q) − (q + 1).

As M (q+1) has rank q + 2 it follows R∎p(T (q+1)
CW,q

) = ⌈ q+2
p
⌉ . and with that

R∎p(TCW,q) = q + 1 + ⌈q + 2
p
⌉ .

�

We can also find the following upper bound on the aided rank of T⊠2CW,q.

Proposition C.3. It holds that

R∎p2(T⊠2CW,q) ≤ q2 + 4q + 3 + ⌈(q + 2)
2

p2
⌉ .

In particular, there are choices of m, p and q such that both ⟨m⟩∎p ≱ TCW,q and (⟨m⟩∎p)⊠2 ≥(TCW,q)⊠2 hold.

Proof. Let us write

N(x0, . . . , xq+1, y0, . . . , yq+1) =
⎛⎜⎜⎜⎜⎜⎝

xq+1 ⋅M(y) x1 ⋅M(y) . . . xq ⋅M(y) x0 ⋅M(y)
x1 ⋅M(y) x0 ⋅M(y)
⋮ ⋱

xq ⋅M(y) x0 ⋅M(y)
x0 ⋅M(y) 0

⎞⎟⎟⎟⎟⎟⎠
where the matrices M(y) are as in the proof of Theorem C.2 given by

M(y) =M(y0, . . . , yq+1) =
⎛⎜⎜⎜⎜⎜⎝

yq+1 y1 . . . yq y0
y1 y0
⋮ ⋱

yq y0
y0 0

⎞⎟⎟⎟⎟⎟⎠
.

With this, we have

(TCW,q)⊠2 = q+1∑
i,j=0

(ei ⊗ ej)⊗N(xi = 1, yj = 1).
and consequently,

(TCW,q)⊠2 ((V ⊗21 )∗) = {N(x, y) ∶ x, y ∈ Cq+2}.
The rank of the matrix N(x, y) depends on these vectors x and y.

(i) If x = y = e0, the matrix N(x, y) has rank (q + 2)2.
(ii) If x = e0 and y = eq+1 or if x = eq+1 and y = e0, the matrix N(x, y) has rank q + 2.
(iii) If x = e0 and y ∈ {e1, . . . , eq} or if x ∈ {e1, . . . , eq} and y = e0 the matrix N(x, y) has

rank 2(q + 2).
(iv) If x = eq+1 and y ∈ {e1, . . . , eq} or if x ∈ {e1, . . . , eq} and y = eq+1 the matrix N(x, y)

has rank 2.
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(v) If x = y = eq+1, the matrix N(x, y) has rank 1.
(vi) If x ∈ {e1, . . . , eq} and y ∈ {e1, . . . , eq} the matrix N(x, y) has rank 4.

Hence, to generate (TCW,q)⊠2 (A∗), we need to generate one matrix of rank 1, 2q matrices
of rank 2, q2 matrices of rank 4, 2 matrices of rank q + 2, 2q matrices of rank 2(q + 2) and
one matrix of rank (q + 2)2. Assuming p2 ≥ 2(q + 2), we will need at most

q2 + 4q + 3 + ⌈(q + 2)2
p2

⌉

matrices of rank p2 to generate (TCW,q)⊠2 ((V ⊗21 )∗). In other words,

(14) R∎p2(T⊠2CW,q) ≤ q2 + 4q + 3 + ⌈(q + 2)
2

p2
⌉

To find m,p and q such that ⟨m⟩∎p ≱ TCW,q but ⟨m2⟩∎p2 ≥ (TCW,q)⊠2, we choose p and q

such that ⌈ q+2
p+1
⌉ < ⌈q+2

p
⌉ and m = q + 1 + ⌈ q+2

p
⌉. By construction, we have ⟨m⟩∎p ≱ TCW,q.

We have found an example whenever

q2 + 4q + 3 + ⌈(q + 2)2
p2

⌉ ≤ (q + 1 + ⌈q + 2
p + 1

⌉)2 .

To see an explicit example, pick q = 11 and p = 6. We have

R∎6(TCW,11) = 11 + 1 + ⌈11 + 2
6
⌉ = 15

R∎7(TCW,11) = 11 + 1 + ⌈11 + 2
7
⌉ = 14,

that is, ⟨14⟩∎7 ≥ TCW,11 but ⟨14⟩∎6 ≱ TCW,11. From Equation 14, we get

R∎62(T⊠2CW,11) ≤ 112 + 4 ⋅ 11 + 3 + ⌈13
2

62
⌉ = 173 ≤ 142 = 196.

That gives

(⟨14⟩∎6)⊠2 = ⟨196⟩∎36 ≥ ⟨173⟩∎36 ≥ T⊠2CW,11.

�
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