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Abstract

Alon, Seymour and Thomas [1990] proved that every n-vertex graph excluding

Kt as a minor has treewidth less than t3/2√
n. Illingworth, Scott and Wood [2022]

recently refined this result by showing that every such graph is a subgraph of some

graph with treewidth t−2, where each vertex is blown up by a complete graph of

order O(
√

tn). Solving an open problem of Illingworth, Scott and Wood [2022],

we prove that the treewidth bound can be reduced to 4 while keeping blowups

of order Ot(
√

n). As an extension of the Lipton–Tarjan theorem, in the case of

planar graphs, we show that the treewidth can be further reduced to 2, which is

best possible. We generalise this result for K3,t-minor-free graphs, with blowups

of order O(t
√

n). This setting includes graphs embeddable on any fixed surface.
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1 Introduction

Treewidth is a measure of how similar a given graph is to a tree, and is of fundamental

importance in structural and algorithmic graph theory; see [2, 15, 24] for surveys.

In one of the cornerstone results of Graph Minor Theory, Alon, Seymour, and Thomas [1]

proved that every n-vertex Kt-minor-free graph G has treewidth tw(G) < t3/2n1/2,

which implies that G has a balanced separator of order at most t3/2n1/2. For fixed

t > 5, this bound is asymptotically tight since the n1/2 × n1/2 grid is K5-minor-free and

has treewidth n1/2.

Our goal is to prove qualitative strengthenings of the Alon–Seymour–Thomas theorem

through the lens of graph product structure theory, which describes graphs in compli-

cated classes as subgraphs of products of simpler graphs. Here we consider products

of bounded treewidth graphs and complete graphs. To be precise, for a graph H and

m ∈ N, let H ⊠Km be the strong product of H and a complete graph Km, which is the

‘complete-blow-up’ of H by Km; that is, the graph obtained by replacing each vertex

of H by a copy of Km and replacing each edge of H by the complete join between the

corresponding copies of Km. Say a graph G is contained in a graph X if G is isomorphic

to a subgraph of X.

Illingworth, Scott, and Wood [18] showed that for any integer t > 4, every n-vertex Kt-

minor-free graph G is contained in H ⊠ Km, for some graph H with treewidth at most

t − 1, where m <
√

tn. This result implies and stregthens the Alon–Seymour–Thomas

theorem since

tw(G) 6 tw(H ⊠ Km) 6 (tw(H) + 1)m − 1 < t
√

tn.

Importantly, they also showed a similar result with treewidth t−2 (and a slightly larger

value of m): every n-vertex Kt-minor-free graph G is contained in H ⊠ Km, for some

graph H with treewidth at most t − 2, where m < 2
√

tn.

The following definition, implicitly introduced by Illingworth et al. [18], naturally arises.

For a proper minor-closed graph class G, let f(G) be the minimum integer such that for

some c, every n-vertex graph G ∈ G is contained in H ⊠ Km, for some graph H with

treewidth at most f(G), where m 6 c
√

n. The above result of Illingworth et al. [18]

implies that f(G) is well-defined; in particular, if Gt is the class of Kt-minor-free graphs,

then f(Gt) 6 t − 2.

Illingworth et al. [18] asked whether f(G) is upper bounded by an absolute constant.

This paper answers this question in the affirmative.

Theorem 1. Every n-vertex Kt-minor-free graph G is contained in H ⊠ Km for some

graph H of treewidth at most 4, where m ∈ Ot(
√

n).
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Theorem 1 implies that f(G) 6 4 for every proper minor-closed class G. The proof of

Theorem 1 actually shows that tw(H − v) 6 3 for some vertex v ∈ V (H).

We also give improved bounds on f(G) for particular minor-closed classes G. First con-

sider the class L of planar graphs. The Lipton–Tarjan separator theorem [21] is one

of the most important structural results about planar graphs, with numerous algorith-

mic applications [22]. It is equivalent to saying that every n-vertex planar graph has

treewidth O(
√

n) (see [12]). Since planar graphs are K5-minor-free, the above result of

Illingworth et al. [18] shows that f(L) 6 3. Our next contribution shows that f(L) 6 2,

resolving an open problem of Illingworth et al. [18].

Theorem 2. Every n-vertex planar graph is contained in H ⊠Km, where H is a graph

with treewidth 2 and m ∈ O(
√

n).

As an aside, since every graph with treewidth 2 is planar, the graph H in Theorem 2

is planar (although not necessarily a minor of the original planar graph).

We actually prove a more general result than Theorem 2 for graphs that exclude a K3,t

minor.

Theorem 3. Every K3,t-minor-free n-vertex graph is contained in H ⊠ Km, where H

is a graph with treewidth 2 and m ∈ O(t
√

n).

Since K3,3 is not planar, Theorem 3 with t = 3 implies Theorem 2. More generally,

Theorem 3 also implies results for graphs embeddable in any fixed surface. The Euler

genus of a surface with h handles and c cross-caps is 2h + c. The Euler genus of a

graph G is the minimum integer g > 0 such that there is an embedding of G in a surface

of Euler genus g; see [23] for more about graph embeddings in surfaces. It follows from

Euler’s formula that K3,2g+3 has Euler genus greater than g. Thus Theorem 3 implies:

Corollary 4. Every n-vertex graph with Euler genus g is contained in H ⊠Km, where

H is a graph with treewidth 2 and m ∈ O((g + 1)
√

n).

Note that Gilbert, Hutchinson, and Tarjan [14] and Djidjev [6] proved that n-vertex

graphs with Euler genus g > 0 admit balanced separators of order O(
√

gn) and thus

have treewidth O(
√

gn). Corollary 4 is a qualitative strengthening of these results, with

slightly worse dependence on g.

1.1 Related Work

We first mention a connection to clustered colouring. A (vertex-) k-colouring of a

graph has clustering c if every monochromatic component has at most c vertices. This

is equivalent to saying that G is contained in H ⊠Kc for some graph H with χ(H) 6 k.
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Clustered colouring has been widely studied in recent years; see [28] for a survey. Linial,

Matoušek, Sheffet, and Tardos [20] showed that n-vertex planar graphs, and more

generally graphs excluding any fixed minor, are 3-colourable with clustering O(
√

n).

Since treewidth 2 graphs are 3-colourable, in the case of planar or K3,t-minor-free graphs,

Theorems 2 and 3 are a qualitative improvement over the result of Linial et al. [20].

Clustered colourings also provide lower bounds. Linial et al. [20] constructed a family

of planar graphs {Gk : k > 1}, where Gk has 2k3 + 1 vertices and every 2-colouring

of Gk has a monochromatic component with at least k2/2 vertices. In particular, if Gk

is contained in H ⊠Km for some graph H with treewidth 1 (that is, H is a forest), then

a proper 2-colouring of H determines a 2-colouring of Gk with clustering m, implying

m ∈ Ω(n2/3) where n := |V (Gk)|. Hence f(L) > 1. Therefore the bounds on the

treewidth of H in Theorems 2 and 3 and Corollary 4 are best possible. In particular,

f(L) = 2, and if G3,t is the class of K3,t-minor-free graphs, then f(G3,t) = 2 for t > 3.

These lower bounds lead to the following characterisation of minor-closed classes G with

f(G) 6 1.

Proposition 1. For a minor-closed class G, f(G) 6 1 if and only if G has bounded

treewidth.

Proof. Dvořák and Wood [13, Theorem 8 with t = 1] proved that every n-vertex graph

with treewidth k is contained in H ⊠ Km where H is a star and m 6
√

(k + 1)n. Since

a star has treewidth 1, if G has bounded treewidth, then f(G) 6 1. For the converse, if

G has unbounded treewidth, then by the Grid Minor Theorem [25], every planar graph

is in G, and thus f(G) > f(L) = 2, as desired.

We conclude by mentioning the following related definition and results. Campbell,

Clinch, Distel, Gollin, Hendrey, Hickingbotham, Huynh, Illingworth, Tamitegama, Tan,

and Wood [3] defined the underlying treewidth of a graph class G to be the minimum

integer k such that for some function g every graph G ∈ G is contained in H⊠Km where

tw(H) 6 k and m 6 g(tw(G)). Here m is required to depend only on tw(G), whereas

the present paper allows m ∈ O(
√

n). Amongst other results, Campbell et al. [3]

showed1 that the underlying treewidth of Gt equals t − 2. Thus, in the underlying

treewidth setting, no absolute bound on tw(H) is possible, unlike in the setting of

O(
√

n) blowups, where Theorem 1 achieves tw(H) 6 4. There is a similar distinction

for planar graphs. Campbell et al. [3] showed that the underlying treewidth of the class

of planar graphs equals 3. So in Theorem 2 with tw(H) 6 2, the bound of m ∈ O(
√

n)

cannot be improved to m 6 g(tw(G)) for any function g. See [8] for recent results on

underlying treewidth.

1In the result of Campbell et al. [3], g(w) ∈ Ot(w
2 log w), which was improved to Ot(w) by Illing-

worth et al. [18].
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2 Background

For m, n ∈ Z with m 6 n, let [m, n] := {m, m + 1, . . . , n} and [n] := [1, n].

We consider simple, finite, undirected graphs G with vertex-set V (G) and edge-set E(G).

For a graph G and set S ⊆ V (G), let NG(S) := {v ∈ V (G) \ S : ∃ vw ∈ E(G), w ∈ S}
and let NG[S] := NG(S) ∪ S. We drop the subscript G if the graph in question is clear.

A tree-decomposition of a graph G is a collection T = (Bx : x ∈ V (T )) of subsets of

V (G) (called bags) indexed by the vertices of a tree T , such that (a) for every edge

uv ∈ E(G), some bag Bx contains both u and v, and (b) for every vertex v ∈ V (G),

the set {x ∈ V (T ) : v ∈ Bx} induces a non-empty (connected) subtree of T . The width

of T is max{|Bx| : x ∈ V (T )} − 1. The treewidth of a graph G, denoted by tw(G), is

the minimum width of a tree-decomposition of G.

Consider a tree-decomposition T = (Bx : x ∈ V (T )) of a graph G. The adhesion of T
is max{|Bx ∩ By| : xy ∈ E(T )}. The torso of a bag Bx (with respect to T ), denoted

by G〈Bx〉, is the graph obtained from the induced subgraph G[Bx] by adding edges so

that Bx ∩ By is a clique for each edge xy ∈ E(T ). We say T is rooted if T is rooted.

Then, for each x ∈ V (T ), a clique C in the torso G〈Bx〉 is a child-adhesion clique if

there is a child y of x such that C ⊆ Bx ∩ By.

A path-decomposition is a tree-decomposition in which the underlying tree is a path,

simply denoted by the corresponding sequence of bags (B1, . . . , Bn).

A graph H is a minor of a graph G if H is isomorphic to a graph that can be obtained

from a subgraph of G by contracting edges. A graph G is H-minor-free if H is not a

minor of G. A graph class G is minor-closed if every minor of every graph in G is in G.

A graph class is proper if it is not the class of all graphs. The graph minor structure

theorem of Robertson and Seymour [26] shows that every Kt-minor-free graph has a

tree-decomposition where each torso can be constructed using three ingredients: graphs

on surfaces, vortices, and apex vertices. To describe this formally, we need the following

definitions.

Let G0 be a graph embedded in a surface Σ. A closed disc D in Σ is G0-clean if its

only points of intersection with G0 are vertices of G0 that lie on the boundary of D.

Let x1, . . . , xb be the vertices of G0 on the boundary of D in the order around D. A

D-vortex (with respect to G0) of a graph H is a path-decomposition (B1, . . . , Bb) of H

such that xi ∈ Bi for each i ∈ [b], and V (G0 ∩ H) = {x1, . . . , xb}.

For integers g, p, a > 0 and k > 1, a graph G is (g, p, k, a)-almost-embeddable if for some

set A ⊆ V (G) with |A| 6 a, there are graphs G0, G1, . . . , Gp such that:

• G − A = G0 ∪ G1 ∪ · · · ∪ Gp,

• G1, . . . , Gp are pairwise vertex-disjoint,
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• G0 is embedded in a surface Σ of Euler genus at most g,

• there are p pairwise disjoint G0-clean closed discs D1, . . . , Dp in Σ, and

• for i ∈ [p], there is a Di-vortex (B1, . . . , Bbi
) of Gi of width at most k.

The vertices in A are called apex vertices—they can be adjacent to any vertex in G. A

graph is ℓ-almost-embeddable if it is (g, p, k, a)-almost-embeddable for some g, p, k, a 6 ℓ.

We use the following version of the graph minor structure theorem, which is implied by

a result of Diestel, Kawarabayashi, Müller, and Wollan [4, Theorem 4].

Theorem 5 ([4]). For every integer t > 1 there exists an integer k > 1 such that every

Kt-minor-free graph G has a rooted tree decomposition (Bx : x ∈ V (T )) such that for

every node x ∈ V (T ), the torso G〈Bx〉 is k-almost-embeddable and if Ax is the apex-set

of G〈Bx〉, then for every child-adhesion clique C of G〈Bx〉, either C \ Ax is contained

in a bag of a vortex of G〈Bx〉, or |C \ Ax| 6 3.

The strong product of graphs A and B, denoted by A ⊠ B, is the graph with vertex-

set V (A) × V (B), where distinct vertices (v, x), (w, y) ∈ V (A) × V (B) are adjacent if

v = w and xy ∈ E(B), or x = y and vw ∈ E(A), or vw ∈ E(A) and xy ∈ E(B).

Let G be a graph. A partition of G is a collection P of sets of vertices in G such that

each vertex of G is in exactly one element of P. Each element of P is called a part.

Empty parts are allowed. The width of P is the maximum number of vertices in a part.

The quotient of P (with respect to G) is the graph, denoted by G/P, whose vertices

are the non-empty parts in P, where distinct non-empty parts A, B ∈ P are adjacent

in G/P if and only if some vertex in A is adjacent in G to some vertex in B. For a

graph H , an H-partition of G is a partition P = (Px ⊆ V (G) : x ∈ V (H)) of G indexed

by V (H), such that for each edge vw ∈ E(G), if v ∈ Px and w ∈ Py then x = y

or xy ∈ E(H). That is, G/P is contained in H . The following observation connects

partitions and products.

Observation 6 ([9]). For all graphs G and H and any integer p > 1, G is contained

in H ⊠ Kp if and only if G has an H-partition with width at most p.

A layering of a graph G is a partition P of G, whose parts are ordered P = (V0, V1, . . . )

such that for each edge vw ∈ E(G), if v ∈ Vi and w ∈ Vj then |i−j| 6 1. Equivalently, a

layering is a P -partition for some path P . Consider a connected graph G. Let r ∈ V (G)

and let Vi := {v ∈ V (G) : distG(v, r) = i} for each i > 0. Then (V0, V1, . . . ) is a bfs-

layering of G rooted at r. Let T be a spanning tree of G, where for each non-root

vertex v ∈ Vi there is a unique edge vw in T for some w ∈ Vi−1. Then T is called a

bfs-spanning tree of G. (These trees are a superset of the trees that can be generated

by the breadth-first search algorithm.)

If T is a tree rooted at a vertex r, then a non-empty path P in T is vertical if the vertex

of P closest to r in T is an end-vertex of P .
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Many recent results show that certain graphs can be described as subgraphs of the

strong product of a graph with bounded treewidth and a path [5, 7, 9, 11, 16, 17, 27].

For example, Distel et al. [5] proved the following result (building on the work of

Dujmović et al. [9]).

Lemma 7 ([5]). Every connected graph G of Euler genus at most g is contained in

H ⊠ P ⊠ Kmax{2g,3} for some planar graph H with treewidth 3, and for some path P .

In particular, for every rooted spanning tree T of G, there is a planar graph H with

treewidth at most 3 and there is an H-partition P of G such that each part of P is a

subset of the union of at most max{2g, 3} vertical paths in T .

3 Proof of Theorem 1

This section proves Theorem 1 for Kt-minor-free graphs, where the Graph Minor Struc-

ture Theorem is our main tool. We first prove an analogue of Theorem 1 for almost-

embeddable graphs with several additional properties that will be needed later.

Lemma 8. For integers g, p, a > 0 and k, n > 1 and d > 4, for every (g, p, k, a)-

almost embeddable n-vertex graph G with apex set A, there exists a set S ⊆ V (G) where

|S| 6 n
d−3

+ a such that G − S has an H-partition with width at most (2g + 4p +

3)(2
√

(k + 1)n + d + 2k + 2), where H is planar with treewidth at most 3. Moreover,

A ⊆ S and any clique in a vortex of G is contained in at most two parts.

Proof. Let G0, G1, . . . , Gp and D1, . . . , Dp be as in the definition of (g, p, k, a)-almost

embeddable. Let G′
0 be obtained from G0 as follows. Initialise G′

0 := G0 and add edges

to G′
0 so that it is connected and is still embedded in the same surface as G0, and

D1, . . . , Dp are G′
0-clean.

For each i ∈ [p], modify G′
0 as follows. Say the vertices around Di are x1, . . . , xb. In G′

0,

add edges so that (x1, . . . , xb) is a path, and add a vertex zi into the disc Di adjacent

to x1, . . . , xb. Note that since Di was initially G′
0-clean for each i ∈ [p] and D1, . . . , Dp

are pairwise disjoint, this can be done while maintaining an embedding of G′
0 in the

same surface as G0.

Now apply the following operation for each i ∈ [p]. Let (B1, . . . , Bb) be a Di-vortex

of Gi with width at most k, where xj ∈ Bj for each j ∈ [b]. Greedily find an increasing

sequence of integers a1, . . . , aq+1 so that a1 = 1, aq+1 = b + 1, and for each j ∈ [q],

if Zi := Ba1
∪ Ba2

∪ · · · ∪ Baq
and Yi,j := (Baj+1 ∪ Baj+2 ∪ · · · ∪ Baj+1−1) \ Zi , then⌈√

(k + 1)n
⌉
6 |Yi,j| 6

⌈√
(k + 1)n

⌉
+k for each j ∈ [q−1] and |Yi,q| 6

⌈√
(k + 1)n

⌉
+k.

Note that n > (q − 1)
√

(k + 1)n, so |Zi| 6 (k + 1)q 6 (k + 1)(n/
√

(k + 1)n + 1) =√
(k + 1)n + k + 1.
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Every clique in Gi is contained in Yi,j ∪ Zi for some j ∈ [q]. In G′
0 contract the path

(xaj +1, xaj+2, . . . , xaj+1−1) into a vertex yi,j, for each j ∈ [q]. In G′
0 contract the edge

zixaj
into zi for each j ∈ [q]. Call the vertices yi,j and zi of G′

0 special.

For each i ∈ [p], let F ′
i be some face of G′

0 incident to zi. If p = 0 then add a vertex r

to G′
0 adjacent to some vertex of G0. If p > 1 then for each i ∈ [p − 1], add a handle to

the surface in which G′
0 is embedded between F ′

i and F ′
i+1. The resulting embedding of

G′
0 has a single face F ′ incident to each of z1, . . . , zp. Add a vertex r to G′

0 adjacent to

z1, . . . , zp. Embed r and the edges incident to r in F ′. Note that (for any value of p)

the resulting surface has Euler genus at most g + 2 max{0, p − 1} 6 g + 2p.

Let T be a bfs-spanning tree of G′
0 rooted at r (which exists since G′

0 is connected). Let

(V0, V1, . . . ) be the corresponding bfs-layering of G′
0. So V0 = {r}, and if p > 1 then

V1 = {z1, . . . , zp} and V2 contains all yi,j vertices (possibly plus others). By Lemma 7

there is an H ′-partition P ′ of G′
0 where H ′ is planar with treewidth at most 3 such

that each part of P ′ is a subset of the union of at most max{2g + 4p, 3} 6 2g + 4p + 3

vertical paths in T . Note that each vertical path in T has at most two special vertices

(some zi and some yi,j).

For each i ∈ [3, d−1], let V̂i := Vi ∪Vi+d ∪Vi+2d ∪· · · . Since |V̂3|+ |V̂4|+ · · ·+ |V̂d−1| 6 n,

there exists ℓ ∈ [3, d − 1] such that |V̂ℓ| 6 n/(d − 3). Let S := V̂ℓ ∪ A. Then |S| 6
n/(d − 3) + a.

Let Vi := ∅ for i < 0, and for any integer j > 0, let P ′
j be the H ′

j-partition of

G′
0[Vℓ+(j−1)d+1 ∪ · · · ∪ Vℓ+jd−1] induced by P ′, where H ′

j is a copy of H ′ (and H ′
0, H ′

1, . . .

are pairwise disjoint). Then P ′
j has width at most (2g + 4p + 3)d.

Let H be the disjoint union of H ′
0, H ′

1, . . . . Then H is planar with treewidth at most 3.

Now P ′
0 ∪ P ′

1 ∪ . . . is an H-partition of G′
0 − S where each part is a subset of the union

of at most (2g + 4p + 3) vertical paths of length at most d − 1 in T . Hence, the width

of this partition is smaller than (2g + 4p + 3)d.

We now modify this partition of G′
0 − S into a partition of G − S. By construction

(since ℓ > 3), P ′
0 is a partition of G′

0[V0 ∪ V1 ∪ V2 ∪ · · · ∪ Vℓ−1]. In particular, each vertex

yi,j (which is in V2) is in some part X of P ′
0. Replace yi,j in X by Yi,j. Similarly, each

vertex zi (which is in V1) is in some part X of P ′
0. Replace zi in X by Zi. Remove r

from the part of P ′
0 that contains r. This defines an H-partition P of G − S where

every clique in a vortex of G is contained in at most two parts.

It remains to bound the width of P. Let X ∈ P. If X comes from P ′
j for some j > 1,

then |X| 6 (2g + 4p + 3)d. Now suppose X comes from P ′
0. Each vertical path in T has

at most two special vertices (some zi and some yi,j). The corresponding replacements

contribute at most 2
√

(k + 1)n + 2k + 2 vertices to X. Since X corresponds to the
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union of at most 2g + 4p + 3 vertical paths (before replacement) in T ,

|X| 6 (2g + 4p + 3)d + (2g + 4p + 3)(2
√

(k + 1)n + 2k + 2)

= (2g + 4p + 3)(2
√

(k + 1)n + d + 2k + 2).

So P has width at most (2g + 4p + 3)(2
√

(k + 1)n + d + 2k + 2), as required.

To handle tree-decompositions we need the following standard separator lemma. For

a tree T rooted at r ∈ V (T ), the root of a subtree T ′ of T is the vertex in V (T ′)

that is closest to r. A weighted tree is a tree T together with a weighting function

γ : V (T ) → R
+. The weight of a subtree T ′ of T is

∑
v∈V (T ′) γ(v).

Lemma 9. For every integer q > 0 and n ∈ R
+, every weighted tree T with weight at

most n has a set Z of at most q vertices such that each component of T − Z has weight

at most n
q+1

.

Proof. We proceed by induction on q. The q = 0 case holds trivially with Z = ∅. Now

assume that q > 1 and the result holds for q − 1. Root T at an arbitrary vertex r. For

each vertex v, let Tv be the maximal subtree of T rooted at v. Let v be a vertex in T

furthest from r such that Tv has weight greater than n
q+1

. (If no such v exists, then T

has weight at most n
q+1

and Z = ∅ satisfies the claim). Let T ′ := T − V (Tv). So T ′ has

weight at most qn
q+1

. By induction, T ′ has a set Z ′ of at most q − 1 vertices such that

each component of T ′ − Z ′ has weight at most n
q+1

. Let Z := Z ′ ∪ {v}. By the choice

of v, each component of Tv − v has weight at most n
q+1

. Thus each component of T − Z

has weight at most n
q+1

.

The next lemma handles tree-decompositions.

Lemma 10. Let a, b, k, n, w > 1 be integers, and let G be an n-vertex graph that has

a rooted tree-decomposition (Bx : x ∈ V (T )) of adhesion at most k such that for each

x ∈ V (T ) there exists Sx ⊆ Bx such that:

• |Sx| 6 |Bx|/√
n + a

• G〈Bx〉 − Sx has a Jx-partition Px of width at most b where tw(Jx) 6 w; and

• for every child-adhesion clique C of G〈Bx〉, the set C \ Sx is contained in at most

w parts in Px.

Then G has an H-partition of width at most max{b, (a+2k+1)⌈√
n⌉} such that tw(H) 6

w + 1. Moreover, H contains a vertex α such that tw(H − α) 6 w.

Proof. Let r ∈ V (T ) be the root of T . For every node x ∈ V (T ) with parent y, let

Xx := Bx ∩ By (where Xr = ∅) and let B′
x := Bx − Xx. For each node x ∈ V (T ), let

γ(x) = |B′
x|. Observe that (B′

x : x ∈ V (T )) is a partition of V (G), so the total weight
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equals n. By Lemma 9 with q := ⌈√
n⌉−1, there is a set Z ′ ⊆ V (T ) where |Z ′| 6 q such

that each component of T − Z ′ has total weight at most n
q+1

6
√

n. Let Z := Z ′ ∪ {r}.

For each z ∈ Z, let Tz be the maximal subtree of T rooted at z such that Tz ∩ Z = {z}.

Let Q :=
⋃

(Xz : z ∈ Z) and observe that |Q| 6 k(q + 1) 6 k
√

n. For each z ∈ Z, let

Gz := G[
⋃

(B′
x : x ∈ V (Tz))] − Xz. If there is an edge xy ∈ E(T ), where y is the parent

of x, and x ∈ V (Tz) and y ∈ V (Tz′) for some distinct z, z′ ∈ Z, then x = z. Thus G−Q

is the disjoint union of (Gz : z ∈ Z).

Claim. For each z ∈ Z, there exists Sz ⊆ V (Gz) where |Sz| 6 |Bz|/
√

n + a such that

Gz − Sz has an Hz-partition of width at most max{b,
√

n} for some graph Hz with

treewidth at most w.

Proof. Let T ′
1, . . . , T ′

f be the components of Tz − z. For each j ∈ [f ], let Cj be the

subgraph of Gz induced by (B′
x : x ∈ V (T ′

j)). Note that V (Gz) is the disjoint union of

B′
z, V (C1), . . . , V (Cf). By Lemma 9, |V (Cj)| 6 | ⋃

(B′
x : x ∈ V (T ′

j))| = γ(T ′
j) 6

√
n. By

assumption, there is a set Sz ⊆ Bz where |Sz| 6 |Bz|/√
n + a such that G〈Bz〉 − Sz has

a Jz-partition P ′
z with width at most b where tw(Jz) 6 w, and for every child-adhesion

clique C in G〈Bz〉, C \Sz is contained in at most w parts in P ′
z. Let (W (z)

x : x ∈ V (T (z)))

be a tree-decomposition of Jz with width at most w. Add V (C1), . . . , V (Cf) to the

partition P ′
z to obtain a partition Pz of Gz − Sz with quotient Hz. Then Pz has width

at most max{b,
√

n}. For each j ∈ [f ], let αj ∈ V (Hz) be the vertex that indexes

V (Cj) and let Nj be the neighbourhood of αj . Since the neighbourhood of Cj in Gz is

a child-adhesion clique of G〈Bz〉, it follows that Nj is a clique in Jz of size at most w.

Thus there is a node x ∈ V (T (z)) such that Nj ⊆ W (z)
x . Add a leaf node ℓ adjacent

to x and let W
(z)
ℓ := Nj ∪ {αj}. Repeat this procedure for all j ∈ [f ] to obtain a

tree-decomposition of Hz with width at most w.

Observe that

∑

z∈Z

|Bz| 6
∑

z∈Z

(|B′
z| + |Xz|) =

( ∑

z∈Z

|B′
z|

)
+

( ∑

z∈Z

|Xz|
)
6 n + k|Z|.

Since |Q| 6 k|Z| and |Z| 6 q + 1 = ⌈√
n⌉,

|Q ∪ (
⋃

Sz : z ∈ Z)| 6 |Q| +
∑

z∈Z

(
|Bz|/

√
n + a

)
6 (k + a)|Z| + (n + k|Z|)/

√
n

< (2k + a + 1)⌈
√

n⌉.

Let H be the graph obtained from the disjoint union of (Hz : z ∈ Z) by adding one

dominant vertex α. So tw(H − α) 6 w and tw(H) 6 w + 1. By associating Q ∪ (
⋃

Sz :

z ∈ Z) with α, we obtain an H-partition of G with width at most max{b, (a + 2k +

1)⌈√
n⌉}.
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Proof of Theorem 1. Let G be an n-vertex Kt-minor-free graph. By Theorem 5, G has

a rooted tree-decomposition (Bx : x ∈ V (T )), such that for each x ∈ V (T ), the torso

G〈Bx〉 is k-almost-embeddable (for some k = k(t)), and if Ax is the apex-set of G〈Bx〉,
then for every child-adhesion clique C of G〈Bx〉, either C \Ax is contained in a vortex of

G〈Bx〉, or |C \Ax| 6 3. Dujmović, Morin, and Wood [10, Lemma 21] showed that every

clique in a k-almost-embeddable graph has at most 9k vertices. So the adhesion of (Bx :

x ∈ V (T )) is at most 9k. We may assume that n > k. By Lemma 8 with d := ⌈√
n⌉+3,

for each torso G〈Bx〉 there exists a set Sx ⊆ Bx such that |Sx| 6 |Bx|
⌈√

n⌉ + k 6
|Bx|√

n
+ k

and G〈Bx〉 − Sx has a Jx-partition Px, where tw(Jx) 6 3 and the width of Px is at

most (2k + 4k + 3)(2
√

(k + 1)n + ⌈√
n⌉ + 3 + 2k + 2) 6 (6k + 3) · 9

√
(k + 1)n (because

n > k > 1).

Moreover, Ax ⊆ Sx and any clique in a vortex of G〈Bx〉 is contained in at most two

parts in Px. As such, for every child-adhesion clique C of G〈Bx〉, C \ Sx is contained

in at most three parts of Px. By Lemma 10, G has an H-partition with width at most

m := max{(6k + 3) · 9
√

(k + 1)n, (k + 18k + 1)⌈√
n⌉} 6 (6k + 3) · 9

√
(k + 1)n, where H

contains a vertex α such that tw(H − α) 6 3. It therefore follows from Observation 6

that G is contained in H ⊠ K⌊m⌋ where tw(H) 6 4.

4 Proof of Theorem 3

This section proves Theorem 3 for K3,t-minor-free graphs, where we assume throughout

that t > 1. We use the following extremal function for K∗
3,t-minor-free graphs by

Kostochka and Prince [19]. Here K∗
3,t is the graph obtained from K3,t by adding an

edge between each pair of vertices in the side of the bipartition with three vertices.

Lemma 11 ([19]). Every K∗
3,t-minor-free graph G satisfies |E(G)| 6 αt |V (G)|, for

some constant α > 1.

The following notation will be useful in the proof of Theorem 3. For a graph G, an

induced subgraph C of G, and sets X, Y ⊆ V (G) such that X, Y, V (C) are pairwise

disjoint, let κG(X, C, Y ) be the maximum number of vertex-disjoint paths in C, each

with an endpoint in NG(X) ∩ C and an endpoint in NG(Y ) ∩ C. By Menger’s Theorem

there is a set S ⊆ V (C) of size κG(X, C, Y ) separating NG(X) ∩ C and NG(Y ) ∩ C in

C. If X = {x} then replace X by x in this notation, and similarly for Y .

The following lemma is the key to the proof of Theorem 3. Here α is from Lemma 11.

Lemma 12. Let G be a K∗
3,t-minor-free graph on n vertices. Let X and Y be disjoint

non-empty sets of vertices in G such that G[X], G[Y ] and G[X ∪ Y ] are connected.

Then there is a set S ⊆ V (G − X − Y ) such that:
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• |NG[S]| 6 t
√

3αn,

• κG(X, C, Y ) 6 t
√

3αn for every component C of G − X − Y − S, and

• G[X ∪ S] and G[Y ∪ S] are connected.

Proof. Let Q1, . . . , Qm be a maximum-size set of vertex-disjoint paths in G − X − Y

between NG(X) \ Y and NG(Y ) \ X. If m = 0, then the lemma holds trivially with

S = ∅, thus we may assume m > 1. Define J to be the auxiliary graph with vertex set

{q1, . . . , qm} where qiqj ∈ E(J) whenever there is a path in G − X − Y joining Qi and

Qj, and avoiding each Qℓ with ℓ 6∈ {i, j}.

Consider a component J ′ of J . Let (V0, V1, . . . ) be a BFS-layering of J ′. So |V0| = 1.

We claim that |Vi| < t for each i > 1. Suppose for the sake of contradiction that

|Vi| > t for some i > 1. Without loss of generality, q1, . . . , qt ∈ Vi. Let A be the

union of: (1) all paths Qj corresponding to vertices in V0 ∪ · · · ∪ Vi−1, (2) all paths in

G − X − Y corresponding to edges in J [V0 ∪ · · · ∪ Vi−1], and (3) all paths in G − X − Y

corresponding to edges in J between a vertex in Vi−1 and q1, . . . , qt, not including the

vertex in Q1 ∪ · · · ∪ Qt. By construction, A is a connected subgraph of G − X − Y

disjoint from Q1 ∪ · · · ∪ Qt and adjacent to each of Q1, . . . , Qt. Each of A, Q1, . . . , Qt

intersect NG(X) and NG(Y ). Thus X, Y, A, Q1, . . . , Qt form a K∗
3,t-model in G. This

contradiction shows that |Vi| < t for each i > 0.

Concatenate the above-mentioned layerings of each component of J to obtain a layering

(V0, V1, . . . ) of J with |Vi| < t for each i. Assign each vertex qj in J a weight of

|NG[Qj]|. The total weight is at most |V (G)| + 2|E(G)|, which by Lemma 11 is at most

(2αt + 1)n 6 3αtn since t > 1. Weight each set Vi by the total weight of the vertices

in Vi. Let p := ⌈
√

3αn⌉. There exists i ∈ {0, . . . , p − 1} such that Z :=
⋃{Vj : j ≡ i

(mod p)} has weight at most 3αtn/p 6 t
√

3αn, and each component of J − Z has less

than (p − 1)t 6 t
√

3αn vertices. Let S :=
⋃{Qi : qi ∈ Z}. By construction, |NG[S]|

is at most the weight of Z, which is at most t
√

3αn. Moreover, since G[X ∪ Qi] and

G[Y ∪ Qi] are connected for all i ∈ [m], it follows that G[X ∪ S] and G[Y ∪ S] are

connected.

Consider a component C of G − X − Y − S. Since each component of J − Z has at

most t
√

3αn vertices, the number of paths Qi that pass through C is at most t
√

3αn.

By the choice of Q1, . . . , Qm, we have κG(X, C, Y ) 6 t
√

3αn.

Theorem 3 follows from Observation 6 and the next lemma.

Lemma 13. Let G be a K∗
3,t-minor-free graph on n vertices. Let Q be a clique in G

with |Q| 6 2 such that if Q = {x, y} with x 6= y, then κG(x, C, y) 6 2t
√

3αn for every

component C of G − x − y, where α is from Lemma 11. Then G has a partition P with

non-empty parts, with width at most 6 4t
√

3αn, with tw(G/P) 6 2, and with {v} ∈ P
for each v ∈ Q.
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Proof. We proceed by induction on |V (G) \ Q|. The result is trivial if V (G) = Q. Now

assume that V (G) 6= Q. If Q = ∅ then the result follows by induction where Q := {v}
and v is any vertex in G. Now assume that Q 6= ∅. If G is disconnected, then the

result follows by applying induction in each component C of G with the clique Q∩V (C).

Now assume that G is connected. First consider the case in which Q = {x}. Since G

is connected and V (G) 6= Q, there is a neighbour v of x. By Lemma 12 applied to

(G, {x}, {v}), there is a set S ⊆ V (G − x − v) such that:

• |NG[S]| 6 t
√

3αn,

• κG(x, C, v) 6 t
√

3αn for each component C of G − x − v − S, and

• G[S ∪ {v}] is connected.

Let G′ be obtained from G by contracting S ∪ {v} into a single vertex v′. So G′

is K∗
3,t-minor-free and xv′ is an edge of G′. For each component C ′ of G′ − x − v′,

we have κG′(x, C ′, v′) 6 κG(x, C ′, v) + |NG[S]| 6 2t
√

3αn. Apply induction to G′

and Q′ := {x, v′} to obtain a partition P ′ of G′ of width at most 4t
√

3αn such that

tw(G′/P ′) 6 2 and {x}, {v′} ∈ P ′. Let P be the partition of G obtained from P ′ by

replacing {v′} by S ∪ {v}. So P has width at most max{4t
√

3αn, |S| + 1} = 4t
√

3αn

and {x} ∈ P. Since G/P ∼= G′/P ′ we have tw(G/P) 6 2.

Now consider the case in which |Q| = 2 and Q = {x, y}.

First, suppose that no component of G − x − y intersects NG(x) and NG(y). Let Gx

be the subgraph of G induced by {x} and the components of G − x − y that intersect

NG(x). Let Gy be the subgraph of G induced by {y} and the components of G − x − y

that intersect NG(y). By induction, Gx has a partition Px of width at most 4t
√

3αn

such that tw(Gx/Px) 6 2 and {x} ∈ Px. Similarly, Gy has a partition Py of width at

most 4t
√

3αn such that tw(Gy/Py) 6 2 and {y} ∈ Py. Let P := Px ∪ Py. So P is a

partition of G, and G/P is obtained from the disjoint union of Gx/Px and Gy/Py by

adding the edge {x}{y}. So tw(G/P) 6 2.

Now assume that some component C of G−x−y intersects both NG(x) and NG(y). By

assumption, κG(x, C, y) 6 2t
√

3αn. By Menger’s theorem, there exists S ⊆ V (C) such

that |S| 6 2t
√

3αn and S separates NG(x) ∩ V (C) and NG(y) ∩ V (C) in C. Choose S

to be minimal. Observe that S 6= ∅. No component of C − S intersects both NG(x)

and NG(y). Let Dx be the union of the components of C − S that intersect NG(x).

Let Dy be the union of the components of C − S that intersect NG(y). Let F be

the union of the components of C − S that intersect neither NG(x) nor NG(y). Let

GC := G[(V (C) ∪ {x, y}) \ V (F )].

Let Y := {y} ∪ V (Dy) ∪ S. By the minimality of S, G[Y ] is connected, and G[{x} ∪ Y ]

is connected since xy ∈ E(G). By Lemma 12 applied to (GC , {x}, Y ), there is a set

Sx ⊆ V (GC − x − Y ) = V (Dx) such that:
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• |NGC
[Sx]| 6 t

√
3αn,

• κGC
(x, C ′, Y ) 6 t

√
3αn for every component C ′ of Dx − Sx, and

• GC [Sx ∪ Y ] is connected.

Let Gx be the graph obtained from GC by contracting Sx ∪ Y into a single vertex

z. Thus Gx is K∗
3,t-minor-free and xz is an edge of Gx. Consider a component C ′ of

Gx − x − z. Then C ′ is a component of Dx − Sx, and

κGx
(x, C ′, z) = κGC

(x, C ′, Sx ∪ Y ) 6 κGC
(x, C ′, Y ) + |NGC

[Sx]| 6 2t
√

3αn.

By induction, Gx has a partition Px of width at most 4t
√

3αn such that tw(Gx/Px) 6 2

and {x}, {z} ∈ Px. (Note that |V (Gx)| < |V (G)| since S 6= ∅, so we may apply

induction.)

Let X := {x} ∪ V (Dx) ∪ S. By a symmetric argument to the above, there is a set

Sy ⊆ V (Dy) such that:

• |NGC
[Sy]| 6 t

√
3αn,

• κGC
(y, C ′, X) 6 t

√
3αn for every component C ′ of Dy − Sy, and

• GC [Sy ∪ X] is connected.

Let Gy be the graph obtained from GC by contracting Sy ∪ X into a single vertex z.

Thus Gy is K∗
3,t-minor-free and yz is an edge of Gy. By a symmetric argument, Gy has

a partition Py of width at most 4t
√

3αn such that tw(Gy/Py) 6 2 and {y}, {z} ∈ Py.

Note that G[X ∪ Y ] is connected. Let GF be the graph obtained from G[{x, y} ∪ V (C)]

by contracting X ∪ Y into a single vertex z. So V (GF ) = {z} ∪ V (F ), and GF is

K∗
3,t-minor-free. By induction, GF has a partition PF of width at most 4t

√
3αn such

that tw(GF /PF ) 6 2 and {z} ∈ PF .

Let G′ := G−V (C). So G′ is K∗
3,t-minor-free, and xy is an edge of G′. By induction, G′

has a partition P ′ of width at most 4t
√

3αn such that tw(G′/P ′) 6 2 and {x}, {y} ∈ P ′.

Let P be the partition of G obtained from Px ∪ Py ∪ PF ∪ P ′ by replacing each of the

three instances of {z} by S ∪ Sx ∪ Sy. The width of P is at most 4t
√

3αn. Note that

G/P is obtained by pasting the four graphs Gx/Px, Gy/Py, GF /PF and G′/P ′ on the

triangle {x}, {y}, S ∪ Sx ∪ Sy, where each of the four graphs contains vertices in two of

{x}, {y} and S ∪ Sx ∪ Sy. Thus G/P is obtained from graphs of treewidth at most 2

by pasting on edges. Hence tw(G/P) 6 2 and {x}, {y} ∈ P.

5 Open Problems

It is an intriguing open problem to determine f(G) for a given proper minor-class G.

It is possible that f(G) 6 2 for every minor-closed class G. This is open even when G
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is the class of K5-minor-free graphs [18]. Let A be the class of apex graphs2, which is

minor-closed. It is open whether f(A) 6 2. This is equivalent to the following open

problem (which would strengthen Theorem 2): for every n-vertex planar graph G, does

there exist an apex-forest3 H such that G is contained in H ⊠ Km where m ∈ O(
√

n)?

It is also open whether treewidth can be replaced by pathwidth in Theorems 1 to 3.

That is, for a proper minor-closed class G, are there integers k, c such that every n-

vertex graph in G is contained in H ⊠ Km, for some graph H with pathwidth at most

k, where m 6 c
√

n? Two pieces of evidence suggest a positive answer. First, n-vertex

graphs in a proper minor-closed class have pathwidth O(
√

n); see [2]. Second, if G has

bounded treewidth, then the answer is ‘yes’ with k = 1, since Dvořák and Wood [13]

showed that n-vertex graphs in G have H-partitions of width O(
√

n) where H is a star,

which has pathwidth 1. This question is open for planar graphs.

Analogous questions are interesting and open for several non-minor-closed classes [13].
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