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Abstract

This paper presents a comprehensive study of the functions V p
m(x) =

pex
p

Γ(m+1)

∫∞
x (tp−xp)me−tpdt for x > 0, m > −1 and p > 0. For large x these

functions approximate x1−p. The case p = 2 is of particular importance
because the functions V 2

m(x) ≈ 1/x can be regarded as one-dimensional
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regularizations of the Coulomb potential 1/|x| which are finite at the origin
for m > −1

2 .
The limiting behavior and monotonicity properties of these functions

are discussed in terms of their dependence on m and p as well as x. Several
classes of inequalities, some of which provide tight bounds, are established.
Some differential equations and recursion relations satisfied by these func-
tions are given. The recursion relations give rise to two classes of polynomi-
als, one of which is related to confluent hypergeometric functions. Finally,
it is shown that, for integer m, the function 1/V 2

m(x) is convex in x and this
implies an analogue of the triangle inequality. Some comments are made
about the range of p and m to which this convexity result can be extended
and several related questions are raised.
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1 Introduction

1.1 Definitions and background

In this paper we study the functions

Vm(x) =
2ex

2

Γ(m+ 1)

∫ ∞

x

(t2 − x2)me−t2dt, m > −1 (1)

V−1(x) =
1

|x|

and their generalizations,

V p
m(x) =

pex
p

Γ(m+ 1)

∫ ∞

x

(tp − xp)me−tpdt (2)

V p
−1(x) = x1−p,

for 0 < p < ∞. These functions are well-defined for x > 0 and can be extended
to complex m with ℜ(m) > −1. For ℜ(m) > −1

2
they are also well-defined for

x = 0. Using symmetry or the equivalent forms (4) and (7) below, they can be
extended to even functions on R or R \ {0}. However, it suffices to consider only
non-negative x and in this paper we restrict ourselves to that. We also restrict
ourselves to real m.

Letting p = 2 in (2) yields (1). However, because this case is more important
in applications we often drop the superscript and and simply write Vm(x) for
V 2
m(x).
Our interest was motivated by studies of atoms in magnetic fields where

these functions arise naturally for integer m. Vm can be regarded as a (two-
dimensional) expectation of the (three-dimensional) Coulomb potential 1/|r| with
the state γm(r, θ) = 1√

πm!
e−imθrme−r2/2 (where we have used cylindrical coordi-

nates r = (x, r, θ) with the non-standard convention r =
√
y2 + z2 if r = (x, y, z)

in rectangular coordinates). The state γm describes an electron in the lowest of
the so-called “Landau levels” with angular momentum m in the direction of the
field. In this context, it is natural to rewrite (1) in the form

Vm(x) =
2

Γ(m+ 1)

∫ ∞

0

r2me−r2

√
x2 + r2

rdr, (3)

=
1

Γ(m+ 1)

∫ ∞

0

ume−u

√
x2 + u

du (4)
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for m > −1. In this form, it is easy to see that Vm(x) ≈ 1/|x| for large x. The
importance of Vm goes back at least to Schiff and Snyder [19] and played an
essential role in the Avron, Herbst and Simon [2] study of the energy asymptotics
of hydrogen in a strong magnetic field. More recently work in astrophysics and
the work of Lieb, Solovej and Yngvason [13] on asymptotics of many-electron
atoms in strong magnetic fields has renewed interest in this subject. Motivated
by the LSY work, Brummelhuis and Ruskai [7, 8] have developed one-dimensional
models of many-electron atoms in strong magnetic fields using the functions Vm(x)
as one-dimensional analogues of the Coulomb potential.

In the case of many-electron atoms, the anti-symmetry required by the Pauli
exclusion principle suggests replacing the simple “one-electron” expectation above
by an N-electron analogue in which the state γm is replaced by a Slater determi-
nant of such states. This is discussed in detail in [8] where it is shown that, in
the simple case corresponding to m = 0 . . . N − 1, the analogous one-dimensional
potentials have the form

V N
av (x) =

1

N

N−1∑

m=0

Vm(x). (5)

In Section 3 we obtain recursion relations for Vm which, in addition to being of
considerable interest in their own right, are extremely useful for studying poten-
tials of the form (5).

For m = 0 the function

1√
2
V0

(
x√
2

)
= ex

2/2

∫ ∞

x

e−t2/2dt (6)

occurs in many other contexts and is sometimes called the “Mills ratio” [14].
Although it has been extensively studied, the class of inequalities we consider in
Section 4.1 appears to be new (although some of our bounds coincide with known
inequalities in other classes) and the realization that 1/V0(x) is convex seems to
be relatively recent [17, 18, 7].

The replacement of x2 by xp in (6) has been considered by Gautschi [10] and
Mascioni [12], who (after seeing the preprint [15]) extended the results of Section
4.1 to this situation.

For the analysis of this generalization, it is useful to observe that (2) can be
rewritten as

V p
m(x) =

1

Γ(m+ 1)

∫ ∞

0

ume−u

(xp + u)
p−1

p

du (7)

4



In this form, it is easy to verify that V p
m(x) ≈ xp−1 for large x and that for p = 1,

V 1
m(x) = 1 for all m .

Our first result shows that V p
m(x) is continuous in m and that our definition

for m = −1 is natural.

Proposition 1 For all x > 0, lim
m→−1+

xp−1V p
m(x) = 1.

Proof: Note that
xp−1

(xp + u)
p−1

p

=
1

(
1 + u

xp

)p−1

p

so that (7) implies

1− xp−1V p
m(x) =

1

Γ(m+ 1)

∫ ∞

0

ume−u

[
1−

(
1 +

u

xp

) 1−p

p

]
du. (8)

Since Γ(m + 1) becomes infinite as m → −1, the desired result follows if the
integral on the right above remains finite. To see that this is true, it is convenient

to let g(z) = 1
z

(
1− (1 + z)

1−p

p

)
and note that (8) implies

∣∣1− xp−1V p
m(x)

∣∣ ≤ 1

Γ(m+ 1)

∫ ∞

0

um+1e−u

xp

∣∣∣g
( u
xp

)∣∣∣ du (9)

It is easy to see that the large u portion of this integral causes no problems
since |g(z)| is bounded by a polynomial in z when z > 1. (For p ≥ 1, it is
bounded uniformly by 1; for 0 < p < 1, it is bounded by a polynomial, namely
|g(z)| ≤ 1 + (1 + z)k, where k ∈ N , k ≥ 1

p
.) To see that it is also well-behaved

for small u, we first note that for p > 0, (1 + z)
1−p

p is analytic for ℜ(z) > −1.
Then g(z) has a removable singularity at z = 0 and can be extended to an analytic
function on ℜ(z) > −1. Thus, for small u, the integrand behaves like x−pum+1e−u

which ensures that the integral in (9) is finite for m = −1. QED

The rest of this paper is organized as follows. In the next part of this section we
summarize the properties of Vm in the important case p = 2. We then conclude the
Introduction with a summary of convexity results, including some open questions.
In Section 2 we state and prove the basic properties of V p

m for general p. In Section
3 we derive recursion relations for V p

m and study their consequences. Among these
is a connection with confluent hypergeometric functions. In Section 4.1 we prove
some optimal bounds for V0. The optimal upper bound had been established
earlier independently by Wirth [18] and by Szarek and Werner [17] who also
showed that the upper bound is equivalent to the convexity of 1/V0. In Section

5



4.2 we discuss several classes of inequalities, beginning with optimal bounds on
V0(x). We then consider optimal bounds on the ratio Rm(x) = Vm(x)/Vm−1(x)
and show that these have important consequences. In particular, we show that
the upper bound is equivalent to the convexity (in x) of 1/Vm(x) and that the
ratios increase with x. Proofs of the ratio bounds are then given in Section 5
where we also consider extensions to other p. Because the proof of the ratio
bounds is via induction on m, the results of Sections 6 and 7 are only established
for integer m. However, we believe that they hold for all m > −1.

1.2 Properties of Vm(x)

We now summarize some properties of Vm(x) along with comments about the his-
tory and brief remarks about the proofs. Unless otherwise stated, these properties
hold for m > −1 and x > 0.

a)
1√

x2 +m
> Vm(x) >

1√
x2 +m+ 1

where the first inequality holds for m > 0 and the second for m > −1.

To prove the upper bound, which appears to be new, observe that µ =
[um−1e−u/Γ(m)]du is a probability measure on (0,∞). For fixed x, one can
then apply Jensen’s inequality to the concave function fx(u) = u(u+x2)−1/2

to obtain

Vm(x) =
1

m

∫ ∞

0

fx(u)dµ(u) ≤
1

m
fx

(∫ ∞

0

ume−udu

Γ(m)

)

=
1

m
fx(m) =

1√
x2 +m

.

The lower bound was proved earlier (at least for integerm) by Avron, Herbst
and Simon [2] who applied a similar argument to the probability measure
[ume−u/Γ(m+ 1)]du and the convex function fx(u) = (u+ x2)−1/2.

b) Vm(x) is decreasing in m. In particular, Vm+1(x) < Vm(x) <
1

x
.

The first inequality follows easily from property (a) which implies
Vm(x) <

1√
x2+m

< Vm−1(x). Alternatively, one could use integration by

parts on (4). The second inequality is easily verified from the integral rep-
resentation (4). That Vm(x) also decreases with m for non-integer jumps
is more difficult, and the proof is postponed to Section 2 where it follows
from the more general Theorem 6.
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c) The expression mVm(x) is increasing in m > −1, m ∈ R.
For integer jumps this holds for m ≥ −1. Indeed, it is obvious that −V−1 <
0 · V 0 < V1. For integer jumps with m ≥ 1, one can use property (a) to see
that

mVm(x) >
m√

x2 +m+ 1
>

m− 1√
x2 +m− 1

> (m− 1)Vm−1(x). (10)

The proof for general m is postponed to Theorem 6 in Section 2. The
fact that Vm(x) is decreasing in m, while mVm(x) is increasing gives an
indication of the delicate behavior of Vm.

d) For m > −1/2, the definition of Vm(x) can be extended to x = 0 and

Vm(0) =
Γ(m+ 1

2
)

Γ(m+ 1)
. (11)

For integer m, this becomes

Vm(0) =
(2m)!

22m(m!)2
√
π =

1 · 3 · 5 . . . (2m− 1)

2 · 4 · 6 . . . (2m)

√
π (12)

while for large m Stirling’s formula implies

Vm(0) ≈
(
m− 1

2

m

)m ( e
m

)1/2
≈ 1√

m
(13)

which is consistent with property (a). Boyd [6, 14] has proved the more
precise estimates

√
m+ 3

4
+ 1

32m+48

m+ 1
2

< Vm(0) <
1√

m+ 1
4
+ 1

32m+32

(14)

e) For all m ≥ 0, Vm satisfies the differential equation

V ′
m(x) = 2x (Vm − Vm−1) . (15)

This can easily be verified using integration by parts in (4).

f) For each fixed m ≥ 0, Vm(x) is decreasing in x.

This follows directly from (b) and (e).
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g) For a > 0, the expression aVm(ax) increases with a. Hence aVm(ax) > V (x)
when a > 1 and aVm(ax) < V (x) when a < 1.

This property follows easily from the definition (3) or (4) and the observa-

tion that
a√

a2x2 + u
=

1√
x2 + u

a2

is increasing in a. It is used in the proof

of Theorem 6 and is important in the study of one-dimensional models for
atoms in magnetic fields in which the electron-electron interaction takes the

form of convex combinations of 1√
2
Vm

(
|xj−xk|√

2

)
.

h) V0(x) is convex in x > 0; however, Vm(x) is not convex when m > 1
2
.

For m = 0, the differential equation (15) becomes V ′
0(x) = 2[xV0−1]. Since

xV0 =
∫∞
0

e−u√
1+u/x2

du is increasing for x > 0, it follows that V0(x) is convex.

When m > 1
2
it follows from (15) and (b) that limx→0 V

′
m(x) = 0. Since V ′

m

is negative, V ′
m must decrease on some small interval (0, x0). One can also

show limx→∞ V ′
m(x) = 0, so that one expects that there is an x1 such that

Vm is concave on (0, x1) and convex on (x1,∞). In Section 3 we will see that
the convexity is recovered for the averaged potential V av

m .

i) For integer m, 1/Vm(x) is convex in x > 0.

This will be proved in Section 4.2 as Theorem 23. For large x, 1/Vm(x) ≈ x
so that the deviation from linearity is very small and the second derivative
close to zero. This makes the proof quite delicate and lengthy.

The convexity of 1/Vm(x) can be rewritten as

1
1
2
Vm
(
x+y
2

) ≤ 1

Vm(x)
+

1

Vm(y)
.

Using property (g) with a = 1
2
, one easily finds that the convexity of 1/Vm(x)

implies

1

Vm(x+ y)
≤ 1

Vm(x)
+

1

Vm(y)
.

This subadditivity inequality plays the role of the triangle inequality in
applications. (See, e.g. [7].)

j) Asymptotic estimates:

For large x, it follows from property (a) that

m

2(x2 +m)3/2
≤ 1

x
− Vm(x) <

m+ 1

2x3
(16)
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The asymptotic expansion

Vm(x) =
1

x
− m+ 1

2x3
+

3(m+ 2)(m+ 1)

8x5
+O

(
1

x7

)
(17)

can easily be obtained from (4). For details let p = 2 in the proof of
Proposition 7 which gives a similar expansion for p > 1.

It follows from properties (a) and (c) that Vm(x) decreases monotonically to
zero for each fixed x as m→ ∞. In fact, since Vm(x) is decreasing in x for
all m, it suffices to show this for x = 0 which is easy since Vm(0) < m−1/2.

k) The Fourier transform is given by

V̂m(ξ) ≡
1√
2π

∫ ∞

−∞
Vm(x) e

−ixξdx =
4m+1

√
2π

∫ ∞

0

sm e−s

(|ξ|2 + 4s)m+1
ds (18)

This follows from (3) and the standard formula (e.g., see (v) on p. 131 of

[16]) F
(

1√
|x|2 + |w|2

)
(ξ) =

1√
2π

∫ ∞

0

1

s
e−

1
2(s+|w|2|ξ|2/s) ds after a change

in the order of integration.

1.3 Convexity Summary

For large x, V p
m(x) ≈ x1−p which is convex in x for p > 1 and concave for

p < 1. For m > −1
2
these convexity properties can not be extended to V p

m(x)
on all of (0,∞); they would be inconsistent with the differential equation and
monotonicity properties in Proposition 5. However, as discussed after Proposition
11, the averaged potentials V p,N

av have the same convexity as x1−p on the half-line.
The convexity of 1/V p

m(x) is the motivation for Sections 4 and 5. This question
is already delicate for p = 2 and its verification becomes increasingly difficult for
larger p. Although, as discussed in Section 5.4, we have evidence that convexity
holds for all p ≥ 2, our methods give this result only for a limited range of p.
Moreover, because our proof is inductive, we have established convexity and ratio
bounds of Section 4.2 only for integer m. It would be interesting to find another
approach which would extend these results to non-integer m and all p ≥ 2. Since
1/V p

m(x) ≈ xp−1 which is concave for 1 < p < 2, we can not expect convexity of
1/V p

m in this range.
As discussed above, one important consequence of the convexity of 1/Vm(x) is

an analogue of the triangle inequality. For all values of p we have [V p
m(x)]

1

1−p ≈ x

9



for large x which suggests a triangle inequality of the form

[V p
m(x+ y)]

1

1−p ≤ [V p
m(x)]

1

1−p + [V p
m(y)]

1

1−p .

It would be interesting to know the range of p (and m) for which this holds. For
p > 2 the convexity of 1/V p

m(x) implies only the weaker inequality

[V p
m(x+ y)]

1

1−p ≤ 2
p−2

p−1

(
[V p

m(x)]
1

1−p + [V p
m(y)]

1

1−p

)
.

Finally, one could also ask if Vm(x) is convex in m. In particular, is 2Vm(x) ≤
Vm+1(x) + Vm−1(x) or, equivalently by (15), is V ′

m(x) increasing in m?

2 General p

We now study the basic properties of V p
m in detail. As one would expect from

V p
m(x) ≈ x1−p, the behavior of V p

m is often quite different for p > 1 and p <
1. At the boundary, p = 1, V 1

m(x) = 1 for all x. Proposition 2 describes the
monotonicity and limiting behavior of V p

m(x) as p varies with m and x fixed.
Proposition 3 gives a simple expression for V p

m in the special case that 1/p is an
integer.

The next four results generalize properties of Section 1.2 to general p. Propo-
sition 4 generalizes the inequalities from property (a); Proposition 5 generalizes
properties (d), (e), (f), and (g); and, Theorem 6 extends the monotonicity prop-
erties (b) and (c). Moreover, the proof of monotonicity for non-integer jumps is
provided here. Finally, Proposition 7 gives the asymptotic behavior of V p

m(x) for
large x when p > 1.

Proposition 2 Let m > −1 and x > 0 be fixed. Then

(i) limp→0 V
p
m(x) = ∞.

(ii) For all x ≥ 1, V p
m is decreasing in p. Moreover,

if x > 1, lim
p→∞

V p
m(x) = 0, and

if x = 1, lim
p→∞

V p
m(1) =

1

Γ(m+ 1)

∫ ∞

0

ume−udu

1 + u
.

(iii) For all 0 < x < 1 and m > 0, limp→∞ V p
m(x) =

1
m
.

10



Proof: We use the expression (7) for V p
m.

(i) Since limp→0(x
p + u)1/p = ∞ for x > 1,

lim
p→0

V p
m(x) ≥ lim

p→0

1

Γ(m+ 1)

∫ 3

1

ume−u(xp + u)
1

pdu

xp + u
= ∞.

(ii) Differentiating (7) yields

d

dp
V p
m(x) =

1

Γ(m+ 1)

∫ ∞

0

ume−u

p2(xp + u)
2p−1

p

× (19)

[
(1− p)xp ln(xp)− (xp + u) ln(xp + u)

]
du.

For x = 1 or p = 1, the first term in square brackets above is zero leaving a
quantity which is clearly negative. When both x > 1 and p > 1 both terms in
(19) are clearly negative. When x > 1 and 0 < p < 1, the quantity in square
brackets in (19) is negative since

(1− p)xp ln(xp)− (xp + u) ln(xp + u)

≤ xp ln(xp)− (xp + u) ln(xp + u) < 0.

The last inequality follows from the fact that the function f(w) = w lnw is
increasing for w > 1. Thus, d

dp
V p
m(x) ≤ 0 for all x ≥ 1 and for all p ∈ (0,∞).

(iii) Since limp→∞(xp + u)1/p = 1 for x < 1,

lim
p→∞

V p
m(x) =

1

Γ(m+ 1)

∫ ∞

0

um−1e−udu =
1

m
.QED

Remark: The behavior for x < 1 depends upon m. For “small” m, there is a p0
such that V p

m decreases (below 1) on (0, p0) and increases on (p0,∞) to 1
m
. For

“big” m , V p
m simply decreases to 1

m
as p increases.

The next result shows that in the special case that 1/p is an integer V p
m reduces

to a polynomial in xp = x1/n of degree n− 1.

Proposition 3 For n ∈ N, n ≥ 2,

V 1/n
m (x) =

1

Γ(m+ 1)

n−1∑

k=0

(
n− 1

k

)
Γ(m+ n− k) xk/n

for all x ≥ 0 and m > −1.

11



Proof: It follows from (7) that for p = 1
n

V 1/n
m (x) =

1

Γ(m+ 1)

∫ ∞

0

(
x1/n + u

)n−1
ume−udu.

When n is an integer ≥ 2, the result then follows easily from the binomial expan-
sion applied to (x

1

n + u)n−1 and the definition of the Γ-function.

Proposition 4 For all x > 0

1

(xp +m+ 1)
p−1

p

≤ V p
m(x) ≤

1

(xp +m)
p−1

p

for p > 1,

where the first inequality holds for m > −1 and the second for m ≥ 0.

(xp +m+ 1)
1−p

p ≥ V p
m(x) ≥ (xp +m)

1−p

p for
1

2
≤ p < 1,

where the first inequality holds for m > −1 and the second for m ≥ 0.

V p
m(x) ≥ (xp +m+ 1)

1−p

p for 0 < p ≤ 1

2
,

and the inequality holds for m > −1.

Proof: The proofs are done using Jensen’s inequality as in property (a) of Section
1.2.

Proposition 5 For all x > 0

(i) For m > −1
p
, V p

m(0) is defined and V p
m(0) =

Γ(m+ 1
p
)

Γ(m+ 1)
.

(ii) For all m ≥ 0, x > 0, V p
m satisfies the differential equation

d

dx
V p
m(x) = pxp−1

(
V p
m(x)− V p

m−1(x)
)
. (20)

(iii) For all m > −1, V p
m is decreasing in x, if p > 1, identically equal to 1 for

all x, if p = 1, increasing in x, if p < 1.

(iv) Let m > −1 and x > 0. For a > 0, the expression ap−1V p
m(ax) increases in

a, if p > 1 and decreases in a if p < 1.

12



Proof: The proofs are straightforward extensions of those given in Section 1.2.
In (iii), one can verify that V p

m is also increasing for 0 < p < 1
2
by computing the

derivative directly.

Theorem 6 For each fixed x > 0, and for m in the region m > −1,

(i) V p
m(x) is strictly decreasing in m for p > 1 and strictly increasing in m for
p < 1.

(ii) mV p
m(x) is strictly increasing in m for p > 1 and strictly decreasing in m

for p < 1.

Proof: To prove (i) we differentiate (7) to get

d

dm
V p
m(x) =

1

Γ(m+ 1)

∫ ∞

0

um ln u e−u

(xp + u)1−
1

p

du− V p
m(x)

Γ′(m+ 1)

Γ(m+ 1)
(21)

Using the same procedure as that used (see, e.g. [1, 11]) to obtain the standard
integral representation

ψ(z) ≡ Γ′(z)

Γ(z)
=

∫ ∞

0

[
e−s

s
− 1

s(1 + s)z

]
ds (22)

one finds

1

Γ(m+ 1)

∫ ∞

0

um ln u e−u

(xp + u)1−
1

p

du

=
1

Γ(m+ 1)

∫ ∞

s=0

ds

s

∫ ∞

0

[e−s − e−su]
e−uum

(xp + u)1−
1

p

du

= V p
m(x)

∫ ∞

0

e−s

s
ds− 1

Γ(m+ 1)

∫ ∞

0

ds

s(s+ 1)m+ 1

p

∫ ∞

0

e−wwmdw

[xp(s+ 1) + w]1−
1

p

= V p
m(x)

∫ ∞

0

e−s

s
ds−

∫ ∞

0

V p
m(x(s + 1)

1

p )
ds

s(s+ 1)m+ 1

p

,

where we made the change of variable w = (s+1)u to obtain V p
m(x(s+1)

1

p ). Now

we use Proposition 4 (iv) with a = (s+ 1)
1

p > 1 to obtain

1

Γ(m+ 1)

∫ ∞

0

um ln u e−u

(xp + u)1−
1

p

du ≤
∫ ∞

0

V p
m(x)

(
e−s

s
− 1

s(s+ 1)m+1

)
ds

= V p
m(x) ψ(m+ 1)

13



when p > 1. For p < 1, Proposition 4 (iv) gives the inequality in the opposite
direction. Hence inserting the result in (21) yields

d

dm
Vm(x)

{
< 0 if p > 1
> 0 if p > 1.

To prove (ii) it is slightly more convenient to consider the logarithmic derivative
d
dm

ln [mV p
m(x)] and show that it is positive for p > 1 and negative for p < 1.

Proceeding as above, we find for p > 1

d

dm
ln [mV p

m(x)] =
1

m
+

d
dm

[V p
m(x)]

V p
m(x)

=
1

m
+

∫ ∞

0

e−s

s
ds− 1

V p
m(x)

∫ ∞

0

V p
m

[
x(s+ 1)1/p

]

s (s+ 1)m+ 1

p

ds− ψ(m+ 1)

<
1

m
+

∫ ∞

0

e−s

s
ds−

∫ ∞

0

1

s(s+ 1)m
ds− ψ(m+ 1)

=
1

m
+ ψ(m)− ψ(m+ 1)

=
1

m
−
∫ ∞

0

1

(s+ 1)m+1
= 0

where we have used (22) and the following inequality with a = (s+ 1)1/p.

V p
m(ax)

{
<
>

}
aV p

m(x) for

{
p > 1
p < 1

}
. (23)

for all a ≥ 1. This is easily verified and implies that the inequality proved above
for d

dm
ln [mV p

m(x)] is reversed when p < 1. QED

The following result gives the asymptotic behavior of V p
m(x) for large x.

Proposition 7 For p > 1, V p
m(x) has the asymptotic expansion

1

xp−1
− (p− 1)(m+ 1)

p x2p−1
+

(2p2 − 3p+ 1)(m2 + 3m+ 2)

2p2 x3p−1
+O

(
1

x4p−1

)

Proof: This follows from (7) since

V p
m(x) =

1

Γ(m+ 1) xp−1

∫ ∞

0

ume−u

(
1 + u

xp

) p−1

p

du

=
1

Γ(m+ 1) xp−1

∫ ∞

0

ume−u

[
1− (p− 1) u

p xp
+

(p− 1)(2p− 1) u2

2p2 x2p
+ . . .

]
du

=
1

xp−1

[
1− (p− 1) Γ(m+ 2)

p Γ(m+ 1) xp
+

(2p2 − 3p+ 1) Γ(m+ 3)

(2p2) Γ(m+ 1) x2p
+O

(
1

x3p

)]
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3 Recursion Relations and their Consequences

3.1 Recursion relations for V p
m

Although the case p = 2 is of primary interest in applications, we continue to
study general p is this section, as the proofs for general p are identical to those
for p = 2. In these recursions, our convention that V p

−1(x) = x1−p plays an
important role.

Proposition 8 For all m ∈ R, m ≥ 1, for all x > 0,

V p
m(x) =

1

m

[
(m− 1 +

1

p
− xp)V p

m−1(x) + xpV p
m−2(x)

]
. (24)

Proof: For m = 1, one gets that

V p
1 (x) = pex

p

[
(
1

p
− xp)

∫ ∞

x

e−tpdt+ x

]
= (

1

p
− xp)V p

0 (x) + xp−1V p
−1(x).

For m > 1, using (2) and integration by parts, we find

V p
m(x) =

pex
p

Γ(m+ 1)

∫ ∞

x

(tp − xp)m−1(tp − xp)e−tpdt

=
pex

p

mΓ(m)

[
(−xp

∫ ∞

x

e−tp(tp − xp)m−1dt

+
1

p

∫ ∞

x

e−tp((tp − xp)m−1 + (m− 1)ptp(tp − xp)m−2t2)dt

]

=
pex

p

mΓ(m)

[
(m− 1 +

1

p
− xp)

∫ ∞

x

e−tp(tp − xp)m−1dt

+ (m− 1)xp
∫ ∞

x

(tp − xp)m−2e−t2dt

]

=
1

m

[
(m− 1 +

1

p
− xp)V p

m−1(x) + +xpV p
m−2(x)

]

Repeated application of (24) gives a useful corollary. For m ∈ R, let ⌊m⌋
denote the “floor” of m, i.e., the largest natural number less than or equal to m.

Corollary 9 Let m ∈ R, m ≥ 1 and let n ∈ N such that n ≤ ⌊m⌋. Then

V p
m(x) =

1

pm

[
(1− pxp)V p

m−1(x) + V p
m−2(x) + . . . (25)

+ . . . [p(m− n) + 1]V p
m−n(x) + pxpV p

m−n−1(x)
]
.
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In particular, if m is a positive integer, then

V p
m(x) =

1

pm

[
(1− pxp)V p

m−1(x) +

m−2∑

k=0

V p
k (x) + pxpV p

−1(x)

]
. (26)

The expression (26) is well-defined for x = 0. Putting x = 0 and using
Proposition 5 (i), we obtain the (presumably well-known) identity

Γ(m+ 1
p
)

Γ(m+ 1)
=

1

pm

m−1∑

k=0

Γ(k + 1
p
)

Γ(k + 1)
(27)

3.2 Averaged potentials

These recursion relations are quite useful for studying the average of the first N
of the Vm. For N a positive integer, we extend (5) to

V p,N
av (x) =

1

N

N−1∑

m=0

V p
m(x) (28)

Note that for p = 1, V 1,N
av (x) = 1, for all x ≥ 0.

The next result follows immediately from (26).

Corollary 10 V p,N
av (x) = pV p

N(x)−
pxp

N

[
V p
−1(x)− V p

N−1(x)
]
.

For the important case p = 2, this reduces to

V N
av (x) = 2VN(x)−

2x2

N
[V−1(x)− VN−1(x)] (29)

The function V0(|x|) is convex on (0,∞) but has a cusp at x = 0. How-
ever, as discussed in property (f), for higher m both the convexity and cusp are
lost. Thus, for higher m, the Vm are somewhat smoother than one might want
for one-dimensional approximations to the Coulomb potential. The next result,
although straightforward, is important because it implies that the averaged po-
tentials V N

av (x) retain the cusp and convexity properties of V0 near the origin.

Proposition 11 The function V N
av (x) is convex for all x > 0 and

lim
x→0+

d

dx
V N
av (x) = − 2

N
.
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Proof: Using (5) and (15) one finds

d

dx
NV N

av (x) =

N−1∑

m=0

2x[Vm(x)− Vm−1] = 2x[VN−1 − V−1] = 2xVN−1 − 2.

Therefore, to show that V N
av is convex, we need to show that

xVN−1 =
1

Γ(N)

∫ ∞

0

uN−1e−udu

(1 + u
x2 )

1

2

is increasing. This holds as, for x > 0, the function hu(x) = [1 + u/x2]−1/2 is
increasing.

Similarly, one can show that for p > 1, V p,N
av is convex on (0,∞) and

lim
x→0+

d

dx
V p,N
av (x) = − p

N
.

For p < 1, the derviative becomes infinite at the origin; however, concavity of
V p,N
av on (0,∞) still holds.

3.3 Polynomials defined by recursion

We now observe that by repeatedly using (24) to eliminate the V p
m with the largest

value of m from (25) allows us to write V p
m in terms of the two “lowest” functions

(e.g., V p
0 and V p

−1 in the case of integer m) and that the coefficients in such
expressions define two classes of polynomials related to confluent hypergeometric
functions. We discuss the properties of these polynomials in some detail. First,
we make the statement above explicit.

Corollary 12 For m ≥ 1 there are polynomials P p
m(y) and Q

p
m(y) of degree ⌊m⌋

such that

V p
m(x) = P p

m(x
p)V p

m−⌊m⌋(x) + xpQp
m−1(x

p)V p
m−⌊m⌋−1(x). (30)

In the case of integer m (30) becomes

V p
m(x) = P p

m(x
p)V p

0 (x) + xpQp
m−1(x

p)V p
−1(x)

= P p
m(x

p)V p
0 (x) + xQp

m−1(x
p) (31)

where the second expression follows from our convention V p
−1(x) = x1−p. We

define P p
m(y) = 1 for m ∈ [0, 1) and Qp

m(y) = 0 for m ∈ [−1, 0). Then (30) holds
trivially for m ∈ [0, 1).

17



Proof: The desired polynomials are defined recursively. First let

P p
m(y) =

1

m

(
m− 1 +

1

p
− y

)
for m ∈ [1, 2), and (32)

Qp
m(y) =

1

m+ 1
for m ∈ [0, 1). (33)

Then (30) holds because it is equivalent to (24) for m ∈ [1, 2). For m ≥ 2 define
P p
m(y) by

P p
m(y) =

1

m

[(
m− 1 +

1

p
− y

)
P p
m−1(y) + y P p

m−2(y)

]
(34)

and for m ≥ 1 define Qp
m(y) by

Qp
m(y) =

1

m+ 1

[(
m+

1

p
− y

)
Qp

m−1(y) + y Qp
m−2(y)

]
. (35)

It is straightforward to use induction to check that (24) yields (30). QED

We now restrict ourselves to m ∈ N and study these polynomials in more
detail. The first few polynomials are given in the following Table.

m P p
m Qp

m

0 1 1
1 1

p
− y 1

2
(1 + 1

p
− y)

2 1
2

[(
y − 1

p

)2
+ 1

p

]
1
3

[
y + 1

2
(1 + 1

p
− y)(2 + 1

p
− y)

]

The following useful results, which hold for m ≥ 1, are easily checked by
induction. B(x, y) = Γ(x)Γ(y)

Γ(x+y)
is the Beta function.

P p
m(0) =

Γ(m+ 1
p
)

Γ(m+ 1)Γ(1
p
)
=

1

m B(m, 1
p
)

Qp
m(0) =

Γ(m+ 1 + 1
p
)

Γ(m+ 2)Γ(1
p
)
=

1

(m+ 1) B(m+ 1, 1
p
)

18



P p
m(y) =

1

m

[
1

p

m−1∑

j=0

P p
j (y)− y P p

m−1(y)

]
, and (36)

Qp
m(y) =

1

m+ 1

[
1

p

m−1∑

j=0

Qp
j (y)− y Qp

m−1(y) + 1]

]
. (37)

We now obtain two expressions for d
dx
V p
m(x). First, observe that using (31) in

(20) yields

d

dx
V p
m(x) = pxp−1

([
P p
m(x

p)− P p
m−1(x

p)
]
V p
0 (x) + x

[
Qp

m−1(x
p)−Qp

m−2(x
p)
])
.

Differentiating (31) yields after some simplifications

d

dx
V p
m(x) = pxp−1

[
(P p

m)
′ (xp)V p

0 (x) + P p
m(x

p)[V p
0 (x)− V p

−1(x)]

+ xp
(
Qp

m−1

)′
(xp)V p

−1(x) +
1
p
Qp

m−1(x
p)V p

−1(x)
]

where (P p
m)

′ (y) denotes d
dy
P p
m(y). Equating these expressions yields

−
[
(P p

m)
′ (xp) + P p

m−1(x
p)
]
V p
0 (x) = (38)[

xp
(
Qp

m−1

)′
(xp)− P p

m(x
p) + (1

p
− xp)Qp

m−1(x
p) + xpQp

m−2(x
p)
]
V p
−1(x)

This provides motivation for the following

Lemma 13 For m ∈ N, m ≥ 1,

d

dy
P p
m(y) = −P p

m−1(y), and (39)

y
d

dy
Qp

m−1(y) = P p
m(y)− (m+ 1)Qp

m(y) +mQp
m−1(y) (40)

Proof: We first prove (39) by induction. It can be verified for m = 1, 2 using the
Table above. Then using (34), we find

m
d

dy
P p
m(y)

=
(
m− 1 + 1

p
− y
) d
dy
P p
m−1(y)− P p

m−1(y) + y
d

dy
P p
m−2(y) + P p

m−2(y)

= −P p
m−1(y)−

(
m− 2 + 1

p
− y
)
P p
m−2(y)− y P p

m−3(y)

= −mP p
m−1(y).
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This implies that the coefficient of V p
0 in (38) is identically zero. Therefore the

coefficient of V p
−1 must also be identically zero. Substituting y = xp gives

y
d

dy
Qp

m−1(y) = P p
m(y) +

(
y − 1

p

)
Qp

m−1(y)− yQp
m−2(y)

= P p
m(y)− (m+ 1)Qp

m(y) +mQp
m−1(y)

where we used (35). QED

Note that since the left side of (40) is a polynomial of degree m − 1, this
implies the coefficients of the ym terms in P p

m and (m+1)Qp
m(y) are identical. In

fact, one can use (34) and (35) to see that the leading terms of P p
m is (−1)mym/m!

and that of Qp
m is (−1)mym/(m+ 1)!

A set of polynomials {pn(x)}belongs to the class known as Appell polynomials
[4] if they satisfy d

dx
pn(x) = pn−1(x). Therefore, (39) implies that for each fixed

p, the set (−)mP p
m(y) forms a family of Appell polynomials.

One can use (39) in (34) to replace P p
m−1 and P p

m−2 by derivatives of P p
m and

obtain a second order differential equation satisfied by P p
m. This allows us to

obtain a relationship between the polynomials P p
m and confluent hypergeometric

functions, which we denote 1F1(α, γ, y).

Theorem 14 For m ∈ N, m ≥ 1, P p
m(y) satisfies the differential equation

yφ′′(y)−
(
m− 1 +

1

p
− y

)
φ′(y)−mφ(y) = 0. (41)

Standard techniques show that (41) has a polynomial solution of the form
φ(y) =

∑m
k=0 bky

k with bk = − m+1−k
k(m+ 1

p
−k)

bk−1, k ≥ 1, b0 6= 0 arbitrary, and a second

solution of the form φ(y) =
∑∞

k=0 cky
k+m+1/p with ck = − k−1+1/p

k(m+ 1

p
+k)

ck−1, k ≥ 1,

c0 6= 0 arbitrary. Since P p
m(0) =

1

m B(m,
1
p
)
, we conclude that bk = (−1)k

k! (m−k)B(m−k,
1
p
)

and

P p
m(y) =

m∑

k=0

(−1)kΓ(m+ 1
p
− k)

Γ(k + 1)Γ(m+ 1− k)Γ(1
p
)
yk.

The restriction that 1/p be non-integer in the next result is neither serious,
nor unexpected, in view of Proposition 3.

Corollary 15 Let p 6= 1
n
for n ∈ N. Then

P p
m(y) =

1

m B(m, 1
p
)
e−y

1F1

(
1− 1

p
, 1− 1

p
−m, y

)
(42)
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Proof: Write φ(y) = e−yφ̂(y). Then it follows from (41) that φ̂ satisfies

yφ̂′′(y)−
(
m− 1 +

1

p
+ y

)
φ̂′(y)−

(
1− 1

p

)
φ̂(y) = 0. (43)

which has the form of the differential equation satisfied by the confluent hyperge-
ometric function. Comparing the behavior of P p

m(y) near y = 0 with that of the
well-known solutions to (43) suffices to complete the proof. QED

It is well-known [3] that for real α and γ, 1F1(α, γ, y) has at most finitely
many zeros on the real line. Hence, the same holds for P p

m. In fact, we can show
that P p

m has no zeros when m is even and exactly one when m is odd.
To show this, it is convenient to introduce the new variable z = 1

p
− y and

write P p
m(y) = P̃ p

m

(
1
p
− y
)
. The first few of these polynomials are P̃ p

0 (z) = 1,

P̃ p
1 (z) = z, and P̃ p

2 (z) =
1
2

(
z2 + 1

p

)
.

Lemma 16 For m ∈ N, m ≥ 2, the polynomials P̃ p
m(z) satisfy

(i) P̃ p
m(z) =

1

m

[
(m− 1 + z)P̃ p

m−1(z) +

(
1

p
− z

)
P̃ p
m−2(z)

]
,

(ii) P̃ p
m(z) =

1

m

[
1

p

m−2∑

j=0

P̃ p
j (z) + zP̃ p

m−1(z)

]
, and

(iii) d
dz
P̃ p
m(z) = P̃ p

m−1(z).

Proof: Follows immediately from substitution in (34), (36) and (39).

Corollary 17 For m ∈ N, m ≥ 0, all coefficients in the polynomials P̃ p
m(z) are

positive.

Proof: This follows immediately from the explicit expressions above for P̃ p
m when

m = 0, 1 and part (ii) of Lemma 16.

Proposition 18 Let m ∈ N, m ≥ 1

If m is even, P̃ p
m(z) ≥ 0.

If m is odd, P̃ p
m(z) has exactly one root zm.

Moreover, the roots form a strictly decreasing sequence with −m+ 1 ≤ zm ≤ 0.
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Proof: First note that Corollary 17 implies that P̃ p
m(z) ≥ 0 for all z ≥ 0 and

limz→∞ P̃ p
m(z) = ∞. Now we claim that

lim
z→−∞

P̃ p
m(z) =

{
−∞ if m is odd
∞ if m is even

This can easily be verified by induction using part(i) of Lemma 16 (i) above.
For m odd, P̃ p

m(z) has at least one root zm. We now prove by induction that
zm is the only root if m is odd and that P̃ p

m(z) ≥ 0 for all z if m is even. The
induction hypothesis is easily seen to hold for m = 0, 1. Suppose it is true up to
m−1 and consider P̃ p

m, withm odd. Then, by Lemma 16 (iii), d
dz
P̃ p
m(z) = P̃ p

m−1(z).

Since m − 1 is even, by the induction hypothesis P̃ p
m−1(z) ≥ 0. Thus P̃ p

m(z) is

increasing for all z ∈ R, which implies that for m odd P̃ p
m(z) has only one root.

Since P̃ p
m(z) > 0 when z > 0 that one root must satisfy zm ≤ 0.

If m is even, then d
dz
P̃ p
m(z) = P̃ p

m−1(z) which, by the induction hypothesis,

has exactly one root zm−1 ≤ 0. Therefore P̃ p
m(z) has a local extremum at zm−1.

Since d2

(dz)2
P̃ p
m(z) = P̃ p

m−2(z) and m − 2 is even, P̃ p
m−2(z) ≥ 0 by the induction

hypothesis and zm−1 is a local minimum for P̃ p
m(z). By Lemma 16 (i) we have

mP̃ p
m(zm−1) =

(
1
p
− zm−1

)
P̃ p
m−2(zm−1)

since P̃ p
m−1(zm−1) = 0. But by the induction hypothesis zm−1 ≤ 0 and P̃ p

m−2(zm−1) >

0 so that P̃ p
m(zm−1) > 0 as required.

It remains to be shown that the roots are decreasing and bounded below by
−(m− 1). Both can be easily checked for m = 1, 3 and then proved by induction
using Lemma 16 (i). We now let m be odd. Since P̃ p

m(z) is increasing to show
that zm > −m+1, it suffices to show that P̃ p

m(−m+1) < 0. For z = −m+1 the
recursion relation reduces to

mP̃ p
m(−m+ 1) =

(
1
p
+m− 1

)
P̃ p
m−2(−m+ 1)

which is negative by the induction assumption hypothesis that zm−2 ≥ −m + 3.
To show that zm < zm−2 it suffices to show that P̃ p

m(zm−2) > 0. But

mP̃ p
m(zm−2) = (m− 1 + zm−2)P

p
m−1(zm−2) ≥ 0

since P p
m−2(zm−2) = 0, zm−2 > −m+3 > −m+1, and P p

m−1(z) is positive. QED

We now restate the results above in terms of the behavior of the original
polynomials P p

m(y).
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Corollary 19 Let m ∈ N, m ≥ 1. Then

(i) If m is even, then P p
m(y) ≥ 0 for all y ∈ R.

(ii) If m is odd, then P p
m(y) has exactly one root ym ≥ 0.

(iii) For all m ≥ 1,

lim
y→−∞

P p
m(y) = ∞

lim
y→∞

P p
m(y) =

{
−∞ if m is odd
∞ if m is even

Although we were able to obtain an explicit expression for the polynomials
P p
m(x) relating them to confluent hypergeometric functions and analyze their

behavior in some detail, we do not much information about Qp
m(x). This is,

at least in part, because (40) mixes Qp
m(x) and P

p
m(x) and does not lead directly

to a differential equation for Qp
m(x). It would be interesting to know more about

the polynomials Qp
m(x).

4 Inequalities and Convexity

4.1 Inequalities for V0(x)

We first illustrate our strategy by proving a special class of inequalities for V0. The
convexity of 1/V0(x) follows directly from the optimal upper bound in this class
as given in Theorem 20 below. Although, as discussed at the end of this section,
these inequalities generalize to Vm the resulting upper bound is not sufficient
to establish the convexity of 1/Vm. For this we need a bound on the ration
Vm(x)/Vm−1(x). Nevertheless, these simple inequalities for V0, which can also be
interpreted as ratio bounds, are of some interest in their own right in a variety
of applications. Because the geometric strategy is also used in our more complex
proofs of ratio bounds, we think there is some merit in presenting it first here.

We now define

gk(x) =
k

(k − 1)x+
√
x2 + k

. (44)

Theorem 20 For x ≥ 0

gπ(x) ≤ V0(x) < g4(x) (45)

23



and these inequalities are optimal for functions of the form (44) with equality only
at gπ(0) = V0(0) =

√
π.

Proof: It is easy to see that the family of functions gk(x) is increasing in k and
that 0 < gk(x) < 1/x. In order to prove that the upper bound is optimal, we first
observe that g′k(x) = −k[gk(x)]2[x+ (k − 1)

√
x2 + k ]/

√
x2 + k and xgk(x)− 1 =

−kgk(x)/[x+
√
x2 + k ]. Then one can verify that

g′k(x) > 2[xgk(x)− 1]

⇐⇒ k√
x2 + k

(k − 1)
√
x2 + k + x

(k − 1)x+
√
x2 + k

<
2k

x+
√
x2 + k

⇐⇒ (k − 2)x2 + k(k − 3) < (k − 2)x
√
x2 + k

⇐⇒ x2(k − 2)(k − 4) + k(k − 3)2 < 0 (46)

when k > 3.We now restrict attention to 3 ≤ k ≤ 4 and let hk(x) = gk(x)−V0(x).
For k = 4, the expression (46) implies g′4(x) < 2[xgk(x) − 1] so that h′4(x) <

2xh4(x) for all x ≥ 0; whereas for k < 4 this holds only for x < ak =
√

k(k−3)2

(k−2)(4−k)
.

Since both V0(x) and gk(x) are positive and bounded above by 1/x, their difference
also satisfies |hk(x)| < 1/x→ 0.

For k = 4, if h4(x) ≤ 0 for some x > 0, then h′4(x) < 2xh4(x) is negative and
thus h4 is negative and strictly decreasing from a certain x on, which contradicts
limx→∞ h4(x) = 0. Thus h4(x) > 0 so that g4(x) > V0(x), for all x. Now suppose
that for some k < 4, gk is an upper bound, i.e. hk(x) ≥ 0 for all x ≥ 0. In
particular, hk(x) ≥ 0 for all x > ak. For k < 4, we find however that h′k(x) >
2xhk(x) holds for x > ak. Thus we get hk(x) ≥ 0 and strictly increasing for
all x > ak which contradicts limx→∞ hk(x) = 0. Thus the upper bound can not
hold when x > ak and k < 4. The lower bound also fails for k > π since then
hk(0) = gk(0)− V0(0) =

√
k −√

π > 0.
To establish the improved lower bound gπ ≤ V0(x) we note that the argument

above implies that hk(x) is negative for x > ak and 3 < k ≤ π. However for
k < π we have hk(0) < 0 so that hk(x) is also negative for very small x. If hk(x)
is ever non-negative, we can let b denote the first place hk(x) touches or crosses
the x-axis, i.e., hk(b) = 0 and hk(x) < 0 for x < b. Then hk must be increasing
on some interval of the form (x0, b). However, by the remarks above, hk(b) = 0
implies b ≤ ak so that h′k(x) < 2xhk(x) < 0 on (x0, b). Since this contradicts hk
increasing on (x0, b), we must have hk(x) < 0 for all x ≥ 0 if k < π.

Thus we have proved the lower bound gk(x) < V0(x) on [0,∞) for k < π.
Since gk is continuous and increasing in k, it follows that gπ(x) ≤ V0(x). To show
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that this inequality is strict except at x = 0, note that the right derivative of hk
at 0 satisfies h′k(0) = 2 − k so that h′π(0) < 0 and hπ(x) is negative at least on
some small interval (0, x1). Then we can repeat the argument above to show that
hπ(x) < 0 if x > 0. QED

As discussed in [7, 17, 18] the upper bound implies the convexity of 1/V0(x) on
(0,∞); in fact, it is not hard to use the fact that (15) reduces to d

dx
V0(x) = 2(xV0−

1) to see that the upper bound is equivalent to convexity. It was established
independently by Wirth [18] and by Szarek and Werner [17]. (The latter actually
proved slightly more by using (1) to define an asymmetric extension of V0(x) to
negative x. They showed in [17] that this extension is convex for x > − 1√

2
.)

Both bounds in (45) are sharper than the inequalities of Komatsu [9, 14].
The weaker lower bound g3(x) < V0(x) was used in [7] to show that the function
[1/V0(x)− x]2 /V0(x) is decreasing for x ≥ 0. The lower bound gπ(x) ≤ V0(x)
was established earlier by Boyd [5] as the optimal bound in a different class of
inequalities. There is an extensive literature (see. e.g. [14]) on bounds for V0(x);
however, the class of inequalities obtained using functions of the form gk(x) does
not seem to have been considered before so that the optimality of bounds of this
type for k = π and k = 4 seems new.

Mascioni [12] generalized the upper bound to p ≥ 2 for which he showed

V p
0 (x) <

4p

3pxp−1 +
√
p2x2p−2 + 8p(p− 1)xp−2

and also showed that this implies convexity of 1/V p
0 (x) for p ≥ 2.

In view of Property (a) of Section 1.2, it would seem natural to try to generalize
(20) using functions of the form

gmk (x) =
k

(k − 1)x+
√
x2 +m+ k

. (47)

Note that the functions gmk are increasing in k and that limk→∞ gmk (x) = 1
x
.

Therefore Property (a) implies that

gm1 (x) ≤ Vm(x) < lim
k→∞

gmk (x).

As gmk is continuous in k, there must exist im and jm such that

gmim(x) ≤ Vm(x) < gmjm(x). (48)
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However, we have not obtained explicit expressions for im and jm. One might
expect that the optimal lower bound occurs when im is chosen to satisfy gmim(0) =
Vm(0). However, numerical evidence shows that this is false; in fact, this choice
for im does not even yield an inequality.

4.2 Ratio Bounds

One of our main goals is to show that the function 1
Vm(x)

is convex for integer

m ≥ 1. The key to this is the realization that (45) can also be rewritten to give
bounds on the ratio V0(x)/V−1(x) = xV0(x). We now let

Gm
k (y) =

ky

(k − 1)y −m+
√
(y +m)2 + ky

(49)

and note that xgk(x) = G0
k(x

2) so that (45) is equivalent to

G0
π(x

2) ≤ xV0(x) =
V0(x)

V−1(x)
< G0

4(x
2).

For integer m > 0, convexity of 1
Vm(x)

can be shown to be equivalent to

Rm(x) ≡
Vm(x)

Vm−1(x)
< Gm

4 (x
2).

In addition to this upper bound, we can show the following

Theorem 21 Let m ∈ N, m ≥ 0. Then the inequalities

Gm−1
8 (x2) < Rm(x) < Gm

4 (x
2) (50)

hold and are optimal in k for the class of functions of the form Gm
k (x

2).

The upper bound is optimal in k for all m. The lower bound is optimal in
the sense that 8 is the largest integer for which the lower bound in (50) holds for
all m. However, as we discuss at the end of Section 5.3, for fixed m one can find
k(m) such that Gm−1

k(m)(x
2) < Rm(x) holds with k(m) > 8.

Since Gm
k (y) is increasing in both m and k, its behavior at zero and infinity al-

lows us to also draw some conclusions about the optimality in m of (50). Rm(0) =
1− 1

2m
and Gm

k (0) = 1− 1
1+2m

for all k. Therefore, Gν
k(0) < Rm(0) < Gµ

k′(0) implies

ν ≤ m− 1
2
and µ ≥ m− 1

2
for all k, k′. Thus, if we insist that m be integer, there

26



is no choice of k which allows m−1 to be replaced by m in the lower bound when
m > 0, or m by m − 1 in the upper bound. This argument does not, however,

rule out the possibility of bounds of the form G
m−1

2
k (x2) < Rm(x) < G

m−1
2

k′ (x2).
To examine the behavior at infinity, note that

Gm
k (y) = 1− 1

2y
+

4m+ k + 2

8y2
+O

(
1

y3

)
, and

Rm(
√
y) = 1− 1

2y
+

4m+ 6

8y2
+O

(
1

y3

)

where the asymptotic expansion for Rm follows from Proposition 7. It then follows
that Rm(

√
y) < Gµ

k′(y) implies µ > m+ 1 − k
4
. Thus m is optimal for the upper

bound if k ≤ 4 and any attempt to decrease m would require an increase in k.
Furthermore, µ = m implies k ≥ 4 so that the upper bound in (50) is optimal in
k.

We postpone the proof of Theorem 21, which requires a lengthy computation
even for the case p = 2, to the next section. Our proof uses induction on m.
Therefore, we are able to establish (50) and the theorems in the next section
only for m a positive integer. We believe that they are also true for non-integer
m. However, a proof would require either a different method or independent
verification of the upper bound for an initial range, such as −1 < m < 0.

The ratio Rm(x) is of interest in its own right, and our results are sufficient to
establish that it is increasing in x on (0,∞). This is proved in the next section
after Theorem 23, which uses a similar argument.

Theorem 22 For m ∈ N, the ratio Rm+1(x) =
Vm+1(x)
Vm(x)

is increasing in x.

4.3 Convexity of 1/Vm

We now prove some important consequences of Theorem 21. The first is

Theorem 23 For all m ∈ N, the function 1/Vm(x) is convex on [0,∞).

Proof: We need to show that
(

1

Vm(x)

)′′
=

2[Vm(x)
′]2 − Vm(x)(Vm(x))

′′

Vm(x)3
> 0. (51)

It follows from the differential equation (15) and the recursion relation (24) that

Vm(x)
′′ = 2

[
Vm(x)(1 + 2m+ 2x2)− 2Vm−1(x)(x

2 +m)
]
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so that (51) holds if and only if

[Vm(x)]
2(1 + 2m− 2x2) + 2Vm−1(x)Vm(x)(3x

2 −m)− 4x2[Vm−1(x)]
2 ≤ 0.

After division by [Vm−1(x)]
2 this can be rewritten as P [Rm(x)] ≤ 0 where

P (z) = z2(1 + 2m− 2x2) + 2z(3x2 −m)− 4x2.

Writing the roots of P (z) = Az + 2Bz +C in the non-standard form −C
B±

√
B2−AC

,

we find that Gm
4 (x

2) is either the smaller of two positive roots (when x2 > m+ 1
2
)

or the only positive root (when x2 < m + 1
2
). Since P (0) < 0, in both cases, we

can conclude that
z < Gm

4 (x
2) implies P (z) < 0.

Therefore, it follows from the upper bound in Theorem 21 that P [Rm(x)] < 0,
hence (51) holds. QED

Proof of Theorem 22: Using (15) one finds that

d

dx
Rm+1(x) = 2x

[
Rm+1(x)

Rm(x)
− 1

]
.

After rewriting this in terms of Vm and then using the recursion relation (24) with
p = 2 to eliminate Vm+1, one finds that R′

m+1(x) ≥ 0 if and only if

2(m+ 1)[Rm(x)]
2 − (2m+ 1− 2x2)Rm(x)− 2x2 ≤ 0.

The polynomial P (z) = 2(m+1)z2 − (2m+1− 2x2)z− 2x2 has one positive and
one negative root, and R′

m+1(x) ≥ 0 if and only if Rm(x) lies between these two
roots. Since 1 ≥ Rm(x) > 0, it follows that Rm+1(x) is increasing if and only if
Rm(x) is less than the larger root, i.e.,

Rm(x) ≤
4x2√

4(x2 +m)2 + 1 + 4m+ 12x2 + 2x2 − 2m− 1
.

where, we have again written the root in the non-standard form C
−B+

√
B2−AC

.
Then using the upper bound of Theorem 21, we see that it suffices to show that

Rm(x) ≤ 4x2√
(x2 +m)2 + 4x2 + 3x2 −m

≤ 4x2√
4(x2 +m)2 + 1 + 4m+ 12x2 + 2x2 − 2m− 1
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or, equivalently that

√
(x2 +m)2 + 4x2 + 3x2 −m

≥
√
4(x2 +m)2 + 1 + 4m+ 12x2 + 2x2 − 2m− 1

which is easily checked.

5 Proof of Ratio Bounds

The proofs in this section, although elementary, are quite long and tedious. The
details were checked using Mathematica.

5.1 Differential inequality

In order to prove Theorem 21, it suffices to establish the following

Lemma 24 Let Gm
k be given by (49). Then

(i) For m ≥ 1,
d

dx
Gm

4 (x
2) ≤ 2x(

Gm
4 (x

2)

Gm−1
4 (x2)

− 1).

(ii) For m ≥ 4,
d

dx
Gm

8 (x
2) ≥ 2x(

Gm
8 (x

2)

Gm−1
8 (x2)

− 1),

but the inequality (ii) does not hold for m < 4.

Proof: The proof is based on the elementary principle that if a function on the
half-line is zero at the origin and increasing, then it is non-negative. Unfortu-
nately, the actual verification is rather tedious and requires the repeated use of
this principle. For simplicity, we put x2 = y and assume y ≥ 0. Then (i) is
equivalent to

Em(y) ≡
(

Gm
4 (y)

Gm−1
4 (y)

− 1

)
− d

dy
Gm

4 (y) ≥ 0. (52)

Let Bm = (m2 + y2 + 4y + 2my)
1

2 . Then

Gm
4 (y) =

4y

Bm + 3y −m
.
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and

Em(y) =
Bm [4m+ (Bm + 3y −m)(Bm−1 − Bm + 1)]− (4m2 + 8y + 4my)

Bm (Bm + 3y −m)2
.

Thus Em(y) ≥ 0 if and only if

Bm

(
3m+Bm−1[Bm + 3y −m]

)
+m3 + 2my

≥ 3m2 + 4y + 11y2 +m2y + 5my2 + 3y3 +Bm

(
(y +m)2 + y

)
.

We put

s = s(y,m) = 3m2 + 4y + 11y2 +m2y + 5my2 + 3y3,

t = t(y,m) = 2my +m3, and

h = h(y,m) = (y +m)2 + y − 3m.

Then Em(y) ≥ 0 if and only if

BmBm−1(Bm + 3y −m) ≥ Bmh+ s− t. (53)

Notice that both sides of (53) are positive. For the left side this follows immedi-
ately from Bm > m. For the right, note that Bmh(0) + s(0)− t(0) = 0 and

d

dy
[Bmh(y) + s(y)t(y)]

=
1

Bm

[
6y + 12my + 9m2y + 12y2 + 9my2 + 3y3

+ Bm(22y + 10my + 9y2) + 4Bm − 2mBm + 3m3 − 6m+m2Bm

]
.

Now observe that

4Bm − 2mBm + 3m3 − 6m+m2Bm

= 3m(m2 − 2) +Bm(m
2 − 2m+ 4) ≥ 3m(m2 − 1) ≥ 0.

since m ≥ 1 and Bm ≥ m. Hence Bmh+ s− t is increasing in y and the right side
of (53) is also positive. Therefore we can square both sides of (53) to conclude
that it is equivalent to

F (y) = Bmf1(y)− f2(y) ≥ 0, (54)
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where

f1(y) = (m+ y)(y3 +my2 + 3y2 −m2y − 3my + 2y −m3 + 2m2)

and

f2(y) = y5 + 3my4 + 5y4 + 2m2y3 + 5my3 + 2y3

− 2m3y2 − 3m2y2 − 3m4y −m3y + 6m2y −m5 + 2m4.

Note that F (0) = 0. Therefore, to prove (54) it is enough to show that d
dy
F (y) =

Bmf
′
1(y) +

f1(y)(2+y+m)
Bm

− f ′
2(y) ≥ 0, or equivalently

D(y) ≡ d1(y)−Bmd2(y) ≥ 0, (55)

where

d1(y) = B2
mf

′
1(y) + f1(y)(2 + y +m)

= 6m3 −m4 − 3m5 + 12my + 4m2y − 13m3y − 7m4y + 20y2

+ 14my2 + 7m2y2 + 2m3y2 + 48y3 + 49my3 + 18m2y3 + 30y4

+ 17my4 + 5y5, and

d2(y) = f ′
2(y) = 6m2 −m3 − 3m4 − 6m2y − 4m3y

+ 6y2 + 15my2 + 6m2y2 + 20y3 + 12my3 + 5y4.

Note that D(0) = 0. Therefore, to prove (55) it is enough to show that d
dy
D(y) =

d′1(y)− Bmd
′
2(y)− d2(y)(2+y+m)

Bm
≥ 0, or equivalently,

G(y) ≡ Bmg1(y)− g2(y) ≥ 0, (56)

where

g1(y) = d′1(y)

= 12m+ 4m2 − 13m3 − 7m4 + 40y + 28my + 14m2y + 4m3y

+ 144y2 + 147my2 + 54m2y2 + 120y3 + 68my3 + 25y4, and

g2(y) = B2
md

′
2(y) + d2(y)(2 + y +m)

= 12m2 + 4m3 − 13m4 − 7m5 − 18m2y − 13m3y − 3m4y

+ 60y2 + 180my2 + 183m2y2 + 58m3y2 + 298y3

+ 353my3 + 122m2y3 + 170y4 + 93my4 + 25y5.
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Note that G(0) = 0. Therefore, to prove (56) it is enough to show that d
dy
G(y) =

Bmg
′
1(y) +

g1(y)(2+y+m)
Bm

− g′2(y) ≥ 0, or equivalently

H(y) = h1(y)− Bmh2(y) ≥ 0, (57)

where

h1(y) = B2
mg

′
1(y) + g1(y)(2 + y +m)

= 24m+ 60m2 + 6m3 − 13m4 − 3m5 + 240y + 300my + 460m2y

+ 347m3y + 113m4y + 1520y2 + 2246my2 + 1663m2y2 + 482m3y2

+ 2112y3 + 2233my3 + 738m2y3 + 930y4 + 497my4 + 125y5, and

h2(y) = g′2(y)

= −18m2 − 13m3 − 3m4 + 120y + 360my + 366m2y + 116m3y

+ 894y2 + 1059my2 + 366m2y2 + 680y3 + 372my3 + 125y4.

Note that H(0) = 12m(2 + 5m+ 2m2) > 0. Therefore, to prove (57) it is enough

to show that d
dy
H(y) = h′1(y)− Bmh

′
2(y)− h2(y)(2+y+m)

Bm
≥ 0, or equivalently

l1(y)Bm − l2(y) ≥ 0, (58)

where

l1(y) = h′1(y)

= 240 + 300m+ 460m2 + 347m3 + 113m4 + 3040y + 4492my

+ 3326m2y + 964m3y + 6336y2 + 6699my2 + 2214m2y2 +

+ 3720y3 + 1988my3 + 625y4, and

l2(y) = B2
mh

′
2(y) + h2(y)(2 + y +m)

= 84m2 + 316m3 + 347m4 + 113m5 + 720y + 2520my + 5046m2y

+ 3899m3y + 1077m4y + 9180y2 + 15780my2 + 11727m2y2

+ 3178m3y2 + 12202y3 + 13145my3 + 4202m2y3 + 4970y4

+ 2613my4 + 625y5.

Note that l1(y) ≥ 0 and l2(y) ≥ 0 for all y ≥ 0. Therefore (58) holds, if and only
if L(y) = B2

m(l1(y))
2− (l2(y))

2 ≥ 0, which follows immediately from the fact that
all the coefficients are positive in

L(y) = 4(14400m2 + 36000m3 + 75936m4 + 97368m5 + 78972m6 + 37188m7

+ 8136m8 + 57600y + 172800my + 717360m2y + 1373400m3y
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+ 1732428m4y + 1360314m5y + 599454m6y + 111444m7y + 1344000y2

+ 3838560my2 + 8437260m2y2 + 11062920m3y2 + 8495031m4y2

+ 3499083m5y2 + 595986m6y2 + 9342880y3 + 24217360my3

+ 32546720m2y3 + 24561680m3y3 + 9950080m4y3 + 1694280m5y3

+ 17918380y4 + 37038224my4 + 34271234m2y4 + 15627870m3y4

+ 2862630m4y4 + 15343236y5 + 23700982my5 + 13930330m2y5

+ 2982516m3y5 + 6445963y6 + 6618363my6 + 1887294m2y6

+ 1302640y7 + 667056my7 + 101250y8).

To prove (ii) we proceed similarly, but now let Bm(y) =
√
(y +m)2 + 8y and

Em(y) =
d
dy
Gm

8 (y)− (
Gm

8
(y)

Gm−1

8
(y)

− 1), noting that

Gm
8 (y) =

8y

Bm + 7y −m
.

We now need to show that Em(y) ≥ 0 for all m ≥ 4. As the argument is similar
to that above, we omit the details except to indicate the steps leading to the
condition m ≥ 4. Observe that Em(y) ≥ 0 if and only if

Bm((y +m)2 + y − 7m)

+7m2 −m3 + 24y − 2my + 5m2y + 55y2 + 13my2 + 7y3

≥ BmBm−1(7y −m+Bm). (59)

Again, both sides of the inequality are positive. Hence we can square both sides
of the inequality and, as above get that (59) is equivalent to

F (y) = f1(y)−Bmf2(y) ≥ 0, (60)

with the appropriate f1 and f2. Again F (0) = 0. Therefore, in order to prove
(60), it is enough to show that d

dy
F (y) ≥ 0, or equivalently, after rewriting,

D(y) = Bmd1(y)− d2(y) ≥ 0, (61)

with the appropriate d1 and d2. And again D(0) = 0. We repeat the procedure:
To prove (61), it is enough to show that d

dy
D(y) ≥ 0, or equivalently,

e1(y)− Bme2(y) ≥ 0,

with the appropriate e1 and e2. e1 and e2 turn out to be both positive for y ≥ 0.
Therefore (61) holds if

L(y) = (e1(y))
2 − (Bme2(y))

2 ≥ 0.
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L(0) = 0 and

L′(0) = 192m2(m− 4)(1 + 2m)(480 + 64m+ 90m2 + 33m3).

Thus L′(0) ≥ 0 if and only if m ≥ 4. For all m ≥ 4, L′′(y) ≥ 0 for all y ≥ 0. This
finishes (ii). QED

5.2 Proof of Theorem 21

We will prove by induction that Rm(x) < Gm
4 (x

2) for m = 0, 1, 2, 3, . . . As ob-
served earlier, this inequality holds for m = 0, since it is then equivalent to the
upper bound in (45). Let

Hm(x) = Gm
4 (x

2)−Rm(x).

Then the upper bound in Theorem 21 is equivalent to Hm(x) ≥ 0. This can be
verified using the strategy of Section 4.1 if the following conditions hold

(i) Hm(0) > 0.

(ii) lim
x→∞

Hm(x) = 0.

(iii) H ′
m(x) ≤ Fpos(x)Hm(x) for some strictly positive function Fpos(x) > 0.

Conditions (i) and (ii) hold. Indeed,

Hm(0) =
2m

1 + 2m
− Γ(m)Γ(m+ 1

2
)

Γ(m+ 1)Γ(m− 1
2
)
=

1

2m(1 + 2m)
,

and
lim
x→∞

Hm(x) = 0,

since lim
x→∞

Rm(x) = 1, and for all k ≥ 1, lim
x→∞

Gm
k (x) = 1.

We check now condition (iii). It follows from Lemma 24 (i) and (52) that

H ′
m(x) ≤ 2x

[
Gm

4 (x
2)

Gm−1
4 (x2)

− Rm(x)

Rm−1(x)

]

=
2x

Gm−1
4 (x2)Rm−1(x)

[
Gm

4 (x
2)Rm−1(x)−Gm−1

4 (x2)Rm(x)
]

≤ 2x

Rm−1(x)

[
Gm

4 (x
2)−Rm(x)

]

=
2x

Rm−1(x)
Hm(x)
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where the inequality follows from the induction hypothesis Rm−1(x) < Gm−1
4 (x2).

Thus (iii) holds with Fpos(x) = 2x/Rm−1(x).
For m ≥ 4, the lower bound is proved similarly. One considers Hm(x) =

Rm(x)−Gm
8 (x

2) instead and uses Lemma 24(ii). The cases R1, R2 and R3 have
to be verified directly as Lemma 24 (ii) only covers the cases Rm for m ≥ 4.

Using (24), R1 ≥ G0
8 is equivalent to showing that

x

V0(x)
≥ 9x+ 14x3 + (2x2 − 1)

√
8 + x2

2(7x+
√
8 + x2)

.

As V0 is always positive, this inequality holds trivially for those x, for which the
right hand side is negative or zero. Therefore we only need to prove the inequality
on the interval [x0,∞), x0 ≃ 0.2511, where

9x+ 14x3 + (2x2 − 1)
√
8 + x2 ≥ 0.

Hence we need to show that for all x ∈ [x0,∞),

V0(x) ≤ 2x
7x+

√
8 + x2

9x+ 14x3 + (2x2 − 1)
√
8 + x2

= 2x
6x2 − 1

1 + 6x2 + 12x4 − 2x
√
8 + x2

. (62)

Put h1(x) = 2x 6x2−1
1+6x2+12x4−2x

√
8+x2

. By Theorem 20 of Section 4.1, inequality (62)

is true for all x ∈ [x0,∞), for which

g4(x) ≤ h1(x).

This last inequality holds only on an interval [x0, x1], x1 ≃ 1.399. For all x ≥ x1,
we show that

h1(x) <
1

x

and
h′1 ≤ 2(xh1 − 1).

Then (62) follows as in Section 4.1.
Next, we find that R2 ≥ G1

8 is equivalent to V0(x) ≥ h2(x), where

h2(x) = 2x
3 + 9x2 + 14x4 + (2x2 − 3)(8x2 + (1 + x2)2))

1

2

−3− 7x2 + 32x4 + 28x6 + (3− 4x2 + 4x4)(8x2 + (1 + x2)2))
1

2
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and R3 ≥ G2
8 is equivalent to V0(x) ≤ h3(x) where

h3(x) =
2x

N(x)

[
−30− 23x2 + 32x4 + 28x6 +

√
8x2 + (2 + x2)2 (15− 8x2 + 4x4)

]
,

with

N(x) = 30 + 3x2 − 42x4 + 92x6 + 56x8

+(8x2 + (2 + x2)2))
1

2 (−15 + 18x2 − 12x4 + 8x6).

Again, we have to check these inequalities for V0 only for those x, for which the
right hand sides are positive. We then proceed as for R1 and show that gπ ≥ h2
up to a certain x2 and that h2 <

1
x
, h′2 ≥ 2(xh1 − 1) on [x2,∞). Similarly, we

show that g4 ≤ h3 up to a certain x3 and that h3 <
1
x
, h′3 ≤ 2(xh1−1) on [x3,∞).

QED

Note that these arguments also show that on the interval [x1,∞) the function
h1 is a better upper bound for V0 than g4; on [x2,∞) the function h2 is a better
lower bound for V0 than gπ; and on [x3,∞) the function h3 is a better upper
bound for V0 than g4. In fact, h3 ≤ h1 ≤ g4 for x > x3.

5.3 Optimality of bounds

We still need to consider optimality of the lower bound in upper bound in (50 in
the parameter k. We continue the strategy above using similar notation so that

now Bm =
√

(y +m)2 + ky and Em(y) =
[

Gm
k
(y)

Gm−1

k
(y)

− 1
]
− d

dy
Gm

k (y) with

Gm
k (y) =

ky

Bm + (k − 1)y −m
.

Then Em(y) ≤ 0 if and only if,

2BmBm−1(Bm + (k − 1)y −m) ≤ 2Bm(y + (y +m)2 − (k − 1)m) + P (63)

where

P = −2m2 + 2km2 − 2m3 − 2ky + k2y − 4my − 6m2y + 2km2y

− 2y2 − 2ky2 + 2k2y2 − 6my2 + 4kmy2 − 2y3 + 2ky3.

For m ≥ 1 and k ≥ 2 both sides of the inequality are positive. Therefore we can
square both sides and get that Em(y) ≤ 0 if and only if

F (y) = f1(y)−Bmf2(y) ≥ 0,
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where

f1(y) = −16km4 + 8k2m4 + 32m5 − 16km5 − 20k2m2y + 8k3m2y + 8km3y

− 4k2m3y + 160m4y − 96km4y + 8k2m4y − 4k3y2 + k4y2

+ 120km2y2 − 84k2m2y2 + 12k3m2y2 + 320m3y2 − 224km3y2

+ 32k2m3y2 + 20k2y3 − 20k3y3 + 4k4y3 + 152kmy3 − 124k2my3

+ 24k3my3 + 320m2y3 − 256km2y3 + 48k2m2y3 + 56ky4 − 52k2y4

+ 12k3y4 + 160my4 − 144kmy4 + 32k2my4 + 32y5 − 32ky5 + 8k2y5,

f2(y) = 4
(
−4km3 + 2k2m3 + 8m4 − 4km4 − 3k2my + k3my + 2km2y

− k2m2y + 32m3y − 20km3y + 2k2m3y + k2y2 + 16kmy2 − 12k2my2

+ 2k3my2 + 48m2y2 − 36km2y2 + 6k2m2y2 + 10ky3 − 9k2y3 + 2k3y3

+ 32my3 − 28kmy3 + 6k2my3 + 8y4 − 8ky4 + 2k2y4
)
.

Then F (0) = 0 and in order that F ≥ 0, we must have d
dy
F (0) ≥ 0. Computing

d
dy
F (y), we find that d

dy
F (0) = 0. We apply the same procedure as in the proof of

Lemma 24, compute the successive derivatives and evaluate them at 0. Evaluating
the derivative at 0, in the fourth step of the procedure gives the value

24k3m(1 + 2m)(km− 6m− k).

Therefore, in order that (63) (which is the condition for the lower bound) holds
for all m ≥ 2, we have to have at least that k ≥ limm→∞

6m
m−1

= 6. Thus for
m = 2, k ≥ 12 will do, for m = 3, k ≥ 9, for m = 4, k ≥ 8 and so fourth.
Therefore, as Gm

k is increasing in k, it seems a natural choice to pick k = 12 or
bigger for the lower bound. And indeed, one can check that Gm

k satisfies the lower
bound condition of Lemma 24 for k ≥ 12 and m ≥ 2. However, it is not true that
for k > 8, Gm−1

k is a lower bound for Rm, for all m ≥ 1. It is a lower bound for all
m ≥ m(k), from a certain m(k) on. Thus the induction in the proof of Theorem
21 cannot start at m = 0 or m = 1. For m < m(k), there exists xm such that
Rm −Gm−1

k ≥ 0 on [0, xm] and Rm −Gm−1
k < 0 on (xm,∞).

5.4 Extensions to general p

For p = 1, all the functions involved are identically equal to 1 and hence trivially
convex. For large x, 1/V p

m(x) ≈ xp−1 and xp−1 is concave for 1 < p < 2. Hence
we can not expect convexity of 1/V p

m on (0,∞) for p in (1, 2). It was shown
in [12] that 1

V p
0

is not convex on R+ for 0 < p < 1. Therefore, we study only

generalizations to p > 2. Our method of proof yields verification of the convexity
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of 1
V p
m

for all m ≥ 1 up to at least p = 4. However this method breaks down for
larger p.

We generalize our previous notation to Rp
m(x) =

V p
m(x)

V p
m−1

(x)
, and observe that

d

dx
Rp

m(x) = pxp−1

[
Rp

m(x)

Rp
m−1(x)

− 1

]
. (64)

For k ≥ 1, m ≥ 0, p ≥ 1 we generalize Gm
k to

Gm,p
k (xp) =

kpxp

p[(k − 1)xp −m] +
√
p2(xp +m)2 + 2kp(p− 1)xp

.

The proofs of Theorems 21, 22 and 23 can be extended provided that the
analogue of Lemma 24 holds. This is not the case for large p. However, although
the generalization of the upper bound in Theorem 21 is a necessary and sufficient
condition for convexity of 1/V p

m(x), Lemma 24 is only a sufficient condition for
Theorem 21. Indeed, we were able to establish the lower bound in Theorem 21 for
m = 1, 2, 3 even though part (ii) of Lemma 24 does not hold for m < 4. Hence,
the fact that Lemma 24 breaks down for large p does not preclude convexity of
1/V p

m(x). On the contrary, numerical evidence suggests that 1
V p
m

is convex for all
p ≥ 2.

Lemma 25 For all 4 ≥ p ≥ 2, m ≥ 1,

d

dx
Gm,p

4 (xp) ≤ pxp−1

[
Gm,p

4 (xp)

Gm−1,p
4 (xp)

− 1

]

This is equivalent to

Ep
m = pxp−1

[
Gm,p

4 (xp)

Gm−1,p
4 (xp)

− 1

]
− d

dx
Gm,p

4 (xp) ≥ 0

which allows us to make some remarks about the range of validity. Although
Lemma 25 can probably be extended to some higher p, it does not hold for all
p,m. On the contrary, for allm ≥ 1 there exists p(m) and an interval (x

p(m)
1 , x

p(m)
2 )

such that Ep
m < 0 on that interval for all p ≥ p(m). For example, numerical results

show that for m = 1, an interval on which Em < 0 exists when p ≥ 10; for m = 2
when p ≥ 14 and for m = 3 when p ≥ 18.

For simplicity, we only sketch the proof of Lemma 25 and give the final ex-
pressions for p = 3. Similar expressions can be given for p = 4. We have checked
the details using Mathematica, but omit the long formulas. As the expressions
involved are monotone in p, this suffices for the entire interval 2 ≤ p ≤ 4.
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Proof: Let Bm =
√
p2(y +m)2 + 8p(p− 1)y. Then Ep

m ≥ 0 is equivalent to

BmBm−1(Bm + 3py − pm)

≥ pBm

[
p(y +m)2 + y(5p− 8)− 3pm

]
+ p2

{
3m2p−m3p

+ y(−8 + 8m+ 8p− 6mp+m2p) + y2(−24 + 23p+ 5mp) + 3py3
}
.

Following the procedure used to prove Lemma 24 (i), we eventually find that it
would suffice to show that

l1(y)Bm − l2(y) ≥ 0, (65)

where, for p = 3,

l1(y) = 3(5120 + 2880m+ 13800m2 + 11034m3 + 3051m4 + 169600y

+ 199632my + 116820m2y + 26028m3y + 298296y2 + 239706my2

+ 59778m2y2 + 133920y3 + 53676my3 + 16875y4), and

l2(y) = 27(−2048m+ 192m2 + 3448m3 + 3678m4 + 1017m525600y

+ 49920my + 76152m2y + 45330m3y + 9693m4y + 200000y2

+ 250152my2 + 139266m2y2 + 28602m3y2 + 195880y3

+ 157254my3 + 37818m2y3 + 59640y4 + 23517my4 + 5625y5).

Both l1(y) and l2(y) in (65) are positive, and hence (65) is equivalent to

L = l1(y)
2B2

m − l2(y)
2 ≥ 0.

which can be verified for m ≥ 1. QED
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