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Abstract. We examine the behavior of Newton’s method in floating point arithmetic, allowing
for extended precision in computation of the residual, inaccurate evaluation of the Jacobian and
unstable solution of the linear systems. We bound the limiting accuracy and the smallest norm of
the residual. The application that motivates this work is iterative refinement for the generalized
eigenvalue problem. We show that iterative refinement by Newton’s method can be used to improve
the forward and backward errors of computed eigenpairs.
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1. Introduction. This work is motivated by the symmetric definite generalized
eigenvalue problem Ax = λBx (A and B symmetric and one of them positive definite),
for which no method is known that takes advantage of the symmetry, is efficient, and
is backward stable. For the special case where both matrices are positive definite,
such a method is available [26]. The aim is to show that iterative refinement by New-
ton’s method can be used to improve the forward and backward errors of computed
eigenpairs. An important question is how accurately the residuals must be evaluated
in order to improve the relative forward error and/or the backward error.

For added generality we give a detailed analysis of the general Newton method
in floating point arithmetic, allowing for extended precision in computation of the
residual, possibly inaccurate evaluation of the Jacobian and unstable linear system
solvers. We bound the limiting accuracy that can be obtained and the smallest norm
of the residual.

Lancaster [19], Woźniakowski [28], Ypma [29], [30], and Dennis and Walker [6]
have also considered the effects of inaccuracy, computational or otherwise, on New-
ton’s method for solving nonlinear algebraic equations. None of these authors analyzed
the behavior of the residual. Lancaster and Ypma were interested in how the approx-
imate iterate is related to the exact one rather than the error in the approximate
iterate. Woźniakowski carried out his analysis with the big-Oh notation and therefore
his results contain unknown constants. We follow the same approach as Dennis and
Walker [6] in that our results are based directly on the error in the computed iterates.
The analysis in [6] is very general and uses several assumptions and constants that
are difficult to interpret and understand even for the special case discussed therein
(iterative refinement for linear systems of equations).

The residual contains information that is crucial for improving an approximate
solution by Newton’s method. Thus it should be computed as accurately as possible.
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Recently, mixed precision BLAS (XBLAS) routines have been proposed as a standard
[2], where extended precision arithmetic is used internally to the BLAS and then the
output is rounded to working precision. These new BLAS make the computation of
the residual in mixed precision feasible for many problems, including the generalized
eigenvalue problem considered here.

We first rework the forward error analysis of [6] for Newton’s method in floating
point arithmetic. We use different assumptions that are more appropriate when we
have access to extended precision in computation of the residual and when we are
using a possibly unstable linear system solver. The results we obtain are of more
practical use than those in [6], [19], [28], [29] but consistent with them. We also
estimate the limiting accuracy that can be obtained near a solution.

Next, we study the convergence of the norm of the residual, bounding the smallest
norm. For many problems the backward error is a scaled residual norm, in which case
we can use our results to bound the backward error. The idea of using iterative refine-
ment to obtain a small backward error with a potentially unstable solution method
has been investigated for linear systems by several authors, including Jankowski and
Woźniakowski [18], Skeel [22], and Higham [17], and more recently for the algebraic
Riccati equation by Ghavimi and Laub [11]. The idea does not seem to have been
applied previously to the generalized eigenvalue problem.

In section 3 we apply our results to linear systems and to the standard and
generalized eigenvalue problems. In section 4 we present numerical examples for the
symmetric definite eigenvalue problem that motivated the whole analysis.

2. Newton’s method in floating point arithmetic.

2.1. Basics and notation. We begin by describing our notation. Let F : R
m �→

R
m be continuously differentiable on R

m. We denote by J the Jacobian matrix
(∂Fi/∂vj) of F and assume that J is Lipschitz continuous with constant β in R

m,
that is,

‖J(w)− J(v)‖ ≤ β‖w − v‖ for all v, w ∈ R
m,

where ‖ ·‖ denotes any vector norm and the corresponding operator norm. We denote
by κ(J) = ‖J‖‖J−1‖ the condition number of the matrix J . We attempt to solve the
system of nonlinear equations F (v) = 0 by Newton’s method:

J(vi)(vi+1 − vi) = −F (vi), i ≥ 0,(2.1)

where v0 is given. We implement (2.1) as
Solve J(vi)di = −F (vi),
vi+1 = vi + di.

Newton’s method is attractive because under appropriate conditions it converges
rapidly from any sufficiently good initial guess. In particular, if the Jacobian is non-
singular at the solution, local quadratic convergence can be proved [5, Thm. 5.2.1].
The Kantorovich theorem yields a weaker bound on the convergence rate but makes
no assumption on the nonsingularity of Jacobian at the solution [5, Thm. 5.3.1], [24].

We use hats to denote computed quantities. We work with the standard model
of floating point arithmetic [16, section 2.3]

fl(x op y) = (x op y)(1 + δ), |δ| ≤ u, op = +,−, ∗, /,

where u is the unit roundoff.
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In floating point arithmetic, we have

v̂i+1 = v̂i − (J(v̂i) + Ei)
−1
(F (v̂i) + ei) + εi,(2.2)

where
• ei is the error made when computing the residual F (v̂i),
• Ei is the error incurred in forming J(v̂i) and solving the linear system for di,

• εi is the error made when adding the correction d̂i to v̂i.
We assume that F (v̂i) is computed in the possibly extended precision ū ≤ u before

rounding back to working precision u, and that d̂i, v̂i are computed at precision u.
Hence we assume that there exists a function ψ depending on F, v̂i, u, and ū such that

‖ei‖ ≤ u‖F (v̂i)‖+ ψ(F, v̂i, u, ū).(2.3)

Note that standard error analysis shows that ‖ei‖ ≤ u‖F (v̂i)‖ is the best we can
obtain in practice for both mixed and fixed precision. Later, we will give an explicit
formula for ψ in the case of linear systems and the generalized eigenvalue problem.
We assume that the error Ei satisfies

‖Ei‖ ≤ uφ(F, v̂i, n, u)(2.4)

for some function φ that reflects both the instability of the linear solver and the
error made when approximating or forming J(v̂i). In practice, we certainly have
φ(F, v̂i, n, u) ≥ ‖J(v̂i)‖. For the error εi we have

‖εi‖ ≤ u(‖v̂i‖+ ‖d̂i‖).
We will make use of the constants

γn =
cnu

1− cnu and γ̄n =
cnū

1− cnū ,(2.5)

where c is a small integer constant.

2.2. Forward error. First we consider the change in error for a single step of
an iteration of the form (2.2). For notational convenience we write v = v̂i, v̄ = v̂i+1,
and

v̄ = v − (J + E)−1(r + e) + ε,(2.6)

where r = F (v), J = J(v), and

‖E‖ ≤ uφ(F, v, n, u),(2.7)

‖e‖ ≤ u‖r‖+ ψ(F, v, u, ū), ‖ε‖ ≤ u(‖v‖+ ‖d‖),
with

d = (J + E)−1(r + e).(2.8)

We will often refer to the following lemma.
Lemma 2.1 (see [5, Lem. 4.1.12]). For any v, w ∈ R

m,

‖F (w)− F (v)− J(v)(w − v)‖ ≤ β

2
‖w − v‖2.(2.9)
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Theorem 2.2. Assume that there is a v∗ such that F (v∗) = 0, J∗ = J(v∗) is
nonsingular, and

‖J−1E‖ ≤ ν < 1.(2.10)

Then, for all v such that

β‖J−1
∗ ‖‖v − v∗‖ ≤ µ < 1,(2.11)

v̄ in (2.6) is well defined and

‖v̄ − v∗‖ ≤ G‖v − v∗‖+ g,

where

G =
1

1− ν ‖J
−1E‖+ (1 + u)2

2(1− µ)(1− ν)β‖J
−1
∗ ‖‖v − v∗‖+ u(2 + u)

(1− µ)(1− ν)κ(J∗) + u

and

g =
1 + u

(1− µ)(1− ν)‖J
−1
∗ ‖ψ(F, v, u, ū) + u‖v∗‖.

Proof. From assumption (2.11) and the Lipschitz property of J we have

‖J−1
∗ (J − J∗)‖ ≤ β‖J−1

∗ ‖‖v − v∗‖ ≤ µ < 1.(2.12)

From the identity

J = J∗(I + J−1
∗ (J − J∗))(2.13)

it then follows that J is nonsingular with inverse given by

J−1 = (I + J−1
∗ (J − J∗))−1J−1

∗

and with

‖J−1‖ ≤ ‖J−1
∗ ‖

1− ‖J−1∗ (J − J∗)‖
≤ 1

1− µ‖J
−1
∗ ‖.(2.14)

Similarly, assumption (2.10) guarantees that J + E is nonsingular and that, using
(2.14),

‖(J + E)−1‖ ≤ ‖J−1‖
1− ‖J−1E‖ ≤ 1

(1− µ)(1− ν)‖J
−1
∗ ‖.(2.15)

Since (J + E)−1 exists, v̄ in (2.6) is well defined. We have

v̄ − v∗ = v − v∗ − (J + E)−1(r + e) + ε

= (I − (J + E)−1J)(v − v∗)− (J + E)−1(r − J(v − v∗) + e) + ε,

which gives

‖v̄ − v∗‖ ≤ ‖I − (J + E)−1J‖‖v − v∗‖+ ‖(J + E)−1‖(‖r − J(v − v∗)‖+ ‖e‖) + ‖ε‖.
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From

I − (J + E)−1J = (J + E)−1E = (I + J−1E)−1J−1E

it follows that

‖I − (J + E)−1J‖ ≤ 1

1− ν ‖J
−1E‖.

From Lemma 2.1,

‖r − J(v − v∗)‖ ≤ β

2
‖v − v∗‖2 and ‖r − J∗(v − v∗)‖ ≤ β

2
‖v − v∗‖2,

so that

‖r‖ ≤ ‖r − J∗(v − v∗)‖+ ‖J∗(v − v∗)‖ ≤ β

2
‖v − v∗‖2 + ‖J∗‖‖v − v∗‖(2.16)

and hence

‖e‖ ≤ u
(
β

2
‖v − v∗‖2 + ‖J∗‖‖v − v∗‖

)
+ ψ(F, v, u, ū).

We have

‖ε‖ ≤ u(‖v − v∗‖+ ‖v∗‖+ ‖d‖)
with

‖d‖ ≤ ‖(J + E)−1‖(‖r‖+ ‖e‖)(2.17)

≤ ‖(J + E)−1‖((1 + u)‖r‖+ ψ(F, v, u, ū))
≤ 1

(1− µ)(1− ν)‖J
−1
∗ ‖

[
(1 + u)

(
β

2
‖v − v∗‖+ ‖J∗‖

)
‖v − v∗‖

+ ψ(F, v, u, ū)

]
,

using (2.15) and (2.16). Hence,

‖v̄ − v∗‖ ≤ G‖v − v∗‖+ g,
where G and g are given in the statement of the theorem.

Assumptions (2.10) and (2.11) are necessary for v̄ in (2.6) to be defined. Assump-
tion (2.10) is a condition on the stability of the linear system solver and the accuracy
of the Jacobian.

In exact arithmetic we have u = ψ(F, v, u, ū) = ν = 0 and E = 0. Then,
for µ ≤ 1/2, Theorem 2.2 reduces to the local quadratic convergence theorem for
Newton’s method [5, Thm. 5.2.1] applied to a single step.

Clearly, for µ ≤ 1
8 , ν ≤ 1

8 , if J∗ is not too ill conditioned, say, uκ(J∗) ≤ 1
8 , then we

have G ≤ 1
2 . Thus the error contracts unless g

>∼ ‖v − v∗‖. Hence, the best limiting
normwise accuracy we can guarantee is

g

‖v∗‖ =
1 + u

(1− µ)(1− ν)
‖J−1

∗ ‖
‖v∗‖ ψ(F, v, u, ū) + u,
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which depends on the accuracy with which the residual is computed. If ‖J−1
∗ ‖ψ(F, v, u, ū)

≤ cu‖v∗‖ for some constant c, then we can expect to obtain a normwise relative error
of order cu.

Note that the rate of convergence depends on the accuracy of the Jacobian and
on the stability of the linear system solver, since G depends strongly on E, but the
limiting accuracy is essentially independent of the solver (for ν < 1

8 , say). Note also
that G is independent of ū, which means that the rate of convergence is bounded
independent of the precision used to compute the residual.

Corollary 2.3. Assume that there is a v∗ such that F (v∗) = 0 and J∗ = J(v∗)
is nonsingular and satisfies

uκ(J∗) ≤ 1

8
.(2.18)

Assume also that for φ in (2.4),

u‖J(v̂i)−1‖φ(F, v̂i, n, u) ≤ 1

8
for all i.(2.19)

Then, for all v0 such that

β‖J−1
∗ ‖‖v0 − v∗‖ ≤ 1

8
,(2.20)

Newton’s method in floating point arithmetic generates a sequence {v̂i+1} whose norm-
wise relative error decreases until the first i for which

‖v̂i+1 − v∗‖
‖v∗‖ ≈ ‖J−1

∗ ‖
‖v∗‖ ψ(F, v∗, u, ū) + u.(2.21)

Proof. For i = 0, the assumptions (2.10) and (2.11) hold with ν = 1
8 and µ =

1
8

and Theorem 2.2 applies to the first step. Using the values for µ, ν, and the bound
(2.18), we find that G < 1 so the error contracts if (2.21) does not already hold. Thus,
(2.20) is also satisfied with v0 replaced by v̂1. The result follows by induction.

Example 1. To illustrate the corollary, we use Newton’s method to compute a
zero of the polynomial

F (v) = (v − 1)10 − 10−8.

At the solution v∗ = 1 − 10−0.8 ≈ 0.8415, |J(v∗)−1| ≈ 1.6 × 106. To increase the
rounding errors when computing the residual, we expand (v − 1)10 as

(v−1)10 = v10−10v9+45v8−120v7+210v6−252v5+210v4−120v3+45v2−10v+1

and use this expression to evaluate F (v). For v ≈ 1 we have ψ(F, v, u, ū) ≈ 103ū
(which is roughly the sum of the absolute values of the coefficients in the expansion
of (v−1)10). Corollary 2.3 predicts that if v0 is not too far from v∗, the forward error
decreases until |v̂i+1 − v∗|/|v∗| ≈ 109ū+ u.

We carried out some numerical experiments inMatlab, for which the unit round-
off is u = 2−53 ≈ 1.1× 10−16. We used the Symbolic Math Toolbox to evaluate F (v)
at precision ū. We tried both ū = u and ū = u3/2 ≈ 3.3×10−24.1 The theory predicts

1In the BLAST document [2], the term “extended precision” is used for ū ≤ u3/2.
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limiting accuracy |v̂i+1 − v∗|/|v∗| ≈ 10−7 if ū = u and |v̂i+1 − v∗|/|v∗| ≈ 10−15 if
ū = u3/2. For both values of ū, we used two different starting values for v0, one for
which |v0 − v∗|/|v∗| > 109ū + u and the second one for which the forward error is
smaller than the expected limiting accuracy. We plot the behavior of the normwise
forward error for ū = u and ū = u3/2 in Figure 2.1. The results are as predicted by
the theory. They also illustrate Wilkinson’s remark [27, p. 55]:

It is perhaps worth remarking that if we start with an approxima-
tion to a zero which is appreciably more accurate than the limiting
accuracy . . . a single iteration will usually spoil this very good ap-
proximation and produce one with an error which is typical of the
limiting accuracy.

2.3. Residual. We now turn to bounding the residual for a single step of the
form (2.6). As before, we write r = F (v) and J = J(v). Note that if v̂∗ = fl(v∗) =
v∗ +∆v∗ with ‖∆v∗‖ ≤ u‖v∗‖, then Lemma 2.1 gives

F (v̂∗) = F (v∗ +∆v∗) = J(v∗)∆v∗ + θ, where ‖θ‖ ≤ β

2
‖v̂∗ − v∗‖2.

Thus

‖F (v̂∗)‖ ≤ u‖J(v∗)‖‖v∗‖+ β
2
u2‖v∗‖2

is the best bound we can hope to obtain for the norm of the residual.
Theorem 2.4. Assume that there is a v∗ such that F (v∗) = 0, J∗ = J(v∗) is

nonsingular, and

β‖J−1
∗ ‖‖v − v∗‖ ≤ µ < 1,(2.22)

u‖J−1‖φ(F, v, n, u) ≤ ν < 1.(2.23)

Let

τ = βg‖J−1
∗ ‖,

where g is defined in Theorem 2.2. Then

‖F (v̄)‖ ≤ H‖F (v)‖+ h,
where

H = c0 [µ+ τ + uκ(J∗)]

and

h = c1 (µ+ τ + uκ(J∗))ψ(F, v, u, ū) + c2 (µ+ τ + 1)u‖J‖‖v‖,
with c0, c1, and c2 constants of order 1.

Proof. We have

‖J−1E‖ ≤ u‖J−1‖φ(F, v, n, u) ≤ ν < 1(2.24)

using (2.7) and (2.23). Thus, we can apply Theorem 2.2 to deduce that v̄ is well
defined. Let r̄ = F (v̄), and define w ∈ R

m by w = r̄ − r − J(v̄ − v). Note that from
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Fig. 2.1. Behavior of the forward error for ū = u (top) and ū = u3/2 (bottom).

(2.6) and (2.8) v̄− v = −d+ ε and Jd = r+ e−Ed, so that r̄ = r+ J(−d+ ε) +w =
−e+ Ed+ Jε+ w, which yields

‖r̄‖ ≤ ‖e‖+ ‖E‖‖d‖+ ‖J‖‖ε‖+ ‖w‖
≤ u‖r‖+ ψ(F, v, u, ū) + u‖d‖(φ(F, v, n, u) + ‖J‖) + u‖J‖‖v‖+ ‖w‖.(2.25)

From (2.12) and (2.13) it follows that

‖J‖ ≤ (1 + µ)‖J∗‖.(2.26)
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Using (2.17) and (2.24), we have

‖d‖ ≤ ‖(J + E)−1‖(‖r‖+ ‖e‖) ≤ 1

1− ν ‖J
−1‖ ((1 + u)‖r‖+ ψ(F, v, u, ū)) ,(2.27)

which gives, using (2.14) and (2.26),

u‖d‖(φ(F, v, n, u) + ‖J‖) ≤ 1 + u

1− ν
{
u‖J−1‖φ(F, v, n, u) + 1 + µ

1− µuκ(J∗)
}
‖r‖

+
1

1− ν
{
u‖J−1‖φ(F, v, n, u) + 1 + µ

1− µuκ(J∗)
}
ψ(F, v, u, ū).(2.28)

From Lemma 2.1 we have

‖w‖ ≤ β

2
‖v̄ − v‖2.(2.29)

First, from (2.6), (2.8), (2.27), and (2.14)

‖v̄ − v‖ ≤ (1 + u)‖d‖+ u‖v‖
≤ ‖J−1

∗ ‖
(

(1 + u)2

(1− µ)(1− ν)‖r‖+
1 + u

(1− µ)(1− ν)ψ(F, v, u, ū)
)
+ u‖v‖.(2.30)

Second, from the triangle inequality and Theorem 2.2 we have

‖v̄ − v‖ ≤ (G+ 1)‖v − v∗‖+ g.(2.31)

Substituting the product of (2.30) and (2.31) into (2.29) yields

‖w‖ ≤ (1 + u)2(G+ 1)

2(1− µ)(1− ν) β‖J
−1
∗ ‖‖v − v∗‖‖r‖+ (1 + u)2

2(1− µ)(1− ν)β‖J
−1
∗ ‖g‖r‖

+
(1 + u)(G+ 1)

2(1− µ)(1− ν)β‖J
−1
∗ ‖‖v − v∗‖ψ(F, v, u, ū)

+
(1 + u)

2(1− µ)(1− ν)β‖J
−1
∗ ‖gψ(F, v, u, ū)

+
(G+ 1)

2(1− µ)β‖J
−1
∗ ‖‖v − v∗‖u‖J‖‖v‖+ 1

2(1− µ)βg‖J
−1
∗ ‖u‖J‖‖v‖,(2.32)

where the penultimate and last terms on the right-hand side of the inequality are
obtained using ‖J‖‖J−1‖ ≥ 1 and (2.14). Substituting (2.28) and (2.32) into (2.25)
yields

‖r̄‖ ≤ H‖r‖+ h,
with H and h as in the statement of the theorem.

The theorem shows that if the problem is not too ill conditioned, the solver is
not too unstable, the approximation of the Jacobian is accurate enough, and v is
sufficiently close to the solution, then the norm of the residual reduces after one step
of Newton’s method in floating point arithmetic. Note that H does not depend on ū
so that, as for the forward error analysis, the use of extended precision for computing
the residual has no effect on the rate of convergence of Newton’s method. With a
careful analysis of the constants in Theorem 2.4 we can derive the following corollary.
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Fig. 2.2. Behavior of the norm of the residual for ū = u (top) and for ū = u3/2 (bottom).

Corollary 2.5. Assume that there is a v∗ such that F (v∗) = 0, J∗ = J(v∗) is
nonsingular, and

uκ(J∗) < 1/8.(2.33)

Assume also that for φ in (2.4)

u‖J(v̂i)−1‖φ(F, v̂i, n, u) < 1

8
for all i(2.34)

and that the limiting accuracy g ≈ ‖J−1
∗ ‖ψ(F, v∗, u, ū) + u‖v∗‖ satisfies βg‖J−1

∗ ‖ <
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1/8. Then, for all v0 such that β‖J−1
∗ ‖‖v0 − v∗‖ < 1/8, the sequence {F (v̂i)} of

residual norms generated by Newton’s method in floating point arithmetic decreases
until

‖F (v̂i+1)‖ ≈ ψ(F, v̂i, u, ū) + u‖J(v̂i)‖‖v̂i‖.(2.35)

Note that the second term in (2.35) is independent of the accuracy with which the
residual is computed.

We consider again Example 1, for which ψ(F, v̂i, u, ū) ≈ 103ū and u‖J(v∗)‖‖v∗‖ ≈
10−7u. As before, we tried both ū = u and ū = u3/2 ≈ 3.3 × 10−24. The theory
predicts that

‖F (v̂i)‖ <∼
{
10−13 if ū = u,
10−21 if ū = u3/2.

We used the same starting values as before. We plot the behavior of |F (v̂i)| for ū = u
and ū = u3/2 in Figure 2.2. The results agree well with the predictions.

3. Applications. In this section, we consider several applications. For each of
them, we define F and the function ψ and apply our results. We are particularly
interested in the effect of mixed precision versus fixed precision for the computation
of the residual. The proposed mixed precision BLAS routines (XBLAS) [2] make
possible the use of mixed precision in a portable manner.

3.1. Linear systems. We consider the linear system Ax = b, where A ∈ R
n×n

is nonsingular and b ∈ R
n. Iterative refinement for a computed solution x̂ is simple to

describe: compute the residual r = b−Ax̂, solve the system Ad = r for the correction
d, and form the updated solution y = x̂ + d. If necessary, repeat the process with x̂
replaced by y. This process is equivalent to Newton’s method with F (x) = b−Ax for
which J(x) = A and thus β = 0.

If the residual r = F (x̂) is computed with the XBLAS routine GEMV−X at precision
ū, then for ψ in (2.3) we can take

ψ(F, x̂, u, ū) = γ̄n(‖A‖‖x̂‖+ ‖b‖),
where γ̄n is defined in (2.5). Corollary 2.3 then yields the following result.

Corollary 3.1. If uκ(A) is sufficiently less than 1 and if the linear system
solver is not too unstable, then iterative refinement reduces the relative forward error
until

‖x̂i − x‖
‖x‖ ≈ u+ κ(A)γ̄n.

If ū = u2, then the relative error is of order u provided nκ(A)u ≤ 1.
A backward error of an approximate solution x̂ is a measure of the smallest

perturbations ∆A and ∆b such that (A+∆A)x̂ = b+∆b. The most popular definition
of the normwise backward error is

η(x̂) = min {ε : (A+∆A)x̂ = b+∆b, ‖∆A‖ ≤ ε‖A‖, ‖∆b‖ ≤ ε‖b‖} .
It can be shown [21] that

η(x̂) =
‖r‖

‖A‖‖x̂‖+ ‖b‖ .
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Corollary 2.5 thus yields the following result.
Corollary 3.2. Let iterative refinement be applied to the nonsingular lin-

ear system Ax = b of order n with uκ(A) < 1/8 and using a solver satisfying
u‖A−1‖φ(A, b, n, u) ≤ 1/8. Then the norm of the residual decreases until

‖r̂i‖ ≈ max(γ̄n, u)(‖A‖‖x̂‖+ ‖b‖),
so that iterative refinement yields a small normwise backward error η(x̂) ≈ max(γ̄n, u).

Corollaries 3.1 and 3.2 are standard normwise results in the literature [17], [18],
[20], [22], [27]. They show that we do not lose anything by using our general analysis.

3.2. Generalized eigenvalue problem. Newton’s method and its variants
have been considered for improving the accuracy of computed eigenvalues and eigen-
vectors for the standard eigenvalue problem [10], [7], [8], [23], the singular value
problem [9], and refining estimates of invariant subspaces [4], [10]. The error analysis
in [10] applies to the standard eigenvalue problem Ax = λx and requires that the
problem be scaled (‖A‖ = 1), that the residual be computed in extended precision,
and that the linear solver be stable. A lengthy analysis leads to the conclusion that if
the problem is not too ill conditioned and the initial guess is good enough, then their
refinement procedure yields a relative error of the order of the working precision.

Here, we consider the generalized eigenvalue problem (GEP)

Ax = λBx with eTs x = 1 for some fixed s,(3.1)

where A ∈ R
n×n, B ∈ R

n×n. Newton-based refinement algorithms for this problem
have been proposed [7], [23] but no error analysis has been done.

Define F : R
n+1 �→ R

n+1 by

F

([
x
λ

])
=

[
(A− λB)x
αeTs x− α

]
,(3.2)

where α = max(‖A‖, ‖B‖). Then (3.1) can be stated as finding the zeros of F (v),
where v = [xT , λ]T . The function F is continuously differentiable in R

n+1 with
Jacobian

J(v) =

[
A− λB −Bx
αeTs 0

]
.(3.3)

The scalar α is introduced to make F and J scale linearly when A and B are multiplied
by a scalar. For all v, w ∈ R

n+1 and any absolute vector norm we have

‖J(w)− J(v)‖ ≤ 2‖B‖‖w − v‖
so that J is Lipschitz continuous in R

n+1 with constant β = 2‖B‖.
The next lemma concerns the singularity of J at a zero of F . This result is more

general than the one given in [23, p. 120] as it applies to the generalized eigenvalue
problem rather than the standard eigenvalue problem and no assumption is made on
the nonsingularity of B.

Lemma 3.3. Let v∗ = [xT∗ , λ∗]
T be a zero of F as defined by (3.2) with λ finite.

Then J(v∗) is singular if and only if λ∗ is a multiple eigenvalue of (A,B).
Proof. Suppose that J(v∗) is singular. Using the formula (see [13])

det

([
M u
vT∗ µ

])
= µdet(M)− vT∗MAu,
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where MA is the adjugate (or adjoint) of M , we obtain

0 = det(J(v∗)) = αeTs (A− λ∗B)ABx∗.(3.4)

The adjugate has the property that

MAM = det(M)I.

Define yT = eTs (A− λ∗B)A. Then
yT (A− λ∗B) = eTs det(A− λ∗B)I = 0,

because λ∗ is an eigenvalue of (A,B). Thus y is a left eigenvector corresponding to
λ∗. Using (3.4),

yTBx∗ = eTs (A− λ∗B)ABx∗ = 0.

If λ∗ were a simple eigenvalue, we would have yTBx∗ �= 0 [1, Thm. 3.2]. So λ∗ must
be an eigenvalue of multiplicity at least two.

For the converse, suppose that λ∗ is a multiple eigenvalue of (A,B). Then, there
exists a left eigenvector y corresponding to λ∗ that is B-orthogonal to x∗. We have

[ yT 0 ]

[
A− λ∗B −Bx∗
αeTs 0

]
= 0,

which means that J(v∗) is singular.
In exact arithmetic, Theorem 2.2 applies with E = 0 and ν = u = 0 so that for

all v0 such that ‖v0 − v∗‖ ≤ 1/(4‖B‖‖J∗‖−1) the Newton iteration is well defined and
converges quadratically to zero.

The residual F (v̂i) can be computed in mixed precision by the XBLAS routine
GE−SUM−MV. Then we can take

ψ(F, v, u, ū) = γ̄n(‖A‖+ |λ|‖B‖)‖x‖.(3.5)

Corollary 3.4. Let λ∗ be a simple eigenvalue of (A,B), and let x∗ be the
corresponding eigenvector normalized such that ‖x∗‖∞ = |x∗s| = 1. Assume that J
in (3.3) is not too ill conditioned, the linear system solver is not too unstable, and
(x0, λ0) is a sufficiently good approximation to (x∗, λ∗) so that assumptions (2.18)–
(2.20) with β = 2‖B‖∞ are satisfied. Then Newton’s method for (3.2) in floating point
arithmetic is well defined and the limiting forward error is bounded by

‖(x̂Ti , λ̂i)− (xT∗ , λ∗)‖∞
‖(xT∗ , λ∗)‖∞

<∼ γ̄n‖J(v∗)−1‖∞max(‖A‖∞, ‖B‖∞) + u.

If ū = u2, then

‖(x̂Ti , λ̂i)− (xT∗ , λ∗)‖∞
‖(xT∗ , λ∗)‖∞

<∼ γn.

Proof. We apply Corollary 2.3 using (3.5) for ψ(F, v, u, ū). We have

‖J(v∗)−1‖∞
‖v∗‖∞ ψ(F, v∗, u, ū) =

‖J(v∗)−1‖∞
‖v∗‖∞ γ̄n(‖A‖∞ + |λ∗|‖B‖∞)‖x∗‖∞

≤ γ̄n‖J(v∗)−1‖∞max(‖A‖∞, ‖B‖∞) (1 + |λ∗|)
max(1, |λ∗|)

≤ 2γ̄n‖J(v∗)−1‖∞max(‖A‖∞, ‖B‖∞).
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Since J(v∗)n+1,s = α, we have ‖J(v∗)‖∞ ≥ max(‖A‖∞, ‖B‖∞). From (2.18), we
have uκ(J(v∗)) < 1 and if γ̄n ≈ nu2, then γ̄n‖J(v∗)−1‖∞ <∼ numax(‖A‖∞, ‖B‖∞)−1,
which proves the last part of the corollary.

Our result is consistent with the one of Dongarra, Moler, and Wilkinson [10] con-
cerning the standard eigenvalue problem. They showed that their iterative refinement
procedure, which is a recasting of Newton’s method, yields a forward error of the order
of the working precision assuming that ‖A‖∞ = 1 and that the residual is computed
at precision ū = u2.

The normwise backward error for an approximate eigenpair (x̂, λ̂) is defined by

η(x̂, λ̂) = min{ε : (A+∆A)x̂ = λ̂(B +∆B)x̂, ‖∆A‖ ≤ ε‖A‖, ‖∆B‖ ≤ ε‖B‖},
and it can be shown [14], [25] that

η(x̂, λ̂) =
‖r‖

(‖A‖+ |λ̂|‖B‖)‖x̂‖
,

where r = Ax̂− λ̂Bx̂.
Corollary 3.5. Under the same assumptions as in Corollary 3.4, Newton’s

method for (3.2) in floating point arithmetic yields a backward error for the ∞-norm
bounded by

η∞(x̂i, λ̂i) <∼ γ̄n + u(3 + |λ|)max
(‖A‖∞
‖B‖∞ ,

‖B‖∞
‖A‖∞

)
.

Proof. We assume ‖x̂i‖∞ ≈ 1. We have ψ(F, v̂i, u, ū) ≈ γ̄n(‖A‖∞ + |λ̂i|‖B‖∞)
and

‖v̂i‖∞ <∼ 1 + |λ̂i|, ‖J(v̂i)‖∞ <∼ (3 + |λ̂i|)max(‖A‖∞, ‖B‖∞),

and (‖A‖∞ + |λ̂i|‖B‖∞)‖x̂i‖∞ >∼ min(‖A‖∞, ‖B‖∞)(1 + |λ̂i|). Then applying Corol-
lary 2.5 yields the result.

The corollary shows that if |λ|max(‖A‖∞/‖B‖∞, ‖B‖∞/‖A‖∞) is large,
then we cannot guarantee a small backward error. In numerical experiments, we
have found that the backward error is small independent of the size of
|λ|max(‖A‖∞/‖B‖∞, ‖B‖∞/‖A‖∞), but we have not been able to prove that this
must always be the case.

Note that for the standard eigenvalue problem, |λ∗| ≤ 1 if ‖A‖∞ = 1, as was as-
sumed in [10]. Then the eigenpairs refined by Newton’s method have a small backward
error.

For the GEP, if the problem is scaled and replaced by Ãx = λ̃Bx with Ã and λ̃
such that ‖Ã‖∞ = α‖A‖∞ = ‖B‖∞ and λ̃ = αλ, then, for this problem, the backward

error depends only on the size of |λ̃|. A small |λ̃| ensures a small backward error. If
|λ̃| is large, then we can consider the problem Bx = µ̃Ãx for which |µ̃| is small and
Corollary 3.5 guarantees that iterative refinement will yield a small backward error.

4. Numerical experiments. We show how iterative refinement can be used
to improve the stability of an unstable solver for the symmetric definite generalized
eigenvalue problem Ax = λBx, with A symmetric and B symmetric positive definite.

All our tests have been performed with Matlab for which the working precision
is u = 2−53 ≈ 1.1 × 10−16. We approximate the eigenpairs using the Cholesky-QR
method, which consists of the following.
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1. Compute the Cholesky factorization B = GGT .
2. Compute C = G−1AG−T .
3. Compute the eigendecomposition WTCW = diag(λ1, λ2, . . . , λn) using the
symmetric QR algorithm.

The matrix X = G−TW is nonsingular and satisfies XTBX = I and XTAX =
diag(λ1, λ2, . . . , λn). This algorithm can be unstable. The computed Ĉ from step 2
satisfies [3]

Ĉ = C +∆C, ‖∆C‖2 ≤ γn2‖B−1‖2‖A‖2,

so if B is ill conditioned, then ‖∆C‖2/‖C‖2 can be large, even if the eigenvalue
problem itself is well conditioned.

For problem (3.1), the Newton iteration (2.1) can be written as

(A− λiB)∆xi+1 −∆λi+1Bxi = ri, eTs xi+1 = e
T
s xi = 1,(4.1)

where ∆xi+1 = xi+1 − xi and ∆λi+1 = λi+1 − λi. As in [10], [23] we note that
eTs x0 = 1 implies eTs ∆xi+1 = 0 for i ≥ 0, and thus the sth column of A − λiB does
not participate in the product with ∆xi+1. We can replace the sth column of A−λiB
by −Bxi and the component s of ∆xi+1 by ∆λi+1. We define

δi = ∆xi +∆λies and Mi = (A− λiB)− ((A− λiB)es +Bxi)eTs .

Then we can rewrite (4.1) as

Miδi+1 = ri, λi+1 = λi + e
T
s δi+1, xi+1 = xi + δi+1 − eTs δi+1es.(4.2)

Algorithm 4.1 is a straightforward implementation of iteration (4.2).
Algorithm 4.1. Given A, B, and an approximate eigenpair (x, λ) with ‖x‖∞ =

xs = 1, this algorithm applies iterative refinement to λ and x:
repeat until convergence

r = λBx−Ax (possibly extended precision used)
Form M : the matrix A− λB with column s replaced by −Bx.
Factor PM = LU (LU factorization with partial pivoting)
Solve Mδ = r using the LU factors
λ = λ+ δs; δs = 0
x = x+ δ

end
This algorithm is expensive as each iteration requires O(n3) flops for the factorization
of M . If the eigenpairs are approximated by a Cholesky reduction of A− λB, then a
nonsingular matrix X such that XTAX = D = diag(λ1, . . . , λn) and X

TBX = I is
available. Then

XT ri = X
TMiδi+1

=
(
(D − λiI)−XT ((A− λiB)es +Bxi)eTs X

)
X−1δi+1.(4.3)

Defining

Dλi = D − λiI, vi = X
T ((A− λiB)es +Bxi),

f = XT es, wi+1 = X
−1δi+1, gi = X

T ri,
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(4.3) becomes

(Dλi − vifT )wi+1 = gi.(4.4)

The matrix in (4.4) is a rank-one modification of a diagonal matrix. As Dλi
is nearly

singular when λi approaches the solution λ∗, we cannot use the Sherman–Morrison–
Woodbury formula. However, we can define rotations Jn−1, . . . , J1 such that

JT
1 . . . J

T
n−1vi = ±‖vi‖2e1,

where Jk is a rotation in the (k, k + 1) plane. Then H = JT
1 . . . J

T
n−1Dλi

is upper
Hessenberg, as is the matrix

JT
1 . . . J

T
n−1(Dλi − vifT ) = H ± ‖vi‖2e1f

T = H1.

Using a QR factorization of H1, the solution of (4.4) can be computed in O(n
2) flops.

Algorithm 4.2. Given A,B, X, and D such that XTAX = D and XTBX = I
and an approximate eigenpair (x, λ) with ‖x‖∞ = xs = 1, this algorithm applies
iterative refinement to λ and x at a cost of O(n2) flops per iteration.

repeat until convergence
r = λBx−Ax (possibly extended precision used)
Dλ = D − λI
d = −Bx− cλs where cλs is the sth column of A− λB
v = XT d; f = XT es
Compute Givens rotations Jk in the (k, k + 1) plane, such that

QT
1 v := J

T
1 . . . J

T
n−1v = ‖v‖2e1

Compute orthogonal Q2 such that
T = QT

2Q
T
1 (Dλ + vf

T ) is upper triangular
z = QT

2Q
T
1X

T r
Solve Tw = z for w
δ = Xw
λ = λ+ δs; δs = 0
x = x+ δ

end

When B is ill conditioned, the computed X̂ may be inaccurate, so that X̂TAX̂ =
D+∆D, X̂TBX̂ = I+∆I, with possibly large ‖∆D‖ and ‖∆I‖. Then the procedure
used in Algorithm 4.2 to solve Mδ = r may be unstable: δ is the exact solution of
(M+∆M)δ = r with a possibly large ‖∆M‖. However, the theory shows that allowing
some instability in the solver and inaccurate evaluation of the Jacobian (assumptions
(2.19) and (2.23)) may affect the rate of convergence of the Newton process but not
the limiting accuracy and backward error.

We use the hat notation (x̂, λ̂) for approximate eigenpairs obtained with the

Cholesky-QR method and the tilde notation (x̃, λ̃) for the refined eigenpairs obtained

after a few iterations with Algorithm 4.1 or 4.2 starting with (x̂, λ̂) as initial guess.
We need to define several quantities:

Erel(x̂, λ̂) = ‖(x, λ)− (x̂, λ̂)‖∞/‖(x, λ)‖∞
is the relative forward error;

cond(λ) = (‖A‖∞ + |λ|‖B‖∞)‖x‖2
∞/(|λ| |yTBx|)
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Table 4.1
Relative errors, condition numbers, and backward error for Example 1.

λi Erel(x̂i, λ̂i) cond(λi) η(x̂i, λ̂i)
1 −0.62 6e-5 41 4e-6
2 1.63 6e-5 120 2e-6
3 9e17 9e-5 6e18 2e-20

Table 4.2
Backward error and relative error for the two smallest eigenpairs of Example 1.

Algorithm 4.1 Algorithm 4.2

λi ηest Eest
rel it η(x̃i, λ̃i) Erel(x̃i, λ̃i) it η(x̃i, λ̃i) Erel(x̃i, λ̃i)

−0.62 1e-16 1e-14 3 2e-17 2e-16 4 6e-17 4e-16
1.63 1e-16 1e-14 3 3e-17 4e-16 4 4e-17 7e-16

is the condition number of the eigenvalue λ, where y is a left eigenvector corresponding
to λ [14];

η(x̂, λ̂) = ‖Ax̂− λ̂Bx̂‖∞/
(
(‖A‖∞ + |λ̂|‖B‖∞)‖x̂‖∞

)
is the backward error of the approximate eigenpair (x̂, λ̂);

Eest
rel = ‖J−1‖∞ū(‖A‖∞ + |λ|‖B‖∞)‖x‖∞/‖(xT , λ)‖∞ + u

is an approximation of the theoretical bound (2.21) for the relative forward error,
where the Jacobian matrix J is given by (3.3) and ψ(F, v, u, ū) is given by (3.5) with
γ̄n ≈ ū; and finally, ηest is the theoretical bound of the backward error for the refined
eigenpair (x̃, λ̃) from Corollary 3.5.

Example 1. First we consider

A =


 1 2 3
2 4 5
3 5 6


 , G =


 .001 0 0

1 .001 0
2 1 0.001


 ,

and B = GGT . This example is used in [12] to illustrate the instability of the
Cholesky-QR method when B is ill conditioned. Results are displayed in Table 4.1.
The two smallest eigenvalues have a small condition number, but their backward error
is large because of the ill conditioning of B (κ∞(B) = 7× 1018).

We refined the two smallest eigenvalues using Algorithm 4.1 and Algorithm 4.2
with the approximate eigenpairs as initial guess and the residual computed at working
precision (ū = u ≈ 1.1 × 10−16). We terminated the iteration when the norm of the
correction stopped decreasing. The results are given in Table 4.2, where it is the
number of iterations required for convergence. Algorithm 4.2 uses an unstable solver
and therefore requires one more iteration. However, the accuracy and stability are
unaffected by this unstable solver. Both algorithms produce refined eigenpairs with a
small backward error and a relative error as predicted by the theory.

Example 2. We would like to test the sharpness of the residual bound in Corollary
2.5 and the backward error bound in Corollary 3.5. We consider an example with large
‖J∗‖, a large ratio ‖A‖∞/‖B‖∞, and large eigenvalues. We denote by M the Moler
matrix from the Test Matrix Toolbox [15]:

mij =

{
i if i = j,
min(i, j)− 2 otherwise.
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Table 4.3
Estimated and computed residuals and backward errors for Example 2.

Before refinement From theory After refinement

λi cond(λi) η(x̂i, λ̂i) ‖rest‖ ηest ‖r‖ η(x̃i, λ̃i) it
7.1e5 2.0 1e-5 3.1e-4 9.1e-5 1.2e-10 5.2e-17 5
5.6e6 9.0 2e-6 1.1e-2 7.3e-4 4.7e-10 4.3e-17 4
2.0e7 29.2 9e-7 1.5e-1 2.6e-3 1.0e-9 2.9e-17 3
3.3e7 48.7 7e-7 4.3e-1 4.3e-3 1.6e-9 2.7e-17 5
4.3e7 62.9 2e-7 7.4e-1 5.6e-3 1.7e-9 2.2e-17 3

Table 4.4
Relative error for the computed and refined eigenpairs of Example 3 using working and double

precision in the computation of the residual.

Before refinement After refinement
ū = u ū = u2

λi cond(λi) Erel(x̂i, λ̂i) Eest
rel Erel(x̃i, λ̃i) Eest

rel Erel(x̃i, λ̃i)
2.4e-7 1.8e6 1.3e-8 1.0e-11 2.0e-13 2.2e-16 1.1e-16
2.2e-5 2.0e4 2.1e-8 1.3e-11 7.3e-13 2.2e-16 2.2e-16
8.2e-4 5.3e2 1.0e-9 3.3e-13 1.8e-14 2.2e-16 1.1e-16
1.4e-2 4.0e1 6.9e-11 3.4e-14 2.0e-15 2.2e-16 1.1e-16
2.9e-2 4.6e0 4.3e-11 2.8e-14 5.6e-16 2.2e-16 1.1e-16
1.2e-1 1.5e1 2.6e-11 1.7e-14 5.6e-16 2.2e-16 1.1e-16
1.7e-1 7.4e0 3.6e-11 3.0e-14 1.3e-15 2.2e-16 1.1e-16
3.0e-1 1.1e1 3.0e-11 2.0e-13 2.2e-15 2.2e-16 5.6e-17
3.1e-1 1.2e1 3.4e-11 2.1e-13 7.8e-16 2.2e-16 5.6e-17
9.2e4 3.7e6 1.6e-16 1.5e-9 4.1e-12 2.2e-16 0.0e0

We took n = 20, A = 106I, and B = 10−2M and computed the approximate eigen-
pairs using the Cholesky reduction. Instabilities are expected as κ(B) = 2×1013. All
the eigenpairs have a large backward error and a small condition number except the
largest one. We refined using Algorithm 4.1. Results for some eigenpairs are given in
Table 4.3, where

‖rest‖ = ū(‖A‖∞ + |λ|‖B‖∞)‖x‖∞ + u‖J‖∞‖(xT , λ)‖∞
is the theoretical bound (2.35) for the norm of the residual. This example corresponds
to the “bad case” where |λ|max (‖A‖/‖B‖, ‖B‖/‖A‖) is large, which explains why
the theoretical estimates are so pessimistic. The estimates are sharp when the pair
(A,B) is scaled such that ‖A‖ = ‖B‖ and the eigenpair is refined on the reverse

problem (B,A) if |λ̂i| is large. We have generated many pairs (A,B) with a large value
of max

(‖A‖/‖B‖, ‖B‖/‖A‖) and large eigenvalues, for which the theory predicts a
large backward error. For all of them, iterative refinement yields a small backward
error as long as the initial guess is good enough for Newton’s method to converge.

Example 3. We illustrate how using extended precision in computation of the
residual yields a small relative error. Let A be the Prolate matrix of size n = 10 of
the Test Matrix Toolbox [15], and let B be the Moler matrix. We used the Symbolic
Math Toolbox of Matlab to compute the exact eigenpairs of (A,B) and the Cholesky
reduction method to approximate the eigenpairs. We give the results in Table 4.4.
We refined using both working precision (ū = u) and double precision (ū = u2)

for the computation of the residual. For eigenpairs such that Erel(x̂i, λ̂i) > Eest
rel ,

iterative refinement leads to Erel(x̃i, λ̃i) < E
est
rel after two iterations. For the largest

eigenvalue, Erel(x̂i, λ̂i)� Eest
rel of ū = u, which means that the approximate eigenpair

is appreciably more accurate than the limiting accuracy. In this case, one single step
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of iterative refinement is enough to spoil the good initial approximation. If ū = u2,
all the eigenpairs are computed to high relative accuracy as expected from the theory
(Corollary 3.4).

For further numerical examples of iterative refinement for the Cholesky-QR
method, see [3].

5. Conclusions. We have analyzed Newton’s method in floating point arith-
metic, allowing for extended precision in computation of the residual, inaccurate eval-
uation of the Jacobian, and a possibly unstable solver. We estimated the limiting
accuracy and the smallest residual norm. We showed that the accuracy with which
the residual is computed affects the limiting accuracy. The limiting residual norm
depends on two terms, one of them independent of the accuracy used in evaluating
the residual.

We applied our results to iterative refinement for the generalized eigenvalue prob-
lem. We showed that high accuracy for the refined eigenpairs is guaranteed, under
suitable assumptions, if twice the working precision is used for the computation of
the residual. We also showed that if the pair (A,B) is well balanced (‖A‖ ≈ ‖B‖),
working precision in evaluating the residual is enough for iterative refinement to yield
a small backward error.

Finally, we examined in detail how iterative refinement can be used to improve
the forward and backward error of computed eigenpairs for the symmetric definite
GEP. We used two refinement algorithms, one of them with an unstable solver.
We confirmed that the unstable solver affects the convergence but not the limiting
accuracy and backward error. In practice, the assumption that the pair (A,B) is
well balanced does not seem to be necessary. We have not been able to generate an
example for which iterative refinement fails to yield a small backward error for pairs
(A,B) for which max(‖A‖/‖B‖, ‖B‖/‖A‖) is large. This suggests that the bound of
Corollary 3.5 is pessimistic. Deriving a sharper bound remains an open problem.

In future work, we plan to investigate iterative refinement for the quadratic eigen-
value problem, for which there are no proven backward stable algorithms [25].

Acknowledgments. I thank the referees for valuable suggestions that improved
the paper.
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