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Abstract. In this paper, we give solutions for the two conjectures on the inverse problem of the
Wiener index of peptoids proposed by Goldman et al. We give the first conjecture a positive proof
and the second conjecture a negative answer.
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1. Introduction. In drug design and molecular recognition, combinatorial chem-
istry has played a powerful role in recent years. One of the central problems is the
construction of a molecular graph with given chemical or physical properties. A chem-
ical or physical property can be quantitatively represented by some topological index
[1]. The problem here is to find a molecular graph with a given value of some topo-
logical index. In [1], the authors studied the problem for the Wiener index. They
proposed two conjectures related to the so-called inverse problem of peptoids. A pep-
toid is represented by a large molecular graph constructed from some pieces of given
small molecular graphs by joining them in a linear scaffold way, i.e., chaining them
linearly. The problem is to find a peptoid with these given small pieces as fragments
such that it has the desired Wiener index value. The ordering or arrangement of these
pieces in a peptoid determines the value of the Wiener index. The two conjectures are
to determine the orderings or arrangements under which the values are minimum or
maximum. As one can see in the statements of the conjectures, the optimal problems
are purely mathematical. We can go without any notation or terminology on graph
theory or chemistry.

Let n1, n2, . . . , nN be N positive integers; define

D =

N∑
i=1

N∑
j=i+1

(j − i)ninj .

For an ordering or rearrangement π = π(1)π(2) . . . π(N) of 1, 2, . . . , N , define

D(π) =

N∑
i=1

N∑
j=i+1

(j − i)nπ(i)nπ(j).

Conjecture 5.1 of [1] is stated as follows.
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Conjecture 1. Given n1 ≤ n2 ≤ · · · ≤ nN , the ordering for the minimum value
of D is

πmin(i) =

{
2i− 1 if i ≤ N

2

2(N − i + 1) if i > N
2 .

Conjecture 5.2 of [1] is stated as follows.
Conjecture 2. An algorithm to compute the ordering for the maximum value

of D, given n1 ≤ n2 ≤ · · · ≤ nN , is as follows:
LP = 1;L = 0
Rp = N ;R = 0
For i = N down to 1 do
if R ≥ L, then
πmax(Lp) = i;Lp = Lp + 1;L = L + ni;
else
πmax(Rp) = i;Rp = Rp − 1;R = R + ni.

We solve these two conjectures in the following sections. In section 2, we do some
preparations by introducing two inequalities due to Hardy, Littlewood, and Pólya [2]
and Wiener [4], respectively. In section 3, we prove Conjecture 1 vigorously by using
Hardy, Littlewood, and Pólya’s inequality. In section 4, we show that Conjecture 2 is
not correct. The algorithm in Conjecture 2 does not always give the maximum value.
We give a better upper bound for the maximum value by using Wiener’s inequality.
Finally, in section 5, we analyze the difficulty in finding the exact ordering to attain
the maximum value.

2. Preliminaries. We follow the notations of [2] or [3]. Suppose that we are
given a set of a finite number of nonnegative numbers x1, x2, . . . , xN , or x−n, . . . , x−1,
x0, x1, . . . , xn, denoted by (x). An ordering or rearrangement of them is x′

1, x
′
2, . . . , x

′
N ,

or x′
−n, . . . , x

′
−1, x

′
0, x

′
1, . . . , x

′
n, denoted by (x′), where {x′

1, x
′
2, . . . , x

′
N} = {x1, x2, . . . ,

xN} and {x′
−n, . . . , x

′
−1, x

′
0, x

′
1, . . . , x

′
n} = {x−n, . . . , x−1, x0, x1, . . . , xn}. Some spe-

cial orderings are given as follows:

(x̄) = x̄1 ≤ x̄2 ≤ · · · ≤ x̄N

or

(x̄) = x̄−n ≤ · · · ≤ x̄−1 ≤ x̄0 ≤ x̄1 ≤ · · · ≤ x̄n,

i.e., increasing ordering.

(x+) = x+
0 ≥ x+

1 ≥ x+
−1 ≥ x+

2 ≥ x+
−2 ≥ · · ·

and

(+x) =+ x0 ≥+ x−1 ≥+ x1 ≥+ x−2 ≥+ x2 ≥ · · · .

For example, in the example of [1, p. 283], (x) = 8, 13, 2, 17, 19, 18, 28, 5; (x̄) = (n) =
2, 5, 8, 13, 17, 18, 19, 28; (x+) = 5, 13, 18, 28, 19, 17, 8, 2, and (+x) = 2, 8, 17, 19, 28, 18,
13, 5.

From [2] or [3], we have the following theorem.
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Theorem 2.1 (Hardy, Littlewood and Pólya). Suppose that c, x, y are non-
negative and c symmetrically decreasing so that

c0 ≥ c1 = c−1 ≥ c2 = c−2 ≥ · · · ≥ c2k = c−2k,

while x and y are given except in arrangement. Then the bilinear form

S(1) =

k∑
r=−k

k∑
s=−k

cr−sxrys(1)

attains its maximum when (x) is (x+) and (y) is (y+), or (x) is (+x) and (y) is (+y).
From [2] or [4], we have the following theorem.
Theorem 2.2 (Wiener). If c2 ≥ c3 ≥ · · · ≥ c2n ≥ 0 and the sets (x) and (y) are

nonnegative and given except in arrangement, then

S(2) =

n∑
r=1

n∑
s=1

cr+sxrys(2)

is a maximum when (x) and (y) are both in decreasing order.
It is easy to see that the two bilinear forms of (1) and (2) have the coefficient

matrices

C(1) =




c0 c1 c2 c3 · · · · · · · · · · · ·
c1 c0 c1 c2 · · · · · · · · · · · ·
c2 c1 c0 c1 · · · · · · · · · · · ·
...

...
...

...
. . .

...
...

...
· · · · · · · · · · · · · · · c0 c1 c2
· · · · · · · · · · · · · · · c1 c0 c1
· · · · · · · · · · · · · · · c2 c1 c0




(2k+1)×(2k+1)

and

C(2) =




c2 c3 c4 c5 · · · · · · · · · cn+1

c3 c4 c5 · · · · · · · · · · · · · · ·
c4 c5 · · · · · · · · · · · · · · · · · ·
c5 · · · · · · · · · · · · · · · · · · · · ·
...

...
...

...
. . .

...
...

...
· · · · · · · · · · · · · · · · · · · · · c2n−2

· · · · · · · · · · · · · · · · · · c2n−2 c2n−1

cn+1 · · · · · · · · · · · · c2n−2 c2n−1 c2n




n×n

,

respectively.
So, we have

S(1) = (x−k, . . . , x−1, x0, x1, . . . , xk) C(1)




y−k

...
y−1

y0

y1

...
yk



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and

S(2) = (x1, x2, . . . , xn) C(2)




y1

y2

...
yn


 .

3. The proof of Conjecture 1. We shall use Theorem 2.1 to prove Conjec-
ture 1. Since Conjecture 1 is about optimal minimum, while Theorem 2.1 is about
optimal maximum, we have to do some transformation in the following.

First, we note that

2D =
n∑

i=1

n∑
j=1

|j − i|ninj

with the coefficient matrix as follows:

A =




0 1 2 · · · N − 2 N − 1
1 0 1 · · · N − 3 N − 2
...

...
...

. . .
...

...
N − 2 N − 3 N − 4 · · · 0 1
N − 1 N − 2 N − 3 · · · 1 0




N×N.

Then,

D =
1

2
(n1, n2, . . . , nN ) A




n1

n2

...
nN


 .

Take the matrix C(1) = NIN − A, where IN is the identity of order N , and
consider the following bilinear (quadratic) form:

(n1, n2, . . . , nN ) C(1)




n1

n2

...
nN




= (n1, n2, . . . , nN ) NIN




n1

n2

...
nN


− (n1, n2, . . . , nN ) A




n1

n2

...
nN




= N

(
N∑
i=1

ni

)2

− 2D.(3)

Since the term N(
∑n

i=1 ni)
2 in (3) is independent of the orderings of n1, n2, . . . , nN ,

we have that (3) reaches its optimal maximum by some ordering of n1, n2, . . . , nN if
and only if D reaches its optimal minimum. Since here the matrix C(1) satisfies the
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conditions of Theorem 2.1, we know that (3) reaches its optimal maximum when (n)
is (n+) or (+n), which is exactly the ordering given in Conjecture 1. Therefore, D
reaches its optimal minimum when (n) is the ordering given in Conjecture 1. The
proof is complete.

4. Negative answer for Conjecture 2 and a better upper bound. We use
examples to give a negative answer for Conjecture 2. The example of [1, p. 283] is
shown in Table 1.

Table 1
The table of [1, p. 283].

i 1 2 3 4 5 6 7 8
ni 2 5 8 13 17 18 19 28

nπmax(i) 28 18 8 2 5 13 17 19

First, we point out that by executing the algorithm in Conjecture 2, we get a
different ordering from Table 1, with the exchange of the two numerals 18 and 17 in
the third line. We denote the ordering in Table 1 by πt, not by πmax, and the ordering
determined by the algorithm of Conjecture 2 by πa. So πt = 8, 6, 3, 1, 2, 4, 5, 7. In
Appendix A, we show that πa = 8, 5, 3, 1, 2, 4, 6, 7 by executing the algorithm. We
do not know if this πa gives the optimal maximum. However, we do know that
D(πa) > D(πt). In fact, we have that

D(πt) −D(πa) = (n6 − n5)[5(n7 − n8) + 3(n4 − n3) + (n2 − n1)]

= (18 − 17)[5(19 − 28) + 3(13 − 8) + (5 − 2)]

= 5 × (−9) + 3 × 5 + 3

= −45 + 18 = −27 < 0,(4)

i.e., D(πa) > D(πt).
Does this mean that the algorithm in Conjecture 2 really gives the ordering for

the optimal maximum? The answer is “no.” One may argue that the ordering of the
numerals given in the table of [1, p. 283] is misprinted by the authors’ carelessness.
This is also not the case. In fact, from (4) we can see that n6 − n5 is always positive
when n5 	= n6, and so are n4−n3 and n2−n1. However, n7−n8 is always negative when
n7 	= n8. One can imagine that by properly assigning the values of n1, n2, . . . , n8, we
can get D(πa) > D(πt), as in the above example, and D(πa) < D(πt) in some other
cases. This is really the case. For example, we take n1 = 1, or any number smaller
than 8, n2 = 20, n3 = 21, n4 = 22, n5 = 23, n6 = 24, n7 = 25, n8 = 28. The ordering
given by πt and the ordering πa obtained by the algorithm of Conjecture 2 are shown
in Table 2.

Table 2
The orderings given by πt and πa, respectively.

i 1 2 3 4 5 6 7 8
ni 1 20 21 22 23 24 25 28

nπt(i) 28 24 21 1 20 22 23 25

nπa(i) 28 23 21 1 20 22 24 25

From (4), we have

D(πt) −D(πa) = (24 − 23)[5(25 − 28) + 3(22 − 21) + (20 − 1)]

= 5 × (−3) + 3 × 1 + 19 = 7 > 0,
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i.e., D(πt) > D(πa). In fact, since n6 − n5 > 0, from (4) we know that D(πt) >
D(πa) if 5(n8 − n7) < 3(n4 − n3) + (n2 − n1), while D(πt) < D(πa) if 5(n8 − n7) >
3(n4 − n3) + (n2 − n1). So we can construct infinitely many examples to show that
D(πt) > D(πa) by properly assigning the values of n1, n2, . . . , n8 and also infinitely
many other examples to show that D(πt) < D(πa), the other way round. We do not
know that if this D(πt) is the optimal maximum for these new ni’s. However, it is
greater than the value under the ordering given by the algorithm of Conjecture 2.

So the ordering with optimal maximum value is still unknown. We tried to find
it but failed. First, we look at the ordering given by Conjecture 1, which attains the
optimal minimum. Imagine that we have a balance, or a rod with support point at
the center, and we want to hang N things with weights n1, n2, . . . , nN on it. To reach
the minimum, we hang the heaviest one nN at the (near) center, then we take turns to
hang the next heaviest things to the left (or right) and right (or left) side of nN . One
may imagine that the maximum might be attained the other way round, i.e., hang the
lightest one n1 at the (near) center, then take turns to hang the next lightest things
to the left (or right) and right (or left) side of n1. We denote this ordering by πb.
Unfortunately, for N = 8 we have that

D(πa) −D(πb) = (n8 − n7)[5(n6 − n5) + 3(n4 − n3) + (n2 − n1)] > 0

and

D(πt) −D(πb) = [(n8 − n7) + (n6 − n5)][3(n4 − n3) + (n2 − n1)] > 0.

i.e.,

D(πb) < D(πa) and D(πb) < D(πt).

So the intuitive observation does not give an ordering with the optimal maximum.
Indeed, finding such an ordering is not an easy thing. This is why the authors of [1]
did not give an exact ordering but instead an algorithmic ordering. The above analysis
shows us that, unlike the optimal minimum case, to obtain the optimal maximum, the
ordering is not purely dependent on the value-ordering of n1, n2, . . . , nN but mainly
dependent on how large the values n1, n2, . . . , nN are themselves. Although to give
an exact ordering for the optimal maximum is almost hopeless (see the analysis in
section 5), we can give a better upper bound for the optimal maximum by Theorem

2.2, which could be much better than the upper bound N3−N
6 n2

N in [1] and useful in
the inverse problem for peptoids. First, we note that we can rewrite D as follows:

D = (n1, n2, . . . , nN )




N − 1 N − 2 N − 3 · · · 2 1 0
N − 2 N − 3 N − 4 · · · 1 0

...
...

...
...

2 1 0
1 0
0







nN

nN−1

...
n2

n1


 .

Denote the coefficient matrix by C(2). Then, C(2) satisfies the conditions of
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Theorem 2.2. Therefore, for any ordering π of 1, 2, · · · , N , we have

D(π) ≤ (nN , nN−1, . . . , n2, n1)C(2)




nN

nN−1

...
n2

n1


 .

So, we have proved the following theorem.
Theorem 4.1.

Dmax ≤ (nN , nN−1, . . . , n2, n1)

·




N − 1 N − 2 N − 3 · · · 2 1 0
N − 2 N − 3 N − 4 · · · 1 0
...

...
...

...
2 1 0
1 0
0







nN

nN−1

...
n2

n1


 .

5. Difficulty analysis for finding the ordering πmax. From the three or-
derings πt, πa, and πb, we observed that all of them arrange the values n1, n2, . . . , nN

concavely with the valley at the (nearly) central position. Can it be true that the
optimal maximum is always attained by some ordering that arranges n1, n2, . . . , nN

in a concave way? The following analysis shows in some extent that the answer is
“no.” This negative answer shows that in some sense finding the ordering πmax could
be very difficult.

Suppose that we have a concave ordering π for n1, n2, . . . , nN such that π(i) >
π(j) when i < j ≤ 
N

2 � + 1, where 
x� denotes the maximum integer less than or
equal to x. We construct another ordering π′ from π by

π′(k) =




π(k), k 	= i, j,
π(j), k = i,
π(i), k = j,

i.e., by exchanging π(i) and π(j) and keeping the others unchanged. Then, π′ is
no longer a concave ordering for n1, n2, . . . , nN . We shall show that sometimes
D(π) > D(π′) and sometimes D(π) < D(π′), the other way round. First, by careful
calculation, we can obtain that

D(π′) −D(π) =

i−1∑
k=1

(j − i)nπ(k)(nπ(i) − nπ(j))

+

j−1∑
k=i+1

(2k − (i + j))nπ(k)(nπ(j) − nπ(i))

+

N∑
k=j+1

(j − i)nπ(k)(nπ(j) − nπ(i))

= (nπ(j) − nπ(i))

N∑
k=1,k �=i,j

αknπ(k),
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where

αk =




j − i, k = 1, 2, . . . , i− 1,
(i + j) − 2k, k = i + 1, . . . , j − 1,
−(j − i), k = j + 1, . . . , N.

Note that nπ(i) − nπ(j) > 0 by our assumption that nπ(i) > nπ(j).
Example 5.1. When j = i + 1, we have

D(π′) −D(π)

nπ(i) − nπ(i+1)
= n(π(1) + nπ(2) + · · · + nπ(i−1)) − (nπ(i+2) + nπ(i+3) + · · · + nπ(N)).

Example 5.2. When j = i + 2, we have

D(π′) −D(π)

nπ(i) − nπ(i+2)

= 2nπ(1) + 2nπ(2) + · · · + 2nπ(i−1) − 2nπ(i+3) − 2nπ(i+4) − · · · − 2nπ(N)

= 2[(nπ(1) + nπ(2) + · · · + nπ(i−1)) − (nπ(i+3) + nπ(i+4) + · · · + nπ(N))].

Example 5.3. When j = i + 3, we have

D(π′) −D(π)

nπ(i) − nπ(i+3)

= 3nπ(1) + 3nπ(2) + · · · + 3nπ(i−1) + nπ(i+1)

−nπ(i+2) − 3nπ(i+4) − 3nπ(i+5) − · · · − 3nπ(N)

= 3[(nπ(1) + nπ(2) + · · · + nπ(i−1)) − (nπ(i+4) + nπ(i+5) + · · · + nπ(N))]

+(nπ(i+1) − nπ(i+2)).

From Examples 5.1–5.3, we can see that one can properly assign the values
n1, n2, . . . , nN to attain D(π′) < D(π) sometimes, or D(π′) > D(π) on other oc-
casions. This again shows that the most important aspect for the ordering to attain
the optimal maximum is heavily dependent on how large the value is itself of each
of the n1, n2, . . . , nN , and is not purely dependent on the value-ordering of them.
In other words, different values of n1 ≤ n2 ≤ · · · ≤ nN give different orderings for
attaining the optimal maximum.

To conclude the paper we propose the following problem.
Problem 5.1. Find a polynomial-time algorithm to compute the ordering for the

optimal maximum of D, given n1 ≤ n2 ≤ · · · ≤ nN .

Appendix A. We follow the algorithm of Conjecture 2 for the numerals ni in
Table 1.

Step 0. Lp = 1, L = 0;Rp = 8, R = 0
Step 1. i = 8;R = 0 ≥ 0 = L,

πmax(Lp) = πmax(1) = 8;
Lp = 1 + 1 = 2, L = 0 + n8 = 28

Step 2. i = 7;R = 0 < L = n8 = 28,
πmax(Rp) = πmax(8) = 7;
Rp = 8 − 1 = 7, R = 0 + n7 = 19

Step 3. i = 6;R = 19 < 28 = L,
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πmax(Rp) = πmax(7) = 6;
Rp = 7 − 1 = 6, R = 19 + n6 = 19 + 18 = 37

Step 4. i = 5;R = 37 > 28 = L,
πmax(Lp) = πmax(2) = 5;
Lp = 2 + 1 = 3, L = 28 + n5 = 28 + 17 = 45

Step 5. i = 4;R = 37 < 45 = L,
πmax(Rp) = πmax(6) = 4;
Rp = 6 − 1 = 5, R = 37 + n4 = 37 + 13 = 50

Step 6. i = 3;R = 50 > 45 = L,
πmax(Lp) = πmax(3) = 3;
Lp = 3 + 1 = 4, L = 45 + n3 = 45 + 8 = 53

Step 7. i = 2;R = 50 < 53 = L,
πmax(Rp) = πmax(5) = 2;
Rp = 5 − 1 = 4, R = 50 + n2 = 50 + 5 = 55

Step 8. i = 1;R = 55 > 53 = L,
πmax(Lp) = πmax(4) = 1;
Lp = 4 + 1 = 5, L = 53 + n1 = 53 + 2 = 55

Finally, we get an ordering πmax or πa = 8, 5, 3, 1, 2, 4, 6, 7.
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