
ar
X

iv
:1

10
4.

30
07

v1
 [

cs
.F

L
]

 1
5

A
pr

 2
01

1

November 5, 2018 2:40 WSPC/INSTRUCTION FILE hyper

International Journal of Foundations of Computer Science
c© World Scientific Publishing Company

OPTIMAL HYPER-MINIMIZATION∗

ANDREAS MALETTI† and DANIEL QUERNHEIM

Institute for Natural Language Processing, Universität Stuttgart
Azenbergstraße 12, 70174 Stuttgart, Germany

{andreas.maletti, daniel.quernheim}@ims.uni-stuttgart.de

Received (31 January 2011)
Accepted (Day Month Year)

Communicated by (xxxxxxxxxx)

Minimal deterministic finite automata (dfas) can be reduced further at the expense
of a finite number of errors. Recently, such minimization algorithms have been im-
proved to run in time O(n logn), where n is the number of states of the input dfa, by
[Gawrychowski and Jeż: Hyper-minimisation made efficient. Proc. Mfcs, Lncs 5734,
2009] and [Holzer and Maletti: An n logn algorithm for hyper-minimizing a (mini-
mized) deterministic automaton. Theor. Comput. Sci. 411, 2010]. Both algorithms return
a dfa that is as small as possible, while only committing a finite number of errors. These
algorithms are further improved to return a dfa that commits the least number of errors
at the expense of an increased (quadratic) run-time. This solves an open problem of
[Badr, Geffert, and Shipman: Hyper-minimizing minimized deterministic finite state
automata. Rairo Theor. Inf. Appl. 43, 2009]. In addition, an experimental study on
random automata is performed and the effects of the existing algorithms and the new
algorithm are reported.

Keywords: deterministic finite automaton; minimization; error analysis.

2010 Mathematics Subject Classification: 68Q45, 68Q25, 68W40

1. Introduction

Deterministic finite automata (dfas) [14] are used in a vast number of applications

that require huge automata like speech processing [11] or linguistic analysis [10].

To keep the operations efficient, minimal dfa are typically used in applications. A

minimal dfa is such that all equivalent dfas are larger, where the size is measured

by the number of states. The asymptotically fastest minimization algorithm runs in

time O(n log n) and is due to Hopcroft [9], where n is the size of the input dfa.

∗This is an extended and revised version of [A. Maletti: Better hyper-minimization — not as fast,
but fewer errors. In Proc. CIAA, volume 6482 of LNCS, pages 201-210. Springer-Verlag, 2011].
†The work was carried out while the author was at the Departament de Filologies Romàniques,
Universitat Rovira i Virgili (Tarragona, Spain) and was supported by the Ministerio de Educación
y Ciencia (MEC) grants JDCI-2007-760 and MTM-2007-63422.

1

http://arxiv.org/abs/1104.3007v1

November 5, 2018 2:40 WSPC/INSTRUCTION FILE hyper

2 A. Maletti and D. Quernheim

Recently, stronger minimization procedures, called hyper-minimization, have

been investigated [2, 1, 5, 7, 12]. They can efficiently compress minimal dfas even

further at the expense of a finite number of errors. The fastest hyper-minimization

algorithms [5, 7] run in time O(n log n). More specifically, given an input dfa M , a

hyper-minimization algorithm returns a hyper-minimal dfa for M , which

• recognizes the same language as M up to a finite number of errors, and

• is minimal among all dfas with the former property (hyper-minimal).

In this contribution, we extend a known hyper-minimization algorithm to return

a hyper-optimal dfa for M , which is a hyper-minimal dfa for M that commits the

least number of errors among all hyper-minimal dfas for M . Moreover, the algo-

rithm returns the number of committed errors, which allows a user to disregard the

returned dfa if the number is unacceptably large. Our algorithm is based essen-

tially on a syntactic characterization of hyper-minimal dfas for M (see Theorems

3.8 and 3.9 of [2]). Roughly speaking, two hyper-minimal dfas for M differ in ex-

actly three aspects [2]: (i) the finality of the states P that are reachable by only

finitely many strings, (ii) the transitions from states of P to states not in P , and

(iii) the initial state. The characterization has two main uses: It allows us to com-

pute the exact number of errors for each hyper-minimal dfa for M , and it allows

us to easily consider all hyper-minimal dfas for M in order to find a hyper-optimal

dfa for M . We thus solve a remaining open problem of [2]. Unfortunately, the time

complexity of the obtained algorithm is O(n2), and it remains an open problem

whether the algorithm can be improved to run in time O(n logn).

Finally, we demonstrate hyper-minimization and the new algorithm on test dfas,

which we generated from random non-deterministic finite automata [14, 13]. The

difficult cases for minimization that were identified in [13] also prove to be difficult

for hyper-minimization in the sense that only a small reduction is possible at the

expense of a significant amount of errors. The new algorithm alleviates this problem

by avoiding a large number of mistakes. Outside the hard instances of [13], already

hyper-minimization reduces the size nicely at the expense of only a few errors.

2. Preliminaries

The set of integers is Z, and the subset of nonnegative integers is N. If the symmetric

difference S△T = (S \ T)∪ (T \ S) of two sets S and T is finite, then S and T are

almost-equal. Each finite set Σ is an alphabet, and the set of all strings over Σ is Σ∗.

The empty string is ε, and the concatenation of two strings u, v ∈ Σ∗ is denoted

by the juxtaposition uv. The length of the string w = σ1 · · ·σk with σ1, . . . , σk ∈ Σ

is |w| = k. A string u ∈ Σ∗ is a prefix of w if there exists a string v ∈ Σ∗ such that

w = uv. Any subset L ⊆ Σ∗ is a language over Σ.

A deterministic finite automaton (for short: dfa) is a tuple M = (Q,Σ, q0, δ, F),

in which Q is a finite set of states, Σ is an alphabet of input symbols, q0 ∈ Q is

an initial state, δ : Q × Σ → Q is a transition mapping, and F ⊆ Q is a set of

November 5, 2018 2:40 WSPC/INSTRUCTION FILE hyper

Optimal Hyper-Minimization 3

final states. The transition mapping δ extends to a mapping δ : Q × Σ∗ → Q by

δ(q, ε) = q and δ(q, σw) = δ(δ(q, σ), w) for every q ∈ Q, σ ∈ Σ, and w ∈ Σ∗. For

every q ∈ Q, let

L(M, q) = {w ∈ Σ∗ | δ(q0, w) = q} and L(q,M) = {w ∈ Σ∗ | δ(q, w) ∈ F} .

Intuitively, L(M, q) contains all strings that take M (from the initial state q0) into

the state q, and L(q,M) contains all strings that take M from q into a final state.

Moreover, Ker(M) = {q ∈ Q | L(M, q) infinite} is the set of kernel states of M , and

Pre(M) = Q \Ker(M) is the set of preamble states. The sets Ker(M) and Pre(M)

can be computed in time O(m), where m = |Q × Σ|. The dfa M recognizes the

language L(M) = L(q0,M) =
⋃

q∈F L(M, q).

An equivalence relation≡ ⊆ S×S is a reflexive, symmetric, and transitive binary

relation. The equivalence class of an element s ∈ S is [s]≡ = {s′ ∈ S | s ≡ s′} and

[S]≡ = {[s]≡ | s ∈ S}. A weak partition of S is a set Π such that (i) A ⊆ S for

every A ∈ Π, (ii) A1 ∩ A2 = ∅ for all different A1, A2 ∈ Π, and (iii) S =
⋃

A∈Π A.

An equivalence relation ≡ ⊆ Q×Q on the states of the dfa M = (Q,Σ, q0, δ, F) is

a congruence relation on M if δ(q1, σ) ≡ δ(q2, σ) for all q1 ≡ q2 and σ ∈ Σ.

Let M = (Q,Σ, q0, δ, F) and N = (P,Σ, p0, µ,G) be two dfas. A mapping

h : Q→ P is a transition homomorphism if h(δ(q, σ)) = µ(h(q), σ) for every q ∈ Q

and σ ∈ Σ. If additionally q ∈ F if and only if h(q) ∈ G for every q ∈ Q, then h is a

(dfa) homomorphism. In both cases, h is an isomorphism if it is bijective. Finally,

we say that the dfas M and N are (transition and dfa) isomorphic if there exists

a (transition and dfa, respectively) isomorphism h : Q→ P .

The dfas M and N are equivalent if L(M) = L(N). Clearly, (dfa) isomorphic

dfas are equivalent. Two states q ∈ Q and p ∈ P are equivalent, denoted by q ≡ p, if

L(q,M) = L(p,N).a The equivalence ≡ ⊆ Q×Q is a congruence relation on M . The

dfa M is minimal if it does not have equivalent states (i.e., q1 ≡ q2 implies q1 = q2
for all q1, q2 ∈ Q). The name ‘minimal’ is justified by the fact that there does not

exist a dfa with strictly fewer states that recognizes the same language as a minimal

dfa. A minimal dfa that is equivalent to M can be computed efficiently using

Hopcroft’s algorithm [8], which runs in time O(m logn) where m = |Q× Σ| and

n = |Q|. Moreover, minimal dfas are equivalent if and only if they are isomorphic.

Similarly, the dfas M and N are almost-equivalent if L(M) and L(N) are

almost-equal. The states q ∈ Q and p ∈ P are almost-equivalent, which is denoted by

q ∼ p, if L(q,M) and L(p,M) are almost-equal. The almost-equivalence ∼ ⊆ Q×Q

is also a congruence. The minimal dfa M is hyper-minimal if it does not have

a pair (q1, q2) ∈ Q × Q of different, but almost-equivalent states such that

{q1, q2} ∩ Pre(M) 6= ∅. Again, the name ‘hyper-minimal’ is justified by the fact

that there does not exist a dfa with strictly fewer states that recognizes an almost-

aWhile it might not be clear from the notation q ≡ p to which dfa a state belongs, it will typically
be clear from the context. In particular, we might have M = N ; i.e., we might relate two states
from the same dfa.

November 5, 2018 2:40 WSPC/INSTRUCTION FILE hyper

4 A. Maletti and D. Quernheim

Algorithm 1 Structure of a hyper-minimization algorithm.

Require: a dfa M = (Q,Σ, q0, δ, F) with m = |Q× Σ| and n = |Q|

M ←Minimize(M) // Hopcroft’s algorithm; O(m logn)

2: ∼ ← CompAEquiv(M) // compute almost-equivalence; O(m logn)

M ←MergeStates(M,Ker(M),∼) // merge almost-equivalent states; O(m)

4: return M

equivalent language (see Theorem 3.4 of [2]). A hyper-minimal dfa that is almost-

equivalent to M is called “hyper-minimal for M ” and can be computed efficiently

using the algorithms of [5, 7], which also run in time O(m logn). A structural char-

acterization of hyper-minimal dfas is presented in Theorems 3.8 and 3.9 of [2],

which we reproduce here.

Theorem 1 (see [2]) Let M = (Q,Σ, q0, δ, F) and N = (P,Σ, p0, µ,G) be almost-

equivalent dfas. Then δ(q0, w) ∼ µ(p0, w) for every w ∈ Σ∗. In addition, if

M and N are hyper-minimal, then there exists a mapping h : Q→ P such that

• q ∼ h(q) for every q ∈ Q,

• h yields a transition isomorphism between Pre(M) and Pre(N), and

• h yields a dfa isomorphism between Ker(M) and Ker(N).

3. Hyper-minimization

Hyper-minimization as introduced in [2] is a form of lossy compression with the

goal of reducing the size of a minimal dfa at the expense of a finite number of

errors. More formally, hyper-minimization aims to find a hyper-minimal dfa for an

input dfa. Several hyper-minimization algorithms exist [2, 1, 5, 7], and the overall

structure of the hyper-minimization algorithm of [7] is displayed in Algorithm 1. For

the following discussion let M = (Q,Σ, q0, δ, F) be a dfa, and let m = |Q×Σ| and

n = |Q| be the number of its transitions and the number of its states, respectively.

The most interesting component of Algorithm 1 is the merging process. In gen-

eral, the merge of a state p ∈ Q into another state q ∈ Q redirects all incoming

transitions of p to q. If p = q0 then q is the new initial state. The finality of q is

not changed even if p is final. Clearly, the state p can be deleted after the merge if

p 6= q. Formally, mergeM (p→ q) = (P,Σ, p0, µ, F), where P = (Q \ {p}) ∪ {q} and

for every q′ ∈ Q and σ ∈ Σ

p0 =

{

q if q0 = p

q0 otherwise
and µ(q′, σ) =

{

q if δ(q′, σ) = p

δ(q′, σ) otherwise.

Lemma 2. Let p, q ∈ Q and N = mergeM (p→ q). Then

L(M)△L(N) = {uw | u ∈ L(M,p), w ∈ L(p,M)△L(q,M)} .

November 5, 2018 2:40 WSPC/INSTRUCTION FILE hyper

Optimal Hyper-Minimization 5

A A′ M1

0

B B′ M2

c

c

c

c

Fig. 1. An example dfa, where unbroken lines are a-transitions and dashed lines are b-transitions.

Consequently, M and mergeM (p → q) are almost-equivalent if q ∼ p and

p ∈ Pre(M). The hyper-minimization algorithms of [2, 1, 5, 7] only perform such

merges. More precisely, the procedure MergeStates merges almost-equivalent

states in the mentioned fashion until the obtained dfa is hyper-minimal. The

number of errors introduced in this way differs among several hyper-minimal dfa

for M and depends on the merges performed. In this contribution, we develop an

algorithm that computes a hyper-minimal dfa for M that commits the minimal

number of errors among all hyper-minimal dfas for M . A dfa N is hyper-optimal

for M if it is hyper-minimal and the cardinality of the symmetric difference be-

tween L(M) and L(N) is minimal among all hyper-minimal dfas. Note that a

hyper-optimal dfa for M is hyper-minimal for M . Moreover, our algorithm returns

the exact number of errors, and we could also return a compact representation of

the actual error strings. Overall, we thus solve a problem that remained open in [2].

An extreme example is presented in Fig. 1. If we run the hyper-minimization

algorithms of [2, 1, 5, 7], then we obtain one of the two first dfas of Fig. 2. Both of

them commit 2+ |L(M1)△L(M2)| errors. If we let L(M1) = Σk for some k ∈ N and

L(M2) = ∅, then they commit 2 + |Σ|k errors. On the other hand, the optimal dfa

is the third dfa of Fig. 2, and it commits only 2 errors (irrespective of M1 and M2).

This shows that the gap in the number of errors can be very significant.

4. Computing the number of errors

Next, we show how to efficiently compute the number of errors that are caused by

a single merge (see Lemma 2). For this we first compute the size of the difference

between almost-equivalent states p ∼ q. From now on, let M = (Q,Σ, q0, δ, F) be a

minimal dfa. In our examples, we will always refer to our running example dfa Mex,

which is presented in Fig. 3. Its kernel states are Ker(Mex) = {E,F, I, J,K, L,M}

and the following partition represents its almost-equivalence:

{0} {A} {B} {C,D} {E} {F} {G,H, I, J} {K,L,M}.

November 5, 2018 2:40 WSPC/INSTRUCTION FILE hyper

6 A. Maletti and D. Quernheim

0 A′ M1

B′ M2

c

c

A′ M1

0 B′ M2

c

c

A′ M1

0

B′ M2

c

c

Fig. 2. Three hyper-minimal dfas for the dfa of Fig. 1, where unbroken lines are a-transitions and
dashed lines are b-transitions.

0 E I K

A F J L

B C H M

D G

0 E I K

A F J L

B C M

Fig. 3. Example dfa Mex (left) and optimal hyper-minimal dfa Nex (right) for Mex, where un-
broken lines are a-transitions and dashed lines are b-transitions.

In comparison to the dfa Mex of Fig. 3, the dfa Nex of Fig. 3 commits the following

seven errors: {aaaab, aaab, aab, aabab, aabb, abab, abb}. Note that existing algorithms

will only find hyper-minimal dfas that commit 16 errors, and the worst hyper-

minimal dfa for Mex commits 29 errors.

Definition 3. For every q ∼ p, let

Eq,p =















0 if q = p

∑

σ∈Σ Eδ(q,σ),δ(p,σ) +

{

0 if q ∈ F ⇐⇒ p ∈ F

1 otherwise
otherwise.

Lemma 4. Eq,p = |L(q,M)△L(p,M)| for every q ∼ p.

Proof. Let q ∼ p. Then |L(q,M)△L(p,M)| is finite by definition, and we let

kq,p = max {|w| | w ∈ L(q,M)△L(p,M)}, where max ∅ = −∞. Now, we prove

the statement by induction on N ∪ {−∞}. First, suppose that kq,p = −∞. Then

November 5, 2018 2:40 WSPC/INSTRUCTION FILE hyper

Optimal Hyper-Minimization 7

Algorithm 2 CompE: Compute the error matrix E.

Require: minimal dfa M = (Q,Σ, q0, δ, F) and states q ∼ p

Global: error matrix E ∈ Z
Q×Q initially 0 on the diagonal and −1 elsewhere

if Eq,p = −1 then

2: c← ((q ∈ F) xor (p ∈ F)) // set errors to 1 if q and p differ on finality

Eq,p ← c+
∑

σ∈Σ

CompE(M, δ(q, σ), δ(p, σ)) // recursive calls

4: return Eq,p // return the computed value

L(q,M) = L(p,M), which yields that q ≡ p. Since M is minimal, we conclude

that q = p and Eq,p = 0, which proves the induction base. Second, suppose that

kq,p ≥ 0, and let W = {σw | σ ∈ Σ, w ∈ L(δ(q, σ),M)△L(δ(p, σ),M)}. Obviously,

W ⊆ L(q,M)△L(p,M) ⊆ W ∪ {ε} and kδ(q,σ),δ(p,σ) < kq,p for every σ ∈ Σ. The

empty string ε is in L(q,M)△L(p,M) if and only if q and p differ on finality. More-

over, Eδ(q,σ),δ(p,σ) = |L(δ(q, σ),M)△L(δ(p, σ),M)| for every σ ∈ Σ by induction

hypothesis. Since kq,p ≥ 0, we have q 6= p and

Eq,p =
∑

σ∈Σ

Eδ(q,σ),δ(p,σ) +

{

0 if q ∈ F ⇐⇒ p ∈ F

1 otherwise,

which proves the induction step and the statement.

Let us illustrate Algorithm 2 on the example dfa Mex of Fig. 3. We list some

error matrix entries together with the corresponding error strings. Note that the

error strings are not computed by the algorithm, but are presented for illustrative

purposes only.

EG,H = 5 {ε, a, aa, ab, b} EH,I = 4 {ε, a, aa, ab} EK,L = 3 {ε, a, b}

EG,I = 1 {b} EH,J = 1 {ε} EK,M = 2 {a, b}

EG,J = 4 {a, aa, ab, b} EI,J = 3 {a, aa, ab} EL,M = 1 {ε}

Theorem 5. Algorithm 2 can be used to compute all Eq,p with q ∼ p in

time O(mn).

Proof. Clearly, the initialization and the recursion for Eq,p are straightforward

implementations of its definition (see Definition 3). Moreover, each individual call

takes only time O(|Σ|) besides the time taken for the recursive calls. Since each call

computes one entry in the matrix and no entry is ever recomputed, we obtain the

time complexity O(|Σ| · n2) = O(mn) because m = |Σ| · n.

In addition, we need to compute the number of strings that lead to a preamble

state (see Lemma 2). This can easily be achieved with a folklore algorithm (see

Algorithm 3 and Lemma 4 of [4]) that computes the number of paths from q0 to

November 5, 2018 2:40 WSPC/INSTRUCTION FILE hyper

8 A. Maletti and D. Quernheim

Algorithm 3 CompAccess: Compute the number of paths to a preamble state.

Require: a minimal dfa M = (Q,Σ, q0, δ, F) and a preamble state q ∈ Pre(M)

Global: access path vector w ∈ N
Q initially 1 at q0 and 0 elsewhere

if wq = 0 then

2: wq ←
∑

(p,σ)∈δ−1(q)

CompAccess(M,p) // recursive calls

return wq // return the computed value

each preamble state. Mind that the graph of the dfa M restricted to its preamble

states Pre(M) is acyclic. Overall, the algorithm is very similar to Algorithm 2, but

we will not present a formal comparison here.

Theorem 6 (see [4]) Algorithm 3 can be used to compute the number of paths to

each preamble state in time O(m).

Proof. The correctness is obvious using the observation that p is a preamble state

for every (p, σ) ∈ δ−1(q) with q ∈ Pre(M). Clearly, the call CompAccess(M, q)

terminates in constant time if the value wq has already been computed. Moreover,

each transition can be considered at most once in the sum in line 2, which yields

the time complexity O(m).

Algorithm 3 computes the following values for the dfa Mex of Fig. 3:

w0 = wA = wB = wD = 1 wC = 2 wG = 3 wH = 6 .

Overall, we can now efficiently compute the number of errors (or a representation

of the errors itself) caused by a single merge operation. However, multiple merges

may affect each other. An error that is introduced by one merge might be removed

by a subsequent merge, so that we cannot simply obtain the exact error count by

adding the error counts for all performed merges.

5. Optimal state merging

The previous section suggests how to compute a hyper-optimal dfa for a given

minimal dfa M = (Q,Σ, q0, δ, F) with m = |Q × Σ| and n = |Q|. We can simply

compute the exact set of errors for each hyper-minimal dfa for M and select a

dfa with a minimal error count. By Theorem 1 we can easily enumerate all hyper-

minimal dfas for M , so that the above procedure would be effective. However, in

this section, we show that we can also obtain a hyper-optimal dfa using only local

decisions. This is possible since the structural differences among hyper-minimal dfas

for M mentioned in Theorem 1 cause different errors. Roughly speaking, Theorem 1

shows that two hyper-minimal dfas for M can only differ on

• the initial state,

November 5, 2018 2:40 WSPC/INSTRUCTION FILE hyper

Optimal Hyper-Minimization 9

• finality of preamble states, and

• transitions from preamble to kernel states.

Now, let us identify the strings and potential errors associated with each of

the three differences. Recall that ∼ is the almost-equivalence relating the states

of M . To simplify the following discussion, we introduce some additional notation.

For every q ∈ Q, let Kq = {p ∈ Ker(M) | p ∼ q}. In other words, the set Kq

contains all kernel states that are almost-equivalent to the state q. Moreover, let

P∼ = {B ∈ [Q]∼ | B ⊆ Pre(M)} be the set of blocks of almost-equivalent and

exclusively preamble states. Now we define sets of strings that correspond to the

three types of differences mentioned above:

• Let W0 =
⋃

q∈Kq0

Σ∗.

• Let WB =
⋃

q∈B L(M, q) for every B ∈ P∼.

• For every B ∈ P∼ and σ ∈ Σ with
⋃

q∈B Kδ(q,σ) 6= ∅, let

WB,σ = {uσw | u ∈WB , w ∈ Σ∗} .

Lemma 7. The following is a weak partition of Σ∗:

{W0} ∪ {WB | B ∈ P∼} ∪ {WB,σ | B ∈ P∼, σ ∈ Σ,
⋃

q∈B

Kδ(q,σ) 6= ∅} .

Proof. Clearly, W0 = Σ∗ if Kq0 6= ∅ or W0 = ∅ otherwise. Suppose the former;

i.e., there exists q ∈ Kq0 . Let p ∈ Pre(M) be a preamble state. Since M is minimal,

there exists a string w ∈ L(M,p). Moreover, p = δ(q0, w) ∼ δ(q, w) because q0 ∼ q

and ∼ is a congruence. Clearly, δ(q, w) is a kernel state due to the fact that q is a

kernel state. Consequently, every preamble state p ∈ Pre(M) is almost-equivalent

to some kernel state, which proves that [p]∼ /∈ P∼ for every p ∈ Pre(M). This yields

that the statement is correct if Kq0 6= ∅.

In the second case, let Kq0 = ∅. Then W0 = ∅. Clearly, WB1
∩WB2

= ∅ for all

different B1, B2 ∈ P∼ because {L(M, q) | q ∈ Q} is a partition of Σ∗. Using the

same reasoning, we can show that WB1
and WB2,σ are disjoint for all B1, B2 ∈ P∼

and suitable σ ∈ Σ using the additional observation that Kδ(q0,w) 6= ∅ for every

w ∈ WB2,σ, whereas Kδ(q0,w) = ∅ for every w ∈ WB1
. Finally, let B1, B2 ∈ P∼

and suitable σ1, σ2 ∈ Σ. Suppose that there exists w ∈ WB1,σ1
∩ WB2,σ2

. When

processing w by M there can only be one transition from a preamble state to a

kernel state, which in both cases has to be achieved by the letter σ1 = σ2. Moreover,

the state before taking this transition is unique, which yields that also B1 = B2.

Consequently, we have shown that all sets are disjoint.

It remains to prove that all of Σ∗ is covered. Let w ∈ Σ∗ be an arbitrary string.

If Kδ(q0,w) = ∅, then w ∈ W[δ(q0,w)]∼ . On the other hand, let Kδ(q0,w) 6= ∅. Then

there exists a prefix u of w such that Kδ(q0,u) 6= ∅ and Kδ(q0,v) = ∅ for all strict

prefixes v of u. Then w ∈ W0 if u = ε and w ∈ W[δ(q0,v)]∼,σ where u = vσ and

σ ∈ Σ. This concludes the proof.

November 5, 2018 2:40 WSPC/INSTRUCTION FILE hyper

10 A. Maletti and D. Quernheim

The previous lemma shows that error strings in the mentioned sets are inde-

pendent and cover all potential errors. For our example dfa Mex of Fig. 3 we have

W0 = ∅ W{C,D} = {aaa, aab, ab} W{C,D},a = {uaw | u ∈W{C,D}, w ∈ Σ∗} .

Next we address all individual differences between hyper-minimal dfas for M . We

start with the initial state.

Lemma 8. If Kq0 6= ∅, then each hyper-minimal dfa for M is obtained by pruning

mergeM (q0 → q) for some q ∈ Kq0 . Moreover, it commits exactly Eq0,q errors.

Proof. Let N = (P,Σ, p0, µ,G) be a hyper-minimal dfa for M . By Theorem 1,

the dfa N consists of only kernel states and is isomorphic to the subautoma-

ton of M that is determined by Ker(M). Moreover, q0 ∼ p0, which yields that

N is isomorphic to mergeM (q0 → q) for some q ∈ Kq0 . By Lemma 2 we

have that L(q,M) = L(q,N) = L(N) and L(M) = L(q0,M). This yields that

L(M)△L(N) = L(q0,M)△L(q,M), of which the size is Eq0,q by Lemma 4.

We can compute the number Eq0,q of errors caused by the merge of q0 into an

almost-equivalent kernel state q ∈ Kq0 using Algorithm 2 of Section 4. This simple

test is implemented in lines 1–2 of Algorithm 5.

Second, let us consider a block B ∈ P∼ of almost-equivalent preamble states.

Such a block must eventually be merged into a single preamble state p in the hyper-

minimal dfa N , for which we need to determine finality because the preamble states

of two hyper-minimal dfas for M are only related by a transition isomorphism (see

Theorem 1).

Lemma 9. Let B ∈ P∼ and N = (P,Σ, p0, µ,G) be a hyper-minimal dfa for M .

Then N commits either
∑

q∈B∩F wq or
∑

q∈B\F wq errors of WB .

Proof. The set WB contains all strings that take the dfa M into some state of B.

Moreover, all those strings take the hyper-minimal dfa N into a single state p ∈ P ;

i.e., L(N, p) = WB by Theorem 1. Let

W ′
B = {w ∈WB | w ∈ L(M)} and W ′′

B = {w ∈WB | w /∈ L(M)} ;

i.e., the partition into accepted and rejected strings (by M) of WB , respectively.

Consequently, it is sufficient to compare the size of those sets because if p ∈ G (i.e.,

p is a final state of N), then all strings of W ′′
B are errors. This is due to the fact

that they are rejected by M , but accepted by N . On the other hand, the strings

of W ′
B are errors if p is non-final. Finally

|W ′
B | = |{w ∈WB | q ∈ F,w ∈ L(M, q)}|

= |{w ∈ Σ∗ | q ∈ B ∩ F,w ∈ L(M, q)}| =
∑

q∈B∩F

wq ,

November 5, 2018 2:40 WSPC/INSTRUCTION FILE hyper

Optimal Hyper-Minimization 11

Algorithm 4 CompFinality: Determine finality of a block of preamble states.

Require: a minimal dfa M = (Q,Σ, q0, δ, F) and a block B ∈ P∼

Global: error count e

(f, f)←
(

∑

q∈B∩F

wq,
∑

q∈B\F

wq

)

// errors for non-final and final state

2: e← e+min(f, f) // add smaller value to global error count

select q ∈ B such that q ∈ F if f > f // select appropriate state

4: return q // return selected state

and similarly, |W ′′
B | =

∑

q∈B\F wq .

Consequently, if and only if more strings are accepting (i.e., |W ′
B| > |W

′′
B |),

then the preamble state p ∈ P of N should be accepting. This decision is codified

in Algorithm 4. On our example dfa Mex of Fig. 3 and the block B = {C,D} it

compares W ′
B = {aaa, ab} and W ′′

B = {aab}, and thus decides that the state C of

the dfa Nex of Fig. 3 should be final. Note that Lemma 7 shows that the errors

are distinct for different blocks B1 and B2. All of the following algorithms will use

the global variable e, which will keep track of the number of errors. Initially, it will

be set to 0 and each discovered error will increase it. Finally, we assume that the

vector w ∈ N
Q (see Algorithm 3) and the error matrix E ∈ Z

Q×Q (see Algorithm 2)

have already been computed and can be accessed in constant time.

Lemma 10. ComputeFinality(M,B,w) adds the smallest number of errors

of WB committed by a hyper-minimal dfa N for M . It runs in time O(|B|) and

returns a final state (of M) if and only if WB ⊆ L(N).

Proof. Algorithm 4 implements the method of Lemma 9 in the given run-time.

For the third criterion, let us again consider a block B ∈ P∼ of almost-

equivalent preamble states and a symbol σ ∈ Σ such that
⋃

q∈B Kδ(q,σ) 6= ∅. Clearly,

Kδ(q1,σ) = Kδ(q2,σ) for all q1, q2 ∈ B because ∼ is a congruence on M . We need to

determine the kernel state that will be the new transition target. By Theorem 1 it

has to be a kernel state because δ(q, σ) is almost-equivalent to a kernel state.

Lemma 11. Let N = (P,Σ, p0, µ,G) be a hyper-minimal dfa for M , and let

B ∈ P∼ and σ ∈ Σ be such that K =
⋃

q∈B Kδ(q,σ) 6= ∅. Then the dfa N commits
∑

q∈B wq · Eδ(q,σ),q′ errors of WB,σ for some q′ ∈ K.

Proof. Since WB,σ = {uσv | u ∈ WB , v ∈ Σ∗}, each string w ∈ WB,σ has a

prefix uσ with u ∈ WB. Clearly, each u ∈ WB takes the dfa M into some state

of B, and the hyper-minimal dfa N into a state state p ∈ P such that L(N, p) = WB

by Theorem 1. Moreover, µ(p, σ) = p′ for some p′ ∈ Ker(N), for which an equivalent

November 5, 2018 2:40 WSPC/INSTRUCTION FILE hyper

12 A. Maletti and D. Quernheim

state q′ ∈ Q exists in M by Theorem 1 because the kernels of M and N are dfa

isomorphic. Consequently, L(p′, N) = L(q′,M) and N accepts the strings

{uσv | u ∈WB, v ∈ L(q′,M)} ⊆WB,σ

and rejects the remaining strings of WB,σ. On the other hand, the dfa M accepts

the strings
⋃

q∈B{uσv | u ∈ L(M, q), v ∈ L(δ(q, σ),M)} ⊆ WB,σ and rejects the

remaining strings of WB,σ. Clearly, δ(q, σ) ∼ q′. Consequently, the errors are exactly
⋃

q∈B{uσv | u ∈ L(M, q), v ∈ L(δ(q, σ),M)△L(q′,M)} ⊆ WB,σ, which yields the
∑

q∈B wq · Eδ(q,σ),q′ errors of WB,σ because the decomposition is unique.

Recall that wq and Eq,p have been pre-computed already. Next, we discuss the

full merging algorithm (see Algorithm 5). The initial state is handled in lines 1–2.

In lines 5–7 we first handle the already discussed decision for the finality of blocks B

of preamble states and perform the best merge into state q. In lines 8–11 we de-

termine the best target state for all transitions from a preamble to a kernel state.

The smallest error count is added to the global error count in line 10 and the cor-

responding designated kernel state is selected as the new target of the transition

in line 11. This makes all preamble states that are almost-equivalent to this kernel

state unreachable, so they can be removed. On our example dfa Mex of Fig. 3, we

have that δ(C, a) = G is a transition from the block {C,D} ∈ P∼ to a kernel state.

Consequently, we compare
∑

q∈{C,D} wq ·Eδ(q,a),q′ for all kernel states q′ ∈ KG:
∑

q∈{C,D}

wq ·Eδ(q,a),I = 2·1+1·1 = 3 and
∑

q∈{C,D}

wq ·Eδ(q,a),J = 2·4+1·4 = 12 .

Theorem 12. Algorithm 5 runs in time O(mn) and returns a hyper-optimal dfa

for M . In addition, the number of committed errors is returned.

Proof. The time complexity is easy to check, so we leave it as an exercise. Since

the choices (finality, transition target, initial state) are independent by Lemma 7,

all hyper-minimal dfas for M are considered in Algorithm 5 by Theorem 1. Conse-

quently, we can always select the local optimum for each choice (using Lemmata 8,

9, and 11) to obtain a global optimum, which proves that the returned number is

the minimal number of errors among all hyper-minimal dfas. Mind that the number

of errors would be infinite for a hyper-minimal dfa that is not almost-equivalent

to M . Moreover, it is obviously the number of errors committed by the returned

dfa, which proves that the returned dfa is hyper-optimal for M .

Corollary 13 (of Theorem 12) For every dfa M we can obtain a hyper-optimal

dfa for M in time O(mn).

6. Empirical results

In order to evaluate the algorithm, we compare it to another hyper-minimization

algorithm [7] that does not aim for low error profile. Since the algorithm of [7] is

November 5, 2018 2:40 WSPC/INSTRUCTION FILE hyper

Optimal Hyper-Minimization 13

Algorithm 5 OptMerge: Optimal merging of almost-equivalent states.

Require: a minimal dfa M = (Q,Σ, q0, δ, F) and its almost-equivalent states ∼

Global: error count e; initially 0

if Kq0 6= ∅ then

2: return 〈(Q,Σ, argminq∈Kq0

Eq0,q, δ, F),minq∈Kq0
Eq0,q〉

N ←M where N = (P,Σ, p0, µ,G) // initialize output dfa

4: for all B ∈ P∼ do

q ← CompFinality(M,B) // determine finality of merged state

6: for all p ∈ B do

N ← mergeN (p→ q) // perform the merges

8: for all σ ∈ Σ do

if K = Kδ(q,σ) 6= ∅ then

10: e← e+min
q∈K

(

∑

p∈B

wp · Eδ(p,σ),q

)

// add best error count

µ(q, σ)← argmin
q∈K

(

∑

p∈B

wp ·Eδ(p,σ),q

)

// update follow state

12: return (N, e)

(“don’t-care”) non-deterministic (in the selection of merge targets), we implemented

a simple stack discipline, which always pops the first element. For a varying set of

parameters, 100 random dfas have been generated and run through both algo-

rithms. The number of saved states as well as the number of errors are reported.

First we explain how the test dfas were generated, describe the experimental setup,

and then present and discuss the results.

We use an algorithm based on the original algorithm in Hanneforth’s

FSM<2.0> library [6], which generates random non-deterministic finite automata.

This model is closely related to Karp’s model of random directed graphs (see

Chapter 2 of [3] or [13] for a discussion of different models). The only difference is

the introduction of an additional parameter: the cyclicity a. The complete set of

parameters is as follows:

|Q| This integer limits the number of states in the non-deterministic automaton.

|Σ| This integer coincides with the number of alphabet symbols.

dδ Uniform probability determining whether a given transition p
σ
→ q exists;

we call dδ · |Q| the transition density.

dF Uniform probability for a given state to be final.

a This real-valued parameter 0 ≤ a ≤ 1 controls the cyclicity by constraining

“backward-pointing” transitions. In particular, if a = 0, then the automaton

will be acyclic, and if a = 1, then all transitions are equally probable.

A non-deterministic automaton M is generated in the following way: (i) The set of

states is Q = {0, 1, 2, . . . , |Q| − 1} with initial state 0. (ii) A state q ∈ Q is final if

November 5, 2018 2:40 WSPC/INSTRUCTION FILE hyper

14 A. Maletti and D. Quernheim

size of mDFA

0
0.2

0.4
0.6

0.8
1

cyclicity

0
1

2
3

4
5

6

density

0
50

100
150
200
250

states saved

0
0.2

0.4
0.6

0.8
1

cyclicity

0
1

2
3

4
5

6

density

0
0.2
0.4
0.6
0.8
1

Fig. 4. Hyper-minimization performance for non-deterministic automata with 30 states, |Σ| = 2
and 0.3 ≤ dF ≤ 0.7. “Density” refers to dδ · |Q|. Left: Average size of the minimal dfa. Right:
Ratio of states saved by hyper-minimization. Values range over the full scale; i.e., they approach 0
outside the ridge and inside the valley.

and only if fq < dF , where 0 ≤ fq ≤ 1 is a random value. (iii) Finally, for every

(q, a, p) ∈ Q×Σ×Q, we generate a random number 0 ≤ f(q,a,p) ≤ 1. The transition

q
σ
→ p is present in M if and only if

f(q,a,p) <

{

dδ if p > q

a · dδ otherwise.

The latter case corresponds to “backward-pointing” transitions and creates cycles.

For each set of parameters, we have generated 100 dfas. These dfas were ob-

tained by determinizing and minimizing the randomly generated non-deterministic

test automata. All dfas have then been hyper-minimized, and the optimal hyper-

minimal dfas have been compared to the ones resulting from naïve hyper-

minimization.b The obtained results are shown in Figs. 4 and 5.

Figure 4 shows the size of the minimal dfas and the potential of saving states

by hyper-minimization. The left graph in Fig. 4 shows a ridge, which corresponds

to cases in which dfa minimization is hard and results in a large minimal dfa [13].

It is located around a transition density of dδ · |Q| = 1.25 for a cyclicity of 1, and it

moves to higher densities for less cyclic automata. Essentially, the same ridge was

observed by [13] (for the case a = 1). The right graph in Fig. 4 shows that these hard

instances for dfa minimization are also hard for hyper-minimization in the sense

that only very few states can be saved. However, for the remaining instances a

considerable reduction in the number of states is achievable by hyper-minimization.

If we focus on the contribution of this paper, then we find that the number of

errors can be considerably reduced. Figure 5 shows the absolute number of errors for

hyper-minimal dfas (left graph) and the ratio of errors avoided by the hyper-optimal

automaton (right graph). The absolute number of errors for the hard instances,

which can only be reduced a little, is higher than for the easy instances. However,

bThe complete C++ source code will be made available, and the FSM<2.0> library is available
at http://tagh.de/tom/?p=1737 .

http://tagh.de/tom/?p=1737

November 5, 2018 2:40 WSPC/INSTRUCTION FILE hyper

Optimal Hyper-Minimization 15

number of errors

0
0.2

0.4
0.6

0.8
1

cyclicity

0
1

2
3

4
5

6

density

0

2

4

6

errors avoided

0
0.2

0.4
0.6

0.8
1

cyclicity

0
1

2
3

4
5

6

density

0
0.1
0.2
0.3
0.4
0.5

Fig. 5. Hyper-optimization performance. Left: Absolute number of errors in naïve hyper-minimal
dfas. Right: Ratio of errors avoided by hyper-optimization.

the hyper-optimal dfas avoid a higher ratio of errors for the hard instances, which

dramatically reduces the number of committed errors paid for the small reduction.

References

[1] A. Badr, “Hyper-minimization in O(n2),” Int. J. Found. Comput. Sci. 20 (2009)
735–746.

[2] A. Badr, V. Geffert and I. Shipman, “Hyper-minimizing minimized deterministic finite
state automata,” RAIRO Theor. Inf. Appl. 43 (2009) 69–94.

[3] B. Bollobás, Random graphs (Cambridge University Press, 2001).
[4] D. Eppstein, “Finding common ancestors and disjoint paths in DAGs,” Tech. Rep.

95-52, University of California, Irvine, 1995.
[5] P. Gawrychowski and A. Jeż, “Hyper-minimisation made efficient,” in Proc. 34th Int.

Symp. Mathematical Foundations of Computer Science (Springer, 2009), vol. 5734 of
LNCS, pp. 356–368.

[6] T. Hanneforth, “fsm2 — A scripting language interpreter for manipulating weighted
finite-state automata,” in Proc. 8th Int. Workshop Finite-State Methods and Natural

Language Processing (Springer, 2009), vol. 6062 of LNCS, pp. 13–30.
[7] M. Holzer and A. Maletti, “An n log n algorithm for hyper-minimizing a (minimized)

deterministic automaton,” Theor. Comput. Sci. 411 (2010) 3404–3413.
[8] J. E. Hopcroft, “An n logn algorithm for minimizing states in a finite automaton,” in

Theory of Machines and Computations (Academic Press, 1971), pp. 189–196.
[9] J. E. Hopcroft, R. Motwani and J. D. Ullman, Introduction to Automata Theory,

Languages, and Computation (Addison Wesley, 2007), 3rd edn.
[10] C. D. Johnson, Formal Aspects of Phonological Description, no. 3 in Monographs on

Linguistic Analysis (Mouton, The Hague, 1972).
[11] M. Mohri, “Finite-state transducers in language and speech processing,” Comput.

Linguist. 23 (1997) 269–311.
[12] S. Schewe, “Beyond hyper-minimisation—minimising dbas and dpas is np-complete,”

in Proc. IARCS Ann. Conf. Foundations of Software Technology and Theoretical

Computer Science (Schloss Dagstuhl — Leibniz-Zentrum für Informatik, 2010), vol. 8
of LIPIcs, pp. 400–411.

[13] D. Tabakov and M. Y. Vardi, “Experimental evaluation of classical automata con-
structions,” in Proc. 12th Int. Conf. Logic for Programming, Artificial Intelligence,

and Reasoning (Springer, 2005), vol. 3835 of LNCS, pp. 396–411.
[14] S. Yu, “Regular languages,” in Handbook of Formal Languages, eds. G. Rozenberg and

November 5, 2018 2:40 WSPC/INSTRUCTION FILE hyper

16 A. Maletti and D. Quernheim

A. Salomaa (Springer, 1997), vol. 1, chap. 2, pp. 41–110.

	1 Introduction
	2 Preliminaries
	3 Hyper-minimization
	4 Computing the number of errors
	5 Optimal state merging
	6 Empirical results

