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Abstract. The main objective of this paper is to study the number of limit cycles in a family of polynomial

systems. Using bifurcation methods, we obtain the maximal number of limit cycles in global bifurcation.

Keywords. limit cycle, bifurcation, Melnikov function

1 Introduction and main results

In the qualitative theory of real planar differential systems, the main open problem is to

determine the number and location of limit cycles. A classical way to produce limit cycles

is by perturbing a system which has a center in such a way that limit cycles bifurcate in

the perturbed system from some of the periodic orbits of the center for the unperturbed

system. For instance, consider a planar system of the form

ẋ(t) = Hy + εf(x, y, ε, a),

ẏ(t) = −Hx + εg(x, y, ε, a),
(1)

where H , f , g are C∞ functions in a region G ⊂ R2, ε ∈ R is a small parameter and

a ∈ D ⊂ Rn with D compact. For ε = 0, (1) becomes a Hamiltonian system with the

Hamiltonian function H(x, y). Suppose there exists a constant H0 > 0 such that for

0 < h < H0, the equation H(x, y) = h defines a smooth closed curve Lh ⊂ G surrounding

the origin and shrinking to the origin as h → 0. Hence H(0, 0) = 0 and for ε = 0 (1) has

a center at the origin.

Let

Φ(h, a) =

∮

Lh

(gdx− fdy)ε=0 (2)

=

∮

Lh

(Hyg +Hxf)ε=0dt,
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which is called the first order Melnikov function or Abelian integral of (1). This function

plays an important role in the study of limit cycle bifurcation. In the case that (1) is a

polynomial system, a well-known problem is to study the least upper bound of the number

of zeros of Φ. This is called the weakened Hilbert 16th problem, see [Arnold 1983; Ye,

1986].

In this paper, we first state some preliminary lemmas which can be used to find the

maximal number of limit cycles by using zeros of Φ. These lemmas are already known or

easy corollaries of known results. Then we study the global bifurcations of limit cycles

for some polynomial systems, and obtain the lower upper bound of the number of limit

cycles. This is the main part of the paper.

Now we give some lemmas. First, for Hopf bifurcation we have the following:

Lemma 1.1([Han, 2000]) Let H(x, y) = K(x2 + y2) + O(|x, y|3) with K > 0 for

(x, y) near the origin. Then the function Φ is of class C∞ in h at h = 0. If Φ(h, a0) =

K1(a0)h
k+1 + O(hk+2), K1(a0) 6= 0 for some a0 ∈ D, then (1) has at most k limit cycles

near the origin for |ε|+ |a− a0| sufficiently small.

The following lemma is well-known(see [Ye, 1986] for example).

Lemma 1.2 If Φ(h, a0) = K2(a0)(h−h0)
k+O(|h−h0|k+1), K2(a0) 6= 0 for some a0 ∈ D

and h0 ∈ (0, H0), then (1) has at most k limit cycles near Lh0
for |ε|+ |a− a0| sufficiently

small.

Let L0 denote the origin and set

S =
⋃

0≤h<H0

Lh. (3)

It is obvious that S is a simply connected open subset of the plane. We suppose that

the function Φ has the following form

Φ(h, a) = I(h)N(h, a), (4)

where I ∈ C∞ for h ∈ [0, H − 0) and satisfies

I(0) = 0, I ′(0) 6= 0 and I(h) 6= 0 for h ∈ (0, H0). (5)

Using above two lemmas, we can prove(see [Xiang & Han, 2004])

Lemma 1.3 Let (4) and (5) hold. If there exists a positive integer k such that for every

a ∈ D the function N(h, a) has at most k zeros in h ∈ [0, H0) (multiplicities taken into

account), then for any given compact set V ⊂ S, there exists ε0 = ε0(V ) > 0 such that

for all 0 < |ε| < ε0, a ∈ D the system (1) has at most k limit cycles in V .
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Remark 1.1 As we known, if there exists a0 ∈ D such that the function N(h, a) has

exactly k simple zeros 0 < h1 < · · · < hk < H0 with N(0, a0) 6= 0, then for any compact

set V satisfying Lhk
⊂ intV and V ⊂ S, there exists ε0 > 0 such that for all 0 < |ε| < ε0,

|a− a0| < ε0, (1) has precisely k limit cycles in V .

Remark 1.2 The conclusion of lemma 1.1 and lemma 1.2 are local with respect to both

parameter a and the set S while the conclusion of lemma 1.3 is global because it holds in

any compact set of S and uniformly in a ∈ D.

In this paper, we consider a real planar polynomial system of the form

ẋ = y(1− α1x)
m1(1− α2x)

m2 ,

ẏ = −x(1 − α1x)
m1(1− α2x)

m2 ,
(6)

where m1, m2 are positive integers and α1, α2 are real constants which satisfy α1 ·α2 6= 0.

We shall prove that if we perturb above system by the polynomial systems of degree n

we can obtain up to first order in ε at most 4([n+1
2
] +m1 +m2)− 7 limit cycles.

On the region Ω = {(x, y)|(1− α1x)
m1(1 − α2x)

m2 6= 0}, the perturbed system by the

polynomial systems of degree n of (6) is equivalent to

ẋ = y +
ε

(1− α1x)m1(1− α2x)m2

∑

0≤i+j≤n

aijx
iyj,

ẏ = −x+
ε

(1− α1x)m1(1− α2x)m2

∑

0≤i+j≤n

bijx
iyj,

(7)

where |aij| ≤ K, |bij| ≤ K with K a positive constant and BK = {(aij, bij)| |aij | ≤
K, |bij| ≤ K}.
Let Φ(h) denote the first order Melnikov function of (7) for 0 ≤ h < H0, H0 =

min( 1
α2
1

, 1
α2
2

). Then we have the following main results.

Theorem 2.1 Suppose α1 6= α2. For any K > 0 and compact set V in Ω, if Φ(h) is not

identically zero for (aij , bij) varying in a compact set D in BK , then there exists an ε0 > 0

such that for 0 < |ε| < ε0, (aij, bij) ∈ D, the system (7) has at most 4([n+1
2
]+m1+m2)−7

limit cycles in V .

Theorem 2.2 Suppose α1 = α2. For any K > 0 and compact set V in Ω, if Φ(h) is

not identically zero for (aij , bij) varying in a compact set D in BK , then there exists an

ε0 > 0 such that for 0 < |ε| < ε0, (aij, bij) ∈ D, the system (7) has at most n limit cycles

in V .

2 Proof of the theorems

Before proving the theorems in Section 1, we give some lemmas first.
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Let

Ii,j =

∮

Lh

xiyj

(1− α1x)m1(1− α2x)m2
dt, i ≥ 0, j ≥ 0, (8)

I
(k)
i,j =

∮

Lh

xiyj

(1− α1x)k
dt, k = 1, 2, 3, · · · , i ≥ 0, j ≥ 0, (9)

Φi,j = aijIi+1,j + bijIi,j+1, i ≥ 0, j ≥ 0, (10)

Φ
(k)
i,j = aijI

(k)
i+1,j + bijI

(k)
i,j+1, k = 1, 2, 3, · · · , i ≥ 0, j ≥ 0, (11)

where

Lh : x =
√
h sin t, y =

√
h cos t.

Let

r1 =
√

1− α2
1h, r2 =

√

1− α2
2h.

The following results can be seen in the paper [Xiang & Han, 2004].

Lemma 2.1 For m ≥ 1 it holds that

I
(m)
0,0 =

1

r2m−1
1

[m−1

2
]

∑

j=0

Cjr
2j
1 , (12)

where Cj(j ≥ 0) are constants which Cj 6= 0. [·] denotes the integer part function.

Lemma 2.2 For 0 ≤ k < m, we have

I
(m)
k,0 =

k
∑

j=0

(−1)jCj

kI
(m−j)
0,0

=
1

r2m−1
1

[m−k−1

2
]+k

∑

j=0

Cjr
2j
1 , (13)

and for k ≥ m we have

I
(m)
k,0 =

1

r2m−1
1

m−1
∑

j=0

Cjr
2j
1 +

[ k−m

2
]

∑

j=0

Djr
2j
1 , (14)

where Cj, Dj are constants.

For the function
xk

(1− α1x)m1(1− α2x)m2
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we have that

if k < m1 +m2, there exist real constants Ãk,j, B̃k,j such that

xk

(1− α1x)m1(1− α2x)m2
=

m1
∑

j=1

Ãk,j

(1− α1x)j
+

m2
∑

j=1

B̃k,j

(1− α2x)j
, (15)

and if k ≥ m1 +m2, there exist real constants Ak,j, Bk,j and Ck,j such that

xk

(1− α1x)m1(1− α2x)m2
=

m1
∑

j=1

Ak,j

(1− α1x)j
+

m2
∑

j=1

Bk,j

(1− α2x)j
+

k−m1−m2
∑

j=0

Ck,jx
j . (16)

Hence from the definition of Ik,0 and lemma 2.1 for 0 ≤ k < m1 +m2 we have

Ik,0 =

∮

Lh

xk

(1− α1x)m1(1− α2x)m2
dt

=

m1
∑

j=1

∮

Lh

Ãk,j

(1− α1x)j
dt+

m2
∑

j=1

∮

Lh

B̃k,j

(1− α2x)j
dt (17)

=
1

r2m−1
1

Pm1−1(h) +
1

r2m−1
2

Pm2−1(h),

and for k ≥ m1 +m2 we have

Ik,0 =

m1
∑

j=1

∮

Lh

Ak,j

(1− α1x)j
dt+

m2
∑

j=1

∮

Lh

Bk,j

(1− α2x)j
dt+

k−m1−m2
∑

j=0

∮

Lh

Ck,jx
jdt

=
1

r2m−1
1

Pm1−1(h) +
1

r2m−1
2

Pm2−1(h) + P
[
k−m1−m2

2
]
(h), (18)

where Pn(h) denotes a polynomial of h of degree n, and h =
1−r2

1

α2
1

=
1−r2

2

α2
2

.

Using the definition of Lh and Ii,j, we can prove easily ([Xiang & Han, 2004])

Lemma 2.3 For i ≥ 0, k > 0, we have

Ii,2k−1 = 0

and

Ii,2k =
k

∑

j=0

(−1)jCj

kIi+2j,0h
k−j.

Lemma 2.4 For k > 0 we have

∑

i+j=2k−1

Φij =
1

r2m1−1
1

Pm1−1+k(h) +
1

r2m2−1
2

Pm2−1+k(h) + P
[
2k−m1−m2

2
]
(h) (19)

and

∑

i+j=2k

Φij =
1

r2m1−1
1

Pm1−1+k(h) +
1

r2m2−1
2

Pm2−1+k(h) + P
[
2k+1−m1−m2

2
]
(h). (20)
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Proof. By the definition Φij and lemma 2.3, we have

∑

i+j=2l

Φij =

k
∑

i=1

(Φ2k−2i,2i + Φ2k−2i+1,2i−1) + Φ2k,0

=

k
∑

i=0

ã2k,iI2k−2i+1,2i

= b̃2k,kI1,0h
k + · · ·+ b̃2k,1I2k−1,0h + b̃2k,0I2k+1,0.

So (20) follows from (17) and (18). (19) can be proved in the same way.

The proof is completed.

Similarly, we can prove the following formulae by using lemma 2.2 and lemma 2.4 of

the paper [Xiang & Han, 2004].

∑

i+j=2k−1

Φ
(m)
ij = I

(m)
0,0 (b̃2k−1,kh

k + · · ·+ b̃2k−1,1h+ b̃2k−1,0)

+(−1)I
(m−1)
0,0 (C1

2 b̃2k−1,kh
k + · · ·+ C1

2k−2b̃2k−1,1h + C1
2kb̃2k−1,0)

...

+(−1)m−1I
(1)
0,0 (C

m−1
2[m

2
] b̃2k,k−[m

2
]h

k−[m
2
] + · · ·+ Cm−1

2k−2b̃2k−1,1h+ Cm−1
2k b̃2k−1,0)

+(−1)mCm−1
2[m+1

2
]−1

(

K0b̃2k−1,k−[m+1

2
] + · · ·+K2k−2[m+1

2
]b̃2k−1,0

)

hk−[m+1

2
]

...

+(−1)mCm−1
2k−3

(

K0b̃2k−1,1 +K2b̃2k−1,0

)

h+ (−1)mCm−1
2k−1K0b̃2k−1,0 (21)

and

∑

i+j=2k

Φ
(m)
ij = I

(m)
0,0 (b̃2k,kh

k + · · ·+ b̃2k,1h + b̃2k,0)

+(−1)I
(m−1)
0,0 (C1

2 b̃2k,kh
k + · · ·+ C1

2k−1b̃2k,1h+ C1
2k+1b̃2k,0)

...

+(−1)m−1I
(1)
0,0 (C

m−1
2[m+1

2
]−1

b̃2k,k−[m−1

2
]h

k−[m
2
] + · · ·+ Cm−1

2k−1b̃2k,1h + Cm−1
2k+1b̃2k,0)

+(−1)mCm−1
2[m

2
]

(

K0b̃2k,k−[m
2
] + · · ·+K2k−2[m

2
]b̃2k,0

)

hk−[m
2
]

...

+(−1)mCm−1
2k−2

(

K0b̃2k,1 +K2b̃2k,0

)

h+ (−1)mCm−1
2k K0b̃2k,0 (22)

Now we are in position to prove the main results.
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Proof of Theorem 2.1 In the following we suppose n = 2s first. In this case, by (2)

the Melnikov function Φ(h) of system (7) has the following form

Φ(h) =

∮

Lh

1

(1− α1x)m1(1− α2x)m2

∑

0≤i+j≤2s

(aijx
i+1yj + bijx

iyj+1)dt

=
∑

0≤i+j≤2s

Φij (23)

=
s

∑

k=1

(
∑

i+j=2k−1

Φij +
∑

i+j=2k

Φij) + Φ00.

From (19) and (20), (23) becomes

Φ(h) =

s
∑

k=0

( 1

r2m1−1
1

Pm1−1+k(h) +
1

r2m2−1
2

Pm2−1+k(h) + P
[
2k+1−m1−m2

2
]
(h)

)

=
1

r2m1−1
1

Pm1−1+s(h) +
1

r2m2−1
2

Pm2−1+s(h) + P
[
2s+1−m1−m2

2
]
(h), (24)

where Pk(h) is a polynomial of h of degree k.

Obviously all the zeros of (24) satisfy
[ 1

r2m1−1
1

Pm1−1+s(h) +
1

r2m2−1
2

Pm2−1+s(h)
]2

=
[

P[
2s+1−m1−m2

2
](h)

]2

.

Further the above formula becomes
√

(1− α2
1h)(1− α2

2h)P2s+2(m1+m2)−4(h) = Q2s+2(m1+m2−3)(h),

where P2s+2(m1+m2)−4(h) and Q2s+2(m1+m2−3)(h) are two real coefficient polynomials of h

of degree 2s + 2(m1 +m2)− 4 and 2s + 2(m1 +m2)− 3 respectively. Hence the number

of zeros of Φ(h) are not large than 4s+ 4(m1 +m2)− 6.

For the case of n = 2s− 1, similarly we can prove that the number of zeros of Φ(h) are

not large than 4s+ 4(m1 +m2)− 6.

Notice that Φ(h) = 0 at h = 0 in (23). From lemma 1.3, we know that there exists an

ε0 > 0 such that when 0 < |ε| < ε0, a = (aij , bij) which satisfy |aij| ≤ K, |bij| ≤ K, the

system (9) has at most 4
(

m1 +m2 +
n+1
2

)

− 7 limit cycles. The proof is completed.

Proof of theorem 2.2 We suppose α1 = α2 and m1 +m2 = m in (7).

For the case of n = 2s, from (21) and (22) the Melnikov function Φ(h) of system (7)

has the following form

Φ(h) = I
(m)
(0,0)(b

(m)
s hs + · · ·+ b

(m)
1 h+ b

(m)
0 )

+ · · ·

+I
(1)
0,0 (b

(1)

s−[m−1

2
]
hs−[m−1

2
] + · · ·+ b

(1)
1 h+ b

(1)
0 )

+(Bs−[m
2
]h

s−[m
2
] + · · ·+B1h +B0),

7



where b
(i)
j , Bj(1 ≤ i ≤ m, j ≥ 0) are linear combinations of aij, bij with 0 ≤ i+ j ≤ 2s.

Let
√

1− α2
1h = r, 0 < r < 1. And from (12) and (13), the above formula becomes

Φ(h) =
1

r2m−1
(c2s+mr

2s+m + c2s+m−1r
2s+m−1 + · · ·+ c2m−1r

2m−1

+c2m−2r
2m−2 + c2m−4r

2m−4 + · · ·+ c2r
2 + c0)

=
1

r2m−1
P2s+m(r),

where P2s+m(r) is a polynomial of r of degree 2s+m and P2s+m(r) = 0 at r = 1. Notice

that the polynomial P2s+m(r) has only 2s + 2 items. By Rolle theorem P2s+m(r) has at

most 2s+1 positive zeros. So the polynomial P2s+m(r)
1−r

has at most 2s positive zeros. From

lemma 1.3, we know that there exists an ε0 > 0 such that when 0 < |ε| < ε0, a = (aij , bij)

which satisfy |aij| ≤ K, |bij | ≤ K the system (7) has at most 2s limit cycles.

For the case of n = 2s − 1 we can prove the theorem in the same way. The proof is

completed.

Remark 2.1 In fact, for the system

ẋ = y(1− α1x)
m1(1− α2x)

m2 · · · (1− αkx)
mk ,

ẏ = −x(1− α1x)
m1(1− α2x)

m2 · · · (1− αkx)
mk ,

where m1, m2, · · · , mk are positive integers and α1, α2, · · · , αk are real constants which

satisfy α1 ·α2 · · · · ·αk 6= 0. Using the same way we can prove that if we perturb the above

system inside the polynomial systems of degree n we can obtain up to first order in ε at

most 2k
(

[nn+1
2
] +

∑k

j=1mj − k
)

+ 2k−1(k − 1)− 1 limit cycles.
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