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We have identified the occurrence of chimera states for various coupling schemes in networks
of two-dimensional and three-dimensional Hindmarsh-Rose oscillators, which represent realis-
tic models of neuronal ensembles. This result, together with recent studies on multiple chimera
states in nonlocally coupled FitzHugh-Nagumo oscillators, provide strong evidence that the phe-
nomenon of chimeras may indeed be relevant in neuroscience applications. Moreover, our work
verifies the existence of chimera states in coupled bistable elements, whereas to date chimeras
were known to arise in models possessing a single stable limit cycle. Finally, we have identified
an interesting class of mixed oscillatory states, in which desynchronized neurons are uniformly
interspersed among the remaining ones that are either stationary or oscillate in synchronized
motion.

Keywords : Chimera states, Hindmarsh-Rose models, synchronization, bistability.

1. Introduction

About ten years ago, a peculiar dynamical phenomenon was discovered in populations of identical phase
oscillators: Under nonlocal symmetric coupling, the coexistence of coherent (synchronized) and incoher-
ent oscillators was observed [Kuramoto & Battogtokh, 2002]. This highly counterintuitive phenomenon
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was given the name chimera state after the Greek mythological creature made up of different animals
[Abrams & Strogatz, 2004]. Since then the study of chimera states has been the focus of extensive research
in a wide number of models, from Kuramoto phase oscillators [Abrams et al., 2008; Laing et al., 2012] to
periodic and chaotic maps [Omelchenko et al., 2011], as well as Stuart-Landau oscillators [Laing, 2010].
The first experimental evidence of chimera states was found in populations of coupled chemical oscillators
as well as in optical coupled-map lattices realized by liquid-crystal light modulators [Tinsley et al., 2012;
Hagerstrom et al., 2012]. Recently, moreover, Martens and coauthors showed that chimeras emerge natu-
rally from a competition between two antagonistic synchronization patterns in a mechanical experiment
involving two subpopulations of identical metronomes coupled in a hierarchical network [Martens et al.,
2013].

In the context of neuroscience, a similar effort has been undertaken by several groups, since it is believed
that chimera states might explain the phenomenon of unihemispheric sleep observed in many birds and
dolphins which sleep with one eye open, meaning that one hemisphere of the brain is synchronouns whereas
the other is asynchronous [Rattenborg et al., 2000]. The purpose of this paper is to make a contribution
in this direction, by identifying for the first time a variety of single and multi-chimera states in networks
of non-locally coupled neurons represented by Hindmarsh–Rose oscillators.

Recently, multi-chimera states were discovered on a ring of nonlocally coupled FitzHugh-Nagumo
(FHN) oscillators [Omelchenko et al., 2013]. The FHN model is a 2–dimensional (2D) simplification of the
physiologically realistic Hodgkin-Huxley model [Hodgkin & Huxley, 1952] and is therefore computationally
a lot simpler to handle. However, it fails to reproduce several important dynamical behaviors shown by
real neurons, like rapid firing or regular and chaotic bursting. This can be overcome by replacing the
FHN with another well-known more realistic model for single neuron dynamics, the Hindmarsh-Rose (HR)
model [Hindmarsh & Rose, 1982, 1984], which we will be used throughout this work both in its 2D and
3D versions.

In Section 2 of this paper, we first treat the case of 2D-HR oscillators represented by two first order
ordinary differential equations (ODEs) describing the interaction of a membrane potential and a single
variable related to ionic currents across the membrane under periodic boundary conditions. We review the
dynamics in the 2D plane in terms of its fixed points and limit cycles, coupling each of the N oscillators
to 2R < N nearest neighbors symmetrically on both sides, in the manner adopted in [Omelchenko et al.,
2013], through which chimeras were discovered in FHN oscillators.

We identify parameter values for which chimeras appear in this setting and note the variety of oscillating
patterns that are possible due to the bistability features of the 2D model. In particular, we identify a new
“mixed oscillatory state” (MOS), in which the desynchronized neurons are uniformly distributed among
those attracted by a stable stationary state. Furthermore, we also discover chimera–like patterns in the
more natural setting where only the membrane potential variables are coupled with 2R of the same type.

Next, we turn in Section 3 to the more realistic 3D-HR model where a third variable is added rep-
resenting a slowly varying current, through which the system can also exhibit bursting modes. Here, we
choose a different type of coupling where the two first variables are coupled symmetrically to 2R of their
own kind and observe only states of complete synchronization as well as MOS in which desynchronized
oscillators are interspersed among neurons that oscillate in synchrony. However, when coupling is allowed
only among the first (membrane potential) variables chimera states are discovered in cases where spiking
occurs within sufficiently long bursting intervals. Finally, the paper ends with our conclusions in Section 4.

2. Two–dimensional HR models

Following the particular type of setting proposed in [Omelchenko et al., 2013] we consider N nonlocally
coupled Hindmarsh-Rose oscillators, where the interconnections between neurons exist with R nearest
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neighbors only on either side as follows:

ẋk = yk − x3k + 3x2 + J +
σx
2R

j=k+R
∑

j=k−R

[bxx(xj − xk) + bxy(yj − yk)] (1)

ẏk = 1− 5x2k − yk +
σy
2R

j=k+R
∑

j=k−R

[byx(xj − xk) + byy(yj − yk)]. (2)

In the above equations xk is the membrane potential of the k-th neuron, yk represents various physical
quantities related to electrical conductances of the relevant ion currents across the membrane, a = c = 1,
b = 3 and d = 5 are constant parameters, and J = 0 is the external stimulus current. Each oscillator is
coupled with its R > 0 nearest neighbors on both sides with coupling strengths σx, σy > 0. This induces
nonlocality in the form of a ring topology established by considering periodic boundary conditions for
our systems of ODEs. As in [Omelchenko et al., 2013], our system contains not only direct x − x and
y − y coupling, but also cross-coupling between variables x and y. This feature is modeled by a rotational
coupling matrix:

B =

(

bxx bxy
byx byy

)

=

(

cosφ sinφ
−sinφ cosφ

)

depending on a coupling phase φ. In what follows, we study the collective behavior of the above system
and investigate, in particular, the existence of chimera states in relation to the values of all network
parameters: N , R, φ, σx and σy. More specifically, we consider two cases: (I) direct and cross-coupling of
equal strength in both variables (σx = σy) and (II) direct coupling in the x variable only (σy = 0, φ = 0).
Similarly to [Omelchenko et al., 2013] we shall use initial conditions randomly distributed on the unit circle
(x2 + y2 = 1).
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Fig. 1. Snapshots of the variable xk at t = 3000 of Eqs. (1),(2) (left) and selected time series (right) for σx = σy = 0.1. (a)
φ = −π, (b) φ = −π/4 and (c) φ = 0. N = 1000 and R = 350.

Typical spatial patterns for case (I) are shown on the left panel of Fig. 1, where the x variable is plotted
over the index number k at a time snapshot chosen after a sufficiently long simulation of the system. In this
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figure the effect of different values of the phase φ is demonstrated while the number of oscillators N and
their nearest neighbors R, as well as the coupling strengths σx = σy are kept constant. For example, for
φ = −π (Fig. 1(a)) an interesting novel type of dynamics is observed that we shall call “mixed oscillatory
state” (MOS), whereby nearly half of the xk are attracted to a fixed point (at this snapshot they are all
at a value near −2), while the other half are oscillating interspersed among the stationary ones. From the
respective time series (Fig. 1(a), right) it is clear that the former correspond to spiking neurons whereas
the latter to quiescent ones.

This interesting MOS phenomenon is due to the fact that, in the standard parameter values we have
chosen, the uncoupled HR oscillators are characterized by the property of bistability. Clearly, as shown
in the phase portrait of Fig. 2, each oscillator possesses three fixed points: The leftmost fixed point is a
stable node corresponding to the resting state of the neuron while the other two correspond to a saddle
point and an unstable node and are therefore repelling. For J = 0 (which is the case here) a stable limit
cycle also exists which attracts many of the neurons into oscillatory motion, rendering the system bistable
and producing the dynamics observed in Fig. 1(a). Now, when a positive current J > 0 is applied, the
x-nullcline is lowered such that the saddle point and the stable node collide and finally vanish. In this
case the full system enters a stable limit cycle associated with typical spiking behaviour. Similar complex
patterns including MOS and chimeras have been observed in this regime as well.
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Fig. 2. Nullclines of Eqs. (1) and (2) for J = 0. Three fixed points coexist with a stable limit cycle.

For φ = −π/4, on the other hand, there is a “shift” in the dynamics of the individual neurons into
the spiking regime, as seen in Fig. 1(b) (right). The corresponding spatial pattern has a wave-like form of
period 2. Then, for φ = 0 a classical chimera state with two incoherent domains is observed ((Fig. 1(c),
left). Diagonal coupling (byx = bxy = 0, bxx = byy = 1) is, therefore, identified as the necessary condition to
achieve chimera states. By contrast, it is interesting to note that in nonlocally coupled Fitz-Hugh Nagumo
oscillators [Omelchenko et al., 2013] it has been shown both analytically and numerically that chimera
states occur for off-diagonal coupling.

By decreasing the range of coupling R and increasing the system size N , chimera states occur with
multiple domains of incoherence and coherence for φ = 0 (Fig. 3(c,d)), and, accordingly, periodic spatial
patterns with larger wave numbers arise for φ = −π/4, as seen in Fig. 3(a,b). This is in agreement with
previous works reported in [Omelchenko et al., 2011, 2013].

Next we consider the case (II) where the coupling term is restricted to the x variable. This case is
important since incorporating the coupling in the voltage membrane (x) alone is more realistic from a
biophysiological point of view. In Fig. 4 spatial plots (left) and the corresponding (xk, yk)-plane (right)
for increasing coupling strength are shown. Chimera states (Fig. 4 (b,c)) are observed as an intermediate
pattern between desynchronization (Fig. 4 (a)) and complete synchronization (Fig. 4 (d)).
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Fig. 3. Snapshots of the variable xk of Eqs. (1),(2) at t = 3000 for σx = σy. N = 1000, R = 250 (top) and N = 1250, R = 250
(bottom) whereas φ = −π/4 (left) and φ = 0 (right). In (a) and (b) σx = 0.1, in (c) σx = 0.03, and in (d) σx = 0.049.
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Fig. 4. Snapshots of the variable xk (left) and in the (xk, yk)-plane (right) of Eqs. (1),(2) at t = 3000 for σy = 0, N = 1000
and R = 350. (a) σx = 0.01, (b) σx = 0.4, (c) σx = 0.6 and (d) σx = 1.05.

3. Three–dimensional HR models

In order to complete our study of the Hindmarsh-Rose model we shall consider, in this section, its three-
dimensional version. The corresponding equations read:

ẋk = yk − axk
3 + bxk

2 + J − z +
σx
2R

j=k+R
∑

j=k−R

(xj − xk) (3)

ẏk = c− dxk
2
− yk +

σy
2R

j=k+R
∑

j=k−R

(yj − yk) (4)

żk = r(s(xk − x0)− zk) (5)

The extra variable z represents a slowly varying current, which changes the applied current J to
J − z and guarantees firing frequency adaptation (governed by the parameter s) as well as the ability to
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Fig. 5. Snapshots of the variable xk of Eqs. (3)-(5) at t = 5000 (left) and selected time series (right) for: (a) σx = σy = 0.14
and (b) σx = σy = 0.29. N = 1000 and R = 350.

produce typical bursting modes, which the 2D model cannot reproduce. Parameter b controls the transition
between spiking and bursting, parameter r determines the spiking frequency (in the spiking regime) and
the number of spikes per bursting (in the bursting regime), while x0 sets the resting potential of the system.
The parameters of the fast x − y system are set to the same values used in the two-dimensional version
(a = c = 1, d = 5) and typical values are used for the parameters of the z-equation (r = 0.01, s = 4,
x0 = −1.6).

The 3D Hindmarsh-Rose model exhibits a rich variety of bifurcation scenarios in the b− J parameter
plane [Storace et al., 2008]. Thus, we prepare all nodes in the spiking regime (with corresponding parameter
values b = 3 and J = 5) and, as in Section 2, we use initial conditions randomly distributed on the unit
sphere (x2 + y2 + z2 = 1).

First let us consider direct coupling in both variables x and y and vary the value of the equal coupling
strengths σx = σy, while N and R are kept constant. Naturally, the interaction of N spiking neurons will
lead to a change in their dynamics, as we discuss in what follows. For low values of σ we observe the
occurrence of a type of MOS where nearly half of the neurons spike regularly in a synchronous fashion,
while the rest are unsynchronized and spike in an irregular fashion. This is illustrated in the respective
time series in the right panel of Fig. 5(a) At higher values of the coupling strength the the system is fully
synchronized (Fig. 5(b)).

Next we check the case of coupling in the x variable alone (σx = σ, σy = 0). Figure 6 displays
characteristic synchronization patterns obtained when we increase σx (left panel) and selected time series
(right panel). At low values of the coupling strength all neurons remain in the regular spiking regime and
desynchronization alternates with complete synchronization as σx increases (Fig. 6(a,b,c)). For intermediate
values of the coupling strength, chimera states with one incoherent domain are to be observed. These are
associated with a change in the dynamics of the individual neurons, which now produce irregular bursts
(Fig. 6(d)). The number of spikes in each burst increases at higher σx values and the system is again fully
synchronized (Fig. 6(e)). Extensive simulations show that the chimera states disappear and reappear again
by varying σx which is most likely due to the system’s multistability and sensitive dependence on initial
conditions.

4. Conclusions

In this paper, we have identified the occurrence of chimera states for various coupling schemes in networks
of 2D and 3D Hindmarsh-Rose models. This, together with recent reports on multiple chimera states
in nonlocally coupled FitzHugh-Nagumo oscillators, provide strong evidence that this counterintuitive
phenomenon is very relevant as far as neuroscience applications are concerned.
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Fig. 6. Snapshots of the variable xk of Eqs. (3)-(5) at t = 5000 (left) and selected time series for σy = 0, N = 1000 and
R = 350. (a) σx = 0.005, (b) σx = 0.02, σx = 0.17, (d) σx = 0.47, and (e) σx = 1.0.

Chimera states are strongly related to the phenomenon of synchronization. During the last years, syn-
chronization phenomena have been intensely studied in the framework of complex systems [Arenas et al.,
2008]. Moreover, it is a well-established fact the key ingredient for the occurrence of chimera states is non-
local coupling. The human brain is an excellent example of a complex system where nonlocal connectivity
is compatible with reality. Therefore, the study of chimera states in systems modelling neuron dynamics is
both significant and relevant as far as applications are concerned.

Moreover, the present work is also important from a theoretical point of view, since it verifies the
existence of chimera states in coupled bistable elements, while, up to now, it was known to arise in oscillator
models possessing a single attracting state of the limit cycle type. Finally, we have identified a novel type
of mixed oscillatory state (MOS), in which desynchronized neurons are interspersed among those that are
either stationary or oscillate in synchrony. As a continuation of this work, it is very interesting to see
whether chimeras and MOS states appear also in networks of populations of Hindmarsh-Rose oscillators,
which are currently under investigation.
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