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Huazhong Lü1,†and Tingzeng Wu2

1School of Mathematical Sciences, University of Electronic Science and Technology of China,

Chengdu 610054, P.R. China

2School of Mathematics and Statistics, Qinghai Nationalities University,

Xining, Qinghai 810007, P.R. China

Abstract

The restricted hypercube-like graphs, variants of the hypercube, were pro-

posed as desired interconnection networks of parallel systems. The matching

preclusion number of a graph is the minimum number of edges whose deletion

results in the graph with neither perfect matchings nor almost perfect match-

ings. The fractional perfect matching preclusion and fractional strong perfect

matching preclusion are generalizations of the concept matching preclusion.

In this paper, we obtain fractional matching preclusion number and frac-

tional strong matching preclusion numbers of restricted hypercube-like graphs,

which extend some known results.

Key words: Interconnection networks; Fractional matching preclusion; Frac-

tional strong matching preclusion; Restricted hypercube-like graphs

1. Introduction

The underlying network plays important role in parallel systems. The n-dimension

hypercube (or binary n-cube), written as Qn, is a well-known topology in parallel
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computing. To achieve desired performance that the hypercube does not have,

numerous variants of the hypercube have been proposed. One among them, the

hypercube-like graph, was proposed by Vaidya [21] in 1993. It has been attracted

considerable attention due to its outstanding performance. For example, some em-

bedding properties, especially Hamiltonian cycle and path embeddings of the re-

stricted hypercube-like were studied in [8,9,11,17]. The matching preclusion number

of the restricted hypercube-like graphs were determined in [16].

A matching is a function f that each edge of G is assigned a number in {0, 1}

so that
∑

e∼v f(e) ≤ 1 for each vertex v ∈ V (G), where e ∼ v means that the sum

is taken over all edges incident to v. A matching is perfect if
∑

e∼v f(e) = 1 for

each vertex v, so
∑

e∈E(G) = |V (G)|
2

. A matching is almost perfect if there exists

exactly one vertex u such that
∑

e∼u f(e) = 0 and
∑

e∼v f(e) = 1 for each vertex

v ∈ V (G) \ {u}, so
∑

e∈E(G) f(e) =
|V (G)|−1

2
. A fractional matching is a function f

that each edge of G is assigned a number in [0, 1] so that
∑

e∼v f(e) ≤ 1 for each

vertex v ∈ V (G), so
∑

e∈E(G) f(e) ≤
|V (G)|

2
. Clearly, if f(e) ∈ {0, 1} for each edge

e, then f is a matching. If a fractional matching f satisfy
∑

e∼v f(e) = 1 for each

vertex v ∈ V (G), then f is a fractional perfect matching of G.

For F ⊆ E(G), if G−F has no perfect matching in G, then F is called a matching

preclusion set of G. The matching preclusion number, denoted by mp(G), is defined

to be the minimum cardinality among all matching preclusion sets. Any such set of

size mp(G) is called an optimal matching preclusion set (or optimal solution). This

concept was proposed by Brigham et al. [2] as a measure of robustness of networks

in the event of edge failure, as well as a theoretical connection with conditional

connectivity and “changing and unchanging of invariants”. Therefore, networks of

larger mp(G) signify higher fault tolerance under edge failure assumption. It is

obvious that the edges incident to a common vertex form a matching preclusion set.

Any such set is called a trivial solution. Therefore, mp(G) is no greater than δ(G).

A graph is super matched if mp(G) = δ(G) and each optimal solution is trivial.

In 2011, Park et al. [18] generalized the concept of matching preclusion to strong

matching preclusion as follows. A set F of edges and vertices of G is called a strong

matching preclusion set (SMP set for short) if G− F has neither perfect matching

nor almost perfect matching. The strong matching preclusion number (SMP number

for short) of G, denoted by smp(G), is the minimum size of all SMP sets of G. The

(strong) matching preclusion number of many famous interconnection networks have

been investigated in the literature [3–7, 10, 13, 15]
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Recently, Liu and Liu [12] generalized matching preclusion and strong matching

preclusion by precluding fractional perfect matching in graphs. A set F of edges of

G is called a fractional matching preclusion set (FMP set for short) if G − F has

no perfect matchings. The fractional matching preclusion number (FMP number for

short) of G, denoted by fmp(G), is the minimum size of all FMP sets of G. Clearly,

fmp(G) ≤ δ(G). Moreover, by the definition of fmp(G), if G has even order, then

δ(G) ≤ fmp(G). A set F of edges and vertices of G is called a fractional strong

matching preclusion set (FSMP set for short) if G − F has no fractional perfect

matchings. The fractional strong matching preclusion number (FSMP number for

short) of G, denoted by fsmp(G), is the minimum size of all FSMP sets of G.

The fractional perfect (strong) matching preclusion number of (n, k)-star graphs

has been determined in [14]. In [12], the authors obtained fractional perfect (strong)

matching preclusion number the complete graph, the Petersen graph and the twisted

cube. In this paper, we determine fractional perfect (strong) matching preclusion

number of restricted hypercube-like graphs, which include the twisted cubes as a

proper subset.

The rest of this paper is organized as follows. In Section 2, some notations,

the definitions of the balanced hypercube and some useful lemmas are presented.

Section 3 shows the existence of two edge-disjoint Hamiltonian cycles of the balanced

hypercube and provides an algorithm to construct two edge-disjoint Hamiltonian

cycles of the balanced hypercube. Finally, conclusions are given in Section 4.

2. Preliminaries

In this section, we shall present some notations, definitions of the restricted

hypercube-like graphs and some useful lemmas.

Interconnection networks are usually modeled by graphs, where vertices represent

processors and edges represent links between processors. Throughout this paper, we

only consider finite and simple undirected graphs. Let G = (V (G), E(G)) be a

graph, where V (G) is the vertex-set of G and E(G) is the edge-set of G. The

number of vertices of G is denoted by |V (G)|. Two vertices u and v are adjacent

if uv ∈ E(G). A neighbor of a vertex v in G is any vertex incident to v. A path

P in G is a sequence of distinct vertices so that there is an edge joining each pair

of consecutive vertices. If P = v0v1 · · · vk−1 is a path and k ≥ 3, then the graph
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C = P + vk−1v0 is said to be a cycle. The above path P and cycle C might be

written as 〈v0, v1, · · · , vk−1〉 and 〈v0, v1, · · · , vk−1, v0〉, respectively. The length of a

path or a cycle is its number of edges. A cycle of length k is called a k-cycle. A

cycle containing all vertices of a graph G is called a Hamiltonian cycle. A graph

is called f -fault Hamiltonian (resp. f -fault Hamiltonian-connected) if there exists

a Hamiltonian cycle (resp. if there exists a Hamiltonian path joining each pair of

vertices) in G − F for any set F of vertices and/or edges with |F | ≤ f . For other

standard graph notations and terminologies not defined here please refer to [1].

Let G0 and G1 be two disjoint graphs with the same order. In addition, let

Φ(G0, G1) be all bijections from V (G0) to V (G1). Given a bijection φ ∈ Φ(G0, G1),

vφ(v) is an edge from G0 to G1 for any v ∈ V (G0), and we denote G0⊕φG1 a graph

whose vertex set is V (G0) ∪ V (G1) and edge set is E(G0) ∪ E(G1) ∪ {vφ(v)|v ∈

V (G0)}. Clearly, each vertex in G0 has exact one neighbor in G1, and vice versa.

When the context is clear, we often omit the symbol φ from ⊕φ. By using the above

graph operator, Vaidya et al. [21] gave a recursive definition of the hypercube-like

graphs as follows. HL0 = {K1} and HLm = {G0 ⊕φ G1|G0, G1 ∈ HLm−1, φ ∈

Φ(G0, G1)} for m ≥ 1. A graph HLm is called m-dimensional HL-graph. The

restricted HL-graphs, which is an interesting subset of HL-graphs, were proposed by

Park et al. in [19]. RHL3 = HL3 \ Q3 = {G(8, 4)}, RHLm = {G0 ⊕φ G1|G0, G1 ∈

RHLm−1, φ ∈ Φ(G0, G1)} for m ≥ 4, where Q3 is the 3-dimensional hypercube, and

G(8, 4) is the recursive circulant whose vertex set is {vi|0 ≤ i ≤ 7} and edge set is

{vivj|j ≡ i + 1 or i + 4(mod 8)}. Any graph contained in RHLm is called an m-

dimensional restricted HL-graph and is denoted by Gm. Since G(8, 4) is nonbipartite,

the restricted HL-graphs are all nonbipartite, forming a proper subset of nonbipartite

HL-graphs. It is noticeable that numerous of famous interconnection networks such

as crossed cube, Möbius cube, twisted cube, Mcube, generalized twisted cube are

known to be restricted HL-graphs [19].

In what follows, we shall present some useful results.

Proposition 1 [20]. A graph G has a fractional perfect matching if and only if

i(G − S) ≤ |S| for every set S ⊆ V (G), where i(G − S) is the number of isolated

vertices of G− S.

Lemma 2 [19]. Every Gm with m ≥ 3 is (m− 3)-fault Hamiltonian-connected and

(m− 2)-fault Hamiltonian.
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Theorem 3 [18]. For each m ≥ 3, smp(Gm) = m.

3. Main results

Since all restricted hypercube-like graphs have even order, combining Theorem

3, the following theorem is obvious.

Theorem 4. For each integer m ≥ 3, fmp(Gm) = m.

Next we consider FSMP number of Gm. The following lemma gives both lower

and upper bounds of FSMP number of Gm.

Lemma 5. Let m ≥ 3 be an integer. Then m− 1 ≤ fsmp(Gm) ≤ m.

Proof. Since Gm is m-regular, fsmp(Gm) ≤ m. It suffices to show that there exist

no FSMP sets of Gm with size at most m − 2. Let F ⊆ V (Gm) ∪ E(Gm) with

|F | ≤ m − 2. By Lemma 2, Gm − F has a Hamiltonian cycle C. Assigning 1
2
to

each edge of C and 0 to other edges, we can obtain a fractional perfect matching of

Gm − F . Hence, fsmp(Gm) ≥ m− 1. This completes the proof.

To obtain the exact value of fsmp(Gm), we begin with m = 3.

Lemma 6. fsmp(G3) = 2. Additionally, the optimal FSMP set contains exactly

one vertex u and one boundary edge e, where u is adjacent to one of the end vertices

of e.

Proof. By Lemma 5, we have fsmp(G3) ≥ 2. It can be verified that if e is a

diagonal edge of G3, then (G3 − e) − v contains a fractional perfect matching for

any vertex v ∈ V (G3− e). Thus, by symmetry of G3, let e be any boundary edge of

G3. Observe that there are exact two vertices of G3 such that they are nonadjacent

to any end vertices of e. By deleting exact one of them from G3 − e, it is easy to

find a fractional perfect matching of the resulting graph. Observe also that there

are exact four vertices of G3 such that they are adjacent to one of end vertices of

e. Without loss of generality, suppose that u is such a vertex of G3. Then we can

find three vertices x, y and z of G3 such that i(((G3 − e) − u)− {x, y, z}) = 4 > 3

(see Fig. 1). By Proposition 1, (G3 − e) − u has no fractional perfect matchings.

Thus, F is an FSMP set of G3. Accordingly, fsmp(G3) = 2. Moreover, since

mp(G3) = smp(G3) = 3, any optimal FSMP set must contain one vertex and one

edge. This completes the proof.
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Fig. 2. A remainder set of G3.

As stated in the proof of Lemma 6, if an optimal FSMP set F is deleted from G3,

the resulting graph contains three vertices x, y and z such that i(G3−F−{x, y, z}) =

4. So we denote the four isolated vertices in G3 − F − {x, y, z} by v1, v2, v3 and

v4, respectively. Observe that we have two essentially different choices of F by

symmetry, nevertheless, the position of v1, v2, v3, and v4 on G3 is unique under

isomorphism (see Fig. 2). For convenience, any set of four vertices with the same

position as v1, v2, v3, and v4 is called a remainder set of G3. Since G4 is constructed

from two copies of G3 by joining a perfect matching. In the following lemma, we

characterize fsmp(G4).

Lemma 7. fsmp(G4) = 3 If there exists a remainder set R of G0 such that

the resulting graph of G1 − φ(R) contains at most one edge, then fsmp(G4) = 3.

Otherwise, fsmp(G4) = 4.

6



Proof. By Lemma 5, 3 ≤ fsmp(G4) ≤ 4. Let F ⊆ V (G4) ∪ E(G4) with |F | = 3

and let FV = F ∩ V (G4) and FE = F ∩ E(G4). We may assume that |F0| =

max{|F0|, |F1|}. We shall prove that: (1) If there exists a vertex set S such that

i(G4 − F − S) > |S|, then fsmp(G4) = 3; (2) If G4 − F has a fractional perfect

matching, then fsmp(G4) = 4. If |FV | is even, then G4 − F has a perfect matching

by Lemma 3. It remains to consider the case that |FV | = 1 or |FV | = 3. We

distinguish the following cases.

Case 1. |F0| = 1. Obviously, |F1| ≤ 1. By Lemma 6, each of Gi, i = 0, 1, has a

fractional perfect matching fi. Then a fractional perfect matching f of G4 − F can

be obtained as follows.

f(e) =

{

fi(e), e ∈ E(Gi − Fi);

0, e ∈ Ec − Fc.

Case 2. |F0| = 2. Since |F | = 3, |F1| ≤ 1. By Lemma 6, if F0 contains two vertices

or two edges, respectively, then G0 − F0 has a perfect matching. Similar to the

proof of Case 1, G4 − F has a fractional perfect matching. So we assume that F0

contains exact one vertex and exact one edge. Let F0 = {u, e}, where u ∈ V (G4)

and e ∈ E(G4). If G0 − F0 has a fractional perfect matching, again, G4 − F has a

fractional perfect matching, we are done. So we assume that G0 − F0 contains no

fractional perfect matchings. We further distinguish the following subcases.

Subcase 2.1. F1 ⊂ FE . By Proposition 1, there exists a set of vertices S0 = {x, y, z}

such that i(G0 − F0 − S0) = 4. Correspondingly, G0 − F0 − S0 contains exact

four isolated vertices. Without cause of ambiguity, let R = G0 − F0 − S0 be a

remainder set of G0. Let φ(R) ⊂ V (G1) be the set containing all neighbors of

vertices of R in G1. For any edge e′ ∈ E(G1), G1 − e′ is Hamiltonian by Lemma

2. Thus, for any S1 ⊂ V (G1), i(G1 − e′ − S1) ≤ |S1| holds. If G4 − F has no

fractional perfect matchings, then |S1| = 4. In fact, S1 = φ(R). If not. Then there

exists an edge joining a vertex in R and a vertex in G1 − S1, which implies that

i(G4 −F −S0 ∪S1) < 7, a contradiction. Moreover, we claim that G1−S1 contains

at most one edge. On the contrary, assume that G1−S1 contains at least two edges.

We have i(G4 − F − S0 ∪ S1) < 7, a contradiction again. It implies that if R is a

remainder set of G0 and G1 − φ(R) contains at most one edge, then fsmp(G4) = 3;

Otherwise, fsmp(G4) = 4.

Subcase 2.2. F1 = ∅. Obviously, |FC | = 1. By Lemma 2, G0 − F0 has either

a Hamiltonian cycle or a Hamiltonian path with seven vertices. If G0 − F0 has a
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Hamiltonian cycle, then there is a fractional perfect matching of G0 − F0. Observe

that G1−F1 has a fractional perfect matching, we have that G4−F has a fractional

perfect matching. So we assume that G0−F0 has a Hamiltonian path P with seven

vertices. Let v and w be end vertices of P . Since each vertex of G0 is incident

to a cross edge, v or w, say v, has a neighbor v′ ∈ V (G1) such that vv′ 6∈ FC . By

Lemma 6, G1−v′ has a fractional perfect matching f1. Let f0 be a fractional perfect

matching of G0 − F0 − v. Then a fractional perfect matching f of G4 − F can be

obtained as follows.

f(e) =



























f0(e), e ∈ E(G0 − F0 − v);

f1(e), e ∈ E(G1 − v′);

1, e = vv′;

0, e ∈ EC − FC .

Case 3. |F0| = 3. By our assumption, F0 contains exact one vertex or three

vertices. By Lemma 2, G0 − F0 has a Hamiltonian cycle, or has a Hamiltonian

path with odd number of vertices, or has a spanning subgraph containing one odd

path and one even path. Similar to the proof above, we only consider the case that

G0 − F0 contains one odd path P and one even path Q. We assume that u is one

of the end vertices of the odd path and uu′ is the cross edge. Obviously, Q has a

perfect matching fQ and P −u has a perfect matching fP−u. Moreover, G1− u′ has

a Hamiltonian cycle. Thus, G1 − u′ has a fractional perfect matching fG1−u′ . Then

a fractional perfect matching f of G4 − F can be obtained as follows.

f(e) =







































fQ(e), e ∈ E(Q);

fP−u(e), e ∈ E(P − u);

fG1−u′(e), e ∈ E(G1 − u′);

1, e = uu′;

0, e ∈ EC − uu′.

Interestingly, in the above lemma, the necessary condition for fsmp(G4) = 3 is

also sufficient.

Lemma 8. If fsmp(G4) = 3, then there exists a remainder set R of G0 such that

the resulting graph of G1 − φ(R) contains at most one edge.
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Proof. Obviously, |FV | is odd. Suppose that |FV | = 3, by Lemma 3, then G4 − F

has a perfect matching. Thus, G4−F has a fractional perfect matching. So |FV | = 1

and |FE| = 2. Without loss of generality, suppose that FV = {u} and u ∈ V (G0).

We distinguish the following cases.

Case 1. |FE ∩ E(G0)| = 2. By the proof of Case 3 in Lemma 7, we have G4 − F

has a fractional perfect matching, a contradiction.

Case 2. |FE ∩ E(G1)| = 2. By Lemma 2, G0 − F0 has a Hamiltonian cycle and

G1 − F1 has a Hamiltonian path with eight vertices. So G4 − F has a fractional

perfect matching, a contradiction.

Case 3. |FE ∩E(G0)| ≤ 1 and |FE ∩E(G1)| ≤ 1. If |FE ∩E(G0)| = 0, then G0−F0

has a Hamiltonian cycle. Similarly, G1 − F1 has a Hamiltonian cycle. Obviously,

G4 −F has a fractional perfect matching, a contradiction. Thus, |FE ∩E(G0)| = 1.

If G0 − F0 has a fractional perfect matching, then G4 − F has a fractional perfect

matching, a contradiction. So we assume that G0 − F0 has no fractional perfect

matchings. Thus, there exists a remainder set R of G0. Moreover, if |FE ∩E(G1)| =

0, then |FE ∩ FC | = 1. By the proof of Subcase 2.2 of Lemma 7, we know that

G4 −F has a fractional perfect matching, a contradiction. Thus, |FE ∩E(G1)| = 1.

Similar to the proof of Subcase 2.1 of Lemma 7, the statement follows.

In the following, we study FSMP number of G5 as our induction basis.

Lemma 9. fsmp(G5) = 5.

Proof. By Lemma 5, 4 ≤ fsmp(G5) ≤ 5. Let F ⊆ V (G5) ∪ E(G5) with |F | = 4

and let FV = F ∩ V (G5) and FE = F ∩ E(G5). We may assume that |F0| =

max{|F0|, |F1|}. We shall show that G5 − F has a fractional perfect matching. If

|FV | is even, then G5−F has a perfect matching by Lemma 3. It remains to consider

the case that |FV | = 1 or |FV | = 3. Since Gi
∼= G4, i = 0, 1, each of Gi − Fi has a

Hamiltonian cycle if |F0| ≤ 2. Thus, G5 − F has a fractional perfect matching. So

we only consider the case that |F0| ≥ 3. We distinguish the following two cases.

Case 1. |F0| = 3. Then |F1| ≤ 1. If fsmp(G0) = 4, then G0 − F0 has a fractional

perfect matching and thus, G5−F has a fractional perfect matching. So we assume

that fsmp(G0) = 3 and hence, G0 − F0 has no fractional perfect matchings. By

Lemma 8, we have |FV | = 1. So G0−F0 has a Hamiltonian path P with odd vertices.

Let v and w be end vertices of P . Since each vertex of G0 is incident to a cross

edge, we may assume that vv′ 6∈ FC is a cross edge. By Lemma 6, G1−F1−v′ has a

fractional perfect matching f1. Let f0 be a fractional perfect matching of G0−F0−v.

Then a fractional perfect matching f of G5 − F can be obtained as follows.

9



f(e) =



























f0(e), e ∈ E(G0 − F0 − v);

f1(e), e ∈ E(G1 − F1 − v′);

1, e = vv′;

0, e ∈ EC − vv′.

Case 2. |F0| = 4. Then |F1| = 0. By Lemma 2, G0 − F0 has a Hamiltonian cycle,

or has a Hamiltonian path with odd number of vertices, or has a spanning subgraph

containing one odd path and one even path. Similar to the proof of Case 3 of Lemma

7, we can obtain that G5 − F has a fractional perfect matching.

Now we are ready to present the main result of this paper.

Theorem 10. fsmp(Gm) = m for m ≥ 5.

Proof. It suffices to prove that fsmp(Gm) 6= m − 1 by Lemma 5. We shall prove

that for any set F of vertices and edges with |F | = m− 1, Gm − F has a fractional

perfect matching. We proceed by induction on m. By Lemma 9, the statement

holds for m = 5. We assume that the statement holds for all integers not greater

that m− 1 with m ≥ 6. Next we consider Gm. We consider two cases.

Case 1. |F0| ≤ m−2. By the induction hypothesis, we have fsmp(Gm−1) = m−1.

So each of Gi − Fi, i = 0, 1, has a fractional perfect matching fi. Thus, f0 ∪ f1 is a

fractional perfect matching of Gm − F .

Case 2. |F0| = m − 1. Obviously, F − F0 = ∅. We can choose α ∈ F0 such that

F0 − {α} contains even number of vertices. For convenience, let F ′
0 = F0 − {α}.

Then |F ′
0| = m− 2. So G1 − F ′

0 has a perfect matching f0 by Lemma 3. We further

consider two subcases.

Case 2.1. α is a vertex. We may assume that α = v and uv is the edge that

f0(uv) = 1. Then the restriction of f0 on E(G0 − F ′
0 − {u, v}) is a perfect matching

of G0−F ′
0−{u, v}. Let uu′ be a cross edge of Gm. Moreover, there exists a fractional

perfect matching f1 of G1 − u′. By assigning uu′ with 1 and other cross edges 0, we

can obtain a fractional perfect matching of Gm − F .

Case 2.2. α is an edge. If f0(α) = 0, then f0 is a perfect matching of G0 − F0. So

we assume that f0(α) = 1. Then the restriction of f0 on E(G0 − F ′
0 − {u, v}) is a

perfect matching of G0 − F ′
0 − {u, v}. We may assume that α = uv. Thus, there

exists two cross edges uu′ and vv′. Clearly, there exists a fractional perfect matching

f1 of G1 − {u′, v′}. By assigning uu′ and vv′ with 1 and other cross edges 0, we can

obtain a fractional perfect matching of Gm − F .
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4. Conclusions

In this paper, we obtain FMP and FSMP number of restricted hypercube-like

graphs. Matching preclusion problem has been attracted much attention in the lit-

erature. Since FMP and FSMP problems are interesting generalizations of matching

preclusion problem, it is meaningful to consider FMP and FSMP number of famous

interconnection networks, as well as theory of FMP in general graphs.
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