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Abstract
Colon cancer is the second leading cause of cancer-related deaths in the United States. Computed
tomographic colonography (CTC) combined with a computer aided detection system provides a
feasible approach for improving colonic polyps detection and increasing the use of CTC for colon
cancer screening. To distinguish true polyps from false positives, various features extracted from
polyp candidates have been proposed. Most of these traditional features try to capture the shape
information of polyp candidates or neighborhood knowledge about the surrounding structures (fold,
colon wall, etc.). In this paper, we propose a new set of shape descriptors for polyp candidates based
on statistical curvature information. These features called histograms of curvature features are
rotation, translation and scale invariant and can be treated as complementing existing feature set.
Then in order to make full use of the traditional geometric features (defined as group A) and the new
statistical features (group B) which are highly heterogeneous, we employed a multiple kernel learning
method based on semi-definite programming to learn an optimized classification kernel from the two
groups of features. We conducted leave-one-patient-out test on a CTC dataset which contained scans
from 66 patients. Experimental results show that a support vector machine (SVM) based on the
combined feature set and the semi-definite optimization kernel achieved higher FROC performance
compared to SVMs using the two groups of features separately. At a false positive per scan rate of
5, the sensitivity of the SVM using the combined features improved from 0.77 (Group A) and 0.73
(Group B) to 0.83 (p ≤ 0.01).
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1. Introduction
Colon cancer is the second leading cause of cancer-related deaths in the United States.
Computed tomographic colonography (CTC), also known as virtual colonoscopy (VC) when
a fly through viewing mode is used, provides an alternative to optical colonoscopy in screening
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patients for colonic polyps. CTC x-ray exposure making it less invasive than traditional optical
colonoscopy. When CTC is performed in conjunction with computer aided detection (CAD)
software, it can be highly accurate for detecting colonic polyps [1–7].

CAD systems for detection of polyps on CTC have been under investigation over the past
decades. Summers et al. [2–4] employed many geometrical features to find polyp candidates.
Most of these features are related with statistics of various curvatures. Yoshida et al. [8] applied
the shape index and curvedness measures to describe polyp candidates. These two measures
can be derived from principal curvatures of an inner colon surface and show better performance
for polyp detection compared with Gaussian and mean curvatures. Paik et al. [6] developed a
novel detection method called surface normal overlap which can capture the shape of polyp
candidates. In order to make use of the internal texture information of polyp candidates, Wang
et al. [7] proposed a polyp detection method which employs geometrical, morphological and
textural features inside polyp candidates.

To discern true polyps from false positives, one needs to capture the intrinsic difference
between the two groups. In our previous CAD system [2–4], after 3-dimensional colon surface
segmentation and polyp candidate segmentation, we extracted 18 discriminative features from
each polyp candidate. These features were designed to mimic the experience of radiologists in
distinguishing polyps. Examples of these features include the average of mean curvatures on
the neck of polyp candidate, the average of Gaussian curvatures of the lesion, the distance
between the two most separated vertices on the surface cluster and wall thickness to name a
few. To some extent, they incorporate something akin to the human knowledge used in
detecting polyps.

In recent years, feature extraction based on statistical information of basic image descriptors
has shown promising results in image processing and computer vision research. The basic
image descriptors include edge descriptor, gradient descriptor, etc. Representative methods
include Scale-Invariant Feature Transform (SIFT) [9], Shape Context [10] and Histograms of
Oriented Gradient (HOG) descriptor [11], etc. The SIFT descriptors focus on the local
appearance of the object at particularly interesting points [9]. By using orientation assignments
at key points and matching of orientation histograms, the SIFT features are robust to changes
of illumination and viewpoint and to the presence of noise and occlusion. Shape Context [10]
describes the shape of an object by using log-polar bins to capture the relative location
distribution of other edge points in relation to the central edge point. The key idea of Shape
Context is that, when randomly choosing one key point, the distribution of the relative positions
of other key points to the chosen point is a robust, compact and highly discriminative descriptor
that can handle non-rigid transformation. Histogram of Oriented Gradient descriptor counts
occurrences of gradient orientation in localized portions of an image [11]. For the detection of
colonic polyps, CT images have lower resolutions compared with that of optical images.
Consequently, SIFT and Shape Context do not appear to be the most suitable descriptors
because they rely on key or edge points. Usually in CT images there are no distinct local
structures which can serve as markers. HOG does not need to locate key points but it is sensitive
to image rotation.

Inspired by the idea of HOG, in this paper we propose a set of new shape descriptors called
histograms of curvature features (HCFs). HCFs are calculated based on the distributions of
curvature features of polyp candidates: we first calculate curvature features for each voxel
inside a polyp candidate; then we build a histogram for each curvature feature and each polyp
candidate. HCFs are statistical descriptors that may be able to capture some of the intrinsic
properties of true polyps, for example, shape and texture information. We utilize curvature-
related descriptors as basic image descriptors, i.e. shape index, curvedness, Gaussian and mean
curvatures, etc. The advantage of these curvature related descriptors is that they are rotation,
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translation and scale invariant. HCFs can be treated a more complete statistical view of a polyp
candidate based on the set of curvature-related descriptors.

Now we have two groups of features developed to describe polyp candidates. One incorporates
the human experience about distinguishing true polyps from false positives and the other
contains more complete statistical information about the features. They are complementary to
some extent and can be treated as different depiction of the polyp candidates. Our hypothesis
for this study is that the combination of these two groups of features will lead to better overall
classification performance. The simplest technique to combine the feature sets is to concatenate
them together but this may merge the information in an undesirable way because a large number
of irrelevant features may overwhelm informative features. Our approach to solving this issue
is to use a multiple kernel learning approach which was developed in recent years to solve real
applications which involve multiple, heterogeneous data sources [12–14]. This so-called
“multiple kernel learning” problem usually can be solved by considering the convex
combinations of K kernels, i.e.,

with βk ≥ 0 and , where each kernel Kk uses a group of features from one information
source and xi, xj are samples. To make full use of both the traditional and HCF features, in this
paper we treat the problem as learning from multiple information sources and apply a multiple
kernel learning method to develop an optimized kernel for classification from the two groups
of features. The paper is organized as follows: in Sec. 2, we introduce recent advances in CTC
CAD systems. in Sec. 3, we propose a new group of features - the histograms of curvature
features. A well-known multiple kernel learning method based on semi-definite programming
is briefly introduced in Sec. 4. Then we show experimental results in Sec. 5. We compare the
performance of our method with existing CTC CAD systems in Sec. 6. Sec. 7 concludes with
a short summary.

2. Recent advances in CTC CAD
In the past few years, CTC CAD has seen a number of advances. CTC CAD’s are complicated
system which involve multiple stages including: image segmentation, initial polyp candidate
detection, feature extraction, classification, etc. In this section we will introduce several
exemplar technologies from the most recent literature. The performance of these CTC CAD
systems are listed in Table 3. Because of the rapid development in this research area, we may
not be able to illustrate all the recent advances.

Geometric analysis plays an important role in the CTC polyp detection. In reference [15], Zhu
et al. proposed the idea of volumetric mucosa for a thick colon wall representation. Then they
employed a level set-based adaptive convolution method for first- and second- order spatial
derivative calculation which is more accurate than traditional geometric analysis methods
based on single layer mucosa. The success of the proposed method shows that the importance
of initial image processing stages, such as the colon wall segmentation, on overall CTC CAD
system performance.

Pattern recognition methods based on massive-training artificial neural networks (MTANNs)
- are another new approach in CTC CAD research [16]. MTANN is a supervised image-
processing/pattern recognition technique based on neural networks. It extracts features in an
implicit way by interweaving feature extraction and classification in human perception.
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MTANN methods are thought to be better approximation of the detection process used by
actual radiologists which may lead to additional improvements for CTC polyp detection.

Inspired by radiologists’ reading behavior when they read CTC data in endoluminal flythrough
mode, Li et al. proposed a wavelet analysis based method for false positive reduction in CTC
CAD [17]. This approach first develops a 2D snapshots of CTC CAD detections from the
rendered 3D space. The camera is placed along the colon centerline and the view angle is
optimized to differentiate false positives and true polyps. An enhanced wavelet analysis method
is then used to extract features from the 2D snapshots. Experimental results show that the
proposed method can significantly reduce false positives while maintaining a high polyp
detection sensitivity.

Classifier design is a critical procedure for a practical CTC CAD system. In reference [18],van
Ravesteijn designed a CAD system using logistic regression. The proposed linear logistic
classifier can cope with small training set and imbalance between true and false detections.
The proposed method has high sensitivity and low false positives per scan with only three
features employed: the protrusion of the colon wall, the mean internal intensity and an auxiliary
feature to determine whether the detections are on the rectal enema tube.

3. Histograms of curvature features
Shape analysis plays an important role in the detection of colonic polyps. Colonic polyps appear
as bulbous protrusions that adhere either to the inner wall of the colon or to colonic folds that
have elongated, ridge like structures. Fig. 1 shows a typical adenomatous polyp from prone
and supine scans which locates in the conjunction of two folds on the sigmoid colon. How to
extract distinct features from polyp candidates is a key factor in the detection of colonic polyps.
Perhaps the most widely used features to describe polyp candidates are Gaussian and mean
curvatures because they capture the semispherical property of polyps.

Intuitively, curvature measures the extent to which a geometric object deviates from a flat
surface [19]. For a two-dimensional surface embedded in R3, the intersection of the surface
with a plane containing the normal vector and one of the tangent vectors at a point on the surface
is a plane curve and has a curvature called normal curvature. The maximum and minimum
values of the normal curvature at a point are called the principal curvatures, k1 and k2. The
directions of the corresponding tangent vectors are called principal directions. The Gaussian
curvature is defined as the product of the principal curvatures: kGaussian = k1k2. A surface is
locally convex when Gaussian curvature is positive; it is locally saddle when the Gaussian
curvature is negative. The mean curvature is one-half of the sum of the principal curvatures:

.

Besides Gaussian and mean curvatures, shape index (SI) and curvedness (CV) can also describe
the shape of a polyp candidate [8]. At a given voxel p, the SI and CV features can be defined
as follows:

(1)

(2)
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where k1(p) > k2(p) are the two principal curvatures. To characterize polyp candidates, H.
Yoshida et al. used mean SI, mean directional gradient concentration (DGC) and the variance
of the CT value as features in the classification procedure [8]. Given the extracted region R of

a polyp candidate, the mean value of the SI is defined as: , where |R| is the
number of voxels in region R.

Using the mean value of features for all points on a segmented detection is a good way to
distinguish true polyps and false positives under certain circumstances. But at the same time,
we also lose some information during this process. If we treat the calculation of the mean value
as a dimensionality reduction process, then during the mapping from the high dimensional
space to the one dimensional space (the mean space), we will inevitably lose certain information
from the original high dimensional data. This introduces a new question: how to make full use
of statistical features calculated on each voxel.

To make full use of curvature information and capture internal texture information of polyp
candidates, inspired by the idea of HOG, we utilize histograms of curvature features to represent
polyp candidates. Fig. 2 shows comparisons of the shape index and curvedness histograms
obtained from a true polyp and a false positive. The plots in the figure show that the full
histograms for true and false positive candidates can be very different even when a single
summary measure might suggest that the two are similar. In Table 1, we list six curvature-
related features contained in HCFs. For each feature, we choose a range and divide it into 198
equally-spaced bins. Voxels whose feature values are smaller than the lower limit or greater
than the upper limit are counted in two additional bins. The lower and upper limits are selected
based on the distributions of features. In addition, previous research shows that the CT value
is also an informative feature [2–4]. We also compute the histogram of CT values for each
polyp candidate. We concatenate the seven histograms and get a feature vector with 1400
dimensions for each polyp candidate.

4. Multi-kernel learning by semi-definite programming
By applying traditional supervised and unsupervised learning methods in the feature space,
kernel methods provide powerful tools for data analysis and have been found to be successful
in a number of real applications. Support vector machines (SVMs) are a set of kernel based
supervised learning methods used for classification and regression [20]. SVMs try to minimize
the empirical classification error and maximize the geometric margin simultaneously on the
training set which leads to high generalization ability on the new samples.

For a two-class classification problem, given training samples {(x1, y1),…,(xn, yn)}, yi ∈ {−1,
+1}, the optimization problem for learning a linear classifier in the feature space is defined as
(hard margin):

(3)

(4)

where Φ is the mapping from original space to feature space. It is a quadratic programming
(QP) optimization problem and it is convex. The optimal (w*,b*) is a maximal margin classifier
with geometric margin γ = 1/‖w*‖2if it exists.
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When the data are not linearly separable in the feature space, the above problem can be relaxed
by introducing relaxation variables. For example, the 2-norm soft margin SVM is defined as:

(5)

(6)

where C controls overall impact of the constraints and ξ,i, i = 1,…,n, are the relaxation variables
for each sample.

In the basic optimization problems of SVMs introduced above, there is only one mapping
function Φ which maps input vector to feature space. In real applications, we often have
multiple information sources to describe the same object. For example, in the colonic polyp
detection problem, histograms of curvature features can be treated as another descriptor to
describe a polyp candidate besides traditional features which incorporate human knowledge
in describing polyps. So multi-kernel learning is one natural solution to solve our optimization
problem.

G. Lanckriet et al. first formulated the kernel matrix learning from multiple information sources
as a semidefinite programming problem [13]. In the semidefinite programming problem, the
objective function is a linear objective and the constraints are a linear matrix inequality and
affine equality constraints defined as:

(7)

(8)

where x ∈ Rq is the vector of decision variables, c ∈ Rq is the objective vector, and matrices

 are given and symmetric, positive semidefinite (e.g. kernels calculated from different
information sources).

Under the transduction setting, given training data Sntr ={(x1, y1),…,(xntr,yntr)} and the test set

Tnt = {xntr+1,…,xntr+nt}, we can construct a kernel matrix  where Kij = 〈Φ
(xi), Φ(xj)〉, i, j = 1,…,ntr,ntr+1,…,ntr+nt. For the optimal kernel learning problem, the basic
idea is to optimize a cost function over the training data block Ktr in order to learn the optimal
mixed block Ktr,t and the optimal test data block Kt. If we have multiple kernel matrices Ki, i
= 1,…,m generated from m information sources, by imposing maximum margin constraints on
the training samples and limit the target matrix in the linear subspace K = span{K1,…,Km}∩
{K≻=0} the kernel learning problem from multiple kernels can be formulated as the following
semidefinite programming problem with 2-norm soft margin [13]:
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(9)

(10)

y is the label vector of training data and e is a ntr × 1 vector with all elements equal to one.

5. Experimental results
To evaluate our method, we applied it to a CTC dataset that contains 109 CT scans of 66 patients
collected from three hospitals. Each scan was done during a single breath hold using a 4-channel
or 8-channel CT scanner (General Electric LightSpeed or LightSpeed Ultra; GE Helthcare
Technologies, Waukesha, WI). CT scanning parameters included 1.25- to 2.5-mm section
collimation, 15 mm/s table speed, 1-mm reconstruction interval, 100 mAs, and 120 kVp. After
3-dimensional colon surface segmentation and polyp candidate segmentation, we extracted
two groups of features from each polyp candidate. Group A contains 18 traditional features
used for colonic polyp detection. In Table 2, we list all 18 features and their corresponding
geometric explanations. Group B contains 1400 histogram features of curvatures and CT value.
We got 5763 polyp candidates which includes 142 true detections from 96 polyps whose sizes
are equal to or greater than 6 mm. To focus on the classification performance of our method,
here we do not consider uniqueness, meaning that several true polyp detections may come from
the same physical polyp.

To evaluate the effectiveness of our method for classification of colonic polyps, we did leave-
one-patient-out test to compare the performance of SVM using learned optimal kernel with
that of SVM using group A features and group B features separately. For group A features,
radius base function (RBF) kernel with width σ = 1/18 was used. Previous work of Chapelle
et al. showed that for histogram features, Laplacian radius base function (LRBF) kernel usually
works better than RBF kernel [21]. So for group 2 features, LRBF kernel with width σ = 2.5
was used. The values of σ are selected based on the results of cross validation. For multiple
kernel learning, we adopted the 2-norm soft margin solution because the classification problem
is not linearly separable. The 2-norm soft margin parameter of SVMs C was determined
automatically using SDP by treating it as a variable in the SDP constraints. The optimal kernel
learned by SDP on the two base kernels was directly fed into SVM for training and testing.
Fig. 3 shows the free-response operator characteristic (FROC) curves on the testing set.
Because the CTC dataset is extremely unbalanced in the number of true positive samples
compared with the number of false positives, a bias on the decision boundary will be observed
if all of the training samples are used during classifier training (most true polyps will be
classified as false positives). To circumvent this problem, down-sampling of the negative
samples was done in order to balance the true and false training cases. We used all the true
samples and down-sampled the same number of false positives from the train set. The true
samples and selected negative samples compose the training set (smaller than the whole train
set). For each test patient in the leave-one-patient-out paradigm, we did 30 random samplings
on the train set and trained 30 classifiers respectively. So for the testing patient, we will have
30 prediction values for each polyp candidates contained in the testing patient. In the last step,
we did free response receiver operation characteristic (FROC) analysis and the FROC was
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counted based on all the testing patients. We got 30 FROC curves in the end. The standard
deviations of them are shown in the Fig. 3 (b). For clinical purposes, radiologists are mostly
concerned about the sensitivity of the CAD system at low false positives per scan. When the
number of false positives per scan is 5, the sensitivity improved to 0.83 using the multiple
kernel learning method, whereas the sensitivities of SVMs are 0.77 and 0.73 for group A and
group B features respectively. T-test hypothesis testing shows that the results of semidefinite
programming result in a significant difference at the 0.05 significance level compared with
that of SVM using group A feature and SVM using group B feature at false positives per scan
of 5 (p ≤ 0.01).

In the multiple kernel learning process, we used 2 base kernels. One was constructed on the
group A features by using RBF kernel function; the other was constructed on the group B
features by using Laplacian RBF kernel. In Fig. 4, we show the two base kernel matrices and
the optimal kernel matrix of training data of a typical run which contains 140 true polyps and
140 false positives. From Fig. 4 we can find that although the base kernels show no clear
separability; the optimal kernel learned by semidefinite programming shows better separability
which is very helpful for the classification task.

To show that group A and group B features are complementary for the classification purpose,
we selected 20 true polyp detections and compared SVM prediction values of them by using
group A and group B features separately. These polyps are considered tough or easily
misclassified samples by SVM using group A features. SVM prediction value provides a
measure showing that how confident the SVM feels a polyp candidate is a true polyp. A true
polyp with low SVM prediction values means that the SVM treats the true polyp more like a
false positive in the feature space. We show comparisons of SVM prediction values of the
twenty polyps in Fig. 5 and from it we can find that for some hard cases considered by SVM
using group A features, SVM using histogram features gives higher prediction values and they
are treated as true polyps with high confidence. In Fig. 6, we show four true polyps of them.
These polyps are hard to distinguish by using group A feature because they are flat, or partially
corrupted because of segmentation problem. By utilizing the statistical information inside the
polyp, SVM using group B feature can still distinguish them although they are very flat or
partially corrupted.

6. Comparison with state-of-the-art CTC CAD systems
As introduced in the introduction section, during the past ten years, many colonic polyp
detection methods have been proposed. For example, in the work of Yoshida et al., they
proposed the detection method based on shape index and curvedness and showed that the
detection of performance of their CAD can reach 100% at false positives 2 per patient on a
small CTC dataset which contains 43 CTC cases and 12 5-10mm polyps [8]. Kiss et al. proposed
a new detection method via combination of surface normal and sphere fitting methods and
reported 40% sensitivity at false positives of 8.16 per patient on a CTC dataset containing 18
patients [22]. CTC CAD is a very complicated system and it has many components and
procedures which have significant influence to the final performance. For example, the
segmentation algorithm of colon, the filter criterion for polyp candidates, classifier design, etc.
will affect the sensitivity and specificity of a CTC CAD system. Usually these CTC CAD
systems are not available to the public. We have conducted a literature review and summarized
the performance of state-of-the-art CTC CAD systems in Table 3. We only consider the CTC
CAD systems published in past two years which employ cutting edge technologies for CTC
polyp detection and show better performance. For each method, we include the size of the data
set used, information on the polyps, and sensitivity and false positives per patient/scan. From
the table we see that these CTC CAD systems show high sensitivity with a fairly low number
of false positives per patient/scan. Our method shows comparable performance to the recently
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published methods listed in Table 3 with the caveat that each of these studies uses a unique
dataset. This complicates a direct comparison of algorithm performances. The main
contributions of this paper are the introduction and evaluation of a new set of statistical
descriptors for polyp detection and a mechanism for combining geometric features and
statistical features. It can be applied to any existing CTC CAD systems and be viewed as
enhancing technology to CTC CAD systems.

7. Conclusion
In this paper, we propose a new method for colonic polyp detection from CT images based on
statistical image descriptors and multi-kernel learning method. Two groups of features were
used in the multi-kernel learning. Group A features are traditional and discriminative features
designed according to the experience of radiologists. It contains various features to discern
polyps from the view point of human specialists. Group B features are based on the statistical
information of polyp candidates. Most of them are related with various curvatures which are
invariant to rotation, translation and scale transformation. Experimental results on a CTC
dataset containing 66 patients with >=6 mm polyps show the effectiveness of the proposed
method. At a false positive per scan rate of 5, the sensitivity using the combined features
improved from 0.77 (Group A) and 0.73 (Group B) to 0.83 (p ≤ 0.01). We also analyzed the
classification result of SVM using the two groups of features separately. Comparisons show
that the two groups of features are complementary for a number of polyp candidates thereby
explaining why combining them together leads to better detection performance.
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Figure 1.
3D endoluminal surface reconstructions of an 8 mm adenomatous polyp (arrows) which locates
in the sigmoid colon. (a) Prone and (b) supine scans.
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Figure 2.
(a) shows axial, coronal and sagittal slices of a 10 mm true polyp in which white dots mark the
segmentation boundary of the candidate. (b) shows a false positive. Their distributions of shape
index and curvedness are shown in (c) and (d) respectively.
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Figure 3.
(a) Comparisons of FROC curves from SVMs using group A features alone, using group B
features alone and using the semi-definite programming method to combine the two feature
sets. (b) shows a magnified version of the plot in (a) for low numbers of false positives per
scan. The proposed method achieves the highest sensitivity.
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Figure 4.
(a) – (b) base kernels used in semidefinite programming. (c) Optimal kernel learned by
semidefinite programming. In all the kernels, the first 140 samples are true polyps and other
140 samples are false positives. So the left-upper blocks show the similarities between true
polyps and the right-lower blocks show the similarities between false positives. The left-upper
block of (c) shows higher clustering property with high and consistent kernel values which
leads to better separability.
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Figure 5.
Comparisons of SVM prediction values of 20 true polyp detections using group A features and
group B features separately. This plot shows that the complementary nature between the two
groups of features for a number of polyp candidates (i.e., significant difference in SVM
prediction values). SVM prediction value is a measure of the likelihood that a polyp candidate
is a true polyp. True polyps with low SVM prediction values mean that they are hard to be
detected or similar to false positives.
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Figure 6.
Four true polyps considered to be false positives by SVM using group A features. SVM using
HCFs gives higher prediction values and treats them as true polyps. For each polyp, we show
its axial, coronal and sagittal slices and 3D endoluminal CTC volumetric reconstructions. For
volumetric reconstructions, the red color corresponds to higher CT values and cyan color
corresponds to lower CT values.
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Table 1

Six curvature related features used in our HCF descriptor. Lower limits, upper limits and numbers of bins are
listed for each feature and CT value.

Feature Lower limit Upper limit Number of Bins

Shape Index 0 +1 200

Curvedness 0 +20 200

Gaussian Curvature −10 +10 200

Mean Curvature −10 +10 200

Max Curvature −10 +10 200

Min Curvature −10 +10 200

CT Value 0 1600 200
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Table 2

18 traditional features in group A used for colonic polyp detection.

No Geometric Explanation

1 difference between max max-curvature and average max-curvature of lesion surface

2 mean curvature of lesion surface

3 (in sq cm) of all full triangles constituting surface cluster

4 width/length of bounding box containing all vertices from surface cluster

5 wall thickness measured along ray

6 std. of Gaussian curvature of vertices around the lesion

7 std of min curvature of the lesion

8 curvature relation between lesion surface and its surrounding

9 mean of wall thickness measure at different vertices

10 max curvature averaged over all vertices from neck surface cluster

11 common curvature rank between lesion surface and its surrounding

12 width/length of bounding box containing all vertices from surface cluster

13 elliptical curvature averaged over lesion segmentation

14 distance between inner and outer wall

15 3rd order moment of given curvature/sphericity statistics

16 curvature information of voxels merged in water

17 number of segments which are part of any full triangle from surface cluster

18 Compactness: area / perimeter * 2
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