
A Scalable Approach to Multi-Agent Resource Acquisition
and Control

Nadeem Jamali
Department of Computer Science

University of Saskatchewan
176 Thorvaldson Bldg., 110 Science Place

Saskatoon, SK, Canada, S7N 5C9

n.jamali@usask.ca

Xinghui Zhao
Department of Computer Science

University of Saskatchewan
176 Thorvaldson Bldg., 110 Science Place

Saskatoon, SK, Canada, S7N 5C9

x.zhao@usask.ca

ABSTRACT
Scalable coordination is a key challenge in deployment of multi-
agent systems. Resource usage is one part of agent behavior which
naturally lends itself to abstraction. CyberOrgs is a model for hier-
archical coordination of resource usage by multi-agent applications
in a network of peer-owned resources. Programming constructs
based on the CyberOrgs model allow resource trade and reification
of control while maintaining a separation between functional and
resource concerns of applications. A prototype implementation of
CyberOrgs is described and expressive power of the programming
constructs is illustrated with examples.

Hierarchical control presents challenges in scalability. How-
ever, CyberOrgs make some types of resource coordination more
amenable to efficient implementation. Hierarchical scheduling for
processor time, for instance, can be implemented scalably by effi-
ciently converting the hierarchical schedule into a flat schedule on
the fly. This mechanism can be generalized to achieve scalable co-
ordination of some other resource types. Experimental results are
presented which demonstrate scalability of this approach.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures; C.2.4
[Computer-Communication Networks]: Distributed Systems

General Terms
Performance, Design, Economics, Experimentation, Languages

Keywords
CyberOrgs, Actors, Hierarchical Control, Resource Control, Coor-
dination, Control Reification

1. INTRODUCTION
When a computation is distributed into semi-autonomous sub-

computations collectively solving a problem, a degree of uncer-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’05, July 25-29, 2005, Utrecht, Netherlands.
Copyright 2005 ACM 1-59593-094-9/05/0007 ...$5.00.

tainty is inevitably introduced. In the context of multi-agent sys-
tems, when an agent’s decision about the action to take next de-
pends on actions taken by other agents, coordination between the
agents is required to achieve optimal results [5]. Not only is co-
ordination recognized as a key concern in distributed computing
[4], it has also been argued that computation and coordination are
separate and orthogonal dimensions of all useful computing [6],
necessitating coordination to be addressed explicitly.

Computations sharing an execution space inevitably compete for
the resources in that space. In an open system [7], there may be both
logical and resource dependencies [5] between agents, with the re-
source dependencies sometimes leading to logical dependencies.
Unrestricted competition for resources between agents collaborat-
ing to achieve a shared goal may hamper progress toward the goal.
Coordinating resource access by agents is hence critical to reduc-
ing uncertainty and enabling agents to make control decisions for
the best global performance [11].

In a bounded resource environment, if a computation can launch
other computations as in a multi-agent system, it is difficult to con-
trol resource consumption reactively. If an erroneous or malicious
agent begins creating other agents with similar characteristics, and
if the only mechanism employed for identifying such agents is ob-
servation of their own threatening behavior, the rate of growth in the
number of agents can be shown to be exponential. Intuitively, this
means that irrespective of how conservatively the system purges
misbehaving agents, so long as the mechanism relies solely on the
observation of individuals’ suspicious activity, by the time the sys-
tem reacts, it may be too late: other agents have potentially been
created about whose behavior the system will know nothing until it
has observed them individually.

An effective mechanism for controlling such behavior would re-
quire tracking groups of agents. In other words, at the time of purg-
ing an agent, if there were a way of identifying other agents whose
creation is rooted at the purged agent, all of them could be purged
together. However, because of the exponential growth described
above, a book-keeping solution of this problem is impractical.

A back of the envelope calculation illustrates the difficulty. Con-
sider a scheduler that schedules agents for fixed time slices in a
round robin fashion. If the probability of an agent creating another
agent when given an opportunity is p, and the system purges an
agent when it observes its behavior to exhibit a creation probability
of k, if we begin with n such agents, at the end of the end of the cth

cycle of the scheduler, the number agents is (n(1 − p/k))c, which
represents an exponential growth.

An alternate approach to control is by bounding resource con-
sumption at the outset, and limiting resources available to a com-

putation and all sub-computations originating from it. In this ap-
proach, each agent would receive a resource consumption allowance,
which it could utilize or give a part of to other agents.

Ether [13] was the first language to address explicit allocation
of resource in concurrent systems. Sponsors were assigned to pro-
cesses to support their computations. This idea was later incorpo-
rated in the Actor language Acore [14]. Sponsor actors accompa-
nied computation requests, and they carried ticks that could be used
in processing a request. Using a similar, in Telescript [17], pro-
cesses were awarded funds in terms of teleclicks which they were
supposed to use to accomplish their results.

The Quantum [15] framework is the most relevant to our work.
Motivated by the need for managing finite resources shared by mul-
tiple computations, Quantum models resources as energy which
computations require for execution. Computation tasks are con-
tained in groups which also serve as tanks of energy. Groups are
hierarchical, so that a group may create subgroups with its subcom-
putations. When a group’s computations terminate, its energy is ab-
sorbed into the energy of its parent group; when it has exhausted its
energy, it may receive more energy from its parent. Although the
original formulation of Quantum did not support migration over
multiple hosts, it has since been extended [16] to handle manage-
ment of distributed and multi-type resources, which does address
migration in a limited manner. Our approach goes a step further by
explicitly modeling resource trade separately from management of
owned resources. This separation is required for resource acquisi-
tion in the setting of peer-owned resources; it also allows dynamic
pricing to be modeled. Additionally, our approach to representing
resources and their propagation allows modeling of resource ex-
piration. This is a more accurate representation of computational
resources which if unused at an instant, that instant’s use of the
resource can no longer be reclaimed.

2. CYBERORGS
CyberOrgs [8] is a model for resource sharing in a network of

self-interested peers, where application agents may migrate in or-
der to avail themselves of remotely located peer-owned resources.
CyberOrgs organize computational resources as a market, and their
control as a hierarchy. Specifically, each cyberorg encapsulates one
or more multi-agent distributed computations (to be referred to as
computations contained in the cyberorg), and an amount of eCash
in a shared currency. Cyberorgs act as principals in a market of dis-
tributed resources, where they may use their eCash to buy or sell
resources among themselves. A cyberorg may use the resources so
acquired for carrying out its computations, or it may sell them to
other cyberorgs.

CyberOrgs treat computational resources as being defined in time
and space. In other words, a resource is not available for use before
or after the instant of time at which it exists. Sale of a resource
is represented by a contract stipulating availability of resources
to the buyer for a cost. Delivery of resources to cyberorgs is de-
termined by a hierarchy of control decisions. In other words, cy-
berorg a makes control decisions required for delivery of resources
purchased from it by cyberorg b; cyberorg b in turn makes con-
trol decisions determining how the resources purchased from it by
cyberorg c are to be delivered. Cyberorgs may pre-pay to buy re-
sources which will exist in the future.1 Cyberorg b may use the
resources it owns only if the resources exist at a time when the cy-
berorg is being hosted by a. In other words, after signing a contract,
a cyberorg must migrate to the prospective host cyberorg in order to
avail itself of newly acquired resources. Additionally, if b migrates

1Recall that resources only exist at instants of time.

from a while it owns future resources through a contract with a, it
cannot use those resources except if it eventually returns to a and if
it possesses resources which have not yet expired.

Example: Distributed Weather Forecast
Consider a distributed weather forecasting system for analyzing
weather data and generating alerts and warnings about specific threats.
Computational resources available to such a system may be focused
on particular weather systems or on population centers. As a threat-
ening weather system moves from one city to another, dedicated
resources available for tracking the weather system may need to
become available to the cities requiring them for assessing the im-
pact on them.

A CyberOrgs implementation of such a system could geographi-
cally organize weather forecasting computations and the resources
available to them. In other words, eCash may be made available
to a hierarchy of geographic regions to acquire resources to carry
out computations necessary for assessing weather related threats.
A cyberorg would be in charge of each region; it will use the eCash
dedicated to monitoring the region to acquire resources for support-
ing the forecasting computations. Simultaneously, other cyberorgs
with eCash for tracking specific active weather systems would fol-
low the weather systems, migrating from one regional cyberorg to
another, releasing eCash required by the current host cyberorg.

As a threatening weather system enters a region, the region’s
cyberorg may decide to create specialized cyberorgs for larger pop-
ulation centers, allocating resources to each in the form of eCash
based on the threat level and complexity of data to be analyzed
(which may include weather data as well as information about the
local sub-region). As the weather system moves on, sub-regional
cyberorgs may assimilate into their host cyberorgs, returning the
eCash.

2.1 Formalizing CyberOrgs
Our approach in formalizing CyberOrgs is to separate concerns

of computations from those of the resources required to complete
them. Because our focus is on the usage of resources, we represent
the resource requirements of each computation by the sequence of
resources required to complete the computation. To simplify the
model, we assume that resource requirements are known in ad-
vance. As an instantiation, we assume that the computations are
carried out by systems of primitive agents called actors.

2.1.1 Actors
Actors [1] provide a formal model for building and representing

the behavior of concurrent objects and thus serve as a foundation
for concurrent object-oriented programming.

Actors are autonomous, interacting computing elements, which
encapsulate a behavior (data and procedure) as well as a process.
Different actors carry out their actions asynchronously and com-
municate with each other by sending messages. The basic mecha-
nism for communication is also asynchronous and buffered; how-
ever, other forms of message passing can be defined in the context
of the model. Finally, actors may be dynamically created and re-
configured, which provides considerable flexibility in organizing
concurrent activity.

It is possible to extend any sequential language with actor con-
structs. For example, call-by-value λ-calculus is extended in [3].

Primitive agents are naturally modeled by the Actor formalism.
In fact, Actors is the de facto model underlying many implementa-
tions of mobile agent systems. Actors are autonomous and persis-
tent, and they are inherently concurrent and autonomous, enabling
efficient parallel execution [12] and facilitating mobility [2].

2.1.2 Resources
We abstract computational resources as ticks, which determine

the granularity of availability and consumption of resources. In
other words, resources are provided to cyberorgs in terms of num-
bers of ticks, and computations consume resources in multiples of
ticks. Ticks are defined in time and space and are sequentially or-
dered. If a tick is available in a cyberorg at a time at which it
cannot be consumed, it expires. Because a tick is the basic unit of
resource, introduction of ticks into the system defines the basis for
measurement of potential progress; consequently, absolute rates of
availability of ticks to cyberorgs are with respect to the introduction
of ticks into the system.

Because the model abstracts over physical machines, distances
among cyberorgs, among actors, and between cyberorgs and actors
are represented explicitly.

2.1.3 Progress
Progress in a system of cyberorgs is represented by transitions

occurring with introduction of ticks into the system. When a tick is
inserted into a cyberorg, the cyberorg may pass it on to a client cy-
berorg, or it may use it for progressing on one of its actors. Whether
a tick is passed on to a client or used locally depends on the con-
tracts that the cyberorg has with its clients.

Contracts determine the total number of ticks that the clients
must receive, and the rates at which they must receive them. Rates
of receipt of ticks are as a proportion of the total number of ticks
inserted into the system at the root cyberorg. Contracts also de-
termine the costs which the clients are supposed to be charged for
the ticks they receive. A contract may allow a client cyberorg to
pre-pay for ticks that exist in the future.

Surplus ticks after a cyberorg’s contractual obligations to its cli-
ents have been satisfied, may be distributed among the local actors.

If there is a cyberorg b being hosted by a and the new tick is to
be passed on to b, then, the tick is redirected to b, and an amount of
eCash representing the cost of the tick – determined by the contract
between a and b, and the state of a – is transferred from b to a. If
a cyberorg runs out of eCash, and the resources it requires are not
available free of cost, its actors become dormant until it receives
eCash from another cyberorg. For instance, the cyberorg may own
ticks defined in the future, which it may give to hosted cyberorgs,
and receive eCash in return. Alternatively, a hosted cyberorg may
assimilate, releasing its eCash, as shown in the next section.

If there are no active actors or cyberorgs to be given a tick, the
tick expires.

2.1.4 CyberOrgs Primitives
In addition to transitions corresponding to progress in actor com-

putations, there are a number of transitions in the system which cor-
respond to CyberOrgs primitives. These transitions happen through
invocations of CyberOrgs commands from helper actors, which in
turn are created by the cyberorg’s facilitator actors. A facilitator
actor monitors the state of the current host as well as the cyberorg’s
resource requirements, and creates helpers to carry out CyberOrgs
primitives. Facilitators and helpers are different from application
actors hosted by a cyberorg in that they do not have names, and
hence, may not receive messages from other actors. They also do
not participate in the computations pursued by the application ac-
tors. Finally, because no actors have helpers’ names, they safely
disappear from the system after carrying out their operations.

Creation and Absorption. As illustrated in Figure 1(a), a new cy-
berorg is created by using the isolate primitive, which collects
a set of actors, messages, and electronic cash, and creates a new cy-

$
$

$
$

isolate

Actor

eCash$

Actor Message

$$
$

$

a) isolate

$$
$

$

assimilate

$
$

$
$

b) asmlt

Figure 1: Creation and Absorption

berorg which is hosted in locally according to a contract imposed
by the creating cyberorg.

As shown in Figure 1(b), a cyberorg disappears by assimilat-
ing into its host cyberorg using the asmlt primitive, relinquish-
ing control of its contents - actors, messages and eCash - to its
host. The assimilating cyberorg disappears, and its host becomes
the container for its contents.

Assimilation of a client cyberorg into its host can potentially
be a dangerous operation to allow. Although the primitive hands
the client’s eCash to the host to use at its discretion, its computa-
tions also join the host’s computations and may interact or inter-
fere in undesirable ways. The host is however protected because it
alone decides whether the assimilated cyberorg’s computations are
allowed to advance in their processing. In other words, when a cy-
berorg decides to assimilate into its host, it relinquishes all control
over its contents: its contract with the host dissolves, its eCash is
added to the host’s eCash, and its computations may or may not
receive any ticks from the host without any contractual obligations.

Mobility. A facilitator may realize that the resource requirements of
the cyberorg’s functional or non-functional (e.g. spatial, temporal)
behavior exceed what is available by its contract with the current
host. As a result, it creates a helper to search for alternate hosts.

Cyberorgs may migrate from one host cyberorg to another. How-
ever, this must be preceded by negotiation of the terms under which
the client may be hosted. The tasks required for a cyberorg to mi-
grate are as follows:2

1. Search for a potential host. This makes use of the yellow
page services provided by the system to search for cyberorgs
which may offer needed ticks for an acceptable price.

2. Negotiate a contract with potential hosts. Negotiation in-
volves interaction with potential hosts for possible access to
their ticks. Negotiation may be initiated by a cyberorg want-

2Migration of a part of a cyberorg’s computation would require
isolation first.

$

$$

migrate

$
$

$
$

$$$
$

$

$
$

$

$
$

$
$

$

Figure 2: Cyberorg Migration

ing to migrate itself or wanting to migrate part of its compu-
tation. On successful culmination of a negotiation, a contract
is reached with a potential host cyberorg, which would hold
between the migrating cyberorg and the host.

If there are no cyberorgs which can serve cyberorg a’s re-
source requirements, no negotiation can happen, and a adapts
to its current resource availability.

3. Migrate to the selected host. If a contract has been success-
fully negotiated, a client can relocate to the host using the
migrate primitive as shown in Figure 2.

If a contract is not successfully negotiated, the cyberorg adapts
to its current resource availability.

Insertion of ticks one at a time, and their expiration when no
computation is ready to use them is a simpler representation of
the way processor resource becomes available, than granting of an
approximate number of ticks followed by corrective mechanisms.
Furthermore, awarding ticks one at a time allows management of
rates of use of resource. Cyberorgs may offer absolute rates of
availability of resources as functions of ticks becoming available to
the root cyberorg.

Distribution of resources among a cyberorg’s actors is a local
decision, and no specific strategy is mandated by the model. As a
result, the local resource distribution strategy of a cyberorg can be
used for fine-grained control of how a cyberorg’s actors consume
resources, to achieve functional and non-functional goals of the ap-
plication. When an actor is not provided ticks, it becomes dormant.

If a tick is received by a cyberorg when it does not have a com-
putation or a cyberorg that can use it, the tick expires. This is con-
sistent with the nature of many resources. For example, processor
cycles can be used only if there is a task that can use them; they
cannot be saved for future use. If there are no tasks ready for exe-
cution, the cycles pass unutilized.

A more formal treatment of the operational semantics may be
found in [9].

3. IMPLEMENTATION OF CYBERORGS
We have implemented CyberOrgs by extending Actor Architec-

ture [10] – a Java library and run-time system for supporting ac-
tors. In this implementation, every actor requires processor time
resource to carry out its computation, and the resource is received
by the actor from the cyberorg containing it.

Actor Architecture (AA) is a middleware for providing an execu-
tion environment for actors. An instance of the AA run-time sys-
tem is called a platform, which supports actors executing on one

CyberOrg Platform

Actors
SchedulerManager

CyberOrgManager

AA Platform

Figure 3: CyberOrg Platform Structure

physical machine. AA has several layers of components that pro-
vide different services: Actor Management Service keeps and man-
ages state information for all actors in the platform including both
running and mobile actors; Message Delivery Service handles all
messages in the current AA platform; Message Transport Service
passes messages between AA platforms; Advance Service provides
match-making and brokering services.

In Actor Architecture, actors may run concurrently and exist
across distributed systems; however, resource consumption is not
accounted for. Specifically, the Java VM is left with the task of
scheduling actor threads.

Our implementation of CyberOrgs adds two key components to
a AA platform: CyberOrg Manager and Scheduler Manager, as il-
lustrated in Figure 3.

CyberOrg Manager
CyberOrg Manager adds run-time support for a system of cyber-
orgs. Every actor is contained in a cyberorg, and the actors re-
ceive the processor resource they need from the cyberorgs contain-
ing them.

Each cyberorg holds a number of actors representing a concur-
rent computation, an amount of eCash to support those actors, pro-
cessor resource defined in time and space (represented by the cy-
berorg’s contract with its host) available for carrying out the com-
putation; it also hosts other cyberorgs. A cyberorg has its own strat-
egy to allocate available resources among its actors and hosted cy-
berorgs. This strategy is implemented in the form of a facilitator
actor, which is a special actor that serves as the active part of a
cyberorg. Among other tasks, a facilitator triggers primitive Cy-
berOrgs operations which react to changes in the environment as
well as the the cyberorg’s requirements.

Scheduler Manager
Scheduler Manager is made up of two parts: the cyberorg scheduler
and the thread scheduler. The cyberorg scheduler keeps track of
the hierarchical structure of the CyberOrgs hierarchy for a single
platform and converts the hierarchical schedule represented by the
structure into a flat schedule for the actor threads. This schedule,
which contains times for which each actor is to be scheduled, is
dynamically updated with changes in the hierarchical schedule as
a result of invocation of CyberOrgs primitives and changes in the
cyberorgs’ local resource distribution.

The thread scheduler schedules actor threads contained in a queue
for the amounts of processor time they are supposed to be sched-
uled. It uses Java’s suspend and resume primitives3 to schedule

3Although these primitives are deprecated, they are safe to use on
actors because multiple threads do not access the same object.

actors in the queue. The time slices for actors are computed and
updated dynamically by the cyberorg scheduler.

3.1 Programming Constructs
The API for CyberOrgs includes support for creating cyberorgs

and actors as well as CyberOrgs primitive operations.

Creation
There are two types of creation in the CyberOrgs system: cyberorg
creation and actor creation. Cyberorg creation method is called
only once by the GUI or user program to create the first cyberorg
in the system; future cyberorg creations happen as a result of invo-
cation of the isolate primitive. Actor creation method is called by
existing actors to create other actors, or by the cyberorg constructor
in order to create the facilitator actor.

• Cyberorg creation:
CyberOrg createCyberOrg(long ticks,
long ticksrate, long eCash, String
facilitatorClass, Object[] args)

where ticksrate is the rate of processor time that the new cy-
berorg would receive with respect to the cyberorg in one scheduling
cycle; eCash is the number of eCash units that are used for buying
processor resource from host cyberorg; facilitatorClass and
ags identify the facilitator actor class for the cyberorg and the ar-
guments for creating such a facilitator actor.

• Actor creation:
ActorName createActor(ActorName creator,
String actorClass, Object[] args)

where creator is the unique name of the creator; actor-
Class and ags specify the class of the actor being created and
the arguments used in the actor constructor. This method is used
by one actor to create another actor.

• ActorName createActor(CyberOrg host,
String facilitatorClass, Object[] args)

where host identifies the creating cyberorg; facilitator-
Class identifies the actor class of the facilitator and args specify
the arguments to be used in constructing the facilitator actor. This
is used by the cyberorg constructor at the time of creation of a cy-
berorg to create a facilitator actor.

CyberOrgs Primitives
Primitive CyberOrgs operations are called by the facilitator actor
of the cyberorg.

• Isolation:
CyberOrg isolate(long eCash, ActorName[]
actors, Contract newContract)

where eCash is the amount of eCash that is given to the newly
created cyberorg; actors is an array of existing actors that will
be isolated into the new cyberorg; newContract is the contract
imposed on the new cyberorg and its host cyberorg which specifies
the ticks and ticks rate that the new cyberorg receives, as well as
the cost of the resources in terms of eCash payments to be made.

• Assimilation: CyberOrg assimilate()

This primitive will cause assimilation of the cyberorg into its
host.

• Migration:
void migrate(ActorName facActorOf-
DestCyberOrg, Contract newContract)

where facActorofDestCyberOrg is the name of facilita-
tor actor in the destination cyberorg which serves as the cyberorg’s
name; newContract is the negotiated contract between the mi-
grating cyberorg and the intended host.

Negotiation
Before migration, a cyberorg needs to negotiate a contract with a
prospective host. The negotiation is initiated by the facilitator actor
of the cyberorg interested in migrating by a call of the negotiation
primitive.

• Negotiation:
Contract negotiate(ActorName
destFacilitatorActor)

where destFacilitatorActor is the facilitator actor of the
prospective future host cyberorg.

Example: Distributed Weather Forecast
We return to the motivating example of a distributed weather fore-
casting to illustrate the expressive power of programming constructs
based on the CyberOrgs model. A programmer can implement ap-
plication part of the code using the Actor constructs offered by Ac-
tor Architecture. Additionally, the resource management part of
the system can be implemented separately by sub-classing from
the CyberOrg and FacilitatorActor classes.

The system may have two types of cyberorgs: region and weather
system specific. A regional cyberorg would manage resources (rep-
resented as eCash) for developing forecasting information for a
region; a weather system cyberorg would manage resources ded-
icated to understanding a weather system of particular interest. In
the event of localized weather activity, regional cyberorgs would
isolate parts of their computations dedicated to effected sub-regions
to form cyberorgs with independent control. At the conclusion of
high local activity, cyberorgs for smaller regions may assimilate
into cyberorgs for larger regions, relinquishing independent control
of resources.

A weather system cyberorg would migrate from one regional cy-
berorg to another, taking with it dedicated resources to be made
available to regions facing the system. Specifically, on arriving
in a regional cyberorg, the weather system cyberorg would isolate
part of its eCash into a new cyberorg, which migrates out to the
regional cyberorg for assimilation. Figure 4 illustrates how this
would be implemented as two methods of the weather system cy-
berorg’s facilitator. Method actionOnArrival is invoked on
the weather system cyberorg’s arrival into a regional cyberorg. It
checks if the region is still under threat; if it is, need for funds is
assessed, the funds are isolated into a new FundsCyberOrg cy-
berorg, which is then asked to negotiate terms to migrate to the
host region. Once a contract is negotiated and migration has hap-
pened, the FundsCyberOrg assimilates into the region, releasing
its funds.

Figure 5 illustrates the delegation of sub-regional control of re-
sources by a regional cyberorg. The checkStatus method of the
regional cyberorg’s facilitator checks whether resources have to be
set aside for delegated control for a sub-region. If so, the smaller
region’s actors are isolated along with the necessary amount of
eCash. Once local control is no longer required (for example, be-
cause a weather system has passed the sub-region), a regional cy-
berorg simply assimilates into the cyberorg of the enclosing region.

public void actionOnArrival() {
if (w_sys.effects(reg) {

long toOffer= Needs(w_sys, reg);
CyberOrg FundsCyberOrg=

isolate(toOffer, new ActorName[0],
defChildContract);

send(fundsCybFacil,
"triggerFundMigration", hostCybFacil);
}

}
public void triggerFundMigration

(ActorName destination) {
Contract offerSupport=

negotiateWith(destination);
if (offerSupport != null) {

migrate(destination, offerSupport);
}

}

Figure 4: Facilitator actor methods of WeatherSys CyberOrg.
fundsCybFacil and hostCybFacil are facilitator actors of Fund-
sCyberOrg and hostCyberOrg respectively

Most interestingly, if the resources available through the contract
with the current host cyberorg are not sufficient, a regional cy-
berorg may negotiate a better contract with another cyberorg. In
other words, although the cyberorgs for sub-regions are created by
cyberorgs for larger regions, the sub-regional cyberorgs are free to
migrate elsewhere in search of a better matching execution envi-
ronment.

public void checkStatus() {
if (needToDelegate) {

// identify actors to isolate
// compute eCash to set aside
isolate(eCash, regActors, defCont);

}
if (!localControlRequired)

assimilate();
}
if (myContract.res < resNeed) {

ActorName destination=
lookupYellowPageFor(resNeed);

Contract newContract=
negotiate(destination);

if (newContract!=null) {
migrate(destination, newContract);

}
}

}

Figure 5: Method checkStatus in facilitator actor of re-
gional cyberorg

4. SCHEDULING CYBERORGS
An important hurdle in efficiently implementing CyberOrgs is

the model’s hierarchical structure. A naive way to enforce the hi-
erarchical schedule of a cyberorg tree would be by implementing
a hierarchy of schedulers. The overhead incurred by such a hierar-
chical scheduler would be prohibitive even for a single processor.

S_a

A

B

C

D

a1

a2

d1

c1

b1

a1 a2

b1

c1

d1

a1 a2 b1 c1 d1

Scheduler

S_b S_d

S_c

a) Hierachical Scheduler b) Flat Scheduler

Figure 6: Scheduler Schemes for CyberOrgs: Flattening of the
hierarchical schedule eliminates need for layers of schedulers

It turns out that enforcing cyberorgs’ hierarchical distribution of
cpu time does not require a hierarchical scheduler. Because avail-
ability of resources is in terms of what is available to the root
cyberorg, and the availability for each cyberorg is in terms of re-
sources its parent possesses (as stipulated by their contract), abso-
lute availability of resources for each cyberorg can be maintained
by simply looking at the contract and the parent’s resources. By
simple induction, the absolute resource availability for each cy-
berorg can hence be maintained in time proportional to the num-
ber of changes. Consequently, a global schedule can be created in
which each cyberorg receives the resources it is promised as a func-
tion of the resources entering the system. In other words, instead
of launching a new scheduler for each cyberorg, all cyberorgs’ in-
ternal schedules are composed into a single flat schedule of actors
which is equivalent to the hierarchical schedule (Figure 6). Main-
tenance of the flat schedule can happen on the fly in response to
primitive cyberorg operations, with a constant cost for each type of
update.

A number of experiments were carried out on a prototypical Java
implementation of the efficient scheduler for cyberorgs, to compare
the overhead with the overhead of using a simple fair scheduler, or
of letting Java’s default scheduler schedule the threads.

4.1 CyberOrgs Scheduler
The scheduler is implemented using two classes. The Schedu-

ler class defines a thread scheduler which simply schedules threads
(corresponding to actors at the tree’s leaves) for amounts of time
for which they are to be scheduled. The scheduler uses Java’s
suspend and resume primitives to schedule threads. Another
class, Sche-duleManager, defines an update manager which re-
ceives requests for updating the cyberorg tree, and carries out the
required changes in the flat schedule.

There are two parameters used by the system for managing the
overhead by adjusting the granularity of control. Parameter small-
estSlice puts a lower limit on how small a request for time

slice can be, and parameter. However, requests for smaller time
slices are not outrightly rejected. When a time slice lower than
smallestSlice is requested, the time slices of each thread are
scaled up so that the newest thread receives at least smallest-
Slice. The cost of this scale-up is in the total amount of time
that one cycle of the scheduler takes, which coarsens the granu-
larity of control. The second parameter, largestSlice, puts
an upper limit on the size of a slice. This parameter becomes rele-
vant at the time of accommodating a request for a time slice smaller
than smallest-Slice. If the scale-up required to award the new
time slice is such that the highest time slices becomes larger than
largestSlice, then the request is denied.

Actors CyberOrgs Scheduler Fair Scheduler
(Thrds) Height Cybs Time Max Mean Min

10 2 4 356 272 280 334
50 4 17 1040 999 1087 1022
100 3 15 1967 1878 1969 2016
200 4 27 4058 3720 3750 3775
300 5 40 5372 5412 5908 6074
400 5 67 7544 6685 7202 7931
500 5 59 8946 7823 8313 9043
600 5 71 11040 10121 10507 10943
700 5 102 13866 11607 12736 13291
800 5 74 14754 14203 14359 15614
900 6 129 17061 15617 16177 16568

1000 6 140 18736 16548 17715 18087

Table 1: Comparison of scheduling choices for cpu intensive
computations. Time is in milliseconds. Height is final height of
cyberorg tree; Cybs is the final number of cyberorgs. Columns
min, mean and max show time slices used by a fair scheduler
corresponding to the minimum, mean and maximum of time
slices awarded by the cyberorg scheduler for the same number
of threads.

4.2 Experiments
Experiments were carried out for comparing performance of four

broad scheduling choices for cpu intensive computations. The first
choice was the cyberorg scheduler for scheduling cyberorgs ac-
cording to the hierarchical schedule; second was a fair scheduler
that awarded uniform time slices to all threads; third was to allow
Java’s default thread scheduler to schedule the concurrently execut-
ing threads carrying out the computations; the final choice was to
sequentialize all computations carried out concurrently in the pre-
vious cases, to be carried out by a single thread.

Because there is a relationship between the sizes of time slices
and the scheduling overhead, to keep the comparison fair, the fair
scheduler experiments were carried out with three different time
slices, corresponding to the smallest, mean and largest time slices
for which the cyberorg scheduler scheduled its actor threads.

All actor threads in the experiments carried out identical cpu-
intensive computations. For the cyberorgs case, new cyberorgs
were randomly isolated by existing cyberorgs during the course of
the computation.

Table 1 shows typical results for the cyberorg scheduler and the
fair schedulers with the three different time slice values. The first
column shows the total number of actor threads created during the
computation, which also determines the total amount of compu-
tation carried out. The next set of three columns shows (for the
number of actors in each row) the final height of the cyberorg tree

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 0 100 200 300 400 500 600 700 800 900 1000

E
xe

cu
tio

n
 t

im
e

Number of threads

with cyberorgs
no scheduler

max
mean

min
one thread *

Figure 7: Scheduler Performance (*x axis for one thread case
represents the computational load equivalent to the load of the
number of threads). Cyberorgs do not incur significant amount
of overhead beyond that incurred by techniques that do not
provide resource control.

and the final number of cyberorgs in the system at the end of the
computation, and the execution time for each case. The set of three
columns that follows shows the execution times for the three cases
of fair scheduler executions involving the number of actors in the
row.

The graph in Figure 7 illustrates the results shown in Table 1,
as well as results for the cases when the Java runtime system is
allowed to schedule the threads, and when the entire work load is
carried out by a single thread (to serve as a reference point). As the
graph shows, no significant overhead is incurred in enforcing the
hierarchical schedule of a tree of cyberorgs. Specifically, the over-
head of enforcing CyberOrgs’ hierarchical control is proportional
to the number of threads (actors) in the system irrespective of the
number of cyberorgs and the height of the cyberorg tree.

These experiments were carried out on a single processor with
a monotonically increasing number of cyberorgs and without any
migrations or assimilations. Although enforcing hierarchical con-
trol and isolating new cyberorgs (at a certain rate) has been shown
to be inexpensive, changes in the hierarchy as a result of typical
patterns of primitive CyberOrgs operations will require updating of
the flat schedule in multiple ways, in line with the frequency of the
primitive operations. Cyberorgs changing how they distribute their
processor time among their actors too will require changes to be
made in the flat schedule. Because contracts with client cyberorgs
(and those involving cyberorgs further down in the tree) remain
unchanged when a cyberorg migrates to another host, the cost of
updates resulting from each migration is proportional the number
of actors managed by the migrating cyberorg. Similarly, because
a cyberorg may not assimilate if it is hosting other cyberorgs, the
cost of each assimilate is proportional to the number of actors in the
assimilating cyberorg. Finally, the cost of a cyberorg changing its
distribution of processor resource among its actors is proportional
to the number of actors being effected. Work is ongoing to study

overheads resulting from interesting patterns of CyberOrgs primi-
tive operations, and to obtain analytical results relating overheads
to the number and types of operations per unit of computation.

4.3 Distributed Hierarchical Scheduler
A distributed scheduler would control processor resources on a

number of connected machines. However, implementing such a
scheduler is complicated by communication delays. Specifically,
a fine-grained cpu scheduler must be local to the processes it is
scheduling. A distributed scheduler, therefore, must be a network
of communicating local schedulers. Schedules for such a sched-
uler must explicitly address communication delays. In the context
of CyberOrgs, it is possible to create such schedules by examining
communication delays which can be estimated once the network
resource is controlled. In other words, once an amount of network
bandwidth has been secured for a cyberorg, cpu scheduling of its
distributed actors may rely on predictable communication delays.
Work is currently ongoing to implement efficient hierarchical con-
trol of network bandwidth and to develop a distributed version of
the CyberOrgs scheduler.

5. CONCLUSIONS
Agents sharing an execution environment invariably compete for

available resources, possibly in ways impacting global performance
of a multi-agent application. However, resource usage is one aspect
of multi-agent behavior which naturally lends itself to abstraction.
CyberOrgs offer a model for hierarchical coordination of resource
usage by multi-agent applications in a network of peer-owned re-
sources, allowing multi-agent applications to execute in an envi-
ronment of predictable resource availability. The model achieves a
separation of concerns by representing resource requirements of an
application separately from its functionality. We have introduced
an efficient prototype implementation and programming constructs
for implementing systems of cyberorgs, and described scheduling
techniques for efficient distribution of processor resource.

Preliminary experimental results show that CyberOrgs’ hierar-
chical control does not incur significant overhead. Relationship be-
tween overhead and interesting patterns of CyberOrgs primitive op-
erations is being studied. Work is ongoing to generalize the method
of flattening a hierarchical schedule to achieve efficient distribution
and control of other computational resources. A distributed ver-
sion of the cyberorg scheduler is under development which relies
on predictability of communication delays resulting from effective
control of network bandwidth.

Acknowledgements
This research is supported in part by an NSERC Discovery Grant.

6. REFERENCES
[1] G. Agha. Actors: A Model of Concurrent Computation in

Distributed Systems. MIT Press, Cambridge, Mass., 1986.
[2] G. Agha and N. Jamali. Concurrent programming for

distributed artificial intelligence. In G. Weiss, editor,
Multiagent Systems: A Modern Approach to DAI.,
chapter 12. MIT Press, 1999.

[3] G. Agha, I. A. Mason, S. F. Smith, and C. L. Talcott. A
foundation for actor computation. Journal of Functional
Programming, 1996. to appear.

[4] A. Bond and L. Gasser, editors. Readings in Distributed
Artificial Intelligence. Morgan Kaufman Publishers, San
Mateo, California, 1988.

[5] L. Gasser. DAI approaches to coordination. In N. M. Avouris
and L. Gasser, editors, Distributed Artificial Intelligence:
Theory and Praxis, pages 31–51. Kluwer Academic
Publishers, 1992.

[6] D. Gelernter and N. Carriero. Coordination languages and
their significance. Communications of the ACM,
35(2):97–107, February 1992.

[7] C. Hewitt and P. de Jong. Open systems. In J. Mylopoulos,
J. W. Schmidt, and M. L. Brodie, editors, On Conceptual
Modeling, chapter 6, pages 147–164. Springer Verlag, 1984.

[8] N. Jamali. CyberOrgs: A Model for Resource Bounded
Complex Agents. PhD thesis, University of Illinois at
Urbana-Champaign, 2004.

[9] N. Jamali and X. Zhao. Hierarchical resource usage
coordination for large-scale multi-agent systems. In
T. Ishida, L. Gasser, and H. Nakashima, editors, LNAI:
Massively Multi-agent Systems I, volume 3446, pages 40–54.
Springer Verlag, 2005.

[10] M. Jang and G. Agha. On efficient communication and
service agent discovery in multi-agent systems. In
Proceedings of the Third International Workshop on Software
Engineering for Large-Scale Multi-Agent Systems (SELMAS
’04), pages 27–33, Edinburgh, Scotland, May 2004.

[11] N. R. Jennings. Commitments and conventions: The
foundation of coordination in multi-agent systems. The
Knowledge Engineering Review, 8(3):223–250, 1993.

[12] W. Kim and G. Agha. Efficient Support of Location
Transparency in Concurrent Object-Oriented Programming
Languages. In Proceedings of Supercomputing’95, 1995.

[13] W. A. Kornfeld and C. Hewitt. The scientific community
metaphor. IEEE Transactions on System, Man, and
Cybernetics, 11(1):24–33, January 1981.

[14] C. Manning. Introduction to programming actors in acore. In
C. Hewitt and G. Agha, editors, Towards Open Information
Systems Science, chapter 2, pages 33–80. MIT Press,
Cambridge Mass, 1990.

[15] L. Moreau and C. Queinnec. Design and semantics of
quantum: a language to control resource consumption in
distributed computing. In Usenix Conference on
Domain-Specific Languages (DSL’97), pages 183–197,
Santa-Barbara, California, 1997.

[16] L. Moreau and C. Queinnec. Distributed and Multi-Type
Resource Management. In ECOOP’02 Workshop on
Resource Management for Safe Languages, Malaga, Spain,
June 2002.

[17] J. E. White. Telescript Technology: The Foundation for the
Electronic Marketplace. Technical report, General Magic
Inc., Mountainview, CA, 1994.

